Automatic Generation of

Polynomial Loop Invariants:

Algebraic Foundations

Enric Rodriguez-Carbonell Deepak Kapur

Universitat Politecnica University
de Catalunya of New Mexico

1

Overview of the Talk

. Motivation for automatically generating
invariants

. Simple loops with sequences of assignments
. Loops including conditional statements

. Algorithm for generating polynomial invariants

. Termination of the algorithm

Motivation
Program Verification

m Program verification failed due to:
e program annotation by hand
e Wweak theorem provers

m Current theorem provers are quite powerful

m About program annotation:
e Pre/postconditions: useful documentation
e Loop invariants: tedious to write

—— Automatic generation of loop invariants
3

Sequences of Assignments
Example: Square Root Program

{Pre: N >0}
a.=0;s:=1;t.:=1;
while (s < N) do

a.—a-+1;
s =s+t+ 2;
t . =t-+ 2;

end while
{Post: a? < N < (a+1)?}

m Need invariant to verify program

s Good invariant: a2 < NAt=2a+1As= (a4 1)?

Sequences of Assignments
Generating Invariants (1)

m Program states = solution to the recurrence

apt+1 = an+1 ag = O
Sn_l_]_ — Sn _I_ tn _I_ 2 , SO — 1

(an, sn,tn) = program state after n loop iterations

Sequences of Assignments
Generating Invariants (2)

an — N
sn = (n41)2
th, = 2n+1

m [he infinite formula

(a=0As=1At=1)V(ea=1As=4ANt=3)V---

= \/ (a=nAs=Mm+1)°At=2n+1)
n=0

IS invariant

m \Want a finite invariant formula !

Sequences of Assignments
Eliminating Loop Counters

The infinite formula can be replaced by
In(a=nAs=m+1)2At=2n+1)
Need for quantifier elimination

In the example it is obvious:
a=n=s=(a+ 1)2At=2a-+ 1 is loop invariant

Grobner bases can be used to eliminate auxiliary variables
such as loop counters

Polynomial Invariants Form an Ideal

m For any program state (a,s,t),
s—(a4+1)2=0
t—(2a4+1)=0
m For any polynomials p, q,
p(a,s,t)(s = (a+1)?) +q(a,s,t)(t — (2a+ 1)) =0

m In general polynomial invariants form an ideal

Handling Conditional Statements
Example: Factor Program

{Pre: N>1ANmMod2=1AR?>N > (R—1)?}
r:=R;y:=0;r := R2— N;
while (r #0) do
if (r<0) then
ri=r+2x+ 1.z . =x+ 1;
else
ri=r—2y— 1,y =y—+ 1,
end if
end while
{Post: xZ#yANmMod(z—y) =0}

m Good invariant: N > 1A N +r = 2 —y2

Handling Conditional Statements
Generating Invariants (1)

m 1st idea:

1. Compute invariants for two distinct loops:

while true do while true do
ri=r—+2x -+ 1; r.=r—2y—1,
rx . =x+ 1, y . =y—+ 1,
end while end while

2. Compute common invariants for both loops

m Finding common invariants =
Finding intersection of polynomial invariant ideals

m Grobner bases used to compute intersection of ideals

10

Handling Conditional Statements
Generating Invariants (2)

while true do while true do
ri=r—+2x -+ 1; r.=r—2y—1,
r . =x+1; y . =y—+ 1,

end while end while

(y , —r—N+2%) (=R, r—R2+N+y?)

(¢2—r—N—-y?, yz— Ry, y°>— R°y+ry+ Ny)

Problem: not all polynomials in the intersection are invariants
» The only invariant polynomial is 22 —r — N — /2
m Others are not invariants of the original loop

11

Handling Conditional Statements
Generating Invariants (3)

m [ree of all possible execution paths:

m Found common invariants to the two extreme paths

m [rue invariants are common to all paths !

12

Handling Conditional Statements
Generating Invariants (4)

m 2Nnd idea: intersecting with more paths
m For example: paths with at most one alternation

No alternations

1 alternation

(2 —r — N —y?,yx — Ry,y> — R%y + ry + Ny)
(22 —r — N —y?)

13

Algorithm for Computing Invariants (1)

Program

T =,

while true do

T = f(z);
or
T = g(Z);

end while

Algorithm
I''=(1);1:=(x1 — a1, - ,Tm — am);
while I' 4 1 do
I' =1,

I'=N>,[I(z — f~™(T))
NI(z — g " (x))];

end while

14

Algorithm for Computing Invariants (2)

m After N iterations:
I = intersection for all paths with < N — 1 alternations

1st iteration
2nd iteration

3rd iteration

15

Algorithm for Computing Invariants (3)

The value of I stabilizes

s Termination in O(m) iterations,
where m = number of variables

m Correctness and completeness proofs in the report

Implemented in Maple:

1. Solving recurrences

2. Eliminating variables

3. Intersecting ideals }Grbbner bases

16

Algorithm for Computing Invariants (4)
Table of Examples

PROGRAM | COMPUTING | VARIABLES | BRANCHES | TIMING
freirel D 2 1 < 3 s.
freire2 N 3 1 < b s.
cohencu cube 4 1 < b s.
cousot toy 2 2 < 4 s.
divbin division 3 2 < b s.
dijkstra B 3 2 < 6 s.
fermat?2 factor 3 2 < 4 s.
wensley?2 division 4 2 < 5 s.
euclidex?2 gcd 6 2 < 6 S.
lcm?2 lcm 4 2 < b s.
factor factor 4 4 < 20 s.

PC Linux Pentium 4 2.5 Ghz

17

Termination (1)

Toy program

x .= 0,y :=0;

while true do
r . =x—+1;
or
y:=y+ 1

end while

m Program states =N x N
m Assignments:

flx,y) = (x+1,y) g(z,y) = (z,y + 1)

s Initial state (z,y) = (0,0) — initial ideal {(z,y)

18

Termination (2)

m 1st iteration of the algorithm

|

Ln41
Yn+1

LTp+41
Yn+1

1st branch: f(z,y) = (x + 1,v)
xn + 1 {CBOZO_>{CUn
Yn "lvo = O Yn
Invariant ideal 1st branch: (y)

2nd branch: g(z,y) = (x,y + 1)

Tn a:():O_) Tn
yn+1 |y = O Yn

Invariant ideal 2nd branch: (x)

Intersection ideal: (zy)

S

o

19

Termination (3)
Yy

s {(x,0)}U{(0,)}
/ ® { /o/ o— I

(0,0)

s Step 0: (x,y) — {(0,0)}, dimension 0
s Step 1: (xy) — {(«,0)} U{(0,)}, dimension 1

The dimension has increased !

20

Termination (4)

m 2nd iteration of the algorithm
e Ideal computed: {0}
e Solution space: R2, dimension 2
The dimension has increased again !
m At each step of the algorithm, the dimension increases

m If there are m variables, it terminates in O(m) steps

21

Related Work (1)

Karr (1976): linear equalities

Cousot, Halbwachs (1978): linear inequalities

Colon, Sankaranarayanan, Sipma (2003): linear inequalities
Miiller-Olm, Seidl (2003): polynomial equalities
Sankaranarayanan et al (2004): polynomial equalities
Miller-Olm, Seidl (2004): polynomial equalities
Rodriguez-Carbonell, Kapur (2004): polynomial equalities

22

Related Work (2)
Overview Polynomial Invariants

Work Restrictions Nesting | Conditions | Complete | Application

[MOSO03] | bounded degree | yes no yes intraprocedural
[SSMO03] | prefixed form yes yes no interprocedural
[MOSO04] | prefixed form yes yes yes interprocedural
[RCKO04] | bounded degree | yes yes yes interprocedural
[RCKO04] no restriction no no yes intermprocedural

23

Conclusions

Correct and complete algorithm for polynomial invariants
First method not bounding a priori degree of invariants
Applicable to loops without nesting

Terminates in O(m) iterations,
where m = number of variables

Implemented and being integrated into a verifier

Part of a general framework for generating invariants
e Rich theory in algebraic geometry and polynomial ideals
e Beyond numbers and polynomials we need:

o Solving recurrences

o eliminating variables

o ...
24

