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Abstract—An experimental study of several decision issues remains for which the elimination of further variables results
for wrapper Feature Selection with Multi-Layer Perceptrons is  in performance degradation. In general, SBS helps to detect
presented, namely the stopping criterion, the data set where irrelevant variables in the first steps [7].

the saliency is measured and the network retraining before . .
computing t)rlle saliency. Experimental results with the quuential FS for MLPs with the SBS procedure and using the SSE
Backward Selection procedure indicate that the increase in the as evaluation criterion involves taking a number of decisions,
computational cost associated with retraining the network with for which there are neither a commonly accepted criterion nor
every feature temporarily removed before computing the saliency comparative studies. First, the stopping criterion of the training
is rewarded with a significant performance improvement. Despite g ysyally, networks are trained until a local minimum for
being quite intuitive, this idea has been hardly used in practice. L . .
Regarding the stopping criterion and the data set where the the training set is found, although there are several exceptions,
saliency is measured, the procedure profits from measuring the where an early stopping procedure is performed (see [17], [1],
saliency in a validation set, as reasonably expected. A somehow{19], for example). Second, the data set where the SSE should
nqn-i_ntuitive con_cll_Jsion can be drawn by looking at_the stopping pe measured. Many existing methods only use the training
criterion, where it is suggested that forcing overtraining may be set to that end. Several exceptions use a validation or test
as useful as early stopping. set to compute the saliency (see [9], [4], [17], [19], [14],
for example). Finally, whether or not the network should be
retrained at every step with every feature temporarily removed
Feature Selection (FS) plays an important role in many Spefore computing the saliency. To the best of our knowledge,
pervised Machine Learning problems. In addition of reducinéie only models that retrain the network at every step with
the storage requirements and the computational cost, FS reggry feature temporarily removed/added before computing the
lead to the improvement of the generalization performance [&hliency are those described in [16], [10], [14]. Among them,
The problem of FS can be defined as follows: given a séf,0f only the model presented in [14] is a pure SBS procedure.
features, select a subset that performs the best under a certajgn experimental study of the aforementioned decision is-
evaluation criterion. This definition leads to a search problegiies when performing FS with MLPs and the SBS proce-
in a space 02" elements. Therefore, two components musgfure is presented in this work. Experimental results indicate
be specified: the feature subset evaluation criterion and i@t the increase in the computational cost associated with
search procedure through the space of feature subsets. retraining the network with every feature temporarily removed
We will focus on FS with Multi-Layer Perceptrons (MLPs)is rewarded with a significant performance improvement.
within the wrapper approach [5]. Many FS algorithms forThis issue is shown to be critical, although, as previously
MLPs use, as feature subset evaluation criterion, differemientioned, it has been hardly used in practice. Regarding
variations of the concept afaliencydefined in some prun- the data set where the value of the SSE is measured, the
ing methods [12]. A feature is considered more importa®BS procedure for MLPs profits from measuring the SSE in
whenever its saliency is larger, so that input units with smadl validation set, which is quite an intuitive idea. Instead, a
saliencies can be eliminated. Following the wrapper approagamehow non-intuitive conclusion is drawn by looking at the
the most commonly used saliency is the value of the losgopping criterion, where forcing overtraining is shown to be
function, usually the sum-of-squares error (SSE). Regardipgtentially as useful as early stopping.
the search procedure, most FS algorithms for MLPs use then significant improvement in the overall results with respect
Sequential Backward Selection (SBS) algorithm. SBS ist@ |earning with the whole set of variables is observed, which
top-down process. Starting from the complete set of available
features, one feature is deleted at every step of the algorithMrpere is no commonly accepted détfim of the relevance of a variable
chosen on the basis of which of the available candidat@se [3], [7], for example). Given a data set, we consider that a variable
gives rise, together with the remaining features, to the bdsirrelevant for a Supervised Machine Learning system when its optimal
. L rformance is not affected negatively by the absence of that variable ([7],
value of the evaluation criterion. Ideally, the performance (Sggew). Note that this is a dynamic defiion, since the relevance of a
the system is expected to improve until a subset of featuresiable may be affected by the presence or absence of other ones.

I. INTRODUCTION



compares favorably with other existing FS wrappers in the—:
literature. Algorithm
The rest of the paper is organized as follows. A basic SBSL€t Vi the whole set ofV, features
scheme for MLPs and its decision issues are discussed ifof V=1uptoN;—1do _ _
section II. The experimental work can be found in section Train the network withVy until a certain stopping

Il Finally, section IV outlines some directions for further criterion is satisfied, and keep its generalization
performance decision issuesee text for details)

research.

for each v € Viy do
[I. DECISIONISSUES IN ABASIC SBS SSHEME FORMLPS SetV = Vy — {v}

A basic SBS scheme for MLPs using the SSE as the saliency ~ Optionally, train the network with the features ¥n

of a feature is presented in figure 1. The outer loop follows the (decision issugsee text for details)
scheme of the classical SBS procedure, where after a training ~ Obtain the saliency of by computing the value of
process a feature is permanently eliminated at every step. the sum-of-squares error functidn, on a certain
The inner loop selects the variable to eliminate: every feature data set decision issuesee text for details)

is temporarily removed, the network is optionally retrained end for

until a certain stopping criterion is met, and then the value SetVny1 = Vy — {v*}, wherev* corresponds to the

of the SSE is computed (on a certain data set). The variable  lowest value ofF), in the previous loop

corresponding to the lowest value of the SSE is permanentlyend for

eliminated. The algorithm in figure 1 involves three decision ReturnVy-, where N* corresponds to the best

issues, as explained next. generalization performance of the network at any step
The first decision issue is the stopping criterion in the Of the previous loop

training phase. Two different stopping criteria were teste@nd Algorithm

The first one is to stop where a minimum of the SSE for _ ]

a validation set is achieved. The second one is to train urfig- 1- A basic SBS procedure for MLPs and the SSE as the saliency.

a minimum for the training set is obtained. Suppose that the

properties of the data set allow the negative effect of overfitting ] .
to appear. It seems that performing early stopping with aNoté that these two ways of computing the saliency may

validation set could be the most promising idea. But it coul§eld very different results for the same feature, since the
also be argued that overtraining the network until a locgPrresponding output functions of the trained networks may
minimum of the SSE for the training set forces the systeFHe very different as well. Both possibilities were tested.
to use all the available variables as much as possible. In thidn summary, there are three combinations of stop-
situation, irrelevant variables could be more outstanding wheig criterion/SSE measurement data set: Training/Training,
the system is not allowed to use them [14]. Training/Validation and Validation/Validation (the Valida-
The second decision issue is the data set where the S&/Training combination makes no sense):
is measured. The measurement of the SSE in a validationL) Training/Training: The network is trained until a mini-
set is, probably, the most reasonable choice, since it can be mum of the SSE for the training set, where the saliency
considered as an estimator of the generalization error. But is computed. Therefore, variables that are not necessary
selecting the minimum number of features that allows to fit  to fit the training set will be removed.
the training set as well as the whole set of variables does coul@) Training/Validation: The network is trained until a min-
also be thought as a quite reasonable way to obtain a good imum of the SSE for the training set is achieved (prob-
feature subset. In this case, the SSE should be measured in ably overtrained). The system is forced to use all the
the training set. Both schemes were tested. available variables as much as possible. In this situation,
The third decision issue involves whether the network is  a validation set is used to remove the variables.
retrained or not after the feature is temporarily removed and3) Validation/Validation: The network is trained until a
before computing the saliency. With this idea, the saliency of  minimum of the SSE for a validation set is obtained.
a feature can be computed following two approaches: The saliency is also computed in the validation set.

1) First, the network is trained with the whole set of compined with the two possibilities regarding the network

available features. Then, every feature is temporaritétraining, there is a total of six configurations to be tested
removed and the SSE is computed. The saliency of evefyd compared.

feature is computed in the same trained network. This
procedure involves training/; — 1 networks. 1. EXPERIMENTS

2) For every feature, the network is retrained with that
feature temporarily removed. For every trained network, Some experiments on both artificial and benchmark clas-
the SSE is computed. This procedure involves trainirgification data sets were performed. For every data set, the
N¢(Ny 4 1)/2 networks (in this case, the training priorsix aforementioned configurations were tested with the SBS
to the inner loop can be omitted). procedure for MLPs described in figure 1.




TABLE |
TEST SET RESULTS AND SELECTED VARIABLES FOR THAugmented Two SpiralATA SET FOR DIFFERENT CONFIGURATIONS OF
RETRAINING/STOPPING CRITERIONSSEMEASUREMENT DATA SET IN THESBSPROCEDURE

Retrain | Stopping Criterion/SSE Measurement| Test MSE SVar

Yes Training/Validation 99.89% | 0.01 1 T T7

Yes Validation/Validation 99.66% | 0.02 Tg T1 T

Yes Training/Training 93.76% | 0.19 T4 Ty T3 T

No Training/Validation 92.30% | 0.25 Ty Tg T7 T4 Ty T3

No Training/Training 92.10% | 0.24 | ®¢ x2 x7 x3 Tg T4 T3

No Validation/Validation 87.10% | 0.39 Te To T7 Ty Ty T3
Training/Training Training/Validation Validation/Validation
Training/Training Training/Validation Validation/Validation

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Fig. 2. Percentage of correct examples for thegmented Two SpiralBata set in the training and test sets with respect to the number of
eliminated variables in the SBS procedure for MLPs with retraining (top) and without it (bottom).

A. Experimental Setting configurations were tested with the same (although different

All the experiments were performed with stratified Croségr every data set) network architecture and parameters.

Validation (CV). Previously to every CV, the examples in thg The Augmented Two Spirals Data Set
data set were randomly shuffled. For the Training/Training . ]
configuration,5 runs of a5-fold CV were conducted (the An augmented version of the well-knowfwo Spirals
folds that are not in the training set were used as test da@@jt@ Set was constructed, wherz irrelevant features were
giving a total of 25 runs for each training step. For th@rtlflually added to the two orlglr!al variables. S'ome of them
Training/Validation and Validation/Validation configuratioss, Were noisy. The whole set of variables was defined as

runs of a double 5-4-fold CV [13] were performed as follows. {21, 20,23, 22, 21 - 29, 21 + T2, 21 — 23,

A 5-fold CV (the outer CV) is performed to obtain folds 22+ N(0,1), 22 + N(0, 1), 21 - 25 + N(0, 1),
(4 folds to “learn” and1 fold to test). Then, thet folds of 214 29 + N(0,1), 21 — 25 + N(0, 1),
the “learning set” of the outer CV were used as follows: U(0,1), N(0,1), N(0,5)}

folds to train andl fold to validate, as in a 4-fold CV (the

inner CV). Therefore, the number of trained models in evetyhere (z1, z2) are the original features in the data set, and

double 5-4-fold CV wag0, giving a total ofL00 runs for each A and & are the normal and the uniform distributions,

training step. respectively. Each original training, validation and test sets
A Computationa| cost as small as possib|e for the Who@mpriselg4 two-dimensional pOintS with balanced classes.

process was required_ AS pointed out in [15], MLPs USng order to pel’form the eXperimentS with CV, the three data

sine activation functions (and an appropriate choice of initigfts were joined into a single data set.

parameters) usually need less hidden units and learn fastefhe results are shown in table | (column 'Test’) as the

than MLPs with sigmoid functions when both types are trainétyerage percentage of correctly classified patterns on the

with Back-Propagation (BP). Therefore, we used MLPs witfgspective test sets in the following trained networks:

one hidden layer of sinusoidal units, the hyperbolic tangentl) For the Training/Training configuration, the networks

in the output layer, and trained with standard BP in pattern  with minimum test set error among the networks with

mode. minimum training set error after every variable is per-
In order to introduce the least external variability, all the manently eliminated.



TABLE I
DESCRIPTION OF THE BENCHMARK DATA SETSTHE COLUMN 'NVAR’ SHOWS THE NUMBER OF VARIABLES AND THE COLUMNNE XA
THE NUMBER OF EXAMPLES SEVERAL RESULTS FOUND IN THE LITERATURE FOR THESE DATA SET,SVITH THE WHOLE SET OF
FEATURES, ARE ALSO SHOWN(COLUMNS'ML A LG’, 'SAMPLING’, 'T EST AND 'SOURCE). COLUMN 'ML A LG.' INDICATES THE
MACHINE LEARNING ALGORITHM USED.

Data Set || NVar | NExa || ML Alg Sampling Test | Source
Hepatitis 19 155 MLP+BP | 10-fold CV | 82.1% [8]

DistAl 10-fold CV | 84.7% 20
lonosphere|| 33 351 MLP+BP | 10-fold CV | 90.3% 11
DistAl 10-fold CV | 94.3% 20
Sonar 60 208 || MLP+BP | 10-fold CV | 83.4% 11
DistAl 10-fold CV | 83.0% | [20]

TABLE Il
RESULTS OBTAINED IN[20] FOR THE BENCHMARK DATA SETS USED IN THIS WORK AFTER THE APPLICATION OF A WRAPPERS
PROCEDURE THE FINAL NUMBER OF SELECTED VARIABLES CAN BE SEEN IN COLUMN'NVAR’.

Data Set | Search | ML Alg Sampling Test | NVar | Source
Hepatitis | Genetic| DistAl 10-fold CV | 88.7% | 10 20
lonosphere| Genetic| DistAl 10-fold CV | 96.0% | 13 20

Sonar Genetic| DistAl 10-fold CV | 85.5% | 28 20

2) For the Training/Validation and Validation/Validationable leads to large errors in the training set when compared to
configurations, the networks with minimum test set errdhe training error with the whole set of features. This happens
among the networks with minimum validation set errobecause the obtained solution after the training process uses
after every variable is permanently eliminated. all the variables in a significant way. In addition, noise-free

The mean SSE on the test set (column 'MSE’) and tﬁle"’ma.bIes (frome, to z7) do not seem to be used more Fha'm the
st in order to learn the data set. Therefore, the elimination

variables that allowed to obtain these results (column 'Svar : . . .
. a feature is decided in quite a random way.
are also shown. Values in table | are computed as the mea L
hen retraining is present,

over the different folds in the respective CV. Figure 2 shows, 1) In the Trainina/Traini . . h -

for every configuration, the evolution of the percentage of ) Int E relunmg ralfmngl] clon |gu(rjat.|ocrj1, t edtralTlngfser;[

correct examples in the training and test sets with respect to @1 b€ a}mogt per ectly earned Indepen ently 0 .t. €
temporarily eliminated variable. Therefore, no signifi-

the number of eliminated variables. . . )
. . cant difference can be stated among the variables. This
As expected, the addition of irrelevant features affects : : X
behavior was observed for the fistor 10 steps in all

very negatively the performance of sinusoidal MLPs in this the experiments performed. Therefore, and similar to the
problem, even if overfitting is tried to be controlled (see figure case of absence of retrainiﬁg the perr,nanent elimination
2). The information needed to learn the problem is present, of a variable is decided in ql,Jite a random way during
but the system is not able to use it in a proper way. The (too) many steps.

reason for. this fact may be ‘h‘? relatively smgll num'ber' of 2) For the Training/Validation and Validation/Validation
examples in the data set, that did not allow to filter this kind ' : : .
configurations, in contrast, the variables are much more

ior; f?g\t,:rseshgvie?erra?n Zirla\?;?; l:{)j‘lrees er:;fslsf:agzd’eﬁgifgggnff clearly differentiated from the beginning of the SBS pro-
ob?ain o.od erforrr,1ancey cedure. The criterion to eliminate a variable permanently
g p : does not seem random.

Retraining the network with every feature temporarily re- Surprisingly, the evolution of the training set error when

moved before computing the saliency has a positive eﬁer%ttraining is present is also better with a validation set than

on the SBS procedure for MLPs, both for the number ol
selected features and the overall performance. When retrain'mgOn s that do not obtain satisfactory results is the fact that
is present, it seems that the SBS procedure uses the thﬂl-

) : consider variabless and the squared of the original
dation set to construct a better subset of variables than tlfy 3 74 ( d g

.- ; . ._yariables) as important. These variables do not seem the most
only the training set is used, although there is no S|gn|é-’ ) b

ithout it (see figure 2). A common aspect of the configu-

icant difference regarding the stopping criterion (note th romising ones for this problem. Although they allow, together

the Training/Validation configuration with retraining obtain% Ith other ones, to fit the training set, those feature subsets
e L S e not good for generalization purposes.

similar results to the Validation/Validation one). The observeJ g 9 purp

results can be explained by looking at the behavior of eve@ Experiments on Benchmark Data Sets

configuration during the SBS procedure, as explained next. |n this section, the experiments on several benchmark data
Without retraining, the temporary elimination of any varisets with the SBS procedure for MLPs described in figure



TABLE IV
TEST SET RESULTS AND NUMBER OF BLECTED VARIABLES FOR THEHepatitiSDATA SET FOR DIFFERENT CONFIGURATIONS OF
RETRAINING/STOPPING CRITERIONSSEMEASUREMENT DATA SET IN THESBSPROCEDURE

Retrain | Stopping Criterion/SSE Measurement| Test Mse | NVar
Yes Training/Validation 93.90% | 0.24 3
Yes Validation/Validation 93.77%| 0.25 3
Yes Training/Training 92.26% | 0.25 3
No Training/Training 92.13% | 0.26 3
No Validation/Validation 88.97% | 0.40 1
No Training/Validation 88.26% | 0.36 3

TABLE V

TEST SET RESULTS AND NUMBER OF BLECTED VARIABLES FOR THElONOSphere®ATA SET FOR DIFFERENT CONFIGURATIONS OF
RETRAINING/STOPPING CRITERIONSSEMEASUREMENT DATA SET IN THESBSPROCEDURE

Retrain | Stopping Criterion/SSE Measurement| Test Mse | NVar
Yes Training/Validation 93.61% | 0.22 5
No Validation/Validation 92.77% | 0.24 5
Yes Validation/Validation 92.73%| 0.24 5
No Training/Validation 92.57%| 0.24 5
No Training/Training 92.40% | 0.25 5
Yes Training/Training 90.51% | 0.33 3

TABLE VI

TEST SET RESULTS AND NUMBER OF BLECTED VARIABLES FOR THESONharDATA SET FOR DIFFERENT CONFIGURATIONS OF
RETRAINING/STOPPING CRITERIONSSEMEASUREMENT DATA SET IN THESBSPROCEDURE

Retrain | Stopping Criterion/SSE Measurement| Test Mse | NVar
Yes Validation/Validation 89.73%| 0.33 14
Yes Training/Training 88.59% | 0.37 7
Yes Training/Validation 87.95% | 0.36 11
No Training/Training 87.41%| 040 | 57
No Training/Validation 85.02%| 0.46 | 46
No Validation/Validation 84.49%| 0.47| 50

1 are shown. Three data sets from the UCI repository [Bean percentage of correctly classified patterns on the test sets
were selected, namelidepatitis lonosphereand Sonar A  of a 10-fold CV trained with DistAl.

brief description of these data sets can be found in tableOur results are shown in tables IV to VI. Similar to the
I, together with several results found in the literature fromdugmented Two Spiraldata set, the best results are always
settings in which the whole set of features was used. In tabledhtained retraining the network with every feature temporarily
MLP+BP means “Multi-Layer Perceptrons trained with Backrkemoved before computing the saliency. Therefore, the in-
Propagation” and DistAl is a constructive learning algorithrorease in the computational cost associated with this scheme is
for Neural Networks specific for classification problems [20}ewarded with a significant performance improvement. This is-
The key idea behind DistAl is to add hidden units with a hypesue is shown to be critical, although, as previously mentioned,
spherical Radial Basis Function (RBF) based on a greeifyhas been hardly used in practice.

strategy which ensures that the new hidden unit correctlyRegarding the stopping criterion/SSE measurement data set,
classifies a maximal subset of training patterns belonging tite SBS procedure seems to profit from measuring the SSE in a
the same class. Additionally, table 1ll shows several resulialidation set, although it is unclear which is the best stopping
found in the literature after the application of an FS proceducgiterion. For the Sonar problem the Validation/Validation

on these data sets. We did not find more references (krategy appears to work best. For thaosphereproblem, in
wrapper approaches and with a similar experimental settingdontrast, the Training/Validation strategy selects a better subset
that performed in this work) than those showed in the tablef variables. For theHepatitis problem both configurations
However, given the good results of DistAl with the wholean be considered as equivalérithe goodness of the Val-
set of features (see table Il) and the good behavior of genetic

algorithms for FS [6], the results in table 11l can be considered?For the lonosphere problem, the variables selected by the Train-

; j alidation configuration werg{zz, x4, x5, x7,%20}. The rest of con-
as a useful reference for comparison purposes. The sedf%lmtions With 5 features selectedus. rs.vr. vae. rua}. For the Hep-

. . . |
procedure used in [20] was a genetic algorlthm where tla%is problem, the variables selected by the Training/Validation and Valida-
fitness function for a given feature subset is computed as the/Validation configuration werdzs, x5, x15}. The rest of configurations
with 3 features selecteflr; s, x15, 15}, {xs, ¥13, @18} Or {w13, 217, 218}



idation/Validation configuration can be intuitively explained,

ACKNOWLEDGEMENTS

since it tries to obtain the best possible generalization results afjs work was supported by Consejo Interministerial de

every step. The Training/Validation configuration, in contrasgiencia y Tecnologi (CICYT), under projects DPI12002-03225
improves performance by forcing overtraining (and measuring,qy cGL2004-04702-C02-02.

the SSE in a validation set). This is a non-intuitive result. The
explanation pointed out in [14] is that forcing the system to use

REFERENCES

all the available features as much as possible helps to detétt B. Baesens, S. Viaene, J. Vanthienen, and G. Dedene, “Wrapped

irrelevant variables.

Although in a different scale, a similar behavior to that of
the theAugmented Two Spiratkata set was observed. First, the[2]
training set can be fitted with a much smaller subset of features
than the original one. Regarding the test set, performance
improves until a subset of features remains for which the elims]
ination of further variables results in performance degradation.
This behavior seems to reveal the existence of irrelevapy

variables that the SBS procedure has detected and eliminated.

However, the differences among the different configuration%]
suggest that, as in thiugmented Two Spiraldata set, there

are several variables that allow to fit the training set but they
do not provide good generalization. The number of example§!

may not be large enough to filter these variables in some cases.

Finally, we can appreciate an important improvement in th&]
overall results with respect to learning with the whole set o 8]
variables (see Table Il) and compared with existing FS wrap-
pers in the literature (see Table If)An important reduction
in the final number of selected variables is also observed. T%
good results obtained with the Validation/Validation and Train-
ing/Validation with retraining configurations are mainly due,
in our opinion, to a proper detection of irrelevant variables.[lo]
IV. FUTURE WORK

11
The main drawback of the SBS procedure for MLPs pré- ]

sented in this work is its computational cost, particularly when
retraining is performed. Training algorithms faster than BP2
may obviously be used, but BP was not the main source [@§)
the computational cost in our experiments. The first steps
of the algorithm, when probably many irrelevant variables

still remain, take most of the computational time. Severgls)
heuristics could be designed to eliminate the most clearly
irrelevant variables with a low computational cost. Then, when

Feature Selection by means of Guided Neural Network Optimisation,”
in International Conference on Pattern Recdgm, vol. 2, 2000, pp.
113-116.

C. L. Blake and C. J. Merz, “UCI Repository of Ma-
chine Learning Databases,” 1998, university of California,
Irvine, Department of Information and Computer Science.

http://www.ics.uci.edur mlearn/MLRepository.html.

A. L. Blum and P. Langley, “Selection of Relevant Features and
Examples in Machine LearningArtificial Intelligence vol. 97, no. 1-2,
pp. 245-271, 1997, special Issue on Relevance.

T. Cibas, F. F. Souéi; P. Gallinari, and5. Raudys, “Variable Selection
with Optimal Cell Damage,” innternational Conference on Artificial
Neural Networksvol. 1, 1994, pp. 727-730.

G. H. John, R. Kohavi, and K. Pfleger]rfelevant Features and the
Subset Selection Problem,” i th International Conference on Machine
Learning 1994, pp. 121-129.

M. Kudo and J. Sklansky, “Comparison of Algorithms that Select
Features for Pattern Classifier$fattern Recognitionvol. 33, no. 1,
pp. 25-41, 2000.

H. Liu and H. Motoda Feature Selection for Knowledge Discovery and
Data Mining Kluwer Academic Publishers, 1998.

D. Michie, D. J. Spiegelhalter, and C. C. TayloiMachine Learn-
ing, Neural and Statistical Classificatign1994, dlin Horwood.
Results available at http://www.phys.uni.torun.pl/kmk/projects/datasets-
stat.html.

J. Moody and J. Utans, “Principled Architecture Selection for Neural
Networks: Application to Corporate Bond Rating Prediction,”Ad-
vances in Neural Information Processing Systerd. 4.  Morgan
Kaufmann, 1992, pp. 683—-690.

V. Onnia, M. Tico, and J. Saarinen, “Feature Selection Method using
Neural Network,” in International Conference on Image Processing
vol. 1, 2001, pp. 513-516.

D. Opitz and R. Maclin, “Popular Ensemble Methods: An Empirical
Study,” Journal of Artificial Intelligence Researcivol. 11, pp. 169-
198, 1999.

] R. Reed, “Pruning Algorithms - A Surve}lEEE Transactions on Neural

Networks vol. 4, no. 5, pp. 740-747, 1993.

B. D. Ripley, “Statistical Ideas for Selecting Network Architectures,”
in Neural Networks: Artificial Intelligence andtlustrial Applications

B. Kappen and S. Gielen, Eds. Springer-Verlag, London, 1995, pp.
183-190.

E. Romero, J. M. Sopena, G. Navarrete, and R. Algu, “Feature
Selection Forcing Overtraining May Help to Improve Performance,” in
International Joint Conference on Neural Netwarksl. 3, 2003, pp.
2181-2186.

a reasonable number of features remains, the whole procedusg J. M. Sopena, E. Romero, and R. Atar, “Neural Networks with

would start.
The results provided in this work were obtained with

Periodic and Monotonic Activation Functions: A Comparative Study in
Classification Problems,” i®th International Conference on Artificial
Neural Networksvol. 1, 1999, pp. 323-328.

standard BP and sinusoidal hidden units, but the basic schema J. M. Steppe, K. W. Bauer, and S. K. Rogers, “Integrated Feature and

presented in this work can be tested within any other frame-
work which can be adjusted to the required specifications. [Ip,]
particular, the SBS procedure in figure 1 could be performed
with Support Vector Machines [18] using some function of the

margin as saliency and different hardness of the margin as
stopping criterion. [19]

3The results obtained for tHenospheralata set could be seen as unsatis-
factory when compared with those obtained in [20]. In contrast, they can [?é)]
considered as very satisfactory when compared with those obtained by MLP
models. It is worth noting that RBF networks allow to obtain better solutions
than MLP ones for this problem (see Table Il). Therefore, FS models based
on RBF units, such as DistAl, are expected to obtain excellent results.

Architecture Selection,JEEE Transactions on Neural Networksol. 7,

no. 4, pp. 1007-1013, 1996.

P. Van de Laar, T. Heskes, and S. Gielen, “Partial Retraining: A New
Approach to Input Relevance Determinatioimternational Journal of
Neural Systemsvol. 9, no. 1, pp. 75-85, 1999.

% V. N. Vapnik, Statistical Learning Theory John Wiley & Sons, NY,

1998.

A. Verikas and M. Bacauskiene, “Feature Selection with Neural Net-
works,” Pattern Recognition Lettersvol. 23, no. 11, pp. 1323-1335,
2002.

J. Yang and V. Honavar, “Feature Subset Selection using a Genetic
Algorithm,” in Feature Extraction, Construction and Selection: A Data
Mining PerspectiveH. Liu and H. Motoda, Eds.  Kluwer Academic
Publishers, 1998, pp. 117-136.



