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Overview of the Talk

• Non-linear constraint solving

• Review of [JAR’12]

• Alternative Max-SMT approach

• Constraint-based termination analysis

• Review of program termination and constraint-based program analysis

• Using Max-SMT for termination analysis

• Implementation and experiments

• Conclusions & future work
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Non-linear Constraint Solving

• Problem: Given a quantifier-free formula F containing polynomial
inequality atoms, is F satisfiable?

• Applications: system analysis and verification, ...
Here, focus will be on termination of imperative programs

• In Z: undecidable (Hilbert’s 10th problem)

• In R: decidable, even with quantifiers (Tarski)
But algorithms have prohibitive complexity

• Goal: Can we have a procedure that works “well” in practice?
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Review of [JAR’12]

• Our method is aimed at proving satisfiability in the integers
(as opposed to finding non-integer solutions,
or proving unsatisfiability)

• Basic idea: use bounds on integer variables to linearize the formula

• Refinement: analyze unsatisfiable cores to enlarge bounds
(and sometimes even prove unsatisfiability)
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Translating into Linear Arithmetic

• For any formula there is an equisatisfiable one of the form

F ∧ (
∧
i

yi = Mi )

where F is linear and each Mi is non-linear

• Example

u4v2 + 2u2vw + w2 ≤ 4 ∧ 1 ≤ u, v ,w ≤ 2

xu4v2 + 2xu2vw + xw2 ≤ 4 ∧ 1 ≤ u, v ,w ≤ 2 ∧

xu4v2 = u4v2 ∧ xu2vw = u2vw ∧ xw2 = w2
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Translating into Linear Arithmetic

• Idea: linearize non-linear monomials with case analysis
on some of the variables with finite domain

• Assume variables are in Z

• F ∧ xu4v2 = u4v2 ∧ xu2vw = u2vw ∧ xw2 = w2

where F is xu4v2 + 2xu2vw + xw2 ≤ 4 ∧ 1 ≤ u, v ,w ≤ 2

• Since 1 ≤ w ≤ 2, add xu2v = u2v and
w = 1 → xu2vw = xu2v

w = 2 → xu2vw = 2xu2v
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Translating into Linear Arithmetic

Applying the same idea recursively, the following linear formula is obtained:

xu4v2 + 2xu2vw + xw2 ≤ 4

∧ 1 ≤ u, v ,w ≤ 2

∧ w = 1 → xu2vw = xu2v

∧ w = 2 → xu2vw = 2xu2v

∧ u = 1 → xu2v = v

∧ u = 2 → xu2v = 4v

∧ w = 1 → xw2 = 1

∧ w = 2 → xw2 = 4

∧ v = 1 → xu4v2 = xu4

∧ v = 2 → xu4v2 = 4xu4

∧ u = 1 → xu4 = 1

∧ u = 2 → xu4 = 16

A model can be computed:

u = 1
v = 1
w = 1
xu4v2 = 1
xu4 = 1
xu2vw = 1
xu2v = 1
xw2 = 1
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Unsatisfiable Core Analysis

• If linearization achieves a linear formula then we have
a sound and complete decision procedure

• If we don’t have enough variables with finite domain...
... we can add bounds at cost of losing completeness
We cannot trust UNSAT answers!

• But we can analyze why the CNF is UNSAT:
an unsatisfiable core (= unsatisfiable subset of clauses) can be
obtained from the trace of the DPLL execution [Zhang & Malik’03]

• If core contains no extra bound: truly UNSAT

If core contains extra bound: guide to enlarge domains
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Unsatisfiable Core Analysis

• u4v2 + 2u2vw + w2 ≤ 3 cannot be linearized

• Consider u4v2 + 2u2vw + w2 ≤ 3 ∧ 1 ≤ u, v ,w ≤ 2

• The linearization is unsatisfiable:

xu4v2 + 2xu2vw + xw2 ≤ 3
∧ 1 ≤ xu4v2 ∧ xu4v2 ≤ 64
∧ 1 ≤ xu2vw ∧ xu2vw ≤ 16
∧ 1 ≤ xw2 ∧ xw2 ≤ 4
∧ 1 ≤ u ∧ u ≤ 2
∧ 1 ≤ v ∧ v ≤ 2
∧ 1 ≤ w ∧ w ≤ 2
· · ·

• Should decrease lower bounds for u, v ,w
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An Alternative Max-SMT Approach

• Max-STM(T ): Given a set of weighted clauses, find a T -consistent
assignment that minimizes cost (= sum of weights) of falsified clauses

• Assume we are given a non-linear formula and have computed a
linearization (possibly with extra bounds).

Then we transform the linear formula into a weighted one as follows:

• Clauses C of extra bounds are given finite weights ωC (soft clauses)
• Rest of clauses are given weight ∞ (hard clauses)

• So we have a Max-SMT(LIA) problem, instead of an SMT(LIA) one

• If found model with null cost, we have a solution

• Else falsified soft clauses show bounds to relax
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An Alternative Max-SMT Approach

• There exist simple Branch & Bound algorithms for Max-SMT
[Nieuwenhuis & Oliveras, SAT’06], [Cimatti et al., TACAS’10]

• Advantages over the analysis of unsatisfiable cores

• Max-SMT approach is easier to implement and maintain

• Leads naturally to an extension to Max-SMT(NIA):
Given a set of weighted clauses in NIA, linearize as usual but

• Original clauses keep their weight
• Clauses of case splits are given weight ∞
• Clauses of extra bounds are given weights ω >W ,

where W is the sum of the weights of the original soft clauses

So models that violate original clauses are preferred over those violating
case splits (that ensure a true model for NA can be reconstructed)
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An Alternative Max-SMT Approach

• Example revisited

• u4v2 + 2u2vw + w2 ≤ 3 cannot be linearized

• Consider u4v2 + 2u2vw + w2 ≤ 3 ∧ 1 ≤ u, v ,w ≤ 2, with extra
bounds having weight 1

• Linearization does not have 0-cost solution:
optimal solutions have weight 1, e.g. falsifying 1 ≤ w

• Should decrease lower bound of w
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Termination

Current set of targeted programs:

• Imperative programs: iterative and recursive (ignoring return values)

• Integer variables and linear expressions
(other constructions considered unknowns)
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Example

int gcd ( int a, int b ) {
int tmp;
while ( a >= 0 && b > 0 ) {

tmp = b;
if (a == b) b = 0;
else {
int z = a;
while ( z > b ) z -= b;
b = z;
}
a = tmp;
}
return a;
}
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Example

As a transition system:

l8l3

τ2

τ1
τ3

τ4

τ5

τ0
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Example

As a transition system:

l8l3

τ2

τ1
τ3

τ4

τ5

τ0

τ0 : a′ =?, b′ =?, tmp′ =?, z ′ =?
τ1 : b ≥ 1, a ≥ 0, a = b, a′ = b, b′ = 0, tmp′ = b, z ′ = z
τ2 : b ≥ 1, a ≥ 0, a < b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ3 : b ≥ 1, a ≥ 0, a > b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ4 : b < z , a′ = a, b′ = b, tmp′ = tmp, z ′ = z − b
τ5 : b ≥ z , a′ = tmp, b′ = z , tmp′ = tmp, z ′ = z
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Proving Termination

• Idea: prove that no transition can be executed infinitely many times.

• In order to discard a transition τi we need either:

• an unfeasibility argument, or

• a ranking function f over Z such that

1 τi =⇒ f (x1, . . . , xn) ≥ 0 (bounded)

2 τi =⇒ f (x1, . . . , xn) > f (x ′
1, . . . , x

′
n) (strict-decreasing)

3 τj =⇒ f (x1, . . . , xn) ≥ f (x ′
1, . . . , x

′
n) for all j (non-increasing)
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Auxiliary Assertions: Invariants

• We may need invariant assertions to build our termination argument

• We consider inductive invariants:

• Initiation condition
(it holds the first time the location is reached)

• Consecution condition
(it is preserved under every cycle back to the location)
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Constraint-based Program Analysis

Introduced in [Colon,Sankaranarayanan & Sipma, CAV’03]

Keys:

• Fix a template for candidate invariants

c1x1 + . . .+ cnxn + d ≤ 0

where c1, . . . , cn, d are unknowns

• Impose initiation and consecution conditions obtaining ∃∀ problem

• Transform with Farkas’ Lemma into ∃ problem over non-linear arith.

• Constraints can be solved with SMT(NA) solver, e.g. Barcelogic.
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Larraz, Oliveras, Rodŕıguez-Carbonell, Rubio, UPC, 2013 Non-linear Arithmetic Solving for Termination Analysis



17

Constraint-based Program Analysis

Introduced in [Colon,Sankaranarayanan & Sipma, CAV’03]

Keys:

• Fix a template for candidate invariants

c1x1 + . . .+ cnxn + d ≤ 0

where c1, . . . , cn, d are unknowns

• Impose initiation and consecution conditions obtaining ∃∀ problem

• Transform with Farkas’ Lemma into ∃ problem over non-linear arith.

• Constraints can be solved with SMT(NA) solver, e.g. Barcelogic.
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Constraint-based Program Analysis

Following the ideas in [Bradley, Manna & Sipma, CAV’05]:
constraint-based invariant gen. (IG) + linear ranking function gen. (RG)

Assume a single location:

• Templates

• For the invariant: I = c1x1 + . . .+ cnxn + d ≤ 0
• For the ranking function: R = r0 + r1x1 + . . .+ rnxnx

• Constraints

• Initiation condition on I

• Consecution condition on I

• R is non-increasing for all transitions

• Some transition τi can be discarded

• I =⇒ unfeasibility of τi , or
• I =⇒ strict decreasingness and boundedness of τi
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Constraint-based Program Analysis

Although this looks like the way to work, it is not that good in practice:

• Sometimes several invariants needed to generate ranking function

Then the problem is unsatisfiable (no solution for ranking function)

We need to express that even if our aim is to find a ranking function,
if we find just an invariant we’ve made some progress

We can do it with Max-SMT

Larraz, Oliveras, Rodŕıguez-Carbonell, Rubio, UPC, 2013 Non-linear Arithmetic Solving for Termination Analysis
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Using Max-SMT to combine IG and RG

We can assign weights to the termination conditions:

1 I ∧ τi =⇒ R ≥ 0

2 I ∧ τi =⇒ R > R ′

3 I ∧ τj =⇒ R ≥ R ′ for all j

Larraz, Oliveras, Rodŕıguez-Carbonell, Rubio, UPC, 2013 Non-linear Arithmetic Solving for Termination Analysis
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Using Max-SMT to combine IG and RG

We can assign weights to the termination conditions:

1 I ∧ τi =⇒ R ≥ 0

2 I ∧ τi =⇒ R > R ′

3 I ∧ τj =⇒ R ≥ R ′ for all j

1 (p1,w1) where p1 represents the bound condition (1)

2 (p2,w2) where p2 represents the strict-decreasing condition (2)

3 (p3,w3) where p3 represents the non-increasing condition (3)
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Using Max-SMT to combine IG and RG

We can assign weights to the termination conditions:

1 I ∧ τi =⇒ R ≥ 0

2 I ∧ τi =⇒ R > R ′

3 I ∧ τj =⇒ R ≥ R ′ for all j

1 (p1,w1) where p1 represents the bound condition (1)

2 (p2,w2) where p2 represents the strict-decreasing condition (2)

3 (p3,w3) where p3 represents the non-increasing condition (3)

Once the problem is encoded in Max-SMT(NA):

• The Max-SMT solver looks for the best solution getting a ranking
function if possible

• Otherwise, the weights can guide the search to get invariants and
quasi-ranking functions that satisfy as many conditions as possible
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Example

l8l3

τ2

τ1
τ3

τ4

τ5

τ0

τ0 : a′ =?, b′ =?, tmp′ =?, z ′ =?
τ1 : b ≥ 1, a ≥ 0, a = b, a′ = b, b′ = 0, tmp′ = b, z ′ = z
τ2 : b ≥ 1, a ≥ 0, a < b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ3 : b ≥ 1, a ≥ 0, a > b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ4 : b < z , a′ = a, b′ = b, tmp′ = tmp, z ′ = z − b
τ5 : b ≥ z , a′ = tmp, b′ = z , tmp′ = tmp, z ′ = z

Solver finds invariant b ≥ 1 at l8 and ranking function b for τ1
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Example

l8l3

τ2

τ3

τ4

τ5

τ0

τ0 : a′ =?, b′ =?, tmp′ =?, z ′ =?

τ2 : b ≥ 1, a ≥ 0, a < b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ3 : b ≥ 1, a ≥ 0, a > b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ4 : b < z , a′ = a, b′ = b, tmp′ = tmp, z ′ = z − b
τ5 : b ≥ z , a′ = tmp, b′ = z , tmp′ = tmp, z ′ = z

Nothing else can be done, but ...
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Example

l8l3

τ2

τ3

τ4

τ5

τ0

τ0 : a′ =?, b′ =?, tmp′ =?, z ′ =?
τ2 : b ≥ 1, a ≥ 0, a < b, a′ = a, b′ = b, tmp′ = b, z ′ = a
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Example

l8l3

τ2

τ3

τ4

τ5

τ0
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τ5.3 : b ≥ z , b ≥ 0, b = b′, a′ = tmp, b′ = z , tmp′ = tmp, z ′ = z

We can split τ5 in three subcases and
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Example

l8l3

τ2

τ3

τ4

τ5

τ0

τ0 : a′ =?, b′ =?, tmp′ =?, z ′ =?
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We can split τ5 in three subcases and remove 5.2 by strict decreasingness
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Example

l8l3

τ2

τ3

τ4

τ5

τ0

τ0 : a′ =?, b′ =?, tmp′ =?, z ′ =?
τ2 : b ≥ 1, a ≥ 0, a < b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ3 : b ≥ 1, a ≥ 0, a > b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ4 : b < z , a′ = a, b′ = b, tmp′ = tmp, z ′ = z − b
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τ5.3 : b ≥ z , b ≥ 0, b = b′, a′ = tmp, b′ = z , tmp′ = tmp, z ′ = z

We can split τ5 in three subcases and remove 5.1 by unfeasibility
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Example

l8l3

τ2

τ3

τ4

τ5
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Larraz, Oliveras, Rodŕıguez-Carbonell, Rubio, UPC, 2013 Non-linear Arithmetic Solving for Termination Analysis



24

Example

l8l3

τ2

τ3

τ4

τ0

τ5.3

τ0 : a′ =?, b′ =?, tmp′ =?, z ′ =?
τ2 : b ≥ 1, a ≥ 0, a < b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ3 : b ≥ 1, a ≥ 0, a > b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ4 : b < z , a′ = a, b′ = b, tmp′ = tmp, z ′ = z − b
τ5.3 : b ≥ z , b ≥ 0, b = b′, a′ = tmp, b′ = z , tmp′ = tmp, z ′ = z
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Example

l8l3

τ2

τ3

τ4

τ0

τ5.3

τ0 : a′ =?, b′ =?, tmp′ =?, z ′ =?
τ2 : b ≥ 1, a ≥ 0, a < b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ3 : b ≥ 1, a ≥ 0, a > b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ4 : b < z , a′ = a, b′ = b, tmp′ = tmp, z ′ = z − b
τ5.3 : b ≥ z , b ≥ 0, b = b′, a′ = tmp, b′ = z , tmp′ = tmp, z ′ = z

Now, we cannot find a ranking function but get the invariant a ≥ z at l8.
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Example

l8l3

τ2

τ3

τ4

τ0

τ5.3

τ0 : a′ =?, b′ =?, tmp′ =?, z ′ =?
τ2 : b ≥ 1, a ≥ 0, a < b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ3 : b ≥ 1, a ≥ 0, a > b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ4 : b < z , a′ = a, b′ = b, tmp′ = tmp, z ′ = z − b
τ5.3 : b ≥ z , b ≥ 0, b = b′, a′ = tmp, b′ = z , tmp′ = tmp, z ′ = z

Now, we cannot find a ranking function but get the invariant a ≥ z at l8.
Next, again, we only generate the invariant tmp = b at l8.
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Example

l8l3

τ2

τ3

τ4

τ0

τ5.3

τ0 : a′ =?, b′ =?, tmp′ =?, z ′ =?
τ2 : b ≥ 1, a ≥ 0, a < b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ3 : b ≥ 1, a ≥ 0, a > b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ4 : b < z , a′ = a, b′ = b, tmp′ = tmp, z ′ = z − b
τ5.3 : b ≥ z , b ≥ 0, b = b′, a′ = tmp, b′ = z , tmp′ = tmp, z ′ = z

With the invariant a ≥ 0 at l8 we have that function a + b fulfills for τ5.3:

p1 (bounded) and p3 (non-increasing) but not p2 (strict-decreasing)
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Example

l8l3

τ2

τ3

τ4

τ0

τ5.3

τ0 : a′ =?, b′ =?, tmp′ =?, z ′ =?
τ2 : b ≥ 1, a ≥ 0, a < b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ3 : b ≥ 1, a ≥ 0, a > b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ4 : b < z , a′ = a, b′ = b, tmp′ = tmp, z ′ = z − b
τ5.3 : b ≥ z , b ≥ 0, b = b′, a′ = tmp, b′ = z , tmp′ = tmp, z ′ = z

With the invariant a ≥ 0 at l8 we have that function a + b fulfills for τ5.3:

p1 (bounded) and p3 (non-increasing) but not p2 (strict-decreasing)

The Max-SMT solver generates a + b
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Example

l8l3

τ2

τ3

τ4

τ0

τ5.3

τ0 : a′ =?, b′ =?, tmp′ =?, z ′ =?
τ2 : b ≥ 1, a ≥ 0, a < b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ3 : b ≥ 1, a ≥ 0, a > b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ4 : b < z , a′ = a, b′ = b, tmp′ = tmp, z ′ = z − b
τ5.3 : b ≥ z , b ≥ 0, b = b′, a′ = tmp, b′ = z , tmp′ = tmp, z ′ = z
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Example

l8l3

τ2

τ3

τ4

τ0

τ5.3

τ0 : a′ =?, b′ =?, tmp′ =?, z ′ =?
τ2 : b ≥ 1, a ≥ 0, a < b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ3 : b ≥ 1, a ≥ 0, a > b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ4 : b < z , a′ = a, b′ = b, tmp′ = tmp, z ′ = z − b
τ5.3 : b ≥ z , b ≥ 0, b = b′, a′ = tmp, b′ = z , tmp′ = tmp, z ′ = z

With ranking function a + b we can split τ5.3 into

τ5.4 : τ5.3 ∧ a+ b > a′ + b′ τ5.5 : τ5.3 ∧ a+ b = a′ + b′
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Example

l8l3

τ2

τ3

τ4

τ0

τ5.3

τ0 : a′ =?, b′ =?, tmp′ =?, z ′ =?
τ2 : b ≥ 1, a ≥ 0, a < b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ3 : b ≥ 1, a ≥ 0, a > b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ4 : b < z , a′ = a, b′ = b, tmp′ = tmp, z ′ = z − b
τ5.3 : b ≥ z , b ≥ 0, b = b′, a′ = tmp, b′ = z , tmp′ = tmp, z ′ = z

With ranking function a + b we can split τ5.3 into

τ5.4 : τ5.3 ∧ a+ b > a′ + b′ τ5.5 : τ5.3 ∧ a+ b = a′ + b′

Then τ5.4 can be removed and τ5.5 simplified: τ5.5 : τ5.3 ∧ a = a′
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Example

l8l3

τ2

τ3

τ4

τ0

τ5.5

τ0 : a′ =?, b′ =?, tmp′ =?, z ′ =?
τ2 : b ≥ 1, a ≥ 0, a < b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ3 : b ≥ 1, a ≥ 0, a > b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ4 : b < z , a′ = a, b′ = b, tmp′ = tmp, z ′ = z − b
τ5.3 : b ≥ z , b ≥ 0, b = b′, a′ = tmp, b′ = z , tmp′ = tmp, z ′ = z
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Example

l8l3

τ2

τ3

τ4

τ0

τ5.5

τ0 : a′ =?, b′ =?, tmp′ =?, z ′ =?
τ2 : b ≥ 1, a ≥ 0, a < b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ3 : b ≥ 1, a ≥ 0, a > b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ4 : b < z , a′ = a, b′ = b, tmp′ = tmp, z ′ = z − b
τ5.5 : b ≥ z , b ≥ 0, b = b′, a′ = tmp, b′ = z , tmp′ = tmp, z ′ = z

a′ = a

Using the information of the transitions we can infer that a = b after τ5.5.
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Example

l8l3

τ2

τ3

τ4

τ0

τ5.5

τ0 : a′ =?, b′ =?, tmp′ =?, z ′ =?
τ2 : b ≥ 1, a ≥ 0, a < b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ3 : b ≥ 1, a ≥ 0, a > b, a′ = a, b′ = b, tmp′ = b, z ′ = a
τ4 : b < z , a′ = a, b′ = b, tmp′ = tmp, z ′ = z − b
τ5.5 : b ≥ z , b ≥ 0, b = b′, a′ = tmp, b′ = z , tmp′ = tmp, z ′ = z

a′ = a

Using the information of the transitions we can infer that a = b after τ5.5.
Then the connections between τ5.5 and τ2 or τ3 are unfeasible.
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Example

l8l3 τ4

τ0

τ0 : a′ =?, b′ =?, tmp′ =?, z ′ =?

τ4 : b < z , a′ = a, b′ = b, tmp′ = tmp, z ′ = z − b
τ5.5 : b ≥ z , b ≥ 0, a′ = tmp,

Using the information of the transitions we can infer that a = b after τ5.5.
Then the connections between τ5.5 and τ2 or τ3 are unfeasible.

Larraz, Oliveras, Rodŕıguez-Carbonell, Rubio, UPC, 2013 Non-linear Arithmetic Solving for Termination Analysis



29

Example

l8l3 τ4

τ0

τ0 : a′ =?, b′ =?, tmp′ =?, z ′ =?
τ4 : b < z , a′ = a, b′ = b, tmp′ = tmp, z ′ = z − b
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Example

l8l3 τ4

τ0

τ0 : a′ =?, b′ =?, tmp′ =?, z ′ =?
τ4 : b < z , a′ = a, b′ = b, tmp′ = tmp, z ′ = z − b

Solver generates ranking function z − b for τ4
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Example

l8l3

τ0

τ0 : a′ =?, b′ =?, tmp′ =?, z ′ =?

We are DONE!

Larraz, Oliveras, Rodŕıguez-Carbonell, Rubio, UPC, 2013 Non-linear Arithmetic Solving for Termination Analysis



30

Using Max-SMT to improve termination analysis

Advantages of the method:

• Using Max-SMT we can characterize different ways of progress
depending on whether p1, p2 or p3 are fulfilled.

• Using different weights we can encode which conditions are more
important than others.

Larraz, Oliveras, Rodŕıguez-Carbonell, Rubio, UPC, 2013 Non-linear Arithmetic Solving for Termination Analysis



31

Implementation and experiments

• We have implemented these techniques

• The prototype reads C code

• Possible answers:

• YES
• NO (few cases)
• Unknown
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Implementation and experiments

• Experiments:

• Benchmarks used in the Termination Competition for Java programs.
111 instances of iterative programs and 41 instances of recursive
programs where termination follows from scalar information.

• Results are very promising:

• Our first implementation is already competitive compared with tools
for Java programs that have been developed since many years ago.

Results from the TermComp full-run December 2011:

Iterative Recursive
YES NO MAYBE YES NO MAYBE

AProVE 77 0 36 32 0 9
Costa 64 0 49 28 0 13
Julia 72 21 20 35 0 6

Max-SMT 76 22 18 32 0 9
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Implementation and experiments

• Experiments:

• Programs made by students (can be ugly code). Obtained from an
on-line learning environment (Jutge.org). 7924 instances coming from
12 different programming problems.

• Results are very promising:

• These programs can be considered challenging.
Most often they are not the most elegant solution but a working one
with many more conditional statements than necessary.

YES NO MAYBE
Max-SMT 6139 15 1770
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Implementation and experiments

• Experiments:

• Benchmarks taken from [Cook et al., CAV’13] coming from Windows
device drivers, the Apache web server, the PostgreSQL server, integer
approximations of numerical programs from a book on numerical
recipes, integer approximations of benchmarks from LLBMC, ...
260 instances known to be terminating.

• Results are very promising:

YES
Cooperating-T2 245

Terminator 177
T2 189

ARMC 138
AproVE 197

AproVE+Interproc 185
KITTeL 196

Max-SMT 197
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Conclusions

• Approach to SMT(NA) that directly extends to Max-SMT(NA)

• Approach to termination analysis relying on Max-SMT

• Our prototype is already a competitive tool
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Future work

There is a very long list...

• Improve invariant generation techniques.
(e.g., by combining with abstract interpretation)

• Improve termination of recursive functions.

• Termination in presence of other data types (arrays, etc.)

• Improve the NA solver combining Barcelogic solver with other
methods that are much better proving unsatisfiability
(like [Jovanovic and De Moura, IJCAR’12])
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Thank you!
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