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Abstract � Feed�forward Neural Networks �FNNs�
and Support Vector Machines �SVMs� are two ma�
chine learning frameworks developed from very dif�
ferent starting points of view� In this work a new
learning model for FNNs is proposed such that� in
the linearly separable case� tends to obtain the same
solution that SVMs� The key idea of the model is a
weighting of the sum�of�squares error function� which
is inspired in the AdaBoost algorithm� The model
depends on a parameter that controls the hardness of
the margin� as in SVMs� so that it can be used for
the non�linearly separable case as well� In addition�
it allows to deal with multiclass and multilabel prob�
lems in a natural way �as FNNs usually do�� and it is
not restricted to the use of kernel functions� Finally�
it is independent of the concrete algorithm used to
minimize the error function� Both theoretic and ex�
perimental results are shown to con�rm these ideas�

I� Introduction

Feed�forward Neural Networks �FNNs� and Support
Vector Machines �SVMs� are two di�erent machine learn�
ing frameworks for approaching classi�cation and regres�
sion problems� We will consider the classi�cation task
given by a dataset X 	 f�x�� y��� � � � � �xL� yL�g� with
xi � R

N and yi � f�
��
gC� where C is the number of
classes� Minimizing the sum�of�squares �or cross�entropy�
error function and maximizing the margin are very dif�
ferent points of view with very interesting properties ��

�
��
�� Looking at the similarities and di�erences between
FNNs and SVMs� it can be observed that the main di�er�
ence between the sum�of�squares minimization problem of
an FNN and the maximization problem of a �
�Norm Soft
Margin� SVM lies on the constraints related to the objec�
tive function� Since these constraints are the responsible
for the existence of the support vectors� their behaviour
will give the key to propose a new learning model for
FNNs that� in the linearly separable case� tends to obtain
the same solution that SVMs� Trying to obtain support
vectors �that is� points with margin 
�� a weighting of the
sum�of�squares error function is proposed� This weighting
is inspired in the AdaBoost algorithm ��
� and it consists
of modifying the contribution of every point to the total
error depending on its margin� The model depends on a
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parameter that controls the hardness of the margin� as in
SVMs� so that it can be used for the non�linearly sepa�
rable case� In addition� the classical FNN architecture of
the new model presents some advantages� First� it allows
to deal with multiclass and multilabel problems in a nat�
ural way� This is a di�cult problem for SVMs� since they
are initially designed for binary classi�cation problems�
In addition� the �nal solution is neither restricted to have
an architecture with so many hidden units as points �or
support vectors� in the dataset nor to use kernel functions
necessarily� Both theoretic and experimental results are
shown to con�rm these ideas�
Some preliminaries about FNNs� SVMs and AdaBoost

can be found in Section II� In Section III� some simi�
larities and di�erences between FNNs and SVMs will be
discussed� The learning model and some theoretic results
will be presented in Section IV� Finally� the experimental
results will be shown in Section V�

II� Preliminaries

A� Feed�forward Neural Networks

The well known architecture of an FNN is structured by
layers of units� with connections between units from dif�
ferent layers in forward direction �

� A fully connected
FNN with one output unit and one hidden layer of units
computes the function�

fFNN �x� 	 ��

�
NhidX
i��

�i �i��i� x� bi� � b�

�
�
�

where �i� bi� b� � R� x� �i � R
N and Nhid is the number

of units in the hidden layer� The most used activation
functions �i��� x� b� in the hidden units are sigmoidal for
Multi�layer Perceptrons �MLPs� and radially symmetric
for Radial Basis Function Networks �RBFNs�� although
many other functions may be used ���
� ��
�� Output ac�
tivation functions ���u� use to be sigmoidal or linear�
The objective of the training process is to choose ade�

quate parameters to minimize a predetermined cost func�
tion� The sum�of�squares error function is the most usual�

E�X� 	
LX
i��




�
�fFNN �xi�� yi


��

As it is well known� the sum�of�squares error function
E�X� is an aproximation to the squared norm of the error
function fFNN �x� � y in the Hilbert space L��



The architecture �connections� number of hidden units
and activation functions� is usually �xed a priori� whereas
the weights are learned during the training process� For
convenience� we will divide the weights into frequencies
��i�Nhidi�� � coe�cients ��i�Nhidi�� and biases �bi�Nhidi�� � Note
that the appearance of the output function given by �
�
is determined by the architecture of the trained FNN�

B� Support Vector Machines

The idea of SVMs can be stated as follows ���
� �
�
��
the input vectors are mapped into a �usually high�di�
mensional� inner product space through some non�linear
mapping �� chosen a priori� In this space �the fea�
ture space�� an optimal hyperplane is constructed� Us�
ing a kernel function K�u� v� the mapping can be im�
plicit� since the inner product which de�nes the hyper�
plane can be evaluated as h��u�� ��v�i 	 K�u� v� for ev�
ery two vectors u� v � RN� In SVMs� an optimal hyper�
plane means a hyperplane with maximal normalized mar�
gin with respect to the dataset� The �functional� margin
of a point �xi� yi� with respect to a function f is de�ned
as mrg�xi� yi� f� 	 yif�xi�� The margin of a function f

with respect to a dataset X is the minimum of the mar�
gins of the points in the dataset� If f is a hyperplane� the
normalized �or geometric� margin is de�ned as its mar�
gin divided by the norm of the orthogonal vector to the
hyperplane� Using Lagrangian and Kuhn�Tucker theory�
the maximalmargin hyperplane for a binary classi�cation
problem turns to be

fSVM �x� 	
LX
i��

yi�iK�xi� x� � b ���

where the vector ��i�
L
i�� is the �
�Norm Soft Margin� so�

lution of the following constrained optimization problem
in the dual space�

Maximize

W �X� 	 ��
�

PL

i�j�� yi�iyj�jK�xi� xj� �
PL

i���i
subject toPL

i�� yi�i 	 �

� � �i � C i 	 
� � � � � L�

The points xi with �i � � �active constraints� are
support vectors� while bounded support vectors have
�i 	 C� Non�bounded support vectors have margin 
�
while bounded support vectors have margin less than 
�
A point is well classi�ed if and only its margin with re�
spect to fSVM is positive� The cost function �W �X� is
�plus a constant� the squared norm of the error function
fSVM �x� � y in the Reproducing Kernel Hilbert Space
associated to K�u� v� ���
� pag� �
�� By setting C 	 ��
one obtains the hard margin hyperplane� The most used
kernel functions K�u� v� are polynomial or Gaussian�like�
In contrast to FNNs� note that the appearance of the so�
lution is a consequence of the way the problem is solved�

C� AdaBoost

The AdaBoost algorithm is a particular boosting algo�
rithm introduced in ��
 and later improved in �


� Ad�
aBoost calls a given weak learning algorithm in a series of
rounds� On each round t it computes a weak hypothesis
ht� One of the main ideas of the algorithm is to maintain
a distribution Dt �a set of weights� over the training set�
Initially� all weights are set equally� but on each round t�
the weights are modi�ed�

Dt�xi� yi�Ht� 	
e�mrg�xi�yi�Ht�

Zt
���

where Ht 	
Pt

j���jhj�xi� is the current hypothesis� and
Zt is a normalization factor so that Dt is a probability
distribution� The e�ect of the distribution Dt is that the
weights of incorrectly classi�ed examples are increased so
that the weak learner ht�� is forced to focus on the hard
�depending on Dt� examples in the training set�

III� FNNs vs SVMs

A� Comparing the output functions

As pointed out elsewhere �see� for example� �
�
�� the out�
put function fSVM of a SVM ��� can be implemented
with a fully connected FNN with one output unit and
one hidden layer of units�


� Number of hidden units� L �	 kXk�
�� Coe�cients� �i 	 yi�i
�� Frequencies� �i 	 xi
�� Biases� bi vanishes� and b� 	 b

�� Activation functions�
�a� Hidden layer� �i�xi� x� bi� 	 K�xi� x�
�b� Output layer� �� linear

As in SVMs� the only parameters to be learned in such
an FNN computing �
� would be the coe�cients and the
biases� So� the main di�erences between FNNs and SVMs
rely both on the cost function to be optimized and the
constraints� since speci�c learning algorithms are a con�
sequence of the optimization problem to be solved�

B� Comparing the cost functions

Our �rst question has to do with the similarities between
the respective cost functions� De�ning

KL 	 �K�xi� xj��
N
i�j���

y 	 �y�� � � � � yL�
T � y� 	 �y���� � � � � yL�L�

T and consid�
ering the identi�cations stated in Section III�A we can
express the respective cost functions as�

E�X� 	



�
y�T�KL �KL � y� � y�T�KL � y �




�
L

W �X� 	 �



�
y�T�KL � y� � y�T�y



Regardless of their apparent similarity� is there any re�
lationship between the minima of E�X� and the maxima
of W �X� �or equivalently� the minima of �W �X��� The
next result partially answers this question�

Proposition �� If KL is non�singular� then the
respective cost functions E�X� and �W �X� attain their
unique minimum�without constraints� at the same point�

Proof� As E�X� and �W �X� are convex functions�
a necessary and su�cient condition for y�� to be a
global minimum is that their derivative with respect to
y� vanishes� Since KL non�singular� both equations have
the same solution�

If KL is singular� there will be more than one point
where the optimum value is attained� but all of them are
equivalent� In addition� KL has rows which are linearly
dependent among them� It indicates that the information
provided �via the inner product� by a point in the dataset
is redundant� since it is a linear combination of the infor�
mation provided by other points� Thus� that point could
probably be eliminated from the dataset and the �nal
solution would not change�
Indeed� the optima can be very di�erent depending on

the absence or presence of the constraints� Therefore� it
seems that the main di�erence lies on the constraints�

IV� An FNN that maximizes the margin

A� How does every point contribute to the cost function�

The existence of linear constraints in the optimization
problem to be solved in SVMs has a very important con�
sequence� only some of the �i will be di�erent from zero�
These coe�cients are associated with the so called sup�
port vectors� Thus� the remaining vectors can be omitted�
both to optimize W �X� and to compute the output ����
The problem is that we do not know them a priori� In
the linearly separable case �hard margin�� support vec�
tors have margin 
 �that is� fSVM �xi� 	 yi�� while the
remaining points �that will be referred to as �superclas�
si�ed� points� have a margin strictly greater than 
�
In contrast� for FNNs minimizing the sum�of�squares

error function every point makes its contribution to the
total error� The greater is the squared error� the greater
will be the contribution� independently of whether the
point is well or wrongly classi�ed� With linear output
units� there may be points �very� well classi�ed with a
�very� big squared error� �Superclassi�ed� points are a
clear example of this type� Sigmoidal output units can
help to solve this problem� but they can also create new
ones �in the linearly separable case� for example� the so�
lution is not bounded�� An alternative idea to sigmoidal
output units could be to reduce the contribution of �su�
perclassi�ed� points and reinforce those of misclassi�ed
points� as explained in the next section�

B� Weighting the contribution

Indeed� we do not know a priori which points will be
�nally �superclassi�ed� or misclassi�ed� But during the
FNN learning process it is possible to treat every point in
a di�erent way depending on its error �or� equivalently� its
margin�� In order to simulate the behaviour of a SVM� the
learning process could be guided by the following heuris�
tics�


� Any well classi�ed point contributes less to the error
than any misclassi�ed point�

�� Between well classi�ed points� the contribution is
larger for smaller errors in absolute value �or equiv�
alently� smaller margins��

�� Between misclassi�ed points� the contribution is
larger for larger errors in absolute value �or equiv�
alently� smaller margins��

These guidelines reinforce the contribution of misclassi�
�ed points and reduces the contribution of well classi�
�ed ones� As can be seen� this is exactly the same idea
than the distribution ��� for AdaBoost� Similarly� the
contribution of every point to the error can be modi�ed
simply by weighting it individually as a function of the
margin with respect to the output function fFNN � In or�
der to allow more �exibility to the model� two parameters
��� �� � � can be introduced into the weighting function
as follows �mrg 	 mrg�xi� yi� fFNN ���

D�xi� yi� �
�� ���	

���
��

e�jmrgj
�
�

if mrg � �

e�jmrgj
�
�

if mrg 	 � and �� �	 �

 otherwise

���

This weighting can be applied at least at two levels
�Ep 	 Ep�fFNN �xi�� yi� �

�� �����


� Weighting the sum�of�squares error�

Ep 	



�
�fFNN �xi�� yi


� �D�xi� yi� �
�� ��� ���

�� Weighting the sum�of�squares error derivative �only
if the derivative is involved in the learning process��


Ep


fFNN
	 �fFNN �xi�� yi� �D�xi� yi� �

�� ��� ���

Graphically �see �gure 
�� the right branch of the
squared error parabola is bended to a horizontal asymp�
tote� Weighting the sum�of�squares error derivative also
implies a kind of weighting the sum�of�squares error� al�
though in a slightly di�erent way�
The following result justi�es that the previously

suggested weighting functions are well founded� In
addition� it allows to construct new error functions in
order to simulate the behaviour of a SVM�



Fig� �� Individual error for the weighted sum�of�squares error
��� �left� and the weighted sum�of�squares error derivative �
�
�right� for several values of �� ��� � 	��

Theorem �� Let f � R� y � f�
��
g� ��� �� � �
and Ep�f� y� ��� ��� an error function satisfying�


� For every ��� �� � �� Ep attains its �absolute� min�
imum value when yf 	 
� and this value A does not
depend on ���

�� For every �� � � and every y� f satisfying yf � 

we have

lim
����

Ep�f� y� �
�� ��� 	 A

Then� if X 	 f�x�� y��� � � � � �xL� yL�g is a linearly separa�
ble dataset� the hyperplane h�x� that maximizes the nor�
malized margin also minimizes asymptotically ��� ���
the weighted sum�of�squares error function

EP �X� 	
LX
i��

Ep�h�xi�� y� �
�� ���� ���

Remarks�

� The theorem holds true independently of whether the
dataset X is linearly separable either in the input
space or in the feature space�

� The previously suggested weighting functions ��� and
��� satisfy the hypothesis of the theorem�

Proof� Since X is linearly separable� h�x� satis�es
that the margin yih�xi� 	 
 for the support vectors�
whereas yih�xi� � 
 for the non�support vectors� Since
A is the absolute minimum of Ep� regardless of ���
the minimum value that EP could attain is L � A�
The �rst hypothesis implies that for support vectors�
Ep�h�xi�� y� ��� ��� 	 A� For non�support vectors� this
value is asymptotically attained when �� ��� because
of the second hypothesis�

The reciprocal may not be necessarily true� since there
can be many di�erent hyperplanes which asymptotically
minimizeEP �X�� However� the solution obtained by min�
imizing EP �X� is expected to have a similar behaviour
that a SVM� In particular�


� It is expected that a larger �� will be related to a
harder margin�

�� Points with margin less or equal than 
 are expected
to be support vectors� For the linearly separable
case� the margin expected for every support is 
�

�� Theoretical results for SVMs �for example� general�
ization bounds� are expected to be easily applicable
or adapted to the obtained solutions�

C� Practical considerations

Some bene�ts can be obtained by minimizing an error
function ��� as the previously de�ned�
First� the minimization of ��� does not assume the ex�

istence of any predetermined architecture in the FNN�


� There is no need to have� in the �nal solution� as
many hidden units as points �or support vectors� in
the dataset� nor the frequencies must be the points
in the dataset�

�� There is no need to use kernel functions� since there
is no inner product to compute in the feature space�

In addition� it presents a number of advantages over the
classical SVM model�


� There is no limit on the number of classes to deal
with� For C�class problems� it is enough to construct
an architecture with C output units� The individual
squared error of every point is de�ned as usual �

�

EP �X� 	
LX
i��

CX
c��

Ep�f
c
FNN �xi�� y

c
i � �

�� ���� ���

�� The same error function ��� allows to deal with mul�
tilabel problems without restrictions�

Finally� it is independent of the concrete algorithm used
to minimize the error function�

D� Related work

In ��
 an equivalence between Sparse Approximation and
SVMs is shown� with some relationships to RBFNs� A
single�layer perceptron learning algorithm that asymptot�
ically obtains the maximummargin classi�er is presented
in ��
� In order to work� the dataset must be necessar�
ily linearly separable� and the learning rate should be in�
creased exponentially� leading to weights arbitrarily large�
In �
�
� a modi�ed SVM approach for training an MLP
with a �xed number of hidden units is described� An es�
timation of an upper bound of the Vapnik�Chervonenkis
dimension is iteratively minimized over the frequencies
and the biases� The SVM method inspires the calculation
of the coe�cients� but it is not the same one� The work in
�
�
 investigates learning architectures in which the kernel
function can be replaced by more general similarity mea�
sures that can have internal parameters� Although the
frequencies are forced to be the points in the dataset� the
cost function E�X� 	

PL

i�������� tanh�mrg�xi� yi� f��

�

is used�
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Fig� �� Separating hyperplanes �solid lines� after minimizing the
weighted sum�of�squares �
� for di�erent values of �� in the
two�class linearly separable problems L� �left� and R� �right��

V� Experiments

We performed some experiments on arti�cial data in
order to test both the validity of the new model and the
predictions made in Section IV� In particular� we were
interested in testing�


� Whether learning is possible or not with a standard
FNN architecture when a weighted sum�of�squares
error EP �X� is minimized with standard methods�

�� The e�ect of �� on the hardness of the margin�
�� The identi�cation of the support vectors� simply by
comparing their margin value with 
�

�� The behaviour of the model in multiclass problems
minimizing the error function ����

�� The behaviour of the model in non�linearly separa�
ble cases� when a non�linear activation function in
the hidden layer is needed�

�� Whether the use of non�kernel functions can lead or
not to a behaviour similar to that of kernel functions�

We set �� 	 �� so that misclassi�ed points had all of
them a weight of 
� All experiments were performed with
FNNs trained with standard Back�propagation ��
 weight�
ing the sum�of�squares error derivative ���� We will call
this method BPW� Every architecture had linear output
units� and was trained in batch mode�

A� Two linearly separable classes

Our �rst experiment consisted of learning the maximal
margin hyperplane of two linearly separable classes� We
constructed two di�erent linearly separable datasets �L�
and R��� shown in �gure �� Despite of their apparent
simplicity� there is a big di�erence between the maximal
margin hyperplane �dashed line� and the minimum sum�
of�squares hyperplane �dotted line�� used as the initial
weights for BPW in an MLP without hidden layers� Solid
lines in �gure � show the resulting hyperplanes after the
training for di�erent values of ��� As can be observed�
the maximalmargin hyperplane was obtained for �� 	 ��
so that the e�ect of �� on the hardness of the solution
margin was con�rmed� When looking at the output cal�
culated by the network� we could see that every point had
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Fig� �� Separating hyperplanes when minimizing the weighted
sum�of�squares ��� for �� � � in the three�class linearly sepa�
rable problems L� �left� and R� �right��

functional margin strictly greater than 
 except�

� For L�� points f��� ��� �
�� ��� ������ �����g�
� for R�� points f�
�� ��� �
� ��� �
�� ��g�

which had margin � 
� These points are� respectively�
the support vectors of the maximal margin hyperplane of
the datasets� con�rming the prediction about the support
vectors just by looking at their margin value�

B� Three linearly separable classes

Our second experiment consisted of trying to learn three
linearly separable classes� As previously� we constructed
two di�erent linearly separable datasets �L� and R���
shown in �gure �� In this case� the constructed MLPs had
three output units� and BPW minimized ���� In the same
conditions that in the previous section� solid lines in �g�
ure � show the resulting hyperplanes �the output function
for every output unit� after the minimization with BPW
for �� 	 �� We looked at the output calculated by the
network for every point in the dataset� in order to iden�
tify the support vectors� Splitting the resulting network
into one network for every class� we observed that every
output unit of every network� as in the two linearly sepa�
rable case� had functional margin strictly greater than 

for every point in the dataset except

� For L��
� f��� ��� ��� ��� ��� ��g for the circled points class�
� f��� 
�� ��� ��� ��� ��g for the crossed points class�
� f�

� ��� ��� ��� �����g for the squared points class�
� For R��
� f��� ��� ��� ��� �

���g for the circled points class�
� f��� 
�� ��� ��� ��� ��g for the crossed points class�
� f�

� ��� ��� ��� �����g for the squared points class�

which had margin � 
� These vectors are those which
would have been obtained as support vectors if we had
binarized the problem� solving the three respective SVM
optimization problems� It con�rms our hypothesis about
the goodness of the model for multiclass problems�



Fig� �� Generalization obtained by SVM�Light �left�� BPW
with gaussian functions �center� and BPW with sine functions
�right� for the Two Spirals problem� The results for BPW are
the mean over �	 runs�

C� The Two Spirals Problem

The well known Two spirals problem consists of identify�
ing the points of two interlocking spirals� with a training
set of 
�� points� A SVM with gaussian kernels and stan�
dard deviation 
 was constructed using the SVM�Light
software ��
 �for polynomial kernels we did not obtain sat�
isfactory results�� The hard margin solution contained

�� support vectors �� bounded�� In order to make a
comparison with an FNN with the same activation func�
tions and the same frequencies� we constructed an RBFN
with 
�� hidden gaussian units �also with standard de�
viation 
�� The frequencies were �xed to be the points
in the dataset� and the initial range for the coe�cients
was ����
� As it was a separable problem with gaussian
kernels� we set �� 	 �� After 
� runs of a training with
BPW� the mean of the number of points with functional
margin less than 
��� �support vectors in our model� was

��� These points were always a subset of the support
vectors obtained with the SVM�Light software� None of
them had functional margin less than �����
We also constructed an MLP with a hidden layer of ��

sinusoidal units� as in �
�
� Initial frequencies for BPW
were assigned randomly to an interval ������ ���
� and the
initial range for the coe�cients was �����
� We set again
�� 	 �� After 
� runs of a training with BPW� the mean
of the number of points with functional margin less than

��� was 
�
��� and none of them had functional margin
less than ����� These experiments con�rm that there is
no need to use either a �SVM architecture� or kernel
functions �the sine is not a kernel function��
The generalization obtained by these models can be

seen in �gure �� where the corners are ����������� and
������������ It is worth knowing that all the points in the
training set are radially equidistant inside a disk of radius
���� Therefore� while gaussian functions are expected to
have a good behaviour for this problem� it is not so clear
a priori for sine functions�

VI� Conclusions and Future Work

A new learning model of FNNs that maximizes the
margin has been presented� The key idea of the model is
a weighting of the sum�of�squares error function� which is
inspired in the AdaBoost algorithm� The hardness of the
margin can be controlled by a parameter� as in SVMs�

The proposed model allows to deal with multiclass and
multilabel problems in a natural way �as FNNs usually
do�� and it is not restricted to a �SVM architecture� nor
to the use of kernel functions� independently of the con�
crete training algorithm� Both theoretic and experimen�
tal results have been shown con�rming these ideas�
The weighting functions proposed in this work are not

the only ones that can be used to weight the sum�of�
squares error function� In this way� the approach must
be tested in real world problems� and compared with
both FNNs and SVMs� Although in this work we have
only considered classi�cation problems� the same idea
can be applied to regression problems� just by chang�
ing the condition of the weighting function ��� from
mrg�xi� yi� fFNN � � � to jfFNN �xi� � yij � �� where �
is a new parameter that controls the resolution at which
we want to look at the data� This idea is similar to the
��insensitive cost function proposed in �
�
�
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