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Abstract. Over the years the constrained-based method has been suc-
cessfully applied to a wide range of problems in program analysis, from
invariant generation to termination and non-termination proving. Quite
often the semantics of the program under study as well as the properties
to be generated belong to difference logic, i.e., the fragment of linear
arithmetic where atoms are inequalities of the form u− v ≤ k. However,
so far constrained-based techniques have not exploited this fact: in gen-
eral, Farkas’ Lemma is used to produce the constraints over template
unknowns, which leads to non-linear SMT problems. Based on classical
results of graph theory, in this paper we propose new encodings for gen-
erating these constraints when program semantics and templates belong
to difference logic. Thanks to this approach, instead of a heavyweight
non-linear arithmetic solver, a much cheaper SMT solver for difference
logic or linear integer arithmetic can be employed for solving the result-
ing constraints. We present encouraging experimental results that show
the high impact of the proposed techniques on the performance of the
VeryMax verification system.

1 Introduction

Since Colón’s et al. seminal paper [1], the so-called constrained-based method
has been applied with success to a wide range of problems in system verifica-
tion, from invariant generation in Petri nets [2], hybrid systems [3] and programs
with arrays [4,5], to termination [6,7] and non-termination proving [8]. In most
of these applications, one is interested in generating linear properties, e.g., linear
invariants or linear ranking functions. In these cases, Farkas’ Lemma is employed
for producing the constraints over the template unknowns. As a result, an SMT
non-linear formula is obtained, for which a model has to be found. Although
great advances have been made in non-linear SMT solvers [9,10,11], the appli-
cability of the approach is still strongly conditioned by the current technology
for dealing with this kind of formulas.

A way to circumvent the bottleneck of using non-linear constraint solvers is
to exploit the fragment of logics in which the program under study is described.
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Although this has not been explored so far in the constraint-based method, other
more mature approaches for program analysis such as abstract interpretation [12]
have profited from this sort of refinements since the early days of their inception.
Indeed, there is a wide variety of non-relational and weakly-relational numerical
abstract domains which cover different subsets of linear arithmetic, but whose
complexity is lower than that of the full language [13]: intervals [14], zones [15],
octagons [16] and octahedra [17], to name a few. Also in the model checking
community, it is a common practice to focus on particular subclasses of linear
inequalities as a means to improve efficiency. In particular, potential constraints
have been employed in the verification of several kinds of timed and concurrent
systems [18,19,20].

In this paper we restrict our attention to difference logic over the integers,
in which atoms are inequalities of the form u − v ≤ k, where u and v are
integer variables and k ∈ Z. This fragment of linear arithmetic corresponds to
the aforementioned zone abstract domain in abstract interpretation, and to the
potential constraints in model checking.

Our contributions in this work are the following:

– we propose an encoding for satisfiability and unsatisfiability of sets of in-
equalities in difference logic including templates, which results in formulas
of difference logic. This is noteworthy since current approaches to equivalent
problems in general full linear arithmetic lead to non-linear formulas.

– for the problem of, given a set of inequalities with free independent terms,
choosing an invariant subset that proves an assertion, we present two encod-
ings, one for full linear arithmetic and another specialized one for difference
logic. While the former leads to non-linear formulas, again the latter falls
into a more tractable fragment, in this case linear arithmetic.

– we present an experimental evaluation with the constraint-based verification
system VeryMax [21]. We consider the problem of proving the absence of
out-of-bounds array accesses in a benchmark suite of numerical programs,
and our results show that the expressiveness of difference logic is sufficient to
succeed in the majority of the cases, while a remarkable boost in performance
is obtained thanks to the proposed techniques.

2 Background

2.1 Programs, Invariants and Safety

Let us fix a set of (integer) program variables X = {x1, . . . , xn}, and denote
by F(X ) the formulas consisting of conjunctions of linear inequalities3 over the
variables X . Let L be the set of program locations, which contains a set L0

of initial locations. Program transitions T are tuples (ℓS , τ, ℓT ), where ℓS and
ℓT ∈ L represent the source and target locations respectively, and τ ∈ F(X ∪X ′)
describes the transition relation. Here X ′ = {x′

1, . . . , x
′
n} represent the values of

3 Note that equalities can be considered as conjunctions of inequalities.
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the variables after the transition.4 A transition is initial if its source location
is initial. The set of initial transitions is denoted by T0. A program is a pair
P = (L, T ), which can be viewed as a directed graph where nodes are the
locations L, and edges are the transitions T .

A state s = (ℓ,x) consists of a location ℓ ∈ L and a valuation x : X → Z.
A state is initial if its location is initial. We denote a computation step with
transition t = (ℓS , τ, ℓT ) by (ℓS ,x) →t (ℓT ,x

′) when the valuations x, x′ satisfy
the transition relation τ of t. We use →P if we do not care about the executed
transition, and →∗

P
to denote the transitive-reflexive closure of →P . We say that

a state s is reachable if there exists an initial state s0 such that s0 →∗
P
s.

An assertion (ℓ, ϕ) is a pair of a location ℓ ∈ L and a formula ϕ with free
variables X . A program is safe with respect to the assertion (ℓ, ϕ) if for every
reachable state (ℓ,x), we have that x |= ϕ holds.

A map I : L → F(X ) is an invariant if for every ℓ ∈ L, the program is
safe with respect to (ℓ, I(ℓ)). An important class of invariants are inductive
invariants. A map I is an inductive invariant if the following two conditions
hold:

Initiation: For (ℓS , τ, ℓT ) ∈ T0: τ |= I(ℓT )′

Consecution: For (ℓS , τ, ℓT ) ∈ T − T0: I(ℓS) ∧ τ |= I(ℓT )′

If only the condition Consecution is fulfilled, the map I is called a conditional
inductive invariant.

One of the key problems in program analysis is to determine whether a
program is safe with respect to a given assertion (ℓ, ϕ). This is typically proved
by computing an (inductive) invariant I such that the following condition holds:

Safety: I(ℓ) |= ϕ

In this case we say that the invariant I proves the assertion (ℓ, ϕ).
Finally, we say a transition t = (ℓS, τ, ℓT ) is disabled if it can never be

executed, i.e., if for any reachable state (ℓS ,x), there does not exist any x′ such
that (x,x′) satisfies τ . One can prove this by computing an invariant I such
that I(ℓS) |= ¬τ . Disabled transitions allow one to simplify the program under
analysis, since they can be soundly removed from the program. In general, if I is
an invariant map, then any transition t = (ℓS, τ, ℓT ) can be soundly strengthened
by replacing the transition relation τ by I(ℓS) ∧ τ .

2.2 Constraint-Based Invariant Generation

Invariants can be generated using the constraint-based (also called template-
based) method [1]. The idea is to consider templates for candidate invariant
properties. These templates involve both the program variables as well as fresh
template variables whose values have to be determined to ensure invariance.
To this end, conditions Initiation and Consecution are enforced by means
of constraints. Any solution to these constraints then yields an invariant. If
templates are meant to represent linear inequalities, Farkas’ Lemma [22] is used
to express the constraints in terms of the template variables:

4 For ϕ ∈ F(X ), the formula ϕ′∈F(X ′) is the version of ϕ using primed variables.
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Theorem 1 (Farkas’ Lemma). Let S be a system of linear inequalities Ax ≤
b (A ∈ Rm×n, b ∈ Rm) over real variables xT = (x1, . . . , xn). Then S has no
solution iff there is λ ∈ Rm (called the multipliers) such that λ ≥ 0, λTA = 0
and λ

T
b ≤ −1.

In general, an SMT formula over non-linear arithmetic is obtained. By assign-
ing weights to the different conditions, invariant generation can be cast as an
optimization problem in the Max-SMT framework [7,8,21].

Example 1. Let us consider the program in Figure 1.

τ0 : n− x0 ≥ 1, x′
0 = x0, n

′ = n, i′ = x0

τ1 : i ≤ n− 2, x′
0 = x0, n

′ = n, i′ = i

τ2 : x′
0 = x0, n

′ = n, i′ = i+ 1

τ3 : i ≥ n− 1, x′
0 = x0, n

′ = n, i′ = i

ℓ0 ℓ1

ℓ2

ℓ3
τ0

τ1 τ2

τ3

Fig. 1. Program with a single initial location ℓ0.

Let us take the following 3 templates expressing general linear inequalities, one
for each non-initial location:

Tj := c0j x0 + c1j n + c2j i ≤ dj for all j = 1 . . . 3 .

By imposing that these templates yield an invariant, we obtain the conditions 5:

Initiation: τ0 |= T ′
1, i.e., τ0 ∧ ¬T ′

1 unsatisfiable

Consecution: T1 ∧ τ1 |= T ′
2, i.e., T1 ∧ τ1 ∧ ¬T ′

2 unsatisfiable

T2 ∧ τ2 |= T ′
1, i.e., T2 ∧ τ2 ∧ ¬T ′

1 unsatisfiable

T1 ∧ τ3 |= T ′
3, i.e., T1 ∧ τ3 ∧ ¬T ′

3 unsatisfiable .

By fleshing out the transition relations, expanding the templates and simplifying,
these four formulas are equivalent to

(1) x0 − n ≤ −1 ∧−(c01 + c21)x0 − c11 n ≤ −d1 − 1

(2) c01 x0 + c11 n + c21 i ≤ d1 ∧ i− n ≤ −2 ∧−c02 x0 − c12 n − c22 i ≤ −d2 − 1

(3) c02 x0 + c12 n + c22 i ≤ d2 ∧ ∧− c01 x0 − c11 n − c21 i ≤ −d1 − 1 + c21

(4) c01 x0 + c11 n + c21 i ≤ d1 ∧ n− i ≤ 1 ∧ −c03 x0 − c13 n − c23 i ≤ −d3 − 1

5 For simplicity, no assertion and thus no Safety condition is considered here.
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respectively. Now Farkas’ Lemma is applied to express unsatisfiability. Namely,
for (1) we consider non-negative multipliers λ11, λ12 such that the linear com-
bination that consists in multiplying the first inequality by λ11 and the second
inequality by λ12 results in a trivially false inequality. For that, we need the
coefficients of x0 to cancel out, i.e., λ11−λ12(c01 + c21) = 0, and the same for n,
i.e., −λ11 − λ12c11 = 0. With respect to the independent term, we force that it
is smaller than or equal to −1, i.e., −λ11+λ12(−d1− 1) ≤ −1, which will create
a trivially false inequality. All in all, we get the non-linear formula

∃λ11λ12

(
λ11, λ12 ≥ 0 ∧
λ11 − λ12(c01 + c21) = −λ11 − λ12c11 = 0 ∧
−λ11 + λ12(−d1 − 1) ≤ −1

) (1)

Similar constraints are obtained for (2)-(4). ⊓⊔

2.3 Difference Logic and Graph Theory

Given variables u and v and a numeric constant k, henceforth we will refer to
an inequality of the form u − v ≤ k as a difference inequality. The fragment of
(quantifier-free) first-order logic where atoms are difference inequalities is called
difference logic.

Sets (conjunctions) of difference inequalities, also called difference systems,
have long been studied in the literature [23]. For instance, they can be repre-
sented as graphs as follows. Given a difference system S defined over variables
v1, v2, . . . , vn, we consider the weighted graph G with vertices (v1, v2, . . . , vn)

and an edge vi
k
→ vj for each inequality vi − vj ≤ k ∈ S. This graph is called

the constraint graph of S.
It is well-known that a constraint graph has interesting properties as regards

to the solutions of the corresponding difference system:

Theorem 2. Let S be a difference system, and G its constraint graph. Then S

has no solution iff G has a negative cycle.

This result is a particular case of Farkas’ Lemma. It essentially ensures that,
for difference systems, the multipliers of Farkas’ Lemma are either 1 or 0 (the
difference inequality belongs to the negative cycle or it does not, respectively).

One of the most important practical consequences of Theorem 2 is that any
algorithm that is able to detect negative cycles in weighted graphs (such as, for
instance, Bellman-Ford, or Floyd-Warshall [23]) can be used to determine the
existence of solutions to a difference system.

Theorem 2 can be extended to allow also bound inequalities, i.e., inequalities
of the form v ≤ k or v ≥ k, where v is a variable and k is a numeric constant:
Given a system S that includes difference inequalities as well as bound inequali-
ties, a fresh variable v0 is introduced. Then a new system S∗ is defined, which is
like S but where each inequality of the form vi ≤ k in S is replaced by vi−v0 ≤ k,
and each vi ≥ k, or equivalently −vi ≤ −k, is replaced by v0− vi ≤ −k. It is not
difficult to prove that S has a solution iff S∗ has one.
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3 Proving Safety of Difference Programs

In this paper we will focus on difference programs, that is, programs whose
transition relations are conjunctions of difference inequalities.

Although this may seem rather restrictive, in fact more general programs can
be cast into this form: for any program with difference as well as bound inequal-
ities in the transition relations, there exists an equivalent difference program,
as it is well-known in the literature [15]. The trick consists in introducing an
artificial variable x0, which intuitively is always zero, and then transform bound
inequalities into difference inequalities by adding x0 with the appropriate sign.
Thus, e.g., n ≥ 1 is transformed into n−x0 ≥ 1. Moreover, the equation x′

0 = x0

has to be added to all transitions. For example, after this transformation the
program in Figure 2 leads to that in Figure 1.

τ̃0 : n ≥ 1, n′ = n, i′ = 0

τ̃1 : i ≤ n− 2, n′ = n, i′ = i

τ̃2 : n′ = n, i′ = i+ 1

τ̃3 : i ≥ n− 1, n′ = n, i′ = i

ℓ0 ℓ1

ℓ2

ℓ3
τ̃0

τ̃1 τ̃2

τ̃3

Fig. 2. Program with difference and bound inequalities in the transition relations.

The problem we consider in this section is, given a location ℓ and a difference
inequality ϕ, to prove that the program under consideration is safe with respect
to the assertion (ℓ, ϕ). As the following theorem states, proving safety of a dif-
ference program is in general undecidable, and therefore we cannot hope for a
sound and complete terminating algorithm that solves the problem:

Theorem 3. Given a difference program P, a location ℓ ∈ L and a difference
inequality ϕ, the problem of deciding whether P is safe with respect to the asser-
tion (ℓ, ϕ) is undecidable.

Proof. See Appendix A.

3.1 Specialization of the Constraint-Based Method

Here we attempt to prove difference programs safe by finding invariants con-
sisting of difference inequalities with a specialization of the constraint-based
method. 6 Let us first illustrate the gist of our technique with an example.

6 Here a simplified procedure for proving an assertion is described in order to highlight
the key contribution of this work, that is, how to circumvent non-linearities.
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Example 2. Again let us consider the program in Figure 1 and assign a tem-
plate to each non-initial location: Tj := c0j x0 + c1j n + c2j i ≤ dj for all
j = 1 . . . 3 . This program is a difference program. Let us also consider the as-
signment c0,j = 0, c1,j = −1, c2,j = 1 for all j = 1 . . . 3, d1 = d3 = −1, d2 = −2,
which instantiates the templates as follows:

T1 ≡ i− n ≤ −1 T2 ≡ i− n ≤ −2 T3 ≡ i− n ≤ −1,

and check that they are invariant. Since the above inequalities belong to differ-
ence logic, we can use Theorem 2 to check that indeed the formulas τ0 ∧ ¬T ′

1,
T1∧τ1∧¬T ′

2, T2∧τ2∧¬T ′
1 and T1∧τ3∧¬T ′

3 are unsatisfiable, as required by the
Initiation and Consecution conditions. By the theorem, the unsatisfiability
of each of these formulas is equivalent to the existence of a negative cycle in
the corresponding graph. In Figure 3 some of these graphs are shown for the
particular solution considered here, and the respective negative cycles are high-
lighted. Solving the Initiation and Consecution constraints over the template
coefficients can thus be seen as adding new weighted edges to the graphs of the
transition relations so that, in the end, all graphs have a negative cycle. Notice
that this must be done in a consistent way, so that, for instance, the edge of ¬T ′

1

is the same in τ0 ∧ ¬T ′
1 and in T2 ∧ τ2 ∧ ¬T ′

1.

n

n′

x0

x′

0

i

i′

0

0

0

−1
0

0

0

0

(a)

n

n′

x0

x′

0

i

i′

0

0

0

−2

0

0

−1

1

(b)

Fig. 3. Graphs for the formulas τ0 ∧ ¬T ′

1 (a) and T2 ∧ τ2 ∧ ¬T ′

1 (b). The edges cor-
responding to the templates (or their negation) are dashed. The edges forming the
negative cycles are highlighted with thicker lines.
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⊓⊔

In what follows, we assume we have associated to each non-initial location ℓ

a template invariant Tℓ of the form

c0,ℓ x0 + c1,ℓ x1 + . . . + cn,ℓ xn ≤ dℓ

where the ci,ℓ and the dℓ are template unknowns. For obvious reasons we will refer
to the ci,ℓ as left-hand side variables, whereas the dℓ are called right-hand side
variables (LHS and RHS variables, respectively). Here we focus on difference
inequalities, and therefore the domain of LHS variables is {+1, 0,−1}, while the
domain of RHS variables is Z.

We propose to find appropriate values for the RHS and LHS variables follow-
ing an eager approach: we encode all required constraints into an SMT formula,
and then use an off-the-shelf SMT solver to solve the resulting problem. As will
be seen next, in our particular case the atoms in the SMT formula will be either
Boolean variables or bound inequalities or difference inequalities. By virtue of
the results reviewed in Section 2.3, the generated formula can be handled with an
SMT solver of difference logic, for which efficient implementations are available.

The formula that expresses the constraints over template variables (LHS and
RHS variables) is a conjunction of the following ingredients.

Membership to Difference Logic. First of all, we have to express that all templates
are difference inequalities. To that end, for each LHS variable ci we introduce
two auxiliary Boolean variables: c+i and c−i . Intuitively, c

+
i will be true iff ci is

assigned to +1, and c−i will be true iff ci is assigned to −1. If both c+i and c−i
are false, then ci is 0. We need to enforce: (i) that the c+i and c−i cannot be
true at the same time, (ii) that exactly one of the ci in each template is +1
(i.e., exactly one of the c+i is true), and (iii) exactly one is −1 (i.e., exactly one
of the c−i is true). This can be done by using the encoding of ALO (At Least
One) constraints with clauses and one of the encodings of AMO (At Most One)
constraints that are available in the literature (e.g., quadratic, logarithmic [24]
or ladder [25]).

Unsatisfiability of Difference Systems. When encoding the Initiation, Conse-
cution and Safety conditions, essentially one has to impose the unsatisfiability
of a set of difference inequalities, some of which may be templates. Namely, in
Initiation and Safety one has a single template, but while in the former the
template appears negatively, in the latter it appears positively. On the other
hand, in Consecution two templates appear, one negatively and the other pos-
itively. Here we will elaborate on this latter case, being the others simpler and
easy to derive from it.

Thus, let S be a difference system over program variables X , X ′ such that

c0 x0 + . . .+ cn xn ≤ d ∧ S ∧ ¬(c̃0 x
′

0 + . . .+ c̃n x
′

n ≤ d̃)

must be unsatisfiable. Our goal is to instantiate the templates so that this is the
case. Note ¬(c̃0 x′

0+. . .+ c̃n x
′
n ≤ d̃) is equivalent to −c̃0 x

′
0−. . .− c̃n x

′
n ≤ −d̃−1.
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To ensure unsatisfiability, i.e., that a negative cycle exists, we first construct G,
the constraint graph induced by S. We then apply Floyd-Warshall algorithm in
order to compute the distances dist(y, z) for each pair of vertices y and z in G.

If for some vertex y we have dist(y, y) < 0, then S has a negative cycle
and hence the unsatisfiability requirement is fulfilled independently from the
templates. In this case, no clause needs to be added.

Otherwise S has no negative cycles, and the only possibility to construct
one is to go through the edges induced by the templates. Let us consider an
assignment such that cu = +1, cv = −1, c̃ũ = +1 and c̃ṽ = −1 (i.e. c+u , c

−
v ,

c+ũ and c−ṽ are true). In this case the instantiation of the positive template is
xu − xv ≤ d, and the instantiation of the negation of the other template is
x′
ṽ − x′

ũ ≤ −d̃− 1. Hence, the former induces an edge from xu to xv with weight
d, while the latter induces an edge from x′

ṽ to x′
ũ with weight −d̃− 1.

To form a negative cycle, either (i) the cycle contains only the positive tem-
plate, or (ii) contains only the negative template, or (iii) contains both. The
first situation can be seen in Figure 4 (a), where it is needed that dist(xv, xu)+
d < 0. The second situation is depicted in Figure 4 (b), where we need that
dist(x′

ũ, x
′
ṽ)− d̃− 1 < 0. Finally the third situation can be seen in Figure 4 (c),

where the needed condition is d+ dist(xv, x
′
ṽ)− d̃− 1+ dist(x′

ũ, xu) < 0. Hence,
we add the following clause:

c+u ∧ c−v ∧ c̃+ũ ∧ c̃−ṽ =⇒ d ≤ −dist(xv, xu)− 1 ∨

−d̃ ≤ −dist(x′
ũ, x

′
ṽ) ∨

d− d̃ ≤ −dist(xv, x
′
ṽ)− dist(x′

ũ, xu)

(2)

xu xv

dist(xv, xu)

d

x′

ũ
x′

ṽ

dist(x′

ũ
, x′

ṽ
)

−d̃− 1

(a) (b)

xu xv

x′

ũ
x′

ṽ

dist(x′

ũ
, xu) dist(xv, x

′

ṽ
)

d

−d̃− 1

(c)

Fig. 4. The only three ways of creating a negative cycle.
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Note that it might be the case that some of the paths represented in Figure 4
do not actually exist. For example, if xu is unreachable from xv, i.e., dist(xv, xu)
is infinite, then there cannot be a negative cycle that only uses the positive
template, independently of the value we give to its RHS variable. Hence the first
inequality in the clause of Equation 2 can be dropped.

This reasoning is applied to all vertices, namely, to all u, v, ũ, ṽ with u 6= v,
ũ 6= ṽ, and u, v, ũ, ṽ ∈ {0, 1, . . . , n}, adding in each case the respective clause.

Satisfiability of Difference Systems. The opposite problem to the previous one,
that is, to enforce that a difference system is satisfiable, also arises in the
constraint-based method. This is the case when, for example, one performs sev-
eral rounds of invariant generation as described above, and requires that the
newly generated invariants are not redundant with respect to the already com-
puted ones: then there must exist a witness that certifies the non-redundancy.

Hence, let S be a difference system over program variables X such that

S ∧ ¬(c0 x0 + . . .+ cn xn ≤ d) ≡ S ∧ −c0 x0 − . . .− cn xn ≤ −d− 1

must be satisfiable 7. By Theorem 2, this amounts to proving that no negative
cycle exists in the corresponding constraint graph. Again, we will start by con-
structing G, the constraint graph induced by S, and applying Floyd-Warshall.

If a negative cycle is already detected, the satisfiability requirement cannot
be met. Otherwise S has no negative cycles, and the only possibility to achieve
one is to go through the edge induced by the template. If cu = 1 and cv = −1,
then the negation of the template is xv − xu ≤ −d − 1, which induces an edge
from xv to xu with weight −d − 1. This edge is part of a negative cycle iff
dist(xu, xv) − d − 1 < 0. Since we want to avoid negative cycles, we should
enforce that dist(xu, xv)−d−1 ≥ 0, or equivalently d ≤ dist(xu, xv)−1. Hence,
we should add the clause:

c+u ∧ c−v =⇒ d ≤ dist(xu, xv)− 1 .

Note that if dist(xu, xv) is infinite then the clause is trivially satisfied, and hence
can be dropped.

3.2 Experiments

In order to experimentally evaluate the encoding presented in the previous sec-
tion, we first ran our verification system VeryMax [21] on C++ implementations
of numerical algorithms from [26], checking whether all array accesses are within
bounds. For each such check, several queries need to be processed, all of which
consist of a small program with an assertion to be proved. Among them, we
chose the ones where the program and the assertion can be expressed in differ-
ence logic. For these queries, VeryMax requires one of five possible outputs:

7 Note that, if the template and the inequalities in S are general linear inequalities,
this yields a non-linear problem.
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I. An invariant at each location proving the assertion
II. An invariant at each location disabling a transition
III. A conditional invariant at each location proving the assertion
IV. An invariant at each location
V. None of the previous ones

Solving one such query using the constraint-based method generates an SMT
formula with multiple Initiation, Consecution, Safety and other conditions
(e.g. no redundant invariants are generated, conditional invariants are compat-
ible with initial transitions) that can be encoded via Farkas’ Lemma or via our
novel difference logic encoding presented in the previous section. By making
some of these conditions soft with the use of appropriate weights as in [27], we
can order the five possible outputs from most desirable (I) to least desirable (V).
For example, the optimal solution gives output (III) only if no solution exists
that gives results (II) or (I).

The resulting Max-SMT formula can be processed with an off-the-shelf Max-
SMT solver, such as Opti-Mathsat [28], Z3Opt [29] or Barcelogic [30]. Unfor-
tunately, we had to discard Opti-Mathsat because it cannot deal with non-
linearities. Between the remaining two, it was Barcelogic the one that showed
a better performance, probably due to its novel method to deal with non-
linearities [11]. Regarding the optimization part, Barcelogic implements a very
simple branch-and-bound approach as explained in [31]. Due to its better per-
formance, in what follows only experiments with Barcelogic will be reported.

Experiments were performed on an Intel i5 2.8 GHz CPU with 8 Gb of
memory. For each of the 3270 generated queries and each encoding, we consider
the best solution obtained within a time limit of 5 seconds8. In Table 1 we
can see the output and the running time of four different encodings: Farkas
(the standard encoding based on Farkas’ Lemma), FarkasDL (the previous one
additionally restricting the templates to be difference logic), FarkasDL-λ (the
previous one additionally imposing that the λ multipliers are 0 or 1), and Diff
Logic (our novel encoding introduced in the previous section).

(I) (II) (III) (IV) (V)
Method Inv. prove Disable tr. Cond. inv. prove Invariant Nothing Time

Farkas 215 427 330 1024 1274 4h 11m 47s

FarkasDL 215 526 322 1042 1165 3h 8m 22s

FarkasDL-λ 217 594 324 1042 1039 3h 1m 52s

Diff Logic 786 1044 328 1112 0 56m 20s

Table 1. Results on the 3270 generated queries with a time limit of 5 seconds.

The experiments confirm our intuition that our specialized difference logic
encoding outperforms Farkas both in runtime and in quality of solutions. Even if

8 This is the time limit used for this type of queries inside VeryMax.
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we try to improve Farkas with additional constraints that limit the search space,
as in FarkasDL and FarkasDL-λ, the differences are still dramatic. We want
to remark that in no query Farkas gave a better-quality result than Diff Logic.

More detailed results can be seen in Figure 5, where in the scatter plots we
display the timings (in seconds, logarithmic scale) over queries whose optimal
solution finds invariants proving the assertion (a) or disabling a transition (b).
One can see that even the best Farkas-based encoding is systematically slower
than Diff Logic. We can also observe that in lots of queries Farkas times out,
which means that the Max-SMT solver could not prove the solution to be opti-
mal. One could think this is because proving optimality is equivalent to proving
unsatisfiability, something at which Barcelogic non-linear techniques are partic-
ularly bad. However, a careful inspection of the results reveals the situation is
worse, as in more than 80% of the queries the found solution was not optimal.
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Fig. 5. Comparison of Diff Logic and FarkasDL-λ runtimes over queries whose op-
timal solution gives invariants proving the assertion (a) or disabling a transition (b).

4 Finding Invariant Subsets

Another important problem that we need to solve inside VeryMax is the Invariant
Subset Selection Problem. Formally, we are given a program, an assertion (ℓass, ϕ)
and, for each location ℓ ∈ L, a set Cand(ℓ) of mℓ candidate invariants

c
ℓ,1
1 x1+ · · ·+ cℓ,1n xn ≤ dℓ,1

c
ℓ,2
1 x1+ · · ·+ cℓ,2n xn ≤ dℓ,2

...

c
ℓ,mℓ

1 x1+ · · ·+ cℓ,mℓ

n xn ≤ dℓ,mℓ

where the c
ℓ,j
i are fixed integer numbers and the dℓ,j are integer variables. The

goal is to select, if it exists, a subset of Cand(ℓ) for each ℓ ∈ L, and find an
assignment to the dℓ,j’s such that (i) the chosen subsets are invariant and (ii)
the invariants chosen at ℓass imply ϕ.
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As in Sections 2.2 and 3 we will show that, in the general case, if we use
Farkas’ Lemma we obtain a non-linear formula, whereas non-linearities can be
avoided when the program, the assertion and the candidate invariants are dif-
ference logic. In this case, the resulting formula belongs to linear arithmetic.

4.1 General Case

We can imagine the process of finding a solution as working in two stages. First
of all, we have to select a subset of the candidate invariants at each location,
together with their corresponding right-hand sides dℓ,j . After that, we need to
ensure that Initiation, Consecution and Assertion conditions are satisfied.
To prove these conditions, we only need to find the right Farkas’ multipliers.

More precisely, for each location ℓ ∈ L and 1 ≤ j ≤ mℓ, let us consider a
Boolean variable chosenℓ,j that indicates whether the j-th invariant in Cand(ℓ)

is chosen. Additionally, to each coefficient c
ℓ,j
i we will associate a fresh integer

variable ĉℓ,ji , and to each dℓ,j a fresh integer variable d̂ℓ,j . The following formulas

chosenℓ,j =⇒
n∧

i=1

ĉ
ℓ,j
i = c

ℓ,j
i ∧ d̂ℓ,j = dℓ,j (1)

¬chosenℓ,j =⇒
n∧

i=1

ĉ
ℓ,j
i = 0 ∧ d̂ℓ,j = 0 (2)

constraint the shape of the invariants depending on whether they are chosen or

not. In the following, we will consider that Ĉand(ℓ) consists of all elements of

Cand(ℓ) where all c’s and d’s have been replaced by their respective ĉ’s and d̂’s.
Let us explain how aConsecution condition will be enforced (for Initiation

and Assertion an analogous idea applies). Let (ℓS , τ, ℓT ) be the transition to

which consecution refers. We want to enforce that Ĉand(ℓS) ∧ τ |= Ĉand(ℓT )
′,

which amounts to checking, for each înv ′ ∈ Ĉand(ℓT )
′, that Ĉand(ℓS)∧τ |= înv ′,

or equivalently, that Ĉand(ℓS)∧τ∧¬înv
′ is unsatisfiable. The latter can be easily

encoded into a non-linear formula by using Farkas’ Lemma.

4.2 Difference Logic Case

Let us now assume that all candidate invariants, the formula in the assertion
and the input program are expressed in difference logic. The idea of the encoding
is similar. However, in Section 4.1 new inequalities were globally introduced
standing for the original inequalities or the trivial inequality 0 ≤ 0, depending
on whether they had been chosen or not. Instead, here we exploit the fact that in
Farkas’ proofs of unsatisfiability of difference sets, multipliers are 0 or 1: for each
unsatisfiability proof that must hold, new inequalities are locally introduced,
standing for the product of the Farkas’ multiplier with the original inequality.

As an example, let us explain how to encode a Consecution condition refer-
ring to a transition (ℓS , τ, ℓT ). The chosenℓ,j variables will be as before, common
to the overall encoding. However, for each inv ∈ Cand(ℓT ), in order to enforce
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that Cand(ℓS) ∧ τ |= inv ′, we will now introduce fresh ĉ’s and d̂’s and add, for
1 ≤ j ≤ mℓS , the previous formula (2) and:

(

n∧

i=1

ĉ
ℓS ,j
i = 0 ∧ d̂ℓS ,j = 0) ∨ (

n∧

i=1

ĉ
ℓS,j
i = c

ℓS,j
i ∧ d̂ℓS ,j = dℓS ,j)

The intuition is that ĉ1
ℓS,jx1 + · · ·+ ĉn

ℓS ,j
xn ≤ d̂ℓS,j is the inequality resulting

from multiplying c
ℓS ,j
1 x1+· · ·+cℓS,jn xn ≤ dℓS ,j by the corresponding multiplier in

Farkas’ proof of unsatisfiability of Cand(ℓS)∧ τ ∧¬inv ′. Similarly, let us assume
that inv is c1x1 + · · ·+ cnxn ≤ d, with chosen being the variable that indicates
whether we pick it or not. Then we will add the formula

(
n∧

i=1

c⋆i = 0 ∧ d⋆ = 0) ∨ (
n∧

i=1

c⋆i = −ci ∧ d⋆ = −1− d),

which intuitively means that c⋆1x1 + · · · + c⋆nxn ≤ d is the inequality resulting
from multiplying ¬(c1x1+ · · ·+ cnxn ≤ d) ≡ −c1x1−· · ·− cnxn ≤ −1−d by the
corresponding multiplier in the proof of unsatisfiability of Cand(ℓS)∧ τ ∧¬inv ′.

The encoding finishes by: (i) applying Farkas’ Lemma to enforce unsatisfia-

bility of ̂Cand(ℓS) ∧ τ ∧ c⋆1x
′
1 + · · ·+ c⋆nx

′
n ≤ d′ as in the general case, but now

assuming that multipliers are 1, which gives a linear formula F ; and (ii) adding
the implication chosen ⇒ F to the encoding. Detailed experiments comparing
the general and the particular encoding for difference logic give similar results
to Section 3.2, and we omit them here due to lack of space.

One final remark is that the previous encoding can be extended to solve the
problem in Section 3 by exhaustively considering in Cand(ℓ) all possible pairs of
differences of variables. Note that this allows one to discover simultaneously more
than one linear invariant at each location, in particular coinductive invariants.
Hence, the price to pay if we want a complete method is moving from a difference
logic formula to a linear arithmetic one.

5 Experiments

The goal of this section is to assess to which extent a constraint-based verifier
like VeryMax can be improved by incorporating the novel encodings introduced
in this paper. Note that it is not uncommon that huge improvements on the
runtime of a theorem prover (SAT solver, SMT solver or first-order theorem
prover) are diluted into non-significant improvements on the verifier using it.

We compared the original VeryMax safety prover, which uses Farkas as the
encoding methodology to find linear invariants, with a new version VeryMaxDL

where the problems described in Sections 3 and 4 are solved using the novel
encodings. A time limit of 900 seconds was given to each problem. A summary
of the experiments can be seen in Table 2, where for each system we report the
number of problems found to be safe (Yes), not found to be safe9 (No), proved
safe only by this version of the system (Only-yes) and the total runtime.

9 Note that this does not mean that they are unsafe.
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The results are extremely positive since the runtime is reduced to one third,
and the loss of verification power due to generating only difference logic invari-
ants, as opposed to linear invariants, is very limited. We analyzed all problems
that VeryMax could prove safe whereas VeryMaxDL could not and they all need
linear invariants outside difference logic, which means that they cannot be proved
using the techniques on which VeryMaxDL is based.

System Yes No Only-yes Time

VeryMax 524 312 27 11h 58m 59s

VeryMaxDL 516 320 19 4h 12m 38s

Table 2. Results comparing VeryMax and VeryMaxDL.

Figure 6 contains scatter plots comparing VeryMax and VeryMaxDL on all
problems, problems proved safe by VeryMaxDL, and problems not found to be
safe by VeryMaxDL. At first glance, although the difference logic version is faster,
we observe that the plots are not as clean as the ones of Section 3.2. This
is not a surprise: if the subproblems solved via Farkas or difference logic give
different results (e.g. they disable different transitions), the overall behavior of
the verification system changes and this has an impact on the overall runtime.
The second observation is that VeryMaxDL is faster, independently of whether
the problem can be found to be safe or not. This opens the way to run both
versions in parallel, or even first run VeryMaxDL and if the program cannot be
proved safe, run VeryMax in a second attempt.
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Fig. 6. Scatter plots comparing VeryMax and VeryMax.

6 Conclusions and Future Work

It is well acknowledged that the current bottleneck in the effectiveness of the
constraint-based method compared to other approaches for verification is the
technology for solving non-linear constraints. In this paper we have introduced
novel encodings that, if we restrict ourselves to programs and invariants in differ-
ence logic, allow one to replace non-linear solvers by cheaper ones. Experiments
show that this yields a huge gain in terms of runtime at the expense of a certain
but acceptable loss of verification power.

As future work, we plan to extend the use of similar encodings in our verifica-
tion system VeryMax. E.g., finding simple ranking functions in (non)-termination
problems is a particularly interesting area where related ideas could be applied.
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non-termination using Max-SMT. In: Proc. CAV ’14. Volume 8559 of LNCS.,
Springer (2014) 779–796

9. Borralleras, C., Lucas, S., Oliveras, A., Rodŕıguez-Carbonell, E., Rubio, A.: SAT
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A Proofs

Proof (of Theorem 3). We will reduce the problem of reachability of Petri nets
with inhibitor arcs, which is known to be undecidable [32], to that in the state-
ment of the theorem.

Let N = (P, T,W, I) be a Petri net with inhibitor arcs, where P is the set
of places, T is the set of transitions, W : (P × T ) ∪ (T × P ) → N is the flow
relation, and I ⊆ P × T is the set of inhibitions. Let m0,mf : P → N be the
initial and final markings. The problem of reachability consists in determining
whether mf can be reached from m0 in N .

The dynamics of the Petri net can be captured by means of a difference
program P as follows. There is a variable xp for each place p ∈ P , meaning its
number of tokens. In addition to a single initial location ℓ0, there are two other
locations ℓ, corresponding to the header of a single loop, and ℓERR, corresponding
to an error location. As regards transitions, there is a transition from ℓ0 to ℓ that
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initializes the values of the variables according to the initial marking m0. Then
there is a transition from ℓ to ℓ for each of the transitions t ∈ T , which expresses
the firing of t: availability of enough tokens is expressed with inequalities like
xp ≥ k, inhibitor arcs with xp = 0, and removing or adding tokens with x′

p =
xp−k or x′

p = xp+k, respectively. Finally there is a transition from ℓ to ℓERROR,
which is only executed when the values of the variables coincide with the final
marking mf . Since the resulting program may involve bound inequalities, the
transformation from [15] described in Section 3 must be applied to obtain an
equivalent difference program P .

The proof concludes by noticing that mf is reachable from m0 in N if and
only if ℓERROR is reachable in the program P , or in other words, if P is safe with
respect to the assertion (ℓERROR, false).
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