Maximizing the Margin with Feed-forward Neural
Networks

Enrique Romero and René Alquézar

Departament de Llenguatges i Sistemes Informatics, Universitat Politecnica de Catalunya

Abstract - Feed-forward Neural Networks (FNNs)
and Support Vector Machines (SVMs) are two ma-
chine learning frameworks developed from very dif-
ferent starting points of view. In this work a new
learning model for FNNs is proposed such that, in
the linearly separable case, tends to obtain the same
solution that SVMs. The key idea of the model is a
weighting of the sum-of-squares error function, which
is inspired in the AdaBoost algorithm. The model
depends on a parameter that controls the hardness of
the margin, as in SVMs, so that it can be used for
the non-linearly separable case as well. In addition,
it allows to deal with multiclass and multilabel prob-
lems in a natural way (as FNNs usually do), and it is
not restricted to the use of kernel functions. Finally,
it is independent of the concrete algorithm used to
minimize the error function. Both theoretic and ex-
perimental results are shown to confirm these ideas.

I. Introduction

Feed-forward Neural Networks (FNNs) and Support
Vector Machines (SVMs) are two different machine learn-
ing frameworks for approaching classification and regres-
sion problems. We will consider the classification task
given by a dataset X = {(x1,v1),-..,(xr,yr)}, with
r; € RN and y; € {—1,+1}“, where C is the number of
classes. Minimizing the sum-of-squares (or cross-entropy)
error function and maximizing the margin are very dif-
ferent points of view with very interesting properties ([1],
[2]). Looking at the similarities and differences between
FNNs and SVMs, it can be observed that the main differ-
ence between the sum-of-squares minimization problem of
an FNN and the maximization problem of a (1-Norm Soft
Margin) SVM lies on the constraints related to the objec-
tive function. Since these constraints are the responsible
for the existence of the support vectors, their behaviour
will give the key to propose a new learning model for
FNNs that, in the linearly separable case, tends to obtain
the same solution that SVMs. Trying to obtain support
vectors (that is, points with margin 1), a weighting of the
sum-of-squares error function is proposed. This weighting
is inspired in the AdaBoost algorithm [3], and it consists
of modifying the contribution of every point to the total
error depending on its margin. The model depends on a

This work was supported by Consejo Interministerial de Ciencia
v Tecnologia (CICYT), under project TAP1999-0747

parameter that controls the hardness of the margin, as in
SVMs, so that it can be used for the non-linearly sepa-
rable case. In addition, the classical FNN architecture of
the new model presents some advantages. First, it allows
to deal with multiclass and multilabel problems in a nat-
ural way. This is a difficult problem for SVMs, since they
are initially designed for binary classification problems.
In addition, the final solution is neither restricted to have
an architecture with so many hidden units as points (or
support vectors) in the dataset nor to use kernel functions
necessarily. Both theoretic and experimental results are
shown to confirm these ideas.

Some preliminaries about FNNs;, SVMs and AdaBoost
can be found in Section II. In Section III, some simi-
larities and differences between FNNs and SVMs will be
discussed. The learning model and some theoretic results
will be presented in Section IV. Finally, the experimental
results will be shown in Section V.

II. Preliminaries

A. Feed-forward Neural Networks

The well known architecture of an FNN is structured by
layers of units, with connections between units from dif-
ferent layers in forward direction [1]. A fully connected
FNN with one output unit and one hidden layer of units
computes the function:

Nhid
NN (%) = w0 (Z Ai pilws, x, b;) + bo) (1)

i=1
where A, b;,bg € R, z,w; € RY and Nhid is the number
of units in the hidden layer. The most used activation
functions ¢; (w, #, b) in the hidden units are sigmoidal for
Multi-layer Perceptrons (MLPs) and radially symmetric
for Radial Basis Function Networks (RBFNs), although
many other functions may be used ([6], [7]). Output ac-

tivation functions ¢o(u) use to be sigmoidal or linear.

The objective of the training process is to choose ade-
quate parameters to minimize a predetermined cost func-
tion. The sum-of-squares error function is the most usual:

E(X)=>"

i=1

[frnn(2:) — yi]Z-

| —

As it is well known, the sum-of-squares error function
E(X) is an aproximation to the squared norm of the error
function fpyy(z) —y in the Hilbert space L2.

The architecture (connections, number of hidden units
and activation functions) is usually fixed a priori, whereas
the weights are learned during the training process. For
convenience, we will divide the weights into frequencies
(wi)NRid coefficients (A;)Y24 and biases (b)Y 4. Note
that the appearance of the output function given by (1)
is determined by the architecture of the trained FNN.

B. Support Vector Machines
The idea of SVMs can be stated as follows ([2], [13]):

the input vectors are mapped into a (usually high-di-
mensional) inner product space through some non-linear
mapping ¢, chosen a priori. In this space (the fea-
ture space), an optimal hyperplane is constructed. Us-
ing a kernel function K(u,v) the mapping can be im-
plicit, since the inner product which defines the hyper-
plane can be evaluated as {¢(u), ¢(v)) = K(u,v) for ev-
ery two vectors u,v € RY. In SVMs, an optimal hyper-
plane means a hyperplane with maximal normalized mar-
gin with respect to the dataset. The (functional) margin
of a point (x;, ;) with respect to a function f is defined
as mrg(x;,vi, f) = v f(#;). The margin of a function f
with respect to a dataset X is the minimum of the mar-
gins of the points in the dataset. If f is a hyperplane, the
normalized (or geometric) margin is defined as its mar-
gin divided by the norm of the orthogonal vector to the
hyperplane. Using Lagrangian and Kuhn-Tucker theory,
the maximal margin hyperplane for a binary classification
problem turns to be

L
fovm(@) = yiei K (wi,) +b (2)
i=1

where the vector (a;)%, is the (1-Norm Soft Margin) so-
lution of the following constrained optimization problem
in the dual space:

Maximize
L - L
W(X) = =3 2 o1 vieiyjo K (i, 25) + 30,0,
subject to
L
Yz Yiai =0
0<a; <O i=1,..., L.

The points #; with a; > 0 (active constraints) are
support vectors, while bounded support vectors have
«; = C. Non-bounded support vectors have margin 1,
while bounded support vectors have margin less than 1.
A point is well classified if and only its margin with re-
spect to fsvar is positive. The cost function —W(X) is
(plus a constant) the squared norm of the error function
fsvam(z) — y in the Reproducing Kernel Hilbert Space
associated to K (u,v) ([2], pag. 41). By setting C' = oo,
one obtains the hard margin hyperplane. The most used
kernel functions K (u, v) are polynomial or Gaussian-like.
In contrast to FNNs, note that the appearance of the so-
lution is a consequence of the way the problem is solved.

C. AdaBoost

The AdaBoost algorithm is a particular boosting algo-
rithm introduced in [3] and later improved in [11]. Ad-
aBoost calls a given weak learning algorithm in a series of
rounds. On each round ¢ it computes a weak hypothesis
ht. One of the main ideas of the algorithm is to maintain
a distribution D; (a set of weights) over the training set.
Initially, all weights are set equally, but on each round %,
the weights are modified:

e~ mrg(@iyiHi)

Dy (x4, 95, Hy) = — (3)

where H; = Zzzl a;h;(z;) is the current hypothesis, and
Z: is a normalization factor so that D; is a probability
distribution. The effect of the distribution D; is that the
weights of incorrectly classified examples are increased so
that the weak learner h:y1 is forced to focus on the hard
(depending on D;) examples in the training set.

ITII. FNNs vs SVMs

A. Comparing the output functions

As pointed out elsewhere (see, for example, [14]), the out-
put function fgvar of a SVM (2) can be implemented
with a fully connected FNN with one output unit and
one hidden layer of units:

1. Number of hidden units: L (= || X]|)
Coefficients: \; = y;«;

Frequencies: w; = x;

Biases: b; vanishes, and by = b
Activation functions:

(a) Hidden layer: ¢; (x5, z, b)) = K(x;, %)
(b) Output layer: g linear

Ok oo

As in SVMs, the only parameters to be learned in such
an FNN computing (1) would be the coefficients and the
biases. So, the main differences between FNNs and SVMs
rely both on the cost function to be optimized and the
constraints, since specific learning algorithms are a con-
sequence of the optimization problem to be solved.

B. Comparing the cost functions

Our first question has to do with the similarities between
the respective cost functions. Defining

Kp = (K(zq,25))) =1,

T T .
Yy = (yla"'ayL) , Yy = (ywq,...,yLaL) and consid-
ering the identifications stated in Section III-A we can
express the respective cost functions as:

1

1
E(X) = 5 yOZT‘I(L'I(L-ya — yaT.[(L. Y+ §L

1
W(X) = ~3 yo K- ya + ya'-y

Regardless of their apparent similarity, is there any re-
lationship between the minima of E(X) and the maxima
of W(X) (or equivalently, the minima of —W(X))? The
next result partially answers this question.

Proposition 1. If Kj is non-singular, then the
respective cost functions F(X) and —W(X) attain their
unique minimum (without constraints) at the same point.

Proof. As E(X) and —W(X) are convex functions,
a necessary and sufficient condition for ya* to be a
global minimum is that their derivative with respect to
ya vanishes. Since Ky non-singular, both equations have
the same solution. 0

If K is singular, there will be more than one point
where the optimum value is attained, but all of them are
equivalent. In addition, K; has rows which are linearly
dependent among them. It indicates that the information
provided (via the inner product) by a point in the dataset
is redundant, since it is a linear combination of the infor-
mation provided by other points. Thus, that point could
probably be eliminated from the dataset and the final
solution would not change.

Indeed, the optima can be very different depending on
the absence or presence of the constraints. Therefore, it
seems that the main difference lies on the constraints.

IV. An FNN that maximizes the margin

A. How does every point contribute to the cost function?

The existence of linear constraints in the optimization
problem to be solved in SVMs has a very important con-
sequence: only some of the a; will be different from zero.
These coefficients are associated with the so called sup-
port vectors. Thus, the remaining vectors can be omitted,
both to optimize W (X) and to compute the output (2).
The problem is that we do not know them a priori. In
the linearly separable case (hard margin), support vec-
tors have margin 1 (that is, fsvar(#;) =), while the
remaining points (that will be referred to as “superclas-
sified” points) have a margin strictly greater than 1.

In contrast, for FNNs minimizing the sum-of-squares
error function every point makes its contribution to the
total error. The greater is the squared error, the greater
will be the contribution, independently of whether the
point is well or wrongly classified. With linear output
units, there may be points (very) well classified with a
(very) big squared error. “Superclassified” points are a
clear example of this type. Sigmoidal output units can
help to solve this problem, but they can also create new
ones (in the linearly separable case, for example, the so-
lution is not bounded). An alternative idea to sigmoidal
output units could be to reduce the contribution of “su-
perclassified” points and reinforce those of misclassified
points, as explained in the next section.

B. Weighting the contribution

Indeed, we do not know a priori which points will be
finally “superclassified” or misclassified. But during the
FNN learning process it is possible to treat every point in
a different way depending on its error (or, equivalently, its
margin). In order to simulate the behaviour of a SVM, the
learning process could be guided by the following heuris-
tics:

1. Any well classified point contributes less to the error
than any misclassified point.

2. Between well classified points, the contribution is
larger for smaller errors in absolute value (or equiv-
alently, smaller margins).

3. Between misclassified points, the contribution is
larger for larger errors in absolute value (or equiv-
alently, smaller margins).

These guidelines reinforce the contribution of misclassi-
fied points and reduces the contribution of well classi-
fied ones. As can be seen, this is exactly the same idea
than the distribution (3) for AdaBoost. Similarly, the
contribution of every point to the error can be modified
simply by weighting it individually as a function of the
margin with respect to the output function fpyy. In or-
der to allow more flexibility to the model, two parameters
at a™ > 0 can be introduced into the weighting function
as follows (mrg = mrg(x, yi, frvn)):

e"m’"9|a+ it mrg >0
D(wi,yirat,a7) =0 oHmral®™ i mrg < 0 and = #£0
1 otherwise

(4)
This weighting can be applied at least at two levels
(Ep = Ep(frnn (zi), yin 0™ a7)):
1. Weighting the sum-of-squares error:

1

Ep:i

[fenn (zi) —wi)* - D(wi,yi,at,a™) (5)
2. Weighting the sum-of-squares error derivative (only

if the derivative is involved in the learning process):

oL,
afFNN

= (fenn (i) — vi) - D(zi,yi, ot a7) (6)

Graphically (see figure 1), the right branch of the
squared error parabola is bended to a horizontal asymp-
tote. Weighting the sum-of-squares error derivative also
implies a kind of weighting the sum-of-squares error, al-
though in a slightly different way.

The following result justifies that the previously
suggested weighting functions are well founded. In
addition, it allows to construct new error functions in
order to simulate the behaviour of a SVM.

Fig. 1. Individual error for the weighted sum-of-squares error
(5) (left) and the weighted sum-of-squares error derivative (6)
(right) for several values of at (o™ = 0).

Theorem 1. Let f € R,y € {-1,+1}, at,a™ > 0
and E,(f,y,a%,a”) an error function satisfying:

1. Forevery at,a™ > 0, F, attains its (absolute) min-
imum value when yf = 1, and this value A does not
depend on a™.

2. For every a~
we have

> 0 and every y, f satisfying yf > 1

lim E,(f,y,at,a”)=A
at—oo
Then, if X = {(#1,v1),-.., (2L, yr)} is a linearly separa-
ble dataset, the hyperplane h(x) that maximizes the nor-
malized margin also minimizes asymptotically (ot — o0)
the weighted sum-of-squares error function

ZE

). yat,a”). (7)

Remarks.

¢ The theorem holds true independently of whether the
dataset X is linearly separable either in the input
space or in the feature space.

« The previously suggested weighting functions (5) and
(6) satisfy the hypothesis of the theorem.

Proof. Since X is linearly separable, h(z) satisfies
that the margin y;h(x;) = 1 for the support vectors,
whereas y;h(x;) > 1 for the non-support vectors. Since
A is the absolute minimum of E,, regardless of a¥,
the minimum value that FEp could attain is L - A.
The first hypothesis implies that for support vectors,
E,(h(x;),y,a™,a”) = A. For non-support vectors, this
value is asymptotically attained when o™ — oo, because
of the second hypothesis. 0

The reciprocal may not be necessarily true, since there
can be many different hyperplanes which asymptotically
minimize Fp(X). However, the solution obtained by min-
imizing Fp(X) is expected to have a similar behaviour
that a SVM. In particular:

1. It is expected that a larger at will be related to a
harder margin.

2. Points with margin less or equal than 1 are expected
to be support vectors. For the linearly separable
case, the margin expected for every support is 1.

3. Theoretical results for SVMs (for example, general-
ization bounds) are expected to be easily applicable
or adapted to the obtained solutions.

C. Practical considerations

Some benefits can be obtained by minimizing an error
function (7) as the previously defined.

First, the minimization of (7) does not assume the ex-
istence of any predetermined architecture in the FNN:

1. There is no need to have, in the final solution, as
many hidden units as points (or support vectors) in
the dataset, nor the frequencies must be the points
in the dataset.

2. There is no need to use kernel functions, since there
is no inner product to compute in the feature space.

In addition, it presents a number of advantages over the
classical SVM model:

1. There is no limit on the number of classes to deal
with. For C-class problems, it is enough to construct
an architecture with C' output units. The individual
squared error of every point is defined as usual [1]:

L c
:ZZEP (fonn (@), y 0 a7). (8)

i=1 c=1

2. The same error function (8) allows to deal with mul-
tilabel problems without restrictions.

Finally, it is independent of the concrete algorithm used
to minimize the error function.

D. Related work

In [4] an equivalence between Sparse Approximation and
SVMs is shown, with some relationships to RBFNs. A
single-layer perceptron learning algorithm that asymptot-
ically obtains the maximum margin classifier is presented
in [8]. In order to work, the dataset must be necessar-
ily linearly separable, and the learning rate should be in-
creased exponentially, leading to weights arbitrarily large.
In [12], a modified SVM approach for training an MLP
with a fixed number of hidden units is described. An es-
timation of an upper bound of the Vapnik-Chervonenkis
dimension is iteratively minimized over the frequencies
and the biases. The SVM method inspires the calculation
of the coefficients, but it is not the same one. The work in
[15] investigates learning architectures in which the kernel
function can be replaced by more general similarity mea-
sures that can have internal parameters. Although the
frequencies are forced to be the points in the dataset, the
cost function F(X) = 2521[0.65 — tanh(mrg(z;, yi, f))]?

is used.

LI —
10

[e]
54 0 O O
-4 O O O

7 B B B
5

Fig. 2. Separating hyperplanes (solid lines) after minimizing the
weighted sum-of-squares (7) for different values of at in the
two-class linearly separable problems L2 (left) and R2 (right).

V. Experiments

We performed some experiments on artificial data in
order to test both the validity of the new model and the
predictions made in Section IV. In particular, we were
interested in testing:

1. Whether learning is possible or not with a standard
FNN architecture when a weighted sum-of-squares
error Ep(X) is minimized with standard methods.

2. The effect of T on the hardness of the margin.

3. The identification of the support vectors, simply by
comparing their margin value with 1.

4. The behaviour of the model in multiclass problems
minimizing the error function (8).

5. The behaviour of the model in non-linearly separa-
ble cases, when a non-linear activation function in
the hidden layer is needed.

6. Whether the use of non-kernel functions can lead or
not to a behaviour similar to that of kernel functions.

We set a= = 0, so that misclassified points had all of
them a weight of 1. All experiments were performed with
FNNs trained with standard Back-propagation [9] weight-
ing the sum-of-squares error derivative (6). We will call
this method BPW. Every architecture had linear output
units, and was trained in batch mode.

A. Two linearly separable classes

Our first experiment consisted of learning the maximal
margin hyperplane of two linearly separable classes. We
constructed two different linearly separable datasets (L2
and R2), shown in figure 2. Despite of their apparent
simplicity, there is a big difference between the maximal
margin hyperplane (dashed line) and the minimum sum-
of-squares hyperplane (dotted line), used as the initial
weights for BPW in an MLP without hidden layers. Solid
lines in figure 2 show the resulting hyperplanes after the
training for different values of at. As can be observed,
the maximal margin hyperplane was obtained for a™ = 9,
so that the effect of a on the hardness of the solution
margin was confirmed. When looking at the output cal-
culated by the network, we could see that every point had

— o — o o o o
10— o o 10— o o
— o o o — o o o
— o o — o o o
— X o — X o
- x — x o
5 x 5 x
- x x - x x
- o O O - o O O
— o O O — o O O
— o O O — o O O
T 7T
5 10 5 10

Fig. 3. Separating hyperplanes when minimizing the weighted
sum-of-squares (8) for at = 9 in the three-class linearly sepa-

rable problems L3 (left) and R3 (right).

functional margin strictly greater than 1 except:

o For L2, points {(9,2), (10, 3), (4,5), (7,8)}.
o for R2, points {(10,3), (1,4), (10,6)}.

which had margin &~ 1. These points are, respectively,
the support vectors of the maximal margin hyperplane of
the datasets, confirming the prediction about the support
vectors just by looking at their margin value.

B. Three linearly separable classes

Our second experiment consisted of trying to learn three
linearly separable classes. As previously, we constructed
two different linearly separable datasets (L3 and R3),
shown in figure 3. In this case, the constructed MLPs had
three output units, and BPW minimized (8). In the same
conditions that in the previous section, solid lines in fig-
ure 3 show the resulting hyperplanes (the output function
for every output unit) after the minimization with BPW
for at = 9. We looked at the output calculated by the
network for every point in the dataset, in order to iden-
tify the support vectors. Splitting the resulting network
into one network for every class, we observed that every
output unit of every network, as in the two linearly sepa-
rable case, had functional margin strictly greater than 1
for every point in the dataset except

¢ For L3:

- {(9,3),(3,3),(9,7)} for the circled points class.
- {(9,1),(5,5),(7,9)} for the crossed points class.
- {(11,3),(3,7),(9,7)} for the squared points class.

o For R3:

- {(9,3),(3,3),(11,6)} for the circled points class.
- {(9,1),(5,5), (5, 8)} for the crossed points class.
- {(11,3),(3,7), (5,8)} for the squared points class.

which had margin a
would have been obtained as support vectors if we had
binarized the problem, solving the three respective SVM
optimization problems. It confirms our hypothesis about
the goodness of the model for multiclass problems.

1. These vectors are those which

N\

7
NS

Fig. 4. Generalization obtained by SVM-Light (left), BPW
with gaussian functions (center) and BPW with sine functions
(right) for the Two Spirals problem. The results for BPW are
the mean over 10 runs.

C. The Two Spirals Problem

The well known Two spirals problem consists of identify-
ing the points of two interlocking spirals, with a training
set of 194 points. A SVM with gaussian kernels and stan-
dard deviation 1 was constructed using the SVM-Light
software [5] (for polynomial kernels we did not obtain sat-
isfactory results). The hard margin solution contained
176 support vectors (0 bounded). In order to make a
comparison with an FNN with the same activation func-
tions and the same frequencies, we constructed an RBFN
with 194 hidden gaussian units (also with standard de-
viation 1). The frequencies were fixed to be the points
in the dataset, and the initial range for the coefficients
was 0.001. As it was a separable problem with gaussian
kernels, we set ™ = 9. After 10 runs of a training with
BPW, the mean of the number of points with functional
margin less than 1.05 (support vectors in our model) was
168. These points were always a subset of the support
vectors obtained with the SVM-Light software. None of
them had functional margin less than 0.95.

We also constructed an MLP with a hidden layer of 24
sinusoidal units, as in [10]. Initial frequencies for BPW
were assigned randomly to an interval [—3.5, 3.5], and the
initial range for the coefficients was 0.0001. We set again
at = 9. After 10 runs of a training with BPW, the mean
of the number of points with functional margin less than
1.05 was 101.6, and none of them had functional margin
less than 0.95. These experiments confirm that there is
no need to use either a “SVM architecture” or kernel
functions (the sine is not a kernel function).

The generalization obtained by these models can be
seen in figure 4, where the corners are (—6.5,—6.5) and
(4+6.5,4+6.5). Tt is worth knowing that all the points in the
training set are radially equidistant inside a disk of radius
6.5. Therefore, while gaussian functions are expected to
have a good behaviour for this problem, it is not so clear
a priori for sine functions.

V1. Conclusions and Future Work

A new learning model of FNNs that maximizes the
margin has been presented. The key idea of the model is
a weighting of the sum-of-squares error function, which is
inspired in the AdaBoost algorithm. The hardness of the
margin can be controlled by a parameter, as in SVMs.

The proposed model allows to deal with multiclass and
multilabel problems in a natural way (as FNNs usually
do), and it is not restricted to a “SVM architecture” nor
to the use of kernel functions, independently of the con-
crete training algorithm. Both theoretic and experimen-
tal results have been shown confirming these ideas.

The weighting functions proposed in this work are not
the only ones that can be used to weight the sum-of-
squares error function. In this way, the approach must
be tested in real world problems, and compared with
both FNNs and SVMs. Although in this work we have
only considered classification problems, the same idea
can be applied to regression problems, just by chang-
ing the condition of the weighting function (4) from

mrg(zi, yi, frvn) 2> 0 to |frnn (i) — yi < €, where ¢
is a new parameter that controls the resolution at which
we want to look at the data. This idea is similar to the
e—insensitive cost function proposed in [13].

References

[1] Bishop, C.M. (1995). Neural Networks for Pattern Recogni-
tion. Oxford University Press Inc., New York.

[2] Cristianini, N and Shawe-Taylor, J. (2000). An Introduction to
Support Vector Machines. Cambridge University Press, UK.

[3] Freund, Y. and Schapire, R.E. (1997). A decision-theoretic
generalization of on-line learning and an application to boost-
ing. Journal of Computer and System Sciences 55 (1), 119-139.

[4] Girosi, F. (1998). An Equivalence Between Sparse Approxima-
tion and Support Vector Machines. Neural Computation 10,
1455-1480.

[5] Joachims, T. (1999) Making large-Scale SVM Learning Practi-
cal. In Advances in Kernel Methods - Support Vector Learning,
B. Scholkopf and C. Burges and A. Smola (Ed.), MIT-Press.

[6] Leshno, M., Lin, V.Y., Pinkus, A and Schocken, S. (1993).
Multilayer Feedforward Networks With a Nonpolynomial Acti-
vation Function Can Approximate Any Function. Neural Net-
works 6, 861-867.

[7] Park, J. and Sandberg, I.W. (1993). Approximation and
Radial-Basis-Function Networks. Neural Computation 5 (2),
305-316.

[8] Raudys, S. (1998). Evolution and generalization of a single
neuron: [. Single-layer perceptron as seven statistical classi-
fiers. Neural Networks 11, 283-296.

[9] Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986).
Parallel Distributed Processing, Vol 1. MIT Press.

[10] Sopena, J.M., Romero, E. and Alquézar, R. (1999). Neural
Networks with Periodic and Monotonic Activation Functions:
A Comparative Study in Classification Problems. Proc. 9th
Int. Conf. Artificial Neural Networks, 323-328.

[11] Schapire, R.E. and Singer, Y. (1999). Improved Boosting Algo-
rithms Using Confidence-rated Predictions. Machine Learning
17 (3), 297-336.

[12] Suykens, J.A.K and Vandewalle, J. (1999). Traning Multilayer
Preceptron Classifiers Based on a Modified Support Vector
Method. IEEE Trans. on Neural Networks 10 (4), 907-911.

[13] Vapnik, V. (1995). The Nature of statistical learning theory.
Springer-Verlag, New York.

[14] Vapnik, V. (1998). The Support Vector Method of Function
Estimation. In C. Bishop (Ed.), Neural Networks and Machine
Learning, 239-268, Springer-Verlag, Berlin.

[15] Vincent, P. and Bengio, Y. (2000). A Neural Support Vector
Architecture with Adaptive Kernels. Int. Joint Conference on
Neural Networks 5, 187-192.

