Generating

Polynomial Invariants

for Hybrid Systems

Enric Rodríguez-Carbonell

Universitat Politècnica de Catalunya Barcelona (Spain) Ashish Tiwari

SRI International

Menlo Park (USA)

1

Introduction

- It is necessary to verify safety properties of hybrid systems
- Exact reach-set of hybrid systems not computable generally
- Solution: overapproximate reachable states \rightarrow

INVARIANTS

Main Results

- Method for finding all polynomial equality invariants of linear systems
 - **Best** algebraic overapproximation of the reach set
- Extension to hybrid systems using the abstract interpretation framework

Overview of the Talk

- 1. Finding Invariants for Linear Systems
- 2. Abstract Interpretation
- 3. Finding Invariants for Hybrid Systems
- 4. Related Work
- 5. Future Work & Conclusions

Linear Systems Problem

- Given a system $\dot{x} = Ax + B$ and a set of initial values *Init*, find polynomials *p* evaluating to 0 at all reachable points
- $\Phi(x^*, t) \equiv$ solution to $\dot{x} = Ax + B$ with initial condition x^*

 $\forall x^* \in Init, \quad \forall t \ge 0 \qquad p(\Phi(x^*, t)) = 0$

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{v_x} \\ \dot{v_y} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1/2 \\ 0 & 0 & 1/2 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ v_x \\ v_y \end{pmatrix}$$

 $v_x^* = 2, v_y^* = -2 \implies v_x^2 + v_y^2 = 8$ (conservation of energy)

Linear Systems Solution

- 1. Solving the system of differential equations
 - Linear systems can be explicitly solved
- 2. Eliminating the terms involving time
 - Adding auxiliary variables to handle non-algebraic terms (exponentials, trigonometric terms)
 - Adding auxiliary equations relating the auxiliary variables

Linear Systems Solving the System

• Solution to $\dot{x} = Ax + B$ with initial condition x^*

$$\Phi(x^*,t) = e^{At}x^* + e^{At}(\int_0^t e^{-A\tau}d\tau) B$$

• It can be expressed as **polynomials** in t, $e^{\pm at}$, $\cos(bt)$, $\sin(bt)$, where $\lambda = a + bi$ are **eigenvalues** of matrix A.

$$\begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{v_x} \\ \dot{v_y} \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1/2 \\ 0 & 0 & 1/2 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ v_x \\ v_y \end{pmatrix}$$

$$\begin{cases} x = x^* + 2\sin(t/2)v_x^* + (2\cos(t/2) - 2)v_y^* \\ y = y^* + (-2\cos(t/2) + 2)v_x^* + 2\sin(t/2)v_y^* \\ v_x = \cos(t/2)v_x^* - \sin(t/2)v_y^* \\ v_y = \sin(t/2)v_x^* + \cos(t/2)v_y^* \end{cases}$$

Linear Systems Eliminating Time (1)

Simple case:

eigenvalues of matrix A have real and imaginary parts in \mathbb{Q} Then:

• $\exists p \in \mathbb{Q}$ such that for all exponential terms e^{at} :

 $e^{at} = (e^{pt})^c$ for a certain $c \in \mathbb{Z}$

If we introduce new variables $u = e^{pt}$, $v = e^{-pt}$, then either $e^{at} = u^{|c|}$ or $e^{at} = v^{|c|}$

• For trigonometric terms, similarly for a certain $q \in \mathbb{Q}$ and new variables $w = \cos(qt)$, $z = \sin(qt)$

Linear Systems Eliminating Time (2)

$$\begin{array}{rcl} x &=& x^* + 2\sin(t/2) \, v_x^* + (2\cos(t/2) - 2) \, v_y^* \\ y &=& y^* + (-2\cos(t/2) + 2) \, v_x^* + 2\sin(t/2) \, v_y^* \\ v_x &=& \cos(t/2) \, v_x^* - \sin(t/2) \, v_y^* \\ v_y &=& \sin(t/2) \, v_x^* + \cos(t/2) \, v_y^* \end{array}$$

$$w = \cos(t/2), z = \sin(t/2)$$

$$\Downarrow$$

$$\begin{cases} x = x^* + 2zv_x^* + (2w - 2)v_y^* \\ y = y^* + (-2w + 2)v_x^* + 2zv_y^* \\ v_x = wv_x^* - zv_y^* \\ v_y = zv_x^* + wv_y^* \end{cases}$$

Linear Systems Eliminating Time (3)

Eliminate auxiliary variables using

- auxiliary equations uv = 1, $w^2 + z^2 = 1$
- Gröbner bases with an elimination term ordering where the auxiliary variables are the biggest ones

INITIAL CONDITIONS

FLOW

$$\begin{cases}
x = x^{*} + 2zv_{x}^{*} + (2w - 2)v_{y}^{*} \\
y = y^{*} + (-2w + 2)v_{x}^{*} + 2zv_{y}^{*} \\
v_{x} = wv_{x}^{*} - zv_{y}^{*} \\
v_{y} = zv_{x}^{*} + wv_{y}^{*}
\end{cases}$$
AUXILIARY
EQUATIONS

$$\begin{cases}
w^{2} + z^{2} = 1 \\
\psi \\
v_{x}^{2} + v_{y}^{2} = 8
\end{cases}$$

Linear Systems Eliminating Time (4)

- General case: similarly by computing \mathbb{Q} -bases of the real and imaginary parts of the eigenvalues of the matrix A
 - Exponential terms: new variables x_1 , y_1 , ..., x_k , y_k satisfying $x_i y_i = 1$
 - Trigonometric terms: new variables w_1 , z_1 , ..., w_l , z_l satisfying $w_j^2 + z_j^2 = 1$
- MAIN RESULT:

all polynomial invariants of the system are generated

Overview of the Talk

- 1. Finding Invariants for Linear Systems
- 2. Abstract Interpretation
- 3. Finding Invariants for Hybrid Systems
- 4. Related Work
- 5. Future Work & Conclusions

Abstract Interpretation (1)

Abstract interpretation is a framework for computing invariants of several kinds:

intervals (Cousot & Cousot 1976, Harrison 1977)

 $x \in [0,1] \land y \in [0,\infty)$

 linear inequalities (Cousot & Halbwachs 1978, Colón & Sankaranarayanan & Sipma 2003)

$$x + 2y - 3z \le 3$$

- ...

 polynomial equalities (Müller-Olm & Seidl 2004, Sankaranarayanan & Sipma& Manna 2004, Colón 2004, Rodríguez-Carbonell & Kapur 2004)

$$x = y^2$$

Abstract Interpretation (2)

Concrete variable values overapproximated by *abstract values*

Abstract Interpretation (3)

- Semantics of hybrid systems in terms of abstract values
- Operations on concrete states must be abstracted:

Invariants are generated by the symbolic execution of the hybrid system using the abstract semantics

Overview of the Talk

- 1. Finding Invariants for Linear Systems
- 2. Abstract Interpretation
- 3. Finding Invariants for Hybrid Systems
- 4. Related Work
- 5. Future Work & Conclusions

Hybrid Systems Ideals of Polynomials

- Intuitively, an ideal is a set of polynomials and their consequences
- An ideal is a set of polynomials I such that
 - 1. 0 ∈ *I*
 - 2. If $p, q \in I$, then $p + q \in I$
 - 3. If $p \in I$ and q any polynomial, $pq \in I$
- Example: multiples of a polynomial p, $\langle p \rangle$
 - 1. $0 = 0 \cdot p \in \langle p \rangle$
 - 2. $q_1 \cdot p + q_2 \cdot p = (q_1 + q_2)p \in \langle p \rangle$
 - 3. If q_2 is any polynomial, then $q_2 \cdot q_1 \cdot p \in \langle p \rangle$
- In general, ideal generated by p_1, \dots, p_k : $\langle p_1, \dots, p_k \rangle = \{\sum_{j=1}^k q_j \cdot p_j \text{ for arbitrary } q_j\}$

Hybrid Systems Abstract Semantics

- time elapse \rightarrow solve differential equations, eliminate time
- image of states → projection of ideals:

$$I \cap \mathbb{C}[x_1, ..., x_{i-1}, x_{i+1}, ..., x_n]$$

■ union of states → intersection of ideals:

$I \cap J$

• intersection with equality guards \rightarrow addition of ideals:

$$I + J = \{p + q \mid p \in I, q \in J\}$$

• intersection with disequality guards \rightarrow quotient of ideals:

$$I: J = \{p \mid \forall q \in J, p \cdot q \in I\}$$

All operations can be implemented using Gröbner bases

Hybrid Systems Example (1)

Hybrid Systems Example (2)

Variable b counts the number of bounces against the wall

 $\begin{array}{rcl} \mathsf{RIGHT} & \rightarrow & v_y = -2 \ \land \ v_x = 2 \ \land \ 2db - 8b + y + x = 0 \\ \mathsf{MAGNETIC} & \rightarrow & x - 2v_y - d = 4 \ \land v_x^2 + v_y^2 = 8 \ \land 2v_x + y + 2db - 8b + d = 4 \\ \mathsf{LEFT} & \rightarrow & v_y = -2 \ \land \ v_x = -2 \ \land \ 2db - 8b + y - x = 8 \end{array}$

Overview of the Talk

- 1. Finding Invariants for Linear Systems
- 2. Abstract Interpretation
- 3. Finding Invariants for Hybrid Systems
- 4. Related Work
- 5. Future Work & Conclusions

Related Work (1)

- (Sankaranarayanan & Sipma & Manna, 2004): discovery of polynomial equality invariants using constrained-based invariant generation and heuristics
- Advantages:
 - Polynomial vector fields allowed in differential equations
- Disadvantages:
 - No completeness result

Related Work (2)

- (Laferriere & Pappas & Yovine, 1999): computation of the exact reachability set using polynomial inequalities and quantifier elimination
- Advantages:
 - Polynomial inequalities more expressive than equalities: exact characterization of the reachability set
- Disadvantages:
 - More restricted linear systems: eigenvalues in \mathbb{Q} or $i \cdot \mathbb{Q}$
 - Quantifier elimination more costly than Gröbner bases

Overview of the Talk

- 1. Finding Invariants for Linear Systems
- 2. Abstract Interpretation
- 3. Finding Invariants for Hybrid Systems
- 4. Related Work
- 5. Future Work & Conclusions

Future Work

- Handle more general classes of systems of differential equations
- Extend the method to generate polynomial inequalities as invariants
- Apply the resulting method to improve linear inequality invariants

Conclusions

- Method for finding all polynomial equality invariants of linear systems:
 - 1. Solve differential equations
 - 2. Eliminate time with Gröbner bases
 - Auxiliary variables

• Auxiliary equations:

$$u_i v_i = 1, \qquad w_i^2 + z_i^2 = 1$$

 Extension to hybrid systems using the abstract interpretation framework