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Abstract - A sequential method for approximating
vectors in Hilbert spaces, called Sequential Approzi-
mation with Optimal Coefficients and Interacting Fre-
quencies (SAOCIF), is presented. SAOCIF combines
two key ideas. The first one is the optimization of
the coefficients (the linear part of the approximation).
The second one is the flexibility to choose the fre-
quencies (the non-linear part). The approximations
defined by SAOCIF maintain orthogonal-like proper-
ties. The theoretical results obtained prove that, un-
der reasonable conditions, the residue of the approx-
imation obtained with SAOCIF (in the limit) is the
best one that can be obtained with any subset of the
given set of vectors. In the particular case of L?, it can
be applied to approximations by algebraic polynomi-
als, Fourier series, wavelets and feed-forward neural
networks, among others. Also, a particular algorithm
with feed-forward neural networks is presented. The
method combines the locality of sequential approxi-
mations, where only one frequency is found at every
step, with the globality of non-sequential ones, where
every frequency interacts with the others. Experi-
mental results show a very satisfactory performance.

I. Introduction

Vector approximation in Hilbert spaces is present in
different areas, such as Statistics, Signal Processing or
Artificial Intelligence. In most cases, the Hilbert space
of interest is L%, where the vector f is a square inte-
grable function defined on a subset of B!, that we want
to approximate by linear combinations of simpler func-
tions. Linear expansions in a single basis are not flexible
enough. The information can be diluted across the whole
basis [18], and the approximation error cannot be made
smaller than O(1/(d+/n)), where d is the dimension of
the input to the function [2]. This happens even with an
orthogonal basis. An attractive way to construct an ap-
proximation is, starting from scratch, adding terms one
at a time to the partial approximations, until the desired
approximation accuracy is achieved. This is the aim of
sequential (or incremental) methods. Most of the exist-
ing methods choose the new term so that it matches the
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previous residue as best as possible (see Section V). As it
is well known, although this strategy leads to approxima-
tions convergent towards the target function, it may be
far from being the best strategy. Trying to approximate
the residue does not take into account the interactions
with the previous selected terms, even with optimal coef-
ficients.

In this paper we present a general sequential method
for function approximation, named SAQCIF, that takes
into account these problems. On the one hand, it opti-
mizes the coefficients, so that we always achieve the best
approximation with the selected vectors. On the other,
the vectors can be selected at every step in a flexible man-
ner, taking into account the interactions with the previ-
ous terms. A particular algorithm with neural networks
is also presented. Experimental results show a very sat-
isfactory performance.

The paper is organized as follows. The definition of
SAOCIF and the main properties are explained in Sec-
tion II. The particular algorithm using neural networks
is presented in Section III. The experimental results are
shown in Section IV. An overview of the related work
is presented in Section V. Finally, some conclusions are
drawn in Section VI.

II. Definition of SAOCIF and Main properties

A more extended discussion, and the proofs of the the-
oretical results listed in this section can be found in [23].

A. Definition

The problem of approximation in Hilbert spaces that
we will deal with in this paper can be defined as fol-
lows: “Let H be a Hilbert space with inner product
() + Hx H — C, a space of parameters §, and
f € H a vector to approximate with vectors v, = v(w),
v:Q o H,w € Q, such that Vw € Q ||v, ]| # 0. We
want to find wq,wq, -+ € Q and A, Ay, -+ € C such that
f- ch\le /\k Vwp
term frequency refers to every wi,ws,--- € €, and coef-
ficient to every Ay, Ay,-++ € € 7. This definition is, in

essence, the traditional one in approximation of vectors
in Hilbert spaces. In L?, usually, @ C CP.

= 0. As commonly used, the
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Definition. A Sequential Approzimation with Optimal
Coefficients and Interacting Frequencies (SAOCIF) is a
sequence of vectors {Xn}nyo € H, which terms are de-
fined as:

1. Xo == 0
2. Xy = /\k we + /\%%N, so that
(a) The coefﬁ(ﬂents are optimal. That is, the vector
Xy is the best approximation of f with vectors
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(b) For every u € C and every wg €  we have
1 = Xl < IIf = (X1 + o, )P+, where
> 0. That is, the approximation of f with Xy
is better (up to ay) than the best approximation
of the residue f — Xx_; that one could achieve
with only one vector v,, € v(€2) (or, equivalently,
keeping fixed the coefficients of Xn_1).
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Remarks.

1. At step N, a new frequency (wy) is considered, the
number of terms of the approximation is increased by
one (AN, ), and the coefficients AV, AY, ... AN |
are recalculated in order to obtain the best approxi-
mation of f with vy, ,Vuy_,s Vwy. The frequen-
cies wy,ws, - ,wn_1 are kept fixed. The vectors
Vwyy 'y Vwpy_qs Vwy are not necessarily mutually or-
thogonal.

2. Observe that, if ay > 0, at step N there exists at
least one frequency wpy satisfying the property (b)
of SAOCIF ’s definition. Moreover, there can be in-
finitely many frequencies satisfying this property.

3. Since Xy is the best approximation of f with

s Vwn_ys Vwary 16 holds that [1]

AN = () s Fovae)) (1)

where An(i,j) = <Uw,, ij>. Consequently, once
the frequencies wq,---,wy_1,wny € Q are fixed, the
optimal coefficients AY,--- AN _ AY € C can be
calculated by solving (1). Tt can be proved easily
that the system has only one solution if and only if
Vwyy ' "y Vwpy_qs Vwy are linearly independent. Other-
wise, the system has more than one solution. Since
the frequencies wy,wq, -+ ,wx_1 are kept fixed, the
proposed system at step NNV is equal to the system at
step N — 1, but with a new row and a new column.

4. If H = L? and we only have a dataset X, the inner
products can be approximated by
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Ax - (A,

{g.vu,)

In this case we will suppose that the integral is de-
fined with regard to the probability measure of the
problem represented by the dataset. In addition,
solving (1) is equivalent to solving the Least Squares
(LS) problem associated with the dataset.

B. Theoretical properties

Among others properties (see [23]), it can be proved the
following results.

Theorem 1. Let H be a Hilbert space, and f € H. Any
SAOCIF { XN} N30 satisfies the following properties:

(Ta) || - XN|| = ||f|| 2.6

(Tb) [1X ] = S0, AN TF, o)

(Tc) Suppose that AN # 0. The vector v, is or-
thogonal to the space spanned by {vy,, **,Vwn_,}
if and only if the previous existing coefficients do not
change between the steps NV — 1 and N.

(Td) {Xn}n3o is convergent in H. That is,

dgeH lim |lg— Xn| =0.
N—oo

(Te) Suppose that limy_eo @y = 0. Then
(Tel) There is no subset of vectors in v(€2) that ap-
proximate f more than g.
(Te2) If there exists A C €2 such that the set of vectors
{vy : ¢ € A} spans H (that is, its linear span is
dense in H), then {Xn}n3o converges towards f.

There is a great parallelism between these properties
and those satisfied by an approximation with orthogonal
vectors. Observe that by (Tc), the only directions that
guarantee that, without recalculating the coefficients, the
approximation is optimal are the orthogonal directions.
Hence, if the approximation vectors are not mutually or-
thogonal, the coefficients must be recalculated. Regard-
ing convergence, observe that these results are not very
restrictive. In order to assure the convergence towards f,
the family of vectors used in the construction must have
the capability of approximating any vector. Hence, S4 O-
CIT allows us (by selecting  and v(2)) to choose any
(or some) of the multiple vector families satisfying this
property. The hypothesis about the tolerance ap is the
same as in [13], [2], [15] or [14].

C. Practical properties in H = L?

From now on we will work in the space L?. SAQCIF
can be applied to a number of vector families that are
very usual in the literature, since the universal approx-
imation capability of a family of functions is enough to
apply SAOCIF with guarantee of convergence to f:

1. Algebraic Polynomials, with v, ( t_) T e,

2. Nonharmonic Fourier Series, with v, ( t_) = 9T If
the function is real, it can be approximated by sines
and cosines (v, (f} = sin(df-t_j or v, (f} = cos(c?-lf_j).

3. Wavelets, with v, (t) = ¢y s(t), where ¢, ,(t) is a
(translated and scaled) time-frequency atom.

4. Feed-forward Neural Networks. In particular,

(a) Multi-layer Perceptrons (MLPs), with activation
functions leading to the universal approximation
property (see, for example, [16]).



(b) Radial Basis Function Networks (RBFNs), with
radial basis functions with the universal approxi-
mation capability (see, for example, [19]).

As has been said before, the system (1) at step N is
equal to the system at step N — 1, but with a new row
and a new column. Therefore, it can be solved efficiently
in a similar fashion that a bordered system [8].

In addition, if we only have a dataset, the error
l|lf— XN||2 can be computed avoiding one pass through
the dataset. By (Tb), we know that ||XN||2 =
ch\le /\é\f(f, Vw, ). But the values of {(f,v.,)}i1grgn are
the independent vector of the linear equations system (1)
just solved to obtain {/\é\f}lgng. Hence, once the coefli-
cients have been obtained, we can compute ||XN||2 with
cost O(N). By (Ta) we have ||f — Xn||* = [|£]]* = X~]%,
with ||f||2 constant. Note that the cost of computing
||XN||2 or||f— XN||2 directly from the dataset is O(T'N),
where T is the number of points in the dataset.

Finally, it can be easily verified that the goodness of
the new frequency wg with regard to its approximation
capability does not depend on the norm of the vector
Vw,. In particular, we could normalize the vectors defin-

ing v, = vun/ |[vwyll-
ITII. SAOCIF and Feed-forward Neural Networks

From now on, we will focus on FNNs. We want to
approximate a function f: R — R® in H = L2(R{) by
MLPs or RBFNs with Q = R/*!, We only have the value
of the function in a dataset, and the main objective is to
achieve a successful generalization. The dimension of the
input space may be very large (of the order of hundreds)
depending on the problem at hand.

In practice, SAOCIF presents a problem. To find a
valid frequency, we must verify that the property (b)
of SAOCIF ’s definition is satisfied, which involves a
global minimization problem. Global optimization tech-
niques are very expensive computationally. In a high-
dimensional space without any kind of convexity, it be-
cames an almost intractable problem [9]. The strategy
of matching the residue also presents this problem [14].
But if we are dealing with a dataset and our main aim
is the generalization, finding a good local minumum is
many times enough to achieve a good performance.

FNNs are a suitable approach to deal with function ap-
proximation problems when only a dataset is available,
and SAOCIF can serve as an inspiration to construct
an FNN: adding hidden units one at a time, choosing
the initial weights in a flexible and (in some sense) op-
timal manner, so as to adjust the network until we have
a satisfactory model. The resulting incremental method
combines the locality of sequential approximations, where
only one frequency is found at every step, with the global-
ity of non-sequential methods, such as Backpropagation
(BP), where every frequency interacts with the others.
This idea, in addition, offers a number of advantages for

Algorithm
while the network is not valid do
Increase by 1 the number of hidden units NV
for ¢t := 1 upto Nfrequencies do
Assign a candidate frequency w(;) (weights in the
first layer) to the new hidden unit
Pick an activation function for the new hidden unit
Compute the coefficients {px () }1grgn (weights in
the second layer), by solving (1)
Compute the Output || Xn (t)||2 with (Th)
Set wy i=w() if ||XN(15)||2 is maximized
end for
Optionally train the network, to tune wy
Fix the frequency wp in the network
Validate the network
end while
end Algorithm

Fig. 1. An algorithm to construct an FNN inspired in SAOCTF.

building the network. First, it allows to construct parsi-
monious networks. Second, different activation functions
can be chosen at every step, so that the network adapts its
architecture to the specific target function. Recent results
show that the use of non-sigmoidal activation functions
for MLPs may lead to very promising results [24]. Finally,
any strategy can be used to select the new frequencies.
Concerning the architecture needed to construct the
approximation, it must have the following characteristics:

1. It must be a feed-forward architecture with a hidden
layer of units (including both MLPs with one hidden
layer and RBFNs).

2. There are no restrictions about the dimension of the
input and the output. With several outputs, the to-
tal inner products must be calculated as the summa-
tion of the individual inner products of every output.

3. There is no restriction about the biases in the hid-
den units. The biases can be treated as part of the
frequencies. The output units cannot have biases.

4. There is no restriction about the activation func-

In particular, they can

be sines, cosines, sigmoidal functions, gaussian func-

tions, wavelets, etc. Obviously, different units may
have different activation functions. The output units
must have a linear activation function.

tions in the hidden units.

As we can see, the restrictions only refer to the output
units. The biases are not a real problem, since they can
be considered as frequencies with a simple transforma-
tion. Hence, the only real restriction in the output units
is the linear activation function. An algorithm to con-
struct an approximation based on SAOCIF using FNNs
is given in figure 1. Since the frequency goodness does not
depend on the norm of its associated vector, the range of
weights to look for candidate frequencies may be as large



as desired. The strategy to select the candidate frequency
is probably the most important part of the algorithm. In
Section IV three strategies are introduced in order to
test the algorithm. In the first one, the frequencies are
selected at random. In the second one (Input strategy),
the frequencies are selected from the points in the dataset
(as often in RBFNs, but not exclusively) in a determinis-
tic manner: for every hidden unit to be added, every point
in the training set is tested as a candidate frequency. The
third one is a more sophisticated strategy from the field
of Evolutionary Algorithms, where a population of fre-
quencies evolves driven by a Breeder Genetic Algorithm
(BGA) [5] with the squared error as the fitness function.

IV. Experiments

We now comment some generalities about the experi-
ments performed in orden to test the SAOCIF algorithm
presented in Section III. There was no further train-
ing after a new hidden unit was added. In the tables of
results, method MFT’ means “Maximum Fourier Trans-
form” and is a version “matching the residue” of SAOCIF:
the previuos coefficients are not recalculated, and the co-
efficient of the new frequency is the maximum normalized
Fourier transform of the residue at every step (that is, the
coefficient that minimizes the residue for the selected fre-
quency). The column ’WR’ indicates the range of weights
to look for candidate frequencies. When the value "Input’
is present, it means that the candidate frequencies are se-
lected from the points in the dataset, as explained before.
Several activation functions (AF in the tables) have been
tested, such as linear (lin), logistic (Igt), sine or cosine
(cos) in the MLP model and gaussian (gau) in the RBFN
model. The column "Test’ indicates the generalization
performance obtained as the mean of the individual per-
formances, and the column ’Com.’ indicates the general-
ization performance obtained by an average-output com-
mittee of the resulting networks. In the column 'NH’, the
average number of hidden units in the resulting networks
is shown. An NP’ value means “Not Possible”, indicating
that the learning of the training set was unsatisfactory.

A. The Two Spirals Problem

The well-known Two spirals problem consists in identify-
ing the points of two interlocking spirals. It is an ex-
tremely hard problem for architectures with sigmoidal
activation functions because of its intrinsic high non-
linearity. Other activation functions lead to better re-
sults: Hermite polynomials [12] or periodic functions [24].

We tested this problem with different methods and ac-
tivation functions. The frequencies were selected ran-
domly (100 attempts) within a certain range of weights.
The maximum number of hidden units enabled was 500,
and no more hidden units were added when the whole
training set was learnt. Results are shown in Table I as
the average of 10 runs. The column ’Train’ indicates the

Method AF WR NH Train Test Com.

SAOCTF | lgt -16,+16 105.6 | 100% | 93.5% | 100%

SAOCTF | lgt “12,412 108.9 | 100% | 92.5% | 99.0%

SAOCTF | lgt [-8,+8] NP - - -
MFT Igt -16,4+16 500 | 85.4% | 84.5% | 84.9%
MFT Igt “12,4+12 NP - - -

SAOCIF | sine -3,4+3 13.3 100% | 98.8% | 100%

SAOCIF | sine -2,42 NP - - -
MFT sine -3,4+3 16.5 100% | 98.5% | 99.5%
MFT sine -2,42 NP - - -

TABLE I

RESULTS FOR THE Two spirals WITH THE RANDOM STRATEGY.
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Fig. 2. Generalization obtained by Cascade-Correlation (left)
and SAOCITF with logistic [-16,416] (middle) and sine [-3,43]
(right) functions respectively for the Two spirals problem. The
results for SAOCIF (with corners (—6.5,—6.5) and (6.5,6.5))
are the committee results.

percentage of the training set which has been learnt. As
already known, this is a very hard problem for the logis-
tic function, but it could be learnt with SAOCIF and an
adequate (and very large) range of weights. The number
of hidden units of the obtained solutions was somewhat
greater than 100. MFT could not solve the problem with
the same ranges, at least with 500 hidden units. With
sine activation functions, and an appropriate choice of
the range of weights, both SAOCIF and MFT obtained
very good solutions with a few number of hidden units.
Note that the number of hidden units of the solutions ob-
tained with SAOCIF is always smaller than the number
obtained with MFT, as expected. Figure 2 compares the
generalization obtained by the Cascade-Correlation algo-
rithm (see Section V) and SAOCIF with logistic and sine
activation functions. It is worth knowing that all points
in both the training and test sets are radially equidistant
inside a disk of radius 6.5.

B. Diabetes

We performed another comparison with a problem of
medical diagnosis, using the “Pima Indians Diabetes
Database” produced in the Applied Physics Laboratory,
Johns Hopkins University. We used exactly the same
dataset as in [20]. Every input value belongs to [0, 1].
We tested this problem with different methods and ac-
tivation functions. The maximum number of hidden units
enabled was 20. The Input and the BGA strategies were
tested to select the candidate frequencies. Standard pa-
rameters were used for the BGA with an initial random
population of 100 individuals and a truncation rate of
25%, as in [3]. In some of the experiments, linear acti-



Method AF WR NH Train Test
SAOCIF Igt Input 4.65 147.3 | 76.80%
MFT Igt Input NP - -
SAOCIF lin-1gt Input 4.00 144.7 | 76.76%
MFT lin-1gt Input 12.90 | 145.0 | 76.83%
SAOCIF | fixlin-lgt | Input 5.65 144.2 | 77.19%
SAOCIF cos Input 5.90 143.1 | 77.06%
MFET cos Input 18.75 | 154.5 | 76.21%
SAOCIF lin-cos Input 7.65 140.6 | 76.14%
MFET lin-cos Input 8.25 144.9 | 76.90%
SAOCIF | fixlin-cos | Input 11.65 | 140.1 | 77.29%
SAOCIF gau Input 6.20 143.9 | 77.09%
MFT gau Input NP - -
SAOCIF lin-gau Input 8.70 138.5 | 77.32%
MFT lin-gau Input 12.40 | 145.0 | 76.93%
SAOCIF | fixlin-gau | Input 8.40 141.3 | 76.90%
TABLE 11

RESULTS FOR THE Diabetes PROBLEM WITH THE INPUT STRATEGY.

Method AF WR NH Train Test
SAOCIF Igt -0.5,0.5 4.98 144.6 | 76.88%
MFT Igt -0.5,0.5 NP - -
SAOCIF lin-1gt -0.5,0.5 3.51 144.3 | 76.95%
MFT lin-1gt -0.5,0.5 12.77 | 145.0 | 76.86%
SAOCIF fixlin-Igt -0.5,0.5 5.51 143.3 | 76.71%
SAOCIF cos -0.5,0.5 7.51 133.5 | 76.93%
MFET cos -0.5,0.5 NP - -
SAOCIF lin-cos -0.5,0.5 6.64 136.2 | 77.01%
MFT Tin-cos 20.5,05] || 972 | 144.9 | 76.78%
SAOCIF | fixlin-cos -0.5,0.5 8.28 137.8 | 76.90%
SAOCIF gau 0,1 768 | 137.1 | 76.59%
MFT gau 0,1 NP - -
SAOCIF lin-gau 0,1 7.80 137.2 | 76.24%
MFET lin-gau 0,1 811 | 144.9 | 76.67%
SAOCIF | fixlin-gau 0,1 6.94 140.0 | 76.64%
TABLE III

RESULTS FOR THE Diabetes PROBLEM WITH THE BGA STRATEGY.

vation functions were combined with non-linear activa-
tion functions in the hidden layer (’lin-fun’in the tables).
When linear activation functions were present, their op-
timal frequencies can be calculated analytically, solving
a linear equations system similar to (1), setting the coef-
ficients to 1. Moreover, when new non-linear units are
added, the coefficients of the hidden units with linear
activation functions may be either recalculated or keep
fixed (fixlin-fun’ in the tables), in order to approximate
only the non-linear component of the function. This idea
only makes sense for SAOCIF method, since MFT always
keeps the coefficients fixed. Different from the Two Spi-
rals problem, previous experience with this problem sug-
gested that it would be necessary to control the complex-
ity of the model in order to obtain a good performance.
We performed a 5-fold Cross-Validation, but every orig-
inal training set was again divided into training set and
validation set four times, as in a 4-fold Cross-Validation.
For the BGA, this procedure was repeated 5 times. Re-
sults shown in Table IT and Table III are the average
of the results obtained after the addition of the hidden
unit where the total squared error in the validation set

was minimum. The column "Train’ indicates the total
squared error in the training set at this point.

Although the results seem very similar for the differ-
ent parameter configurations, there are some regularities
which can be observed for this problem:

1. Non-linear activation functions different from the
classical sigmoidal and gaussian (such as cosines)
may be satisfactorily used. Linear (fixed or not) hid-
den units have mostly a positive influence on the
results, both in SAOCIF and MFT method.

2. Selecting the frequencies from the points in the
dataset seems well suited for MLPs, although it is
not a common practice. As it was expected, the BGA
strategy shows a greater rate of approximation in the
training set than the Input strategy.

3. The number of hidden units of the solutions ob-
tained with SAOCIF is always less than for the solu-
tions obtained with MFT. In contrast with the Two
spirals problem, this property may not be necessarily
true, since the results are evaluated in the minimum
of the validation set error. In addition, SAOCIF con-
sistently obtains better results than MFT .

4. The optimal number of hidden units for this problem
is probably small.

We compared these results with those that used similar
experimental techniques. In [25] a generalization per-
formance of 76.30% was obtained with 10-fold Cross-
Validation without validation set. In [7] this problem
was also tested with a collection of bagging and boost-
ing methods (10-fold Cross-Validation), achieving a max-
imum performance of 75.60%. Support Vector Machines,
RBFNs and AdaBoost were tested in [21] obtaining a
maximum generalization performance of 76.50%. In [3],
with an experimental technique very similar to ours,
75.27% generalization was obtained. In the same condi-
tions aforementioned, we tested the Cascade-Correlation
algorithm (see Section V). For more than 70 different
sets of parameters, the best average generalization result
obtained by Cascade-Correlation was 76.58%. Our best
average result was 77.32%.

V. Related work

Finding the frequencies which best match the residue
is the underlying idea for most of the previously proposed
sequential approaches. It has appeared in different areas
with different names (Projection Pursuit in the Statis-
tics literature [10], Matching Pursuit in Signal Processing
[18]). In the Neural Netwoks field this idea has also been
applied with several variations (see, for example, [11],
[15] or [28]). One of the most used constructive method
is Cascade-Correlation (CC) [6]. CC combines two key
ideas. The former is the cascade architecture, in which
hidden units are added one at a time. The newly added
hidden neuron receives inputs from the input layer as well
as from the previously added hidden neurons. The latter



is the learning algorithm. For each new hidden unit, the
algorithm tries to maximize the magnitude of the correla-
tion (or, more precisely, the covariance) between the new
unit’s output and the residual error signal of the network.

V1. Conclusions and Future work

A sequential method for approximating vectors in
Hilbert spaces, called SAOCIF, has been presented. The
new term is not chosen in order to match the previous
residue as best as possible. On the one hand, it optimizes
the coefficients, so that we always achieve the best ap-
proximation with the selected vectors. On the other, the
vectors can be selected at every step in a flexible manner,
taking into account the interactions with the previous
terms. The approximations defined by SAOCIF main-
tain orthogonal-like properties. Theoretical results prove
that, under reasonable conditions, the residue of the ap-
proximation obtained with SAOCTF (in the limit) is the
best one that can be obtained with any subset of the
given set of vectors. In the particular case of L?, SAO-
CIF can be applied to any family of vectors with universal
approximation capability (algebraic polynomials, Fourier
series, families of time-frequency wavelets, feed-forward
neural networks, radial basis function networks, etc). A
particular algorithm with neural networks has also been
presented. SAOCIF can be used as a guide to construct
an FNN: adding hidden units one at a time, choosing
the initial weights in a flexible and (in some sense) opti-
mal manner, so as to adjust the network until we have a
satisfactory model. The resulting method combines the
locality of sequential approximations, where only one fre-
quency is found at every step, with the globality of non-
sequential methods, such as BP, where every frequency
interacts with the others. Experimental results show a
very satisfactory performance of this method, and sev-
eral suggesting ideas for future experiments, such as the
selection of the non-linear weights from the dataset, or
the combination of linear and non-linear activation func-
In the presented particular
algorithm with neural networks, there are also a lot of
matters to study or improve. The candidate frequencies
can be selected with heuristics different from current se-

tions in the hidden units.

lections. Likewise, the selection of the activation function
for the new hidden unit admits any number of heuristics.
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