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Abstract— Visual data mining with virtual reality spaces are
used for the representation of data and symbolic knowledge.
The approach is illustrated with data from a geophysical
prospecting case in which partially defined fuzzy classes are
present. In order to understand the structure of both the
data and knowledge extracted in the form of production
rules, structure-preserving and maximally discriminative vir-
tual spaces are constructed. High quality visual representations
can be obtained using Samann and Nonlinear Discriminant
neural networks. Rough set techniques are used for demonstrat-
ing the irreducibility of the set of original attributes and for
learning the symbolic knowledge. Grid computing techniques
are used for constructing sets of virtual reality spaces and
for assessing the behavior of some of the neural network
parameters controlling the quality of the virtual worlds. The
general properties of the symbolic knowledge can be found
with greater ease in the virtual reality space whereas both the
prediction of unknown objects to the target class, as well as
a derivation of a fuzzy membership function from the virtual
reality space and the neural network results are obtained.

I. INTRODUCTION

Knowledge discovery is the non-trivial process of iden-
tifying valid, novel, potentially useful, and ultimately un-
derstandable patterns in data [4], and the role of visual-
ization techniques in the knowledge discovery process is
well known. There are different kinds of data (relational,
graphical, symbolic, etc.), and there are also patterns of
different kinds (geometrical, logical, behavioral, etc.). The
increasing rates of data generation require the development
of procedures facilitating the understanding of the internal
structure of data more rapidly and intuitively. The increasing
complexity of the data analysis procedures makes it more
difficult for the user, to extract useful information out of the
results from the various techniques applied. However, the
human brain still outperforms the computer in understand-
ing complex geometric patterns, thus making the graphical
representation of complex and abstract information directly
appealing. A virtual reality (VR) technique for visual data
mining on heterogeneous, imprecise and incomplete infor-
mation systems was introduced in [14], [16]. Several reasons
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make VR a suitable paradigm for visual data mining: dif-
ferent representation models according to human perception
preferences can be chosen, it allows immersion, it creates
a living experience, and the user may see the world as a
whole or concentrate on specific details. For using VR the
user needs no mathematical knowledge and no special skills.

The purpose of this paper is to explore the construction of
high quality VR spaces for visual data mining using a combi-
nation of neural networks and rough sets techniques with the
purpose of representing both data and symbolic knowledge.
In particular, the Samann and Nonlinear Discriminant (NDA)
networks are used for unsupervised and supervised mapping
to low-dimensional feature spaces. Rough sets methods are
applied for evaluating the information content of the original
descriptor variables and for the extraction of symbolic rules
from the data. Both the data and the symbolic knowledge
are transformed into corresponding virtual reality spaces
where their structure and properties can be visually inspected
and quickly understood. This approach is illustrated with
a case of geophysical prospecting for underground caves
involving partially defined fuzzy classes. Since the classes
are partially defined, a combination of unsupervised and
supervised approaches is required.

II. VIRTUAL REALITY SPACES FOR VISUAL DATA

MINING

Information systems were introduced in [10]. They have
the form
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�� 	 has a domain ��� and
an evaluation function ��� . In general the ��� are not required
to be finite. More generally, heterogeneous and incomplete
information systems should be considered [15].

A virtual reality space for the visual representation
of information systems [14], [16], is defined as � �
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is a non-empty set of behaviors

(i.e. ways in which the objects from the virtual world will
express themselves: movement, response to stimulus, etc. ).���CBED��

is a metric space of dimension F (the actual
virtual reality geometric space). The other elements are
mappings:
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is a collection of characteristic functions for
selecting which of the original relations will be represented
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in the virtual world. The representation of an information
system �� in a virtual world requires the specification of
several sets and a collection of extra mappings: �� / �
� �-��	 / ��.O/+� � �

in � , which can be done in many ways. A
desideratum for �� / is to keep as many properties from ��
as possible. Thus, a requirement is that

�
and

�
are in

one-to-one correspondence (with a mapping
� H � K �

).
The structural link is given by a mapping � H ���� K ���

.
If � � � �$���	�
��� �9787879� �$��
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��
��� � ��� � � �$���� � A�� �8797879� �$� �� � A�� � ( �$���� are
the evaluation functions of

	J/
).

III. NEURAL NETWORKS IN THE CONSTRUCTION OF

THE VIRTUAL REALITY SPACE

The typical desiderata for the visual representation of
data and knowledge can be formulated in terms of mini-
mizing information loss, maximizing structure preservation,
maximizing class separability, or their combination, which
leads to single or multi-objective optimization problems. In
many cases, these concepts can be expressed deterministi-
cally using continuous functions with well defined partial
derivatives. This is the realm of classical optimization where
there is a plethora of methods with well known properties.
In the case of heterogeneous information the situation is
more complex and other techniques are required. Hybrid
approaches combining evolutionary computation methods,
simulated annealing, neural networks and classical optimiza-
tion techniques like Powell, Fletcher-Reeves and others, are
described elsewhere [17] [18].

In the unsupervised case it is natural to require that.O/�� .
, thus having a virtual world portraying selected

relations from the information system. The function � can be
constructed as to maximize some metric/non-metric structure
preservation criteria as is typical in multidimensional scaling
[3], or minimize some error measure of information loss [12],
[9]. A typical error measure is:

� 
�F F A	��� ,), A , � 6� �
�� "! �# "$&%�')(+* ! �# �,�-.�# 0/
1! �# (1)

where 2 %3( is a dissimilarity measure between any two objects4 �65
in the original space, and 7 % � ( � is another dissimilarity

measure defined on objects
4 /��85G/

of the virtual reality space
(the images of

4 �65
under � ). In principle, the � mappings

obtained using approaches of this kind are implicit because
the images of the objects in the new space are computed
directly. However, a functional representation can be obtained
with a neural network (e.g. the Samann network). This is a
feedforward network and its architecture consists of an input
layer with as many neurons as descriptor attributes, an output
layer with as many neurons as the dimension of the target
space and one or more hidden layers. In the supervised case,
a natural choice for representing the � mapping is an NDA
neural network [19], [8], [9], [7]. The NDA network is also
feedforward with the same input layer, but with an output
layer with as many neurons as classes contain the decision
attribute, a last hidden layer (there might be several) with

a number of neurons equal to the dimension of the target
space and optionally other hidden layers. The classical way
of training these networks is described in [9], [8], [7].

IV. SYMBOLIC KNOWLEDGE VIA ROUGH SETS

The Rough Set Theory [10] bears on the assumption that
in order to define a set, some knowledge about the elements
of the data set is needed, in contrast to the classical approach
where a set is uniquely defined by its elements. In the Rough
Set Theory, some elements may be indiscernible from the
point of view of the available information and knowledge is
understood to be the ability of characterizing all classes of
the classification.

A decision table is any information system of the form 9 �� ���
	 �
where

	<� 	;:"<>=@?BA
,
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are the condition attributes
and

?
is the decision attribute. The lower approximation of

a concept consists of all objects, which surely belong to
the concept, whereas the upper approximation consists of all
objects, which possibly belong to the concept. For any

�D�
	

an equivalence relation E"FHGH� � � defined as EIFJGH� � � �= �
K � KML6�P� �+NIO P 
>� ��� �$�Q�
K�� � �(�Q�
KML8� A , is associated.
A reduct is a minimal set of attributes

�R� 	
such that

E"FHGH� � � � E"FHGH� 	 � (i.e. a minimal attribute subset that
preserves the partitioning of the universe). The set of all
reducts of an information system 9 is denoted SUTVGJ� 	 �
(reduct computation is NP-hard, and several heuristics have
been proposed [20]). Reduction of knowledge consists of
removing superfluous partitions such that the set of ele-
mentary categories in the information system is preserved,
in particular, w.r.t. those categories induced by the decision
attribute. In particular, minimum reducts (those with a small
number of attributes), are extremely important, as decision
rules can be constructed from them [2]. The algorithms for
computing reducts and rules used in this paper are those of
the Rosetta system [11].

V. GRID AND DISTRIBUTED COMPUTING

Distributed and Grid computing (DGC) involves coor-
dinating and sharing computing, application, data, storage,
or network resources across dynamic and geographically
dispersed organizations. The use of grid technologies is
an obvious choice for many data mining tasks within the
knowledge discovery process. In this paper DGC was used
for exploring the behavior of the Samann and NDA neural
networks with respect to variations in some of the controlling
parameters, thus enabling the discovery of best-behaving
models.

Condor (http://www.cs.wisc.edu/condor/) is
a specialized workload management system for compute-
intensive jobs in a distributed computing environment, de-
veloped at the University of Wisconsin-Madison (UW-
Madison). It provides a job queuing mechanism, scheduling
policy, priority scheme, resource monitoring, and resource
management. All of the experiments in this paper were
conducted on two Condor pools located at the Institute for
Information Technology, National Research Council Canada
and the Polytechnic University of Catalonia, respectively.



VI. A CASE IN GEOPHYSICAL PROSPECTING

Cave detection is a very important problem in civil and
geological engineering. Sometimes the caves are opened to
the surface, but typically they are buried and geophysical
methods are required for detecting them. The task is usually
complex. The studied area contained an accessible cave
and geophysical methods complemented with a topographic
survey were used with the purpose of finding their relation
with subsurface phenomena [13]. This is a problem with
partially defined classes: the existence of a cave beneath a
measurement station is either known for sure or unknown.
Note, however, that this is not a one class problem, since
two different classes exist.

The set of geophysical methods included 1) the sponta-
neous electric potential (

����� '��
) at the earth’s surface in the

dry season, 2) the vertical component of the electro- magnetic
field in the VLF region of the spectrum, 3) the spontaneous
electric potential in the rainy season (

��� � '��
), 4) the gamma

ray intensity ( SJ
 ? ) and 5) the local topography (
	 %��

). The
raw data consist of these � fields (the attributes) on a spatial
grid containing �
	�	�� measurement stations (the data objects).
In order to eliminate the data distortion introduced by the
different units of measure and to reduce the influence of noise
and regional geological structures, a data preprocessing pro-
cess was performed consisting of: i) conversion of each phys-
ical field to standard scores. ii) model each physical field � as
composed of a trend, a signal and additive noise: ����K ��
 � �� �
K ��
 �����"��K ��
 ��� � �
K ��
 � where

�
is the trend, � is the

signal, and � is the noise component. iii) fit a least squares
2-D linear trend �� �
K ��
 � ����� � � 6 K�� � N 
 and obtain the
residual: �

, �
K ��
 � � ����K ��
 ��� �� �
K ��
 � . iv) convolve the residual
with a low pass 2-D filter to attenuate the noise component:
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 � � $
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where ��I��K ��
 � is the signal approximation, and � �"! 6 � ! N � is
the low-pass zero-phase shift digital filter. v) recompute the
standard scores and add a class attribute indicating whether
there is a known cave below the corresponding measurement
station or if its presence is unknown. The pre-processed data
set will be called prp-data. This is not the typical two-
classes presence/absence problem because only one class is
known with certainty. Since the classes are partially defined,
a combination of unsupervised and supervised approaches is
required.

VII. RESULTS

The prp-data set was discretized using the boolean rea-
soning algorithm and the reducts were found by Johnson’s
algorithm [11]. A single reduct was found, consisting of all
of the � original variables, proving that no proper subset of
these variables exactly preserves the discernibility relation of
the original data. That is, no lower dimensional space based
on the power set of the original variables is discernibility-
preserving. Thus, lower dimensional spaces based on non-
linear combinations are to be sought. A collection of exper-
iments was conducted on a Condor distributed computing
environment in order to asses the effect of some of the

neural network controlling parameters and to select adequate
models for the visualization. The activation functions used
were sinusoidal for the first hidden layer and hyperbolic
tangent for the rest. The error measures that the network
learning targeted were mean squared error and classification
rate for the NDA network and Sammon error for the Samann
network. A collection of models was obtained by varying
some of the network controlling parameters (Table I), for a
total of �
	�&�' for the NDA and (�	*) for the Samann networks
respectively.

A. Spaces maximizing structure preservation

From an unsupervised perspective, a Samann network was
used mapping the original prp-data � -dimensional space to
a 3-D VR-space. The distribution of the Sammon error is
shown in Figure1. It is skewed towards the smaller errors

Fig. 1. Left: Distribution of the Samann stress ( +�,.- experiments) using
Samann networks. Right: Distribution of the classification error of the cave
class ( /�,�0�1 experiments) using NDA networks.

end (good behavior), with a mean of ' 7 '2	�	�3 and a standard
deviation of ' 7 '�'4�
(�( indicating that error values fluctuate
within a narrow range.

Clearly, it is impossible to represent a virtual reality space
on printed media (navigation, interaction, and world changes
are all lost). Therefore, only snapshots can be presented.
For simplicity, in all of the VR-spaces presented

� �
=	? 
 , !5��6 � � , �7� ��% 4 ! � � ��6 � � , ��� A , � � = � � 
 � 4 �	A and the%

function is based on the representation of � given by a
Samann network.

,
is a single characteristic function for the

relation 8 with the equivalent classes
=
� 
29Q� � ���:!Q� A�; � A such

that objects of the cave class will be represented as dark
spheres and those of the unknown class by light ones.

As an illustration, the VR-space corresponding to experi-
ment �<(2� is shown in Figure 2. The low value of the Sammon
error indicates that the space preserved most of the distance
structure of the data, therefore, giving a good idea about
the distribution in the original space. The space is clearly
polarized with two distribution modes: one at the left hand
side composed exclusively of cave objects, and another at
the right hand side composed only of unknown objects.
Since the distance between any two objects is an indication
of their dissimilarity, objects of the unknown class closer
to objects of the cave class are more likely to correspond
to measurement stations having underground cavities than
objects further away. In particular, those objects of the
unknown class contained within the convex hull defined by



TABLE I

PARAMETERS USED FOR THE NDA AND SAMANN NETWORKS.

Parameters NDA Samann

No. Neurons in the First Hidden Layer
=
20,30,40,50,60

A =
20,30,40

A
Weights Range in the First Hidden Layer

=
0.1,0.5,1,3,5,7,9

A =
15,10,5

A
Learning Rates in Every Layer 0.001,0.001,0.001

=
(3.0,1.5),(2.0,1.0),(1.0,0.5)

A
Momentum

=
0.1,0.2,0.3

A =
0.0,0.1,0.2

A
Number of Iterations

=
1000,2000,3000

A
200

Random Seed Four different values Four different values

Fig. 2. VR-space of the prp-data set corresponding to experiment /�+��
(Sammon error = 1�� 1�,�1�� ). Objects of the cave class are dark. Objects of
the unknown class are light (this is for comparison purposes only, since
the mapping generating the space is unsupervised). Transparent membranes
wrap the corresponding classes.

the objects of the cave class are very interesting. It is also
evident that only a smaller proportion of the objects of the
unknown class are either contained, or close to the convex
hull of the cave class, as expected from the typical lognormal-
like distribution of many geological features.

A hierarchical clustering using Euclidean distance and
Ward’s method [1] (Figure 3) clearly reveal the existence
of two well defined clusters. Their nature is explained by
the 2x2 contingency table defined by the membership with
respect to the cave/unknown classes vs. those corresponding
to the two clusters emerging from the dendrogram. The
table has a highly significant � N value ( �<&2� 7 ��� 	 ), indicating
the high degree of association between the existing classes
(specially the cave class) and the formed clusters. Cluster 	
corresponds to the cave class containing �
	*' of the �
	4� cave
objects and ) �<3 unknown objects (likely candidates to belong
to the cave class). Clearly, those in cluster � correspond to
locations less likely to have underground cavities beneath.	J% � � � � , � 	J% � � � � , 	�
�A � 
 %

�M�:! � A�; � & � � ) �<3 ���
'*)� 
29Q� � �
	*' �
	4�
1) Visualization of Symbolic Knowledge : As explained in

section IV, symbolic knowledge in the form of production

Fig. 3. Dendrogram of the objects in the VR-space of Figure 2 (Ward’s
method using Euclidean distance).

rules was extracted from the prp-data set using rough set
techniques. Structure preserving VR-spaces representing an
information system with rules as objects can be constructed
by minimizing Sammon’s error (1). In this case the dissim-
ilarity measure used for the original attributes was 2 % ( �
���#� �� %3( �
� �� %3( , where �� % ( is Gower’s similarity coefficient
[5]. The Euclidean distance was the measure used for 7 %3(
in the VR space. A set of (*) � rules were generated and
two representative examples including the number of objects
covered are:��� � '�� ��� ��' 7 �<&�3 � � ��� �0� � ����� ��� ��' 7�� �*)�&�	 ��� �0������1' � % � ��� ' 7 ) ��� )�) ��� �0� � SJ
 ? �
� ��' 7 	4�<'4��� ��� �0���	 % � �
� ' 7 '�'�(�)�& ��� ��� ��� � % 
 ��� � �M�:!Q� A�;;� ���
	*(JA * 5 � ��� �	�
��� � '�� ��� � � � � 7 �*'�	�'�3"�0� � ����� ��� � � � � 7 � ) ��� 	I�0������ ' � % � ��� � � ��' 7 )�& ��� 3"�0��� SJ
 ? �
� � � � � 7 �7)�) �
(I�0���	 % � �
� � � � � 7 	�	*(�3 � ��� � � � % 
 ��� � � 
29"� ��&JA * 5 � ��� �	�
The approach described in [14] [16] for the construction

of VR-spaces representing symbolic knowledge in the form
of production rules was applied and the corresponding space
is shown in Figure 4 (Left). When compared with Figure 2
it is clear that the structures of the knowledge base and the
data are very similar. An even clearer distribution is obtained
if the rule base is pre-processed with the Leader clustering
algorithm [6] in order to select representatives for subsets of
similar rules and work with a smaller information system.

Such a space is shown in Figure 4 (Right) where the
relative size of an object at a particular location in the



Fig. 4. Left: VR-space with a representation of the +.- � rules. Right: VR-space with the ,�+
/ most representative rules (sizes are proportional to the
amount of similar rules at a given location). Dark objects: rules concluding about the cave class. Light objects: rules concluding about the unknown class.

VR-space is proportional to the number of similar rules
within its neigborhood (therefore, of data concentration in
the original feature space). This allows an easy identification
of the most general rules from the more specific ones and
also of knowledge granules. From the point of view of
the distribution of the most important objects, the space is
strongly polarized, allowing the identification of the rules
describing the properties of the physical fields more accu-
rately identifying the presence of underground caves and
also the properties of the fields characterizing the areas most
likely composed of solid rock. At the same time it allows the
identification of the knowledge related with those objects of
undetermined nature (i.e. from the undefined class).

B. Spaces maximizing class discrimination

In a supervised situation, the information available from
the decision attribute is used for constructing a space
where objects belonging to different classes are maximally
differentiated. NDA networks are used for that purpose.
However, a structure preserving space is not necessarily
class-discriminating and conversely. The distribution of the
classification error for the cave class is shown in Figure 1
(Right) (the only determined class in the problem). The
distribution exhibits a skewed-multimodal characteristic with
the important modes shifted towards smaller error values
(a good feature). Several networks have ' % classification
error for the cave class and a representative of them is the
one found in experiment � � ) . A VR-space was built from
a composition of the mapping function ( � ) represented by
that network, with a principal components transformation ( � )
given by � � � ��� � � (Figure 5).

The intrinsic dimensionality of this space is very close
to one, and its shape indicates an almost linear continuum
within and between the two classes. Conceptually, the objects
at the two extremes represent the maximum expression of a
cavehood property, and its opposite, the maximum expression
of being solid rock, in geological terms. In between there is a

gradation of the cavehood property, which is actually a fuzzy
concept. Let A � � � be the object of the VR-space satisfying
the property �0� ��� � � � A � �0���	� ��
 ��� ��� � ��� A��0���
� � for all
A�� � and let A�� be the object such that

? � A � � A�� ��� �? � A � � A�� for all A�� � , A��� A � where
?

is the Euclidean
distance and 6 � 6 is the first principal component. Then, a two
dimensional membership function � � � � ' � �
� for caveness
can be constructed as � � � A�� � ��� � � ? � A � � A��
� ? � A � � A�� ���0� .
Note that although a supervised approach was used, this
formulation is based only on the information about the known
class. This approach can be extended to multiclass problems
with partially defined classes. The distribution of � within
the investigated area is shown in Figure 6

The behavior of � depicts a very consistent and realistic
geological pattern, where not only the known cave is cor-
rectly flagged with maximal membership values, but also
defines a collection of hallos around the known cave with
progressively decreasing values. In addition, other smaller
areas with medium to high values are indicated, suggest-
ing locations where other underground cavities could be
expected. In particular, a borehole drilled at a location within
the white circle of Figure 6 (Left) actually hit a cavity.

VIII. CONCLUSIONS

A combination of neural networks and rough set tech-
niques was used for constructing virtual reality spaces for vi-
sual data mining suitable for representing data and symbolic
knowledge. Good neural network models were found with
the use of distributed computing techniques, which when
used as space mapping functions produce high quality VR-
spaces where the properties of data and symbolic knowledge
can be revealed. Problems with partially defined classes can
be approached successfully by combining unsupervised and
supervised techniques. A method for constructing member-
ship functions in problems with partially defined classes
is proposed which can be used as a forecasting tool, as
illustrated with an example from geophysical prospecting.



Fig. 5. VR-space maximizing class separability for the /�,�,�� objects according to the ��������� function. The classification error of the cave class is 1 .

Fig. 6. Left: Fuzzy membership function 	�
 of the cave class computed from the VR-space obtained from the NDA network (Extreme values: white=1,
black=0). Right: Map of the known cave. The white circle indicates the area where a borehole hit a cavity, not opened to the surface.
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