
BDDs for Pseudo-Boolean Constraints –
Revisited

Ignasi Ab́ıo, Robert Nieuwenhuis, Albert Oliveras, and Enric
Rodŕıguez-Carbonell?

Abstract. Pseudo-Boolean constraints are omnipresent in practical ap-
plications, and therefore a significant effort has been devoted to the devel-
opment of good SAT encoding techniques for these constraints. Several of
these encodings are based on building Binary Decision Diagrams (BDDs)
and translating these into CNF. Indeed, as we argue here, BDD-based
encodings have important advantages, such as sharing the same BDD
for representing many constraints.
Here we first prove that, unless NP = Co-NP, there are Pseudo-Boolean
constraints that admit no variable ordering giving a polynomial (Re-
duced, Ordered) BDD. As far as we know, this result is new (in spite of
some misleading information in the literature, see below). It gives several
interesting insights, also relating proof complexity and BDDs.
But, more interestingly for practice, here we also show how to overcome
this theoretical limitation by coefficient decomposition. This allows us to
give the first polynomial arc-consistent BDD-based encoding for Pseudo-
Boolean constraints.

1 Introduction

In this paper we study Pseudo-Boolean constraints (PB constraints for short),
that is, constraints of the form a1x1 + · · ·+ anxn # K, where the ai and K are
integer coefficients, the xi are Boolean (0/1) variables, and the relation operator
belongs to {<,>,≤,≥,=}. We will assume that # is ≤ and the ai and K are
positive since other cases can be easily reduced to this one.

Such a constraint is a Boolean function C : {0, 1}n → {0, 1} that is (dual)
monotonic in the sense that any solution for C remains a solution after flipping
inputs from 1 to 0. Therefore these constraints can be expressed by a set of
clauses with only negative literals. For example, each clause could simply define
a (minimal) subset of variables that cannot be simultaneously true. Note however
that not every such a monotonic function is a PB constraint. For example, the
function expressed by the two clauses x1∨x2 and x3∨x4 has no (single) equivalent
PB constraint a1x1 + · · ·+anxn ≤ K (since wlog. a1 ≥ a2 and a3 ≥ a4, and then
also x1 ∨ x3 is needed). Hence, even among the monotonic Boolean functions,
PB constraints are a rather restricted class (see also [J.S07]).

PB constraints are omnipresent in practical SAT applications, not just in
typical 0-1 linear integer problems, but also as an ingredient in new SAT ap-
proaches to, e.g., cumulative scheduling [SFSW09], so it is not surprising that a

? Technical University of Catalonia (UPC), Barcelona.

2

significant number of SAT encodings for these constraints have been proposed in
the literature. Here we are interested in encoding a PB constraint C by a clause
set S (possibly with auxiliary variables) that is not only equisatisfiable, but also
(generalized) arc-consistent : given a partial assignment A, if xi is false in every
extension of A satisfying C, then unit propagating A on S sets xi to false.

To our knowledge, the only polynomial arc-consistent encoding so far was
given by Bailleux, Boufkhad and Roussel [BBR09]. Other existing encodings are
based on building (forms of) Binary Decision Diagrams (BDDs) and translating
these into CNF. Although [BBR09] is not BDD-based, our motivation to revisit
BDD-based encodings is still twofold:

Example 1. Consider the constraint 3x1 + 2x2 + 4x3 ≤ 5 and the constraint
30001x1 + 19999x2 + 39998x3 ≤ 50007. Both are clearly equivalent: the Boolean
function they represent can be expressed, e.g., by the clauses x1∨x3 and x2∨x3.
However, encodings like the one of [BBR09] heavily depend on the concrete co-
efficients of each constraint, and generate a significantly larger SAT encoding
for the second one. Since, given a variable ordering, (Reduced, Ordered) BDDs
are a canonical representation for Boolean functions [Bry86], i.e., each Boolean
function has a unique ROBDD, a ROBDD-based encoding will treat both con-
straints equivalently. ut

The second reason for revisiting BDDs is that in practical problems numerous
PB constraints exist that share variables among each other. Representing them
all as a single BDD has the potential of generating a much more compact SAT
encoding that is moreover likely to have better propagation properties.

Related work. The same authors of [BBR09] proposed an encoding “very
close to those using a BDD and translating it into clauses” [BBR06]. It is
arc-consistent, but an example of a PB constraint family is given in [BBR06]
for which their kind of non-reduced BDDs, with their concrete variable order-
ing is exponentially large. However, as we show here, ROBDDs for this fam-
ily are polynomial. Their method works as follows. Given the PB constraint
a1x1 + · · · + anxn ≤ K with coefficients ordered from small to large, the root
node is labelled with variable Dn,K , expressing that the sum of the first n terms
is no more than K. Its two children are Dn−1,K and Dn−1,K−an

, which cor-
respond to setting xn to false and true, respectively, etc. Two binary and two
ternary clauses per node express the relationships between the variables.

Example 2. The encoding of [BBR06] on 2x1 + · · ·+ 2x10 + 5x11 + 6x12 ≤ 10 is
illustrated in Figure 1. Node D10,5 represents 2x1 + 2x2 + · · · 2x10 ≤ 5, whereas
node D10,4 represents 2x1 +2x2 + · · · 2x10 ≤ 4. The method fails to identify that
both these PB constraints are equivalent and hence subtrees B and C will not
be merged, yielding a much larger representation than with ROBDDs. ut

On the other hand, Eén and Sörensson use ROBDDs in MiniSAT+ [ES06].
Their encoding uses six three-literal clauses per BDD node and is arc-consistent,
but the proof of arc-consistency relies on a particular variable ordering. Re-
garding the size of their ROBDDs, they cite [BBR06] to say “It is proven that

3D12,10

D11,10 D11,4

D10,10 D10,5 D10,4
D10,−1

≡ false

11

1

00

0

A B C

Fig. 1. Tree-like construction of [BBR06] for 2x1 + · · · + 2x10 + 5x11 + 6x12 ≤ 10

in general a PB-constraint can generate an exponentially sized BDD [BBR06]”
which, as we have seen, cannot be concluded from that paper. Apart from their
BDD-based encoding, [ES06] also suggests two alternative methods: one based
on adder networks (O(n) in size but not arc-consistent) and another one based
on sorting networks (O(n log n) in size and not arc-consistent).

Finally, as we have already mentioned, [BBR09] presents an arc-consistent
and polynomial translation (size O(n2 log n log amax), i.e., it depends on the size
of the coefficients) based on a network of unary adders.

Main contributions and organization of this paper:

• Subsection 3.2: The first, to our knowledge, PB constraint family for which
ROBDDs with small-to-large variable ordering are exponential in size (and
also for the large-to-small ordering).

• Subsection 3.3: A proof that, unless NP=co-NP, there are PB constraints
that admit no polynomial-size ROBDD, independently of the variable order.

• Subsection 4.1: A proof that PB constraints whose coefficients are powers of
two do admit polynomial-size BDDs.

• Subsections 4.2 and 4.3: An arc-consistent and polynomial (sizeO(n3 log amax))
BDD-based encoding for PB constraints.

• Section 5: An arc-consistent SAT encoding of BDDS for monotonic functions,
a more general class of Boolean functions than PB constraints. This encoding
uses only one binary and one ternary clause per node (the standard if-then-
else encoding for BDDs used in, e.g., [ES06], requires six ternary clauses per
node). Moreover, this translation works for any BDD variable ordering.

2 Preliminaries

We assume the reader is familiar with the basic notions of propositional logic.
Otherwise, basic definitions can be found in [BHvMW09]. constraints of the form
a1x1 + · · · + anxn # K, where the ai and K are integer coefficients, the xi are
Boolean (0/1) variables, and the relation operator # belongs to {<,>,≤,≥,=}.
We will assume that # is ≤ and the ai and K are positive since other cases can be
easily reduced to this one 1: (i) changing into ≤ is straightforward if coefficients

1 An =-constraint can be split into a ≤-constraint and a ≥-constraint. Here we consider
(arc-)consistency for the latter two isolatedly, not for the original =-constraint.

4

can be negative; (ii) replacing −ax by a(1 − x) − a; (iii) replacing (1 − x) by
x. Negated variables like x can be handled as positive ones or, alternatively,
replaced by a frexh x′ and adding the clauses x ∨ x′ and x ∨ x′.

Our main goal is to find SAT encodings for PB constraints. That is, given a
PB-constraint C, construct an equisatisfiable clause set (a CNF) S such that any
model for S restricted to the variables of C is a model of C. Two extra properties
are sought: (i) consistency checking by unit propagation or simply consistency :
whenever a partial assignment A cannot be extended to a model for C, unit
propagation on S and A produces a contradiction (a literal l and its negation
l); and (ii) (generalized) arc-consistency (again by unit propagation): given an
assignment A that can be extended to a model of C, but such that A ∪ {x}
cannot, unit propagation on S and A produces x. More concretely, we will use
BDDs for finding such encodings, as illustrated by the following example.

x1

x2x2

x3x3x3x3

01

11
11

11

1

0
0

00

00

0

x1

x2x2

x3x3x3

01

11
1

11

1

0
0

0

00

0

x1

x2x2

x3

01

1

1

1

1

0

0

0

0

x1

x2

x3

01

1

1

1

0

0

0

Fig. 2. Construction of a BDD for 2x1 + 3x2 + 5x3 ≤ 6

Example 3. Figure 2 explains (one method for) the construction of a ROBDD
for the PB constraint 2x1 + 3x2 + 5x3 ≤ 6 and the ordering x1 < x2 < x3.
The root node has as selector variable x1. Its false child represents the PB
constraint assuming x1 = 0 (i.e., 3x2 + 5x3 ≤ 6) and its true child represents
2 + 3x2 + 5x3 ≤ 6, that is, 3x2 + 5x3 ≤ 4. The two children have the next
variable in the ordering (x2) as selector, and the process is repeated until we
reach the last variable in the sequence. Then, a constraint of the form 0 ≤ K
is the True node (1 in the figure) if K ≥ 0 is positive, and the False node (0)
if K < 0. This construction (leftmost in the figure), is known as an Ordered
BDD. For obtaining a Reduced Ordered BDD (BDD for short in the rest of the
paper), two reductions are applied until fixpoint: removing nodes with identical
children (as done with the leftmost x3 node in the second BDD of the figure), and
merging isomorphic subtrees, as done for x3 in the third BDD. The fourth final
BDD is a fixpoint. For a given ordering, BDDs are a canonical representation
of Boolean functions: each Boolean function has a unique BDD. BDDs can be
encoded in CNF by introducing an auxiliary variable a for every node. If the
selector variable of the node is x and the auxiliary variables for the false and
true child are f and t, respectively, add the if-then-else clauses:

x ∧ f → a x ∧ t→ a f ∧ t→ a
x ∧ f → a x ∧ t→ a f ∧ t→ a ut

5

In what follows, the size of a BDD is its number of nodes. We will say that a
BDD represents a PB constraint if they are the same Boolean function. Given an
assignment A over the variables of a BDD, we will talk about the path induced
by A as the path that starts at the root of the BDD and at each step, moves to
the false (true) child of a node iff its selector variable is false (true) in A.

3 Exponential BDDs for PB Constraints
In this section, we prove that, unless NP=co-NP, there are PB constraints whose
BDDs are all exponential, regardless of the variable ordering. We start by defin-
ing the notion of the interval of a PB constraint. After that, we consider two
families of PB constraints and we study the size of their BDDs. Finally, we prove
the main result of this section.

3.1 Intervals

Example 4. Consider the constraint 2x1 + 3x2 + 5x3 ≤ 6. Since no combination
of its coefficients adds to 6, the constraint is equivalent to 2x1 + 3x2 + 5x3 < 6,
and hence to 2x1+ 3x2 + 5x3≤5. This process cannot be repeated again since 5
can be obtained with the existing coefficients.

Similarly, we could try to increase the right-hand side of the constraint.
However, there is a combination of the coefficients that adds 7, which implies
that the constraint is not equivalent to 2x1 + 3x2 + 5x3 ≤ 7. All in all, we can
state that the constraint is equivalent to 2x1 + 3x2 + 5x3 ≤ K for any K ∈ [5, 6].
It is trivial to see that the set of valid K’s is always an interval. ut

Definition 1 Let C be a constraint of the form a1x1 + · · · + anxn ≤ K. The
interval of C consists of all integers M such that a1x1 + · · ·+ anxn ≤ M , seen
as a Boolean function, is equivalent to C.

In the following, given a BDD representing a PB constraint and a node ν, we
will refer to the interval of ν as the interval of the constraint represented by the
BDD rooted at ν. Unless stated otherwise, the ordering used in the BDD will
be x1 < x2 < . . . < xn.

Proposition 2 If [β, γ] is the interval of a node ν with selector variable xi then:

1. There is an assignment {xj = vj}nj=i such that aivi + · · ·+ anvn = β.
2. There is an assignment {xj = vj}nj=i such that aivi + · · ·+ anvn = γ + 1.

3. There is an assignment {xj = vj}i−1j=1 such that K − a1v1 − a2v2 − · · · −
ai−1vi−1 ∈ [β, γ]

4. Take h < β. There exists an assignment {xj = vj}nj=i such that aivi + · · ·+
anvn > h and its path goes from ν to True.

5. Take h > γ. There exists an assignment {xj = vj}nj=i such that aivi + · · ·+
anvn ≤ h and its path goes from ν to False.

6. The interval of the True node is [0,∞).
7. The interval of the False node is (−∞,−1]. Moreover, it is the only interval

with negative values.

6

x1

x2

x3

01

1

1

1

0

0

0

[5, 6]

[5, 7]

[0, 4]

[0,∞) (−∞,−1]

x1

x2x2

x3x3

01

1
1

11

1

0

0

0
0

0

[5, 6]

[5, 7] [3, 4]

[5, 8] [0, 4]

[0,∞) (−∞,−1]

Fig. 3. Intervals of the BDD for 2x1 + 3x2 + 5x3 ≤ 6

We now prove that, given a BDD for a PB constraint, one can easily compute
the intervals for every node bottom-up. We first start with an example.

Example 5. Let us consider again the constraint 2x1 + 3x2 + 5x3 ≤ 6. Assume
that all variables appear in every path from the root to the leaves (otherwise,
add extra nodes as in the rightmost BDD of Figure 3). Assume now that we
have computed the intervals for the two children of the root (rightmost BDD in
Figure 3). This means that the false child of the root is the BDD for 3x2 +5x3 ≤
[5, 7] and the true child the BDD for 3x2 + 5x3 ≤ [3, 4]. Assuming x1 to be
false, the false child would also represent the constraint 2x1 + 3x2 + 5x3 ≤
[5, 7], and assuming x1 to be true, the true child would represent the constraint
2x1 +3x2 +5x3 ≤ [5, 6]. Taking the intersection of the two intervals, we can infer
that the root node represents 2x1 + 3x2 + 5x3 ≤ [5, 6]. ut

More formally, the interval of every node can be computed as follows:

Proposition 3 Let a1x1 + a2x2 + · · · + anxn ≤ K be a constraint, and let B
be its BDD with the order x1 < x2 < . . . < xn. Consider a node ν with selector
variable xi, false child νf (with selector variable xf and interval [βf , γf]) and
true child νt (with selector variable xt and interval [βt, γt]). The interval of ν is
[β, γ], with:

β = max{βf + ai+1 + · · ·+ af−1, βt + ai + ai+1 + · · ·+ at−1},
γ = min{γf , γt + ai}.

If in every path from the root to the leaves of the BDD all variables were
present, the definition of β would be much simpler (β = max{βf , βt + ai}).
The other coefficients are necessary to account for the variables that have been
removed due to the BDD reduction process.

3.2 Some families of PB constraints and their BDD size

We start by revisiting the family of PB constraints given in [BBR06], where it is
proved that, for their concrete variable ordering, their non-reduced BDDs grow
exponentially for this family. Here we prove that ROBDDs are polynomial for
this family, and that this is even independent of the variable ordering. The family

7

is defined by considering a, b and n positive integers such that
∑n

i=1 b
i < a. The

coefficients are ωi = a+bi and the right-hand side of the constraint is K = a·n/2.
We will first prove that the constraint C : ω1x1 + · · ·+ ωnxn ≤ K is equivalent
to the cardinality constraint C ′ : x1 + · · · + xn ≤ n/2 − 1. For simplicity, we
assume that n is even.

– Take an assignment satisfying C ′. In this case, there are at most n/2 − 1
variables xi assigned to true, and the assignment also satisfies C since: ω1x1+

· · ·+ ωnxn ≤
n∑

i=n/2+2

ωn = (n/2− 1)a+
n∑

i=n/2+2

bn < K − a+
n∑

i=1

bi < K.

– Consider now an assignment not satisfying C ′. In this case, there are at
least n/2 true variables in the assignment and it does not satisfy C either:

ω1x1 + · · ·+ ωnxn >
n/2∑
i=1

ωi = (n/2) · a+

n/2∑
i=1

bi > (n/2) · a = K.

Since the two constraints are equivalent and BDDs are canonical, the BDD
representation of C and C ′ are the same. But the BDD of C ′ is known to be of
quadratic size because it is a cardinality constraint (see, for instance, [BBR06]).

Theorem 4 There exists a family of PB constraints parameterized by n, whose
ROBDDs grow exponentially in n when ordering the variables according to their
coefficients from small to large. The same happens ordering from large to small.

Proof. We consider constraints of the form a1x1 + · · · + a4nx4n ≤ K. It is con-
venient to describe the coefficients in binary notation:

2n︷ ︸︸ ︷
a1 = 0 0 0 0 0 · · · 0 1 = 1
a2 = 0 0 0 0 0 · · · 1 0 = 2

· · · . .
.

a2n−1 = 0 0 0 0 1 · · · 0 0
a2n = 0 0 0 1 0 · · · 0 0 = 22n−1

a2n+1 = 1 0 0 0 0 · · · 0 1
a2n+2 = 1 0 0 0 0 · · · 1 0

· · · . .
.

a4n−1 = 1 0 0 0 1 · · · 0 0
a4n = 1 0 0 1 0 · · · 0 0

K = dm . . . d0 0 0 1 1 · · · 1 1

where dm . . . d0 is the binary representation of n. Note that, to sum to exactly
K, one needs exactly n coefficients of the bottom half (between a2n+1 and a4n)
to obtain the digits dm . . . d0, and that, once such a subset is chosen, a unique
subset of exactly n coefficients of the top half exists that will complete the
11 . . . 11 suffix of K. Reversely, for each subset of size n of the top half, a unique

8

subset of size n of the bottom half exists that complements it to sum exactly K.
Now consider a BDD ordered x1 < · · · < x4n, and any two distinct assignments
T and T ′ for x1 . . . x2n that set exactly n variables to true. Then T and T ′

induce paths that necessarily lead to different nodes of the BDD. To see this,
wlog., assume that the sum of coefficients corresponding to true variables in T is
smaller than the one of T ′. Consider the assignment B to x2n . . . x4n that sets to
true the unique size-n subset of the bottom half coefficients that sums to K for
T (and hence exceeds K for T ′). Then the PB constraint satisfies T ∪B, but not
T ′∪B; hence B distinguishes the nodes for T and T ′. Altogether, the BDD must
have at least as many nodes as distinct assignments setting exactly n variables
of the top half to true, i.e., an exponetial number,

(
2n
n

)
. For the large-to-small

ordering exactly the same reasoning applies2. ut

For the PB constraint family of the previous proof, it can be shown that the
“interleaved” ordering x1 < x2n+1 < x2 < x2n+2 < . . . < x2n < x4n leads to
a polynomial-sized BDD (the proof is non-trivial, but we had to omit it here
due to space limitations). The next natural step would be to present a concrete
family of PB constraints whose BDDs are always exponential regardless of the
variable ordering. We have not been unable to find such a family. But in the
next section we prove that, unless NP=co-NP, such a family must exist.

3.3 Probably there are no small BDDs for all PB constraints

Our goal is now to prove that, unless NP=co-NP, there are PB constraints
all whose BDDs are exponential, independently of the variable ordering. The
main ingredient is an algorithm that, given a BDD B and a PB constraint C :
a1x1 + · · · + anxn ≤ K over the same set of variables, allows one to decide, in
time polynomial in the size of the BDD, whether B represents C. Again, w.l.o.g.,
we assume that the BDD ordering is x1 < x2 < . . . < xn.

Given the BDD, the algorithm first computes, in a bottom-up manner, an
interval for every node of the BDD, as explained in Proposition 3. Note that the
cost of computing a single interval is O(n) and hence computing all intervals
takes O(nm) time, where m is the BDD’s size. After that, we know that B is a
representation of C if and only if K belongs to the interval of the BDD root.

Theorem 5 B is a BDD representing a PB constraint a1x1+ · · ·+anxn ≤ K if,
and only if, K belongs to the interval of the root of B computed by our algorithm.

Proof. If B is a BDD representing C, then K belongs to the interval of the root
by definition of interval (Def. 1). Moreover, Proposition 3 guarantees that our
algorithm correctly computes such an interval.

Let us now assume that B is not a BDD representing C. Then, there exists
an assignment {x1 = v1, . . . , xn = vn} that either satisfies C but leads to the
False node in B or does not satisfy C but leads to the True node in B.

2 We thank Guillem Godoy for his help with this example.

9

Let us assume that the assignment satisfies C. The other case is analog to
this one. In this case, we will prove that γ1 < K, where [β1, γ1] is the interval
computed for the root node.

We define a sequence of nodes ν1, ν2, . . . , νn, νn+1 as follows: ν1 is the root of
B. If the selector variable of ν1 is not x1, ν2 = ν1. Otherwise, ν2 is its false child
if v1 = 0 or its true child if v1 = 1, and so on. By definition of the assignment,
νn+1 is the False node. If we let [βi, γi] be the computed interval for the node
νi, we want to prove that every node νi satisfies γi < ai+1vi+1 + · · ·+ anvn.

Since νn+1 is the False node and its theoretical interval is (−∞,−1], it holds
that γn+1 < 0. Assume that it is true for every k > i′, and let us prove it for i′.

Let us assume that xi is the selector variable of νi′ (in this case, i′ ≤ i by
construction). There are two cases:

11 00

xixi

xj

(. . . , νi′ , νi′+1, . . . , νi)(. . . , νi′ , νi′+1, . . . , νi)

(νi+1, νi+2, . . . , νj)

. . .
. . .

Case 1: vi = 0

xk

(νi+1, νi+2, . . . , νk)

Case 2: vi = 1

Fig. 4. Several ν’s refer to the same BDD node. νj and νk are the last in the sequence.

– vi = 0. Let us take j such that νj is the false child of νi′ and the selector vari-
able of νj is xj (see Figure 4). Then, γi′ ≤ γj by definition of the algorithm.
Using the induction hypothesis:

γi′ ≤ γj < aj+1vj+1 + · · ·+ anvn ≤ ai′+1vi′+1 + · · ·+ anvn.

– vi = 1. Similarly, let us take k such that νk is the true child of νi′ and the
selector variable of νk is xk (see Figure 4). Then, γi′ ≤ γk + ai by definition
of the algorithm. Using the induction hypothesis and that vi = 1:

γi′ ≤ ai + γk < ai + ak+1vk+1 + · · ·+ anvn ≤ ai′+1vi′+1 + · · ·+ anvn.

Therefore, it holds that γi < ai+1vi+1 + · · ·+ anvn for every i. In particular,
it holds for i = 1. Since the assignment satisfies the PB constraint by hypothesis,
we have

γ1 < a1v1 + · · ·+ anvn ≤ K,
and hence K does not belong to the theoretical interval of the root node. ut

Notice that if B is not the BDD of C some of the computed intervals might be
empty. However, the algorithm will be able to compute the remaining intervals
and, since the interval of the root node will be empty, the algorithm will also be
correct. We are now ready for the following result.

Theorem 6 Unless NP=co-NP, there are PB constraints that do not admit
polynomial BDDS.

10

Proof. A well-known NP-complete problem is the following (variant of the) sub-
set sum problem: given a set integers {a1, . . . , an} and an integer K, decide
whether there exists a subset of {a1, . . . , an} that sums to exactly K. Here we
prove that if a polynomial-size BDD existed for every PB constraint then for ev-
ery unsatisfiable subset sum problem a polynomial-size unsatisfiability certificate
would exist, that could moreover be verified in polynomial time, thus collaps-
ing NP and co-NP. Indeed, obviously, a subsetsum problem ({a1, . . . , an},K)
is unsatisfiable if, and only if, the PB constraints a1x1 + · · · + anxn ≤ K and
a1x1 + · · · + anxn ≤ K − 1 are equivalent, i.e., they are the same Boolean
function. So if the subsetsum problem ({a1, . . . , an},K) is unsatisfiable, and a
polynomial-size BDD for a1x1 + · · · + anxn ≤ K existed, this BDD would also
represent a1x1 + · · ·+ anxn ≤ K − 1, which, as we proved in the previous theo-
rem, can be checked in polynomial time (for both PB constraints at once). ut

We find it quite surprising that, even for the limited kind of monotonic
functions that can be represented by a single PB constraint, the existence of
polynomial-size BDDs would imply NP=co-NP. As said, to our knowledge it
remains unknown whether there exists a family of PB constraints that admit
no polynomial-size BDD. This situation is analogous to what happens with ex-
tended resolution in Cook’s program for propositional proof complexity: it is un-
known (again, to our knowledge) whether there exists a family of propositional
problems that admit no polynomial-size extended resolution proof. So, finding
successively more compact unsatisfiability certificates for subset sum might be
an interesting alternative to Cook’s program for attacking the NP vs co-NP
question.

4 Avoiding Exponential BDDs

In this section we introduce our positive results. We restrict ourselves to a par-
ticular class of PB constraints, where all coefficients are powers of two. As we
will show below, these constraints admit polynomial BDDs. Moreover, any PB
constraint can be reduced to this class.

Example 6. Let us take the PB constraint 9x1 + 8x2 + 3x3 ≤ 10. Considering
the binary representation of the coefficients, this constraint can be rewritten into
(23x3,1 + 20x0,1) + (23x3,2) + (21x1,3 + 20x0,3) ≤ 10 if we add the binary clauses
expressing that xi,r = xr for appropriate i and r. ut

4.1 Power-of-two PB constraints do have polynomial-size BDDs

Let us consider a PB constraints of the form:

C : 20 · δ0,1 · x0,1 + 20 · δ0,2 · x0,2 + · · · + 20 · δ0,n · x0,n +
21 · δ1,1 · x1,1 + 21 · δ1,2 · x1,2 + · · · + 21 · δ1,n · x1,n +

. . . +
2m · δm,1 · xm,1 + 2m · δm,2 · xm,2 + · · · + 2m · δm,n · xm,n ≤ K,

11

where δi,r ∈ {0, 1} for all i and r. Notice that every PB constraint whose coef-
ficients are powers of 2 can be expressed in this way. Let us consider its BDD
representation with the ordering x0,1 < x0,2 < . . . < x0,n < x1,1 < . . . < xm,n.

Lemma 7 Let [β, γ] be the interval of a node with selector variable xi,r. Then
2i divides β and 0 ≤ β < (n+ r − 1) · 2i.

Proof. By Proposition 2.1, β can be expressed as a sum of coefficients all of which
are multiples of 2i, and hence β itself is a multiple of 2i. By Proposition 2.7,
the only node whose interval contains negative values is the False node, and
hence β > 0. Now, using Proposition 2.3, there must be an assignment to the
variables {x0,1, . . . , xi,r−1} such that 20δ0,1x0,1 + · · ·+ 2iδi,r−1xi,r−1 belongs to
the interval. Therefore:

β ≤ 20δ0,1x0,1 + · · ·+ 2iδi,r−1xi,r−1 ≤ 20 + 20 + · · ·+ 2i

= n20 + n21 + · · ·+ n2i−1 + (r − 1) · 2i = n(2i − 1) + 2i(r − 1)

< 2i(n+ r − 1)

Corollary 8 The number of nodes with selector variable xi,r is bounded by n+
r − 1. In particular, the size of the BDD belongs to O(n2m).

Proof. Let ν1, ν2, . . . , νt be all the nodes with selector variable xi,r. Let [βj , γj]
the interval of νj . Note that such intervals are pair-wise disjoint since a non-
empty intersection would imply that there exists a constraint represented by
two different BDDs. Hence we can assume, w.l.o.g., that β1 < β2 < · · · < βt.
Due to Lemma 7, we know that βj − βj−1 > 2i. Hence 2i(n + r − 1) > βt >
βt−1+2i > · · · > β1+2i(t−1) > 2i(t−1) and we can conclude that t < n+r. ut

4.2 A consistent encoding for PB constraints

Let us now take an arbitrary PB constraint C : a1x1 + · · · anxn ≤ K and assume
that aM is the largest coefficient. If m = log aM , we can rewrite C splitting the
coefficients into powers of two as shown in Example 6:

C̃ : 20 · δ0,1 · x0,1 + 20 · δ0,2 · x0,2 + · · · + 20 · δ0,n · x0,n +
21 · δ1,1 · x1,1 + 21 · δ1,2 · x1,2 + · · · + 21 · δ1,n · x1,n +

. . . +
2m · δm,1 · xm,1 + 2m · δm,2 · xm,2 + · · · + 2m · δm,n · xm,n ≤ K,

where δm,r δm−1,r · · · δ0,r is the binary representation of ar. Notice that C and

C̃ represent the same constraint if we add clauses expressing that xi,r = xi for
appropriate i and r.

The important remark is that, using a consistent SAT encoding of the BDD
for C̃ (e.g. the one given in [ES06] or the one presented in the next section) and
adding clauses expressing that xi,r = xi for appropriate i and r, we obtain a
consistent encoding for the original constraint C using O(n2 log aM) auxiliary
variables and clauses.

12

This is not difficult to see. Take an assignment A over the variables of C
which cannot be extended to a model of C. This is because the coefficients
corresponding to the variables true in A add more than K. Using the clauses for
xi,r = xi, unit propagation will produce an assignment to the xi,r’s that cannot

be extended to a model of C̃. Since the encoding for C̃ is consistent, a false clause
will be found. Conversely, if we consider an assignment A over the variables of C
than can be extended to a model of C, this assignment can clearly be extended
to a model for C̃ and the clauses expressing xi,r = xi. Hence, unit propagation

on those clauses and the encoding of C̃ will not detect a false clause.

4.3 An arc-consistent encoding for PB constraints

Unfortunately, the previous approach does not produce an arc-consistency en-
coding. The intuitive idea can be seen in the following example:

Example 7. Let us consider the constraint 3x1 + 4x2 ≤ 6. After splitting the
coefficients into powers of two, we obtain C ′ : x0,1 + 2x1,1 + 4x2,2 ≤ 6. If we set
x2,2 to true, C ′ implies that either x0,1 or x1,1 have to be false, but the encoding
cannot exploit the fact that both variables will receive the same truth value and
hence both should be propagated. Adding clauses stating that x0,1 = x1,1 does
not help in this sense. ut

In order to overcome this limitation, we follow the method presented in
[BKNW09,BBR09]. Let C : a1x1 + · · · anxn ≤ K be an arbitrary PB constraint.
We denote as Ci the constraint a1x1 + · · · + ai · 1 + · · · + anxn ≤ K, i.e., the
constraint assuming xi to be true. For every i with 1 ≤ i ≤ n, we encode Ci as
in Section 4.2 and, in addition, we add the binary clause ri∨¬xi, where ri is the
root of the BDD for Ci. This clause helps us to preserve arc-consistency: given
an assignment A such that A∪{xi} cannot be extended to a model of C, literal
ri will be propagated using A (because the encoding for Ci is consistent). Hence
the added clause will allow us to propagate xi.

All in all, the suggested encoding is arc-consistent and uses O(n3 log(aM))
clauses and auxiliary variables, where aM is the largest coefficient.

5 SAT Encodings of BDDs for Monotonic Functions

In this section we consider a BDD representing a monotonic function F and we
want to encode it into SAT. As expected, we want the encoding to be as small
as possible and arc-consistent.

As usual, the encoding introduces an auxiliary variable for every node. Let ν
be a node with selector variable x and auxiliary variable n. Let f be the variable
of its false child and t be the auxiliary variable of its true child. Only two clauses
per node are needed:

¬f → ¬n ¬t ∧ x→ ¬n.
Furthermore, we add a unit clause with the variable of the True node and another
one with the negation of the variable of the False node.

13

Theorem 9 The encoding is consistent in the following sense: a partial assign-
ment A cannot be extended to a model of F if and only if ¬r is propagated by
unit propagation, where r is the root of the BDD.

Proof. We prove the theorem by induction on the number of variables of the
BDD. If the BDD has no variables, then the BDD is either the True node or the
False node and the result is trivial.

Assume that the result is true for BDDs with less than k variables, and let F
be a function whose BDD has k variables. Let r be the root node, x1 its selector
variable and f, t respectively its false and true children (note that we abuse the
notation and identify nodes with their auxiliary variable). We denote by F1 the
function F|x1=1 (i.e., F after setting x1 to true) and by F0 the function F|x1=0.

– Let A be a partial assignment that cannot be extended to a model of F .
• Assume x1 ∈ A. Since A cannot be extended, the assignment A \ {x1}

cannot be extended to a model of F1. By definition of the BDD, the
function F1 has t as a BDD. By induction hypothesis, ¬t is propagated,
and since x1 ∈ A, ¬r is also propagated.

• Assume x1 6∈ A. Then, the assignment A \ {¬x1} cannot be extended to
a model of F0. Since F0 has f as a BDD, by induction hypothesis ¬f is
propagated, and hence ¬r also is.

– Let A be a partial assignment, and assume ¬r has been propagated. Then,
either ¬f has also been propagated or ¬t has been propagated and x1 ∈ A
(note that x1 has not been propagated because it only appears in one clause
which is already true).
• Assume that ¬f has been propagated. Since f is the BDD of F0, by

induction hypothesis the assignment A \ {x1,¬x1} cannot be extended
to a model of F0. Since the function is monotonic, A \ {x1,¬x1} neither
can be extended to a model of F . Therefore, A cannot be extended to a
model of F .

• Assume that ¬t has been propagated and x1 ∈ A. Since t is the BDD of
F1, by induction hypothesis A \ {x1} cannot be extended to a model of
F1, so neither can A be extended to a model of F .

ut

For obtaining an arc-consistent encoding, we only have to add a unit clause.

Theorem 10 If we add a unit clause forcing the variable of the root node to be
true, the previous encoding becomes arc-consistent.

Proof. We will prove it induction on the variables of the BDD. The case n = 0
is trivial, so let us prove the induction case.

As before, let r be the root node, x1 its selector variable and f, t respectively
its false and true children. We denote by F1 the function F|x1=1 and by F0 the
function F|x1=0.

Let A be a partial assignment than can be extended to a model of F . Assume
that A∪{xi} cannot be extended. We want to prove that xi will be propagated.

14

– Let us assume that x1 ∈ A. In this case, t is propagated due to the clause
¬t ∧ x1 → ¬n and the unit clause n. Since x1 ∈ A and A ∪ {xi} cannot be
extended to a model of F , A \ {x1} ∪ {xi} neither can be extended to an
assignment satisfying F1. By induction hypothesis, since t is the BDD of the
function F1, ¬xi is propagated.

– Let us assume that x1 6∈ A and xi 6= x1. Since F is monotonic, A ∪ {xi}
cannot be extended to a model of F if and only if it cannot be extended to a
model of F0. Notice that f is propagated thanks to the clause ¬f → n and
the unit clause n. By induction hypothesis, the method is arc-consistent for
F0, so xi is propagated.

– Finally, assume that x1 6∈ A and xi = x1. Since A∪{x1} cannot be extended
to a model of F , A cannot be extended to model of F1. By Theorem 9, ¬t
is propagated and, due to ¬t ∧ x1 → ¬n and n, also is ¬x1. ut

6 Conclusions and Future Work

Both theoretical and practical contributions have been made. Regarding the the-
oretical part, we have proved that, unless NP=co-NP, there are PB constraints
that do not admit polynomial BDDs. The existence of a concrete PB constraint
family for which no polynomial BDDs exist remains an open problem, with inter-
esting connections to the area of proof complexity. One of our aims is to continue
working on this open question in the near future.

At the practical level, we have introduced a BDD-based polynomial and
arc-consistent encoding of PB constraints and we have developed a BDD-based
arc-consistent encoding of monotonic functions that only uses two clauses per
BDD node. Indeed our initial motivation for this work has been practical, and
we are currently working on implementation and experimental comparison of
our encodings with other existing approaches on realistic problems.

References

[BBR06] O. Bailleux, Y. Boufkhad, and O. Roussel. A Translation of Pseudo
Boolean Constraints to SAT. JSAT, 2(1-4):191–200, 2006.

[BBR09] O. Bailleux, Y. Boufkhad, and O. Roussel. New Encodings of Pseudo-
Boolean Constraints into CNF. In SAT’09”, LNCS 5584, pp. 181–194.

[BHvMW09] A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, editors. Handbook
of Satisfiability, IOS Press, February 2009.

[BKNW09] C. Bessiere, G. Katsirelos, N. Narodytska, and T. Walsh. Circuit Com-
plexity and Decompositions of Global Constraints. In IJCAI’09, pp. 412–
418, 2009.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function manip-
ulation. IEEE Trans. Computers, 35(8):677–691, 1986.

[ES06] N . Eén and N. Sörensson. Translating Pseudo-Boolean Constraints into
SAT. JSAT 2:1–26, 2006.

[J.S07] J. Smaus. On Boolean Functions Encodable as a Single Linear Pseudo-
Boolean Constraint. In CPAIOR’07, LNCS 4510, pp. 288–302.

[SFSW09] A. Schutt, T. Feydy, P. J. Stuckey, and M. Wallace. Why Cumulative
Decomposition Is Not as Bad as It Sounds. In CP’09, LNCS 5732, pp.
746-761.

