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Abstract—An experimental study of several decision issues
for wrapper Feature Selection with Multi-Layer Perceptrons is
presented, namely the stopping criterion, the data set where
the saliency is measured and the network retraining before
computing the saliency. Experimental results with the Sequential
Backward Selection procedure indicate that the increase in the
computational cost associated with retraining the network with
every feature temporarily removed before computing the saliency
is rewarded with a significant performance improvement. Despite
being quite intuitive, this idea has been hardly used in practice.
Regarding the stopping criterion and the data set where the
saliency is measured, the procedure profits from measuring the
saliency in a validation set, as reasonably expected. A somehow
non-intuitive conclusion can be drawn by looking at the stopping
criterion, where it is suggested that forcing overtraining may be
as useful as early stopping.

I. I NTRODUCTION

Feature Selection (FS) plays an important role in many Su-
pervised Machine Learning problems. In addition of reducing
the storage requirements and the computational cost, FS may
lead to the improvement of the generalization performance [7].
The problem of FS can be defined as follows: given a set ofNf

features, select a subset that performs the best under a certain
evaluation criterion. This definition leads to a search problem
in a space of2Nf elements. Therefore, two components must
be specified: the feature subset evaluation criterion and the
search procedure through the space of feature subsets.

We will focus on FS with Multi-Layer Perceptrons (MLPs)
within the wrapper approach [5]. Many FS algorithms for
MLPs use, as feature subset evaluation criterion, different
variations of the concept ofsaliencydefined in some prun-
ing methods [12]. A feature is considered more important
whenever its saliency is larger, so that input units with small
saliencies can be eliminated. Following the wrapper approach,
the most commonly used saliency is the value of the loss
function, usually the sum-of-squares error (SSE). Regarding
the search procedure, most FS algorithms for MLPs use the
Sequential Backward Selection (SBS) algorithm. SBS is a
top-down process. Starting from the complete set of available
features, one feature is deleted at every step of the algorithm,
chosen on the basis of which of the available candidates
gives rise, together with the remaining features, to the best
value of the evaluation criterion. Ideally, the performance of
the system is expected to improve until a subset of features

remains for which the elimination of further variables results
in performance degradation. In general, SBS helps to detect
irrelevant1 variables in the first steps [7].

FS for MLPs with the SBS procedure and using the SSE
as evaluation criterion involves taking a number of decisions,
for which there are neither a commonly accepted criterion nor
comparative studies. First, the stopping criterion of the training
phase. Usually, networks are trained until a local minimum for
the training set is found, although there are several exceptions,
where an early stopping procedure is performed (see [17], [1],
[19], for example). Second, the data set where the SSE should
be measured. Many existing methods only use the training
set to that end. Several exceptions use a validation or test
set to compute the saliency (see [9], [4], [17], [19], [14],
for example). Finally, whether or not the network should be
retrained at every step with every feature temporarily removed
before computing the saliency. To the best of our knowledge,
the only models that retrain the network at every step with
every feature temporarily removed/added before computing the
saliency are those described in [16], [10], [14]. Among them,
only the model presented in [14] is a pure SBS procedure.

An experimental study of the aforementioned decision is-
sues when performing FS with MLPs and the SBS proce-
dure is presented in this work. Experimental results indicate
that the increase in the computational cost associated with
retraining the network with every feature temporarily removed
is rewarded with a significant performance improvement.
This issue is shown to be critical, although, as previously
mentioned, it has been hardly used in practice. Regarding
the data set where the value of the SSE is measured, the
SBS procedure for MLPs profits from measuring the SSE in
a validation set, which is quite an intuitive idea. Instead, a
somehow non-intuitive conclusion is drawn by looking at the
stopping criterion, where forcing overtraining is shown to be
potentially as useful as early stopping.

A significant improvement in the overall results with respect
to learning with the whole set of variables is observed, which

1There is no commonly accepted definition of the relevance of a variable
(see [3], [7], for example). Given a data set, we consider that a variable
is irrelevant for a Supervised Machine Learning system when its optimal
performance is not affected negatively by the absence of that variable ([7],
page29). Note that this is a dynamic definition, since the relevance of a
variable may be affected by the presence or absence of other ones.



compares favorably with other existing FS wrappers in the
literature.

The rest of the paper is organized as follows. A basic SBS
scheme for MLPs and its decision issues are discussed in
section II. The experimental work can be found in section
III. Finally, section IV outlines some directions for further
research.

II. D ECISION ISSUES IN ABASIC SBS SCHEME FORMLPS

A basic SBS scheme for MLPs using the SSE as the saliency
of a feature is presented in figure 1. The outer loop follows the
scheme of the classical SBS procedure, where after a training
process a feature is permanently eliminated at every step.
The inner loop selects the variable to eliminate: every feature
is temporarily removed, the network is optionally retrained
until a certain stopping criterion is met, and then the value
of the SSE is computed (on a certain data set). The variable
corresponding to the lowest value of the SSE is permanently
eliminated. The algorithm in figure 1 involves three decision
issues, as explained next.

The first decision issue is the stopping criterion in the
training phase. Two different stopping criteria were tested.
The first one is to stop where a minimum of the SSE for
a validation set is achieved. The second one is to train until
a minimum for the training set is obtained. Suppose that the
properties of the data set allow the negative effect of overfitting
to appear. It seems that performing early stopping with a
validation set could be the most promising idea. But it could
also be argued that overtraining the network until a local
minimum of the SSE for the training set forces the system
to use all the available variables as much as possible. In this
situation, irrelevant variables could be more outstanding when
the system is not allowed to use them [14].

The second decision issue is the data set where the SSE
is measured. The measurement of the SSE in a validation
set is, probably, the most reasonable choice, since it can be
considered as an estimator of the generalization error. But
selecting the minimum number of features that allows to fit
the training set as well as the whole set of variables does could
also be thought as a quite reasonable way to obtain a good
feature subset. In this case, the SSE should be measured in
the training set. Both schemes were tested.

The third decision issue involves whether the network is
retrained or not after the feature is temporarily removed and
before computing the saliency. With this idea, the saliency of
a feature can be computed following two approaches:

1) First, the network is trained with the whole set of
available features. Then, every feature is temporarily
removed and the SSE is computed. The saliency of every
feature is computed in the same trained network. This
procedure involves trainingNf � 1 networks.

2) For every feature, the network is retrained with that
feature temporarily removed. For every trained network,
the SSE is computed. This procedure involves training
Nf (Nf + 1)=2 networks (in this case, the training prior
to the inner loop can be omitted).

Algorithm
Let V1 the whole set ofNf features
for N = 1 up to Nf � 1 do

Train the network withVN until a certain stopping
criterion is satisfied, and keep its generalization
performance (decision issue, see text for details)

for each v 2 VN do
SetV = VN � fvg
Optionally, train the network with the features inV

(decision issue, see text for details)
Obtain the saliency ofv by computing the value of

the sum-of-squares error functionEv on a certain
data set (decision issue, see text for details)

end for
SetVN+1 = VN � fv�g, wherev� corresponds to the

lowest value ofEv in the previous loop
end for
ReturnVN� , whereN� corresponds to the best

generalization performance of the network at any step
of the previous loop

end Algorithm

Fig. 1. A basic SBS procedure for MLPs and the SSE as the saliency.

Note that these two ways of computing the saliency may
yield very different results for the same feature, since the
corresponding output functions of the trained networks may
be very different as well. Both possibilities were tested.

In summary, there are three combinations of stop-
ping criterion/SSE measurement data set: Training/Training,
Training/Validation and Validation/Validation (the Valida-
tion/Training combination makes no sense):

1) Training/Training: The network is trained until a mini-
mum of the SSE for the training set, where the saliency
is computed. Therefore, variables that are not necessary
to fit the training set will be removed.

2) Training/Validation: The network is trained until a min-
imum of the SSE for the training set is achieved (prob-
ably overtrained). The system is forced to use all the
available variables as much as possible. In this situation,
a validation set is used to remove the variables.

3) Validation/Validation: The network is trained until a
minimum of the SSE for a validation set is obtained.
The saliency is also computed in the validation set.

Combined with the two possibilities regarding the network
retraining, there is a total of six configurations to be tested
and compared.

III. EXPERIMENTS

Some experiments on both artificial and benchmark clas-
sification data sets were performed. For every data set, the
six aforementioned configurations were tested with the SBS
procedure for MLPs described in figure 1.



TABLE I

TEST SET RESULTS AND SELECTED VARIABLES FOR THEAugmented Two SpiralsDATA SET FOR DIFFERENT CONFIGURATIONS OF

RETRAINING/STOPPING CRITERION/SSEMEASUREMENT DATA SET IN THESBSPROCEDURE.

Retrain Stopping Criterion/SSE Measurement Test MSE SVar
Yes Training/Validation 99.89% 0.01 x1 x6 x7

Yes Validation/Validation 99.66% 0.02 x6 x1 x2

Yes Training/Training 93.76% 0.19 x4 x5 x3 x2

No Training/Validation 92.30% 0.25 x2 x6 x7 x4 x8 x3

No Training/Training 92.10% 0.24 x6 x2 x7 x8 x9 x4 x3

No Validation/Validation 87.10% 0.39 x6 x9 x7 x4 x8 x3
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Fig. 2. Percentage of correct examples for theAugmented Two Spiralsdata set in the training and test sets with respect to the number of
eliminated variables in the SBS procedure for MLPs with retraining (top) and without it (bottom).

A. Experimental Setting

All the experiments were performed with stratified Cross-
Validation (CV). Previously to every CV, the examples in the
data set were randomly shuffled. For the Training/Training
configuration,5 runs of a 5-fold CV were conducted (the
folds that are not in the training set were used as test data),
giving a total of 25 runs for each training step. For the
Training/Validation and Validation/Validation configurations,5
runs of a double 5-4-fold CV [13] were performed as follows.
A 5-fold CV (the outer CV) is performed to obtain5 folds
(4 folds to “learn” and1 fold to test). Then, the4 folds of
the “learning set” of the outer CV were used as follows:3
folds to train and1 fold to validate, as in a 4-fold CV (the
inner CV). Therefore, the number of trained models in every
double 5-4-fold CV was20, giving a total of100 runs for each
training step.

A computational cost as small as possible for the whole
process was required. As pointed out in [15], MLPs using
sine activation functions (and an appropriate choice of initial
parameters) usually need less hidden units and learn faster
than MLPs with sigmoid functions when both types are trained
with Back-Propagation (BP). Therefore, we used MLPs with
one hidden layer of sinusoidal units, the hyperbolic tangent
in the output layer, and trained with standard BP in pattern
mode.

In order to introduce the least external variability, all the

configurations were tested with the same (although different
for every data set) network architecture and parameters.

B. The Augmented Two Spirals Data Set

An augmented version of the well-knownTwo Spirals
data set was constructed, where13 irrelevant features were
artificially added to the two original variables. Some of them
were noisy. The whole set of variables was defined as

fx1; x2; x
2
1; x

2
2; x1 � x2; x1 + x2; x1 � x2;

x21 +N (0; 1); x22 +N (0; 1); x1 � x2 +N (0; 1);
x1 + x2 +N (0; 1); x1� x2 +N (0; 1);
U(0; 1);N (0; 1);N (0; 5)g

where (x1; x2) are the original features in the data set, and
N and U are the normal and the uniform distributions,
respectively. Each original training, validation and test sets
comprise194 two-dimensional points with balanced classes.
In order to perform the experiments with CV, the three data
sets were joined into a single data set.

The results are shown in table I (column ’Test’) as the
average percentage of correctly classified patterns on the
respective test sets in the following trained networks:

1) For the Training/Training configuration, the networks
with minimum test set error among the networks with
minimum training set error after every variable is per-
manently eliminated.



TABLE II

DESCRIPTION OF THE BENCHMARK DATA SETS. THE COLUMN ’NVAR’ SHOWS THE NUMBER OF VARIABLES AND THE COLUMN’NEXA’
THE NUMBER OF EXAMPLES. SEVERAL RESULTS FOUND IN THE LITERATURE FOR THESE DATA SETS, WITH THE WHOLE SET OF

FEATURES, ARE ALSO SHOWN(COLUMNS ’ML A LG’, ’S AMPLING’, ’T EST’ AND ’SOURCE’). COLUMN ’ML A LG.’ INDICATES THE

MACHINE LEARNING ALGORITHM USED.

Data Set NVar NExa ML Alg Sampling Test Source
Hepatitis 19 155 MLP+BP 10-fold CV 82.1% [8]

DistAl 10-fold CV 84.7% [20]
Ionosphere 33 351 MLP+BP 10-fold CV 90.3% [11]

DistAl 10-fold CV 94.3% [20]
Sonar 60 208 MLP+BP 10-fold CV 83.4% [11]

DistAl 10-fold CV 83.0% [20]

TABLE III

RESULTS OBTAINED IN [20] FOR THE BENCHMARK DATA SETS USED IN THIS WORK AFTER THE APPLICATION OF A WRAPPERFS
PROCEDURE. THE FINAL NUMBER OF SELECTED VARIABLES CAN BE SEEN IN COLUMN’NVAR’.

Data Set Search ML Alg Sampling Test NVar Source
Hepatitis Genetic DistAl 10-fold CV 88.7% 10 [20]

Ionosphere Genetic DistAl 10-fold CV 96.0% 13 [20]
Sonar Genetic DistAl 10-fold CV 85.5% 28 [20]

2) For the Training/Validation and Validation/Validation
configurations, the networks with minimum test set error
among the networks with minimum validation set error
after every variable is permanently eliminated.

The mean SSE on the test set (column ’MSE’) and the
variables that allowed to obtain these results (column ’SVar’)
are also shown. Values in table I are computed as the mean
over the different folds in the respective CV. Figure 2 shows,
for every configuration, the evolution of the percentage of
correct examples in the training and test sets with respect to
the number of eliminated variables.

As expected, the addition of irrelevant features affects
very negatively the performance of sinusoidal MLPs in this
problem, even if overfitting is tried to be controlled (see figure
2). The information needed to learn the problem is present,
but the system is not able to use it in a proper way. The
reason for this fact may be the relatively small number of
examples in the data set, that did not allow to filter this kind
of features. As far as variables are eliminated, performance
improves. However, many variables must be eliminated to
obtain good performance.

Retraining the network with every feature temporarily re-
moved before computing the saliency has a positive effect
on the SBS procedure for MLPs, both for the number of
selected features and the overall performance. When retraining
is present, it seems that the SBS procedure uses the vali-
dation set to construct a better subset of variables than if
only the training set is used, although there is no signif-
icant difference regarding the stopping criterion (note that
the Training/Validation configuration with retraining obtains
similar results to the Validation/Validation one). The observed
results can be explained by looking at the behavior of every
configuration during the SBS procedure, as explained next.

Without retraining, the temporary elimination of any vari-

able leads to large errors in the training set when compared to
the training error with the whole set of features. This happens
because the obtained solution after the training process uses
all the variables in a significant way. In addition, noise-free
variables (fromx1 to x7) do not seem to be used more than the
rest in order to learn the data set. Therefore, the elimination
of a feature is decided in quite a random way.

When retraining is present,
1) In the Training/Training configuration, the training set

can be almost perfectly learned independently of the
temporarily eliminated variable. Therefore, no signifi-
cant difference can be stated among the variables. This
behavior was observed for the first9 or 10 steps in all
the experiments performed. Therefore, and similar to the
case of absence of retraining, the permanent elimination
of a variable is decided in quite a random way during
(too) many steps.

2) For the Training/Validation and Validation/Validation
configurations, in contrast, the variables are much more
clearly differentiated from the beginning of the SBS pro-
cedure. The criterion to eliminate a variable permanently
does not seem random.

Surprisingly, the evolution of the training set error when
retraining is present is also better with a validation set than
without it (see figure 2). A common aspect of the configu-
rations that do not obtain satisfactory results is the fact that
they consider variablesx3 andx4 (the squared of the original
variables) as important. These variables do not seem the most
promising ones for this problem. Although they allow, together
with other ones, to fit the training set, those feature subsets
are not good for generalization purposes.

C. Experiments on Benchmark Data Sets

In this section, the experiments on several benchmark data
sets with the SBS procedure for MLPs described in figure



TABLE IV

TEST SET RESULTS AND NUMBER OF SELECTED VARIABLES FOR THEHepatitisDATA SET FOR DIFFERENT CONFIGURATIONS OF

RETRAINING/STOPPING CRITERION/SSEMEASUREMENT DATA SET IN THESBSPROCEDURE.

Retrain Stopping Criterion/SSE Measurement Test Mse NVar
Yes Training/Validation 93.90% 0.24 3
Yes Validation/Validation 93.77% 0.25 3
Yes Training/Training 92.26% 0.25 3
No Training/Training 92.13% 0.26 3
No Validation/Validation 88.97% 0.40 1
No Training/Validation 88.26% 0.36 3

TABLE V

TEST SET RESULTS AND NUMBER OF SELECTED VARIABLES FOR THEIonosphereDATA SET FOR DIFFERENT CONFIGURATIONS OF

RETRAINING/STOPPING CRITERION/SSEMEASUREMENT DATA SET IN THESBSPROCEDURE.

Retrain Stopping Criterion/SSE Measurement Test Mse NVar
Yes Training/Validation 93.61% 0.22 5
No Validation/Validation 92.77% 0.24 5
Yes Validation/Validation 92.73% 0.24 5
No Training/Validation 92.57% 0.24 5
No Training/Training 92.40% 0.25 5
Yes Training/Training 90.51% 0.33 3

TABLE VI

TEST SET RESULTS AND NUMBER OF SELECTED VARIABLES FOR THESonarDATA SET FOR DIFFERENT CONFIGURATIONS OF

RETRAINING/STOPPING CRITERION/SSEMEASUREMENT DATA SET IN THESBSPROCEDURE.

Retrain Stopping Criterion/SSE Measurement Test Mse NVar
Yes Validation/Validation 89.73% 0.33 14
Yes Training/Training 88.59% 0.37 7
Yes Training/Validation 87.95% 0.36 11
No Training/Training 87.41% 0.40 57
No Training/Validation 85.02% 0.46 46
No Validation/Validation 84.49% 0.47 50

1 are shown. Three data sets from the UCI repository [2]
were selected, namelyHepatitis, Ionosphereand Sonar. A
brief description of these data sets can be found in table
II, together with several results found in the literature from
settings in which the whole set of features was used. In table II,
MLP+BP means “Multi-Layer Perceptrons trained with Back-
Propagation” and DistAl is a constructive learning algorithm
for Neural Networks specific for classification problems [20].
The key idea behind DistAl is to add hidden units with a hyper-
spherical Radial Basis Function (RBF) based on a greedy
strategy which ensures that the new hidden unit correctly
classifies a maximal subset of training patterns belonging to
the same class. Additionally, table III shows several results
found in the literature after the application of an FS procedure
on these data sets. We did not find more references (for
wrapper approaches and with a similar experimental setting to
that performed in this work) than those showed in the table.
However, given the good results of DistAl with the whole
set of features (see table II) and the good behavior of genetic
algorithms for FS [6], the results in table III can be considered
as a useful reference for comparison purposes. The search
procedure used in [20] was a genetic algorithm where the
fitness function for a given feature subset is computed as the

mean percentage of correctly classified patterns on the test sets
of a 10-fold CV trained with DistAl.

Our results are shown in tables IV to VI. Similar to the
Augmented Two Spiralsdata set, the best results are always
obtained retraining the network with every feature temporarily
removed before computing the saliency. Therefore, the in-
crease in the computational cost associated with this scheme is
rewarded with a significant performance improvement. This is-
sue is shown to be critical, although, as previously mentioned,
it has been hardly used in practice.

Regarding the stopping criterion/SSE measurement data set,
the SBS procedure seems to profit from measuring the SSE in a
validation set, although it is unclear which is the best stopping
criterion. For theSonar problem the Validation/Validation
strategy appears to work best. For theIonosphereproblem, in
contrast, the Training/Validation strategy selects a better subset
of variables. For theHepatitis problem both configurations
can be considered as equivalent.2 The goodness of the Val-

2For the Ionosphere problem, the variables selected by the Train-
ing/Validation configuration werefx2; x4; x5; x7; x20g. The rest of con-
figurations with 5 features selectedfx2; x4; x7; x20; x26g. For the Hep-
atitis problem, the variables selected by the Training/Validation and Valida-
tion/Validation configuration werefx2; x5; x18g. The rest of configurations
with 3 features selectedfx13; x15; x18g, fx8; x13; x18g or fx13; x17; x18g.



idation/Validation configuration can be intuitively explained,
since it tries to obtain the best possible generalization results at
every step. The Training/Validation configuration, in contrast,
improves performance by forcing overtraining (and measuring
the SSE in a validation set). This is a non-intuitive result. The
explanation pointed out in [14] is that forcing the system to use
all the available features as much as possible helps to detect
irrelevant variables.

Although in a different scale, a similar behavior to that of
the theAugmented Two Spiralsdata set was observed. First, the
training set can be fitted with a much smaller subset of features
than the original one. Regarding the test set, performance
improves until a subset of features remains for which the elim-
ination of further variables results in performance degradation.
This behavior seems to reveal the existence of irrelevant
variables that the SBS procedure has detected and eliminated.
However, the differences among the different configurations
suggest that, as in theAugmented Two Spiralsdata set, there
are several variables that allow to fit the training set but they
do not provide good generalization. The number of examples
may not be large enough to filter these variables in some cases.

Finally, we can appreciate an important improvement in the
overall results with respect to learning with the whole set of
variables (see Table II) and compared with existing FS wrap-
pers in the literature (see Table III).3 An important reduction
in the final number of selected variables is also observed. The
good results obtained with the Validation/Validation and Train-
ing/Validation with retraining configurations are mainly due,
in our opinion, to a proper detection of irrelevant variables.

IV. FUTURE WORK

The main drawback of the SBS procedure for MLPs pre-
sented in this work is its computational cost, particularly when
retraining is performed. Training algorithms faster than BP
may obviously be used, but BP was not the main source of
the computational cost in our experiments. The first steps
of the algorithm, when probably many irrelevant variables
still remain, take most of the computational time. Several
heuristics could be designed to eliminate the most clearly
irrelevant variables with a low computational cost. Then, when
a reasonable number of features remains, the whole procedure
would start.

The results provided in this work were obtained with
standard BP and sinusoidal hidden units, but the basic scheme
presented in this work can be tested within any other frame-
work which can be adjusted to the required specifications. In
particular, the SBS procedure in figure 1 could be performed
with Support Vector Machines [18] using some function of the
margin as saliency and different hardness of the margin as the
stopping criterion.

3The results obtained for theIonospheredata set could be seen as unsatis-
factory when compared with those obtained in [20]. In contrast, they can be
considered as very satisfactory when compared with those obtained by MLP
models. It is worth noting that RBF networks allow to obtain better solutions
than MLP ones for this problem (see Table II). Therefore, FS models based
on RBF units, such as DistAl, are expected to obtain excellent results.
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