
An Abstract Interpretation Approach

for Automatic Generation of

Polynomial Invariants

Enric Rodŕıguez-Carbonell Deepak Kapur

Universitat Politècnica University

de Catalunya of New Mexico

Barcelona Albuquerque

1



Introduction

Why are invariants important ?

It is necessary to verify safety properties of systems:

• Imperative programs

• Reactive systems

• Concurrent systems

• Etc.

Most often systems have an infinite number of states

−→ techniques for finite-state systems cannot be applied

Exact reachable set of a system is not computable generally

Solution: overapproximate reachable states →

INVARIANTS

Abstract interpretation allows to compute invariants

2



Introduction

Related Work

Different classes of invariants:

intervals (Cousot & Cousot 1976, Harrison 1977)

linear inequalities (Cousot & Halbwachs 1978,

Colón & Sankaranarayanan & Sipma 2003)

congruences (Granger 1991)

octagonal inequalities (Mine 2001)

trapezoidal congruences (Masdupuy 1993)

...

polynomial equalities

(Müller-Olm & Seidl 2004,Sankaranarayanan & Sipma &

Manna 2004, Rodŕıguez-Carbonell & Kapur 2004)

3



Introduction

Overview Polynomial Invariants

Work Restrictions Equality Disequality Complete
Conditions Conditions

MOS, POPL’04 bounded degree no no yes
SSM, POPL’04 prefixed form yes no no
MOS, IPL’04 prefixed form no yes yes
RCK, ISSAC’04 no restriction no no yes
RCK, SAS’04 bounded degree yes yes yes∗

5



Overview of the Talk

1. Overview of the Method

2. Ideals of Polynomials

3. Abstract Semantics

4. Widening Operator

6



Overview of the Method (1)

Generates polynomial invariants by abstract interpretation

Program states ≡ values variables take

States abstracted to ideal of polynomials vanishing on

states

Programming language admits

• Polynomial assignments: variable := polynomial

• Polynomial equalities and disequalities in conditions:

polynomial = 0 , polynomial 6= 0

Parametric widening ∇d

If conditions are ignored and assignments are linear, finds

all polynomial invariants of degree ≤ d

7



Overview of the Method (2)

Our implementation has been successfully applied to a

number of programs

Ideals of polynomials represented by finite bases of

generators: Gröbner bases

There are several packages manipulating ideals and Gröbner

bases

Our implementation uses the algebraic geometry tool

Macaulay 2

8



Ideals of Polynomials

Preliminaries

An ideal is a set of polynomials I such that

1. 0 ∈ I

2. If p, q ∈ I, then p + q ∈ I

3. If p ∈ I and q any polynomial, pq ∈ I

Example 1: polynomials vanishing on a set of points A

1. 0 vanishes everywhere

2. If p, q vanish on A, then p + q vanishes on A

3. If p vanishes on A, then pq vanishes on A

Ideal generated by p1,...,pk:

〈p1, ..., pk〉 = {
∑k

j=1 qj · pj for arbitrary qj}

9



Ideals of Polynomials

Ideals as Abstract Values

Program states ≡ values variables take

States abstracted to ideal of polynomials vanishing on

states

Abstraction function I

I : {sets of states} −→ {ideals}

A 7−→ {polynomials vanishing on A}

Concretization function V

V : {ideals} −→ {sets of states}

I 7−→ {zeroes of I}

〈p1, ..., pk〉 ←→ p1 = 0 ∧ · · · ∧ pk = 0

10



Abstract Semantics

Programming Model (1)

Programs ≡ finite connected flowcharts

Entry node

Assignment nodes: polynomial assignments

Test nodes: polynomial dis/equalities

Simple/loop junction nodes

Exit nodes

11



Abstract Semantics
Programming Model (2)

��
HH - x1:=0 - x2:=0 -�


��
-

�
�

�

x2 6=x3

6
false

A
A

�
�

?
true

x1:=x1+2∗x2+1

?
x2:=x2+1

6

x1 := 0; x2 := 0;

while x2 6= x3 do

x1 := x1 + 2 ∗ x2 + 1; x2 := x2 + 1;

end while

12



Abstract Semantics

Assignments

Assignment node labelled with xi := f(x̄)

Input ideal: 〈p1, ..., pk〉

Output ideal:

• Want to express in terms of ideals

∃x′i(xi = f(xi ← x′i)∧p1(xi ← x′i) = 0∧· · ·∧pk(xi ← x′i) = 0)

where x′i ≡ previous value of xi before the assignment

• Solution:

◦ eliminate x′i from the ideal

〈xi − f(xi ← x′i), p1(xi ← x′i), ..., pk(xi ← x′i)〉

13



Abstract Semantics

Tests: Polynomial Equalities

Test node labelled with q = 0

Input ideal: 〈p1, ..., pk〉

Output ideal: (true path)

• Want to express in terms of ideals

p1 = 0 ∧ · · · ∧ pk = 0 ∧ q = 0

• Solution:

◦ Add q to list of generators of input ideal

◦ Take maximal set of polynomials with same zeroes

IV(p1, ..., pk, q)

14



Abstract Semantics

Tests: Polynomial Disequalities

Test node labelled with q 6= 0

Input ideal: 〈p1, ..., pk〉

Output ideal: (true path)

• Want to express in terms of ideals

p1 = 0 ∧ · · · ∧ pk = 0 ∧ q 6= 0

• Solution:

◦ quotient ideal 〈p1, ..., pk〉 : 〈q〉 ≡

maximal ideal of polynomials vanishing on

zeroes of 〈p1, ..., pk〉 \ zeroes of 〈q〉

15



Abstract Semantics
Simple Junction Nodes (1)

Input ideals (one for each path):

Path 1: 〈p11, ..., p1k1
〉

· · ·
Path l: 〈pl1, ..., plkl

〉

Output ideal:

• Want to express in terms of ideals
∨l

i=1

∧ki
j=1 pij = 0

• Solution:

◦ Take common polynomials for all paths ≡

Compute intersection of all input ideals

⋂l
i=1〈pi1, ..., piki

〉

16



Abstract Semantics

Simple Junction Nodes (2)

Example:

Input ideal 1st branch: 〈x〉

Input ideal 2nd branch: 〈x− 1〉

Input ideal 3rd branch: 〈x− 2〉

Output ideal:

〈x〉 ∩ 〈x− 1〉 ∩ 〈x− 2〉 = 〈x(x− 1)(x− 2)〉

Degree increases !!

17



Abstract Semantics

Loop Junction Nodes (1)

Input ideals: J1, · · · , Jl

Previous output ideal: I

Output ideal:

• As with simple junction nodes:

I ∩ (
⋂l

i=1 Ji)

• Problem: Non-termination of forward propagation !

• Solution: WIDENING −→ bounding degree

18



Abstract Semantics

Loop Junction Nodes (2)

Example:

x := 0;

while true do

x := x + 1;

end while

Generating loop invariant by forward propagation:

1st iteration: 〈x〉

2nd iteration: 〈x(x− 1)〉

3rd iteration: 〈x(x− 1)(x− 2)〉

...

Unless we bound the degree, the procedure does not terminate

19



Widening Operator

Definition

Parametric widening I∇d J

Based on taking polynomials of I ∩ J of degree ≤ d

Also uses Gröbner bases

I∇d J := IV({p ∈ GB(I ∩ J) |deg(p) ≤ d})

20



Widening Operator

A Completeness Result

THEOREM. If conditions are ignored and assignments are

linear, forward propagation computes all invariants of

degree ≤ d

Key ideas of the proof:

• I∇d J retains all polynomials of degree d of I ∩ J

• Graded term orderings used in Gröbner bases:

glex, grevlex

21



Table of Examples

LOOP
PROGRAM COMPUTING d VARS IF’S LOOPS DEPTH TIME

cohencu cube 3 5 0 1 1 2.45
dershowitz real division 2 7 1 1 1 1.71
divbin integer division 2 5 1 2 1 1.91
euclidex1 Bezout’s coefs 2 10 0 2 2 7.15
euclidex2 Bezout’s coefs 2 8 1 1 1 3.69
fermat divisor 2 5 0 3 2 1.55
prod4br product 3 6 3 1 1 8.49
freire1 integer sqrt 2 3 0 1 1 0.75
hard integer division 2 6 1 2 1 2.19
lcm2 lcm 2 6 1 1 1 2.03
readers simulation 2 6 3 1 1 4.15

22



Future Work

Design widening operators not bounding degree

Integrate with linear inequalities

Study abstract domains for polynomial inequalities

Apply to other classes of programs

23



Conclusions

Method for generating polynomial invariants

Based on abstract interpretation

Programming language admits

• Polynomial assignments

• Polynomial dis/equalities in conditions

If conditions are ignored and assignments are linear, finds

all polynomial invariants of degree ≤ d

Implemented using Macaulay 2

Successfully applied to many programs

24


