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Introduction

m Petri nets: mathematical model for studying systems

e concurrency
e parallelism
e non-determinism

m Applications:
e Manufacturing and Task Planning
e Communication Networks
e Hardware Design
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Modelling with Petri Nets

Preliminaries
m A directed graph is a graph where all edges are oriented
®n, n,
non—oriented oriented
edge edge
® N n,

m A bipartite graph is a graph where
1. there are two kinds of nodes
2. edges connect only nodes that belong to different kinds



Modelling with Petri Nets
Definitions (1)
m A Petri net is a bipartite directed graph where:

e Nodes partitioned into places (()) and transitions (|)
e Arcs (edges) are labelled with a natural number




Modelling with Petri Nets
Definitions (2)
m Petri nets can be executed: the execution shows the

dynamics of the modelled system
m Tokens (e) are non-distinguishable objects located in places

s A marking maps a (natural) number of tokens to each
place of the net




Modelling with Petri Nets
Dynamics (1)

m Dynamics of a Petri net described by
e initial marking
e firing of transitions

m A transition is enabled if there are > tokens in each input
place than indicated in the arcs

m \When a transition is enabled, it can fire:
1. the number of tokens indicated in the arcs is removed

from input places
2. tokens are generated in output places according to arcs
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Modelling with Petri Nets
Dynamics (2)

m Enabling of transitions may also depend on inhibitor arcs
m An inhibitor arc is an arc connecting place p to transition ¢
so that there cannot be tokens in p for t to be enabled

inhibitor B B

arc t; disabled Q {; enabled
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Modelling with Petri Nets
Dynamics (3)

m [ he reachability set are all markings reachable by successive
firings of transitions from initial marking
m Deadlocks are markings for which all transitions are disabled

1} disabled

—_—s DEADLQOCK !!
[, disabled

m Given a Petri net with an initial marking:
e Invariant properties of reachable states 7
e Any deadlocks 7
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Modelling with Petri Nets
Example: Automated Manufacturing System

- M

O delivery
point

m Four machines My, Mo, M3, My
m Two robots Ry, R»o
= Two buffers By, B> with capacity 3
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Generating Invariants
Translation into Loop Programs (1)

Given a Petri net with n places p; and m transitions t;:

m Define variable x; meaning number of tokens at place p;

Initial marking w1, ..., pn transformed into assignments

1 .= M1, " Tm -=— HUm,
Enabling of transition t; with input place p; and label ¢
(@ FO)A (@ F LA A(pg Feg—1) -
Enabling of transition ¢; with inhibitor place p;: x; =0
Firing of transition ¢;

e with input place p; and label ¢;! x; :== x; — ¢;;
e with output place p;, and label ¢;: x; .= x; + ¢;;

72"
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Generating Invariants
Translation into Loop Programs (2)
1 = 1,20 1= 1,23 1= 2;
while 7?7 do
t1 :if x1 = 0Axp #0Az3 #0 —

r1 = x1 — 1;
To = x> + 2,
r3 = x3 — 1,
to: [] xo #FO0OAN23 #AO0A23#1 —
r1 . =x1 + 1,
To = x> — 1,

r3 = x3 — 2,;
end if

end while



Generating Invariants
Translation into Loop Programs (3)
1 = 1,20 1= 1,23 1= 2;
while 7 do
t1:if 1 = 0Axp #0Az3 #0 —

r1 = x1 — 1;
T 1= X2 + 2,
r3 .— T3 — 1;
to :[] 2o ZO0ON23#FO0ANx3 ~=1 —
r1 . =x1 + 1,
To = x> — 1,

xr3 .— :C3—2;
end if

end while



Generating Invariants
Applying Abstract Interpretation
m Abstract interpretation is applied to the loop program to

obtain polynomial invariants of the Petri net
m Example:

DEADLOCK INITIAL MARKING DEADLOCK
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m Polynomial invariants obtained:

5$1—|—3:C2—|—:C3—1O —
525 4+ 225 — 11z =0
rox3 2x§ — 5x3 =0
590% — 1725 4+ 623 —

Inv = <

\

m In this example invariants characterize reachability set

(#1,22,23) =(0,3,1)
Inv < (5131,$2,$3) :(17172)

(r1,22,23) = (2,0,0)
m In general overapproximation of reachability set is obtained
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Generating Invariants
Deadlock Analysis (1)

m Assume no inhibitor arcs
m Generate polynomial invariants Inv of the Petri net

m Codify disabling conditions as polynomial equations Dis

(@@ E ) Az #E DA A= 1)) =
=(z; =0)V(r;,—1=0)Vv---V(r;—c;+1=0)

Eazi(xi—l)---(a:i—ci—l—l):O

m If there is a deadlock, there is a solution to Inv U Dsis
— If the system Inv U Dzis is unfeasible, no deadlocks
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Generating Invariants
Deadlock Analysis (2)

e

5r1 4+ 3z +2x3—10 =0
i Inw — | 53@% + 225 — 1123 =0
@ Trox3 + 2x§ — b5x3 =0
533% — 17xo + 6x3 =0
t t \
. ) mxoT3 =0
Prs = { z3(r3 — 1)z =0

(x1,2z2,23) = (0,3,1)
b, Py Imov U Dis = V

(1,22,23) = (2,0,0)
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1

Generating Invariants
Deadlock Analysis (3)

=1

]mJ:{i%_FxQ —

1 — 41
t —
? Dis={§1 _8
2 —

IanDz's:{ 1 =0
UNFEASIBLE !!
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Generating Invariants
Deadlock Analysis (4)

Automated Manufacturing System Revisited

m For 1 <p < 8 Petri net is shown to be deadlock-free
using polynomial invariants

m For p > 9 there are deadlocks
22



Overview of the Talk

» Petri Nets

1. Introduction

2.  Modelling with Petri Nets
3. QGenerating Invariants

4. Related Work

5. Conclusions

« Hybrid Systems

23



Related Work (1)

m (Sankaranarayanan et al., 2003): linear inequality
invariants for Petri nets
e Advantages: good to express boundedness
e Disadvantages: bad at expressing disjunctions;
but with polynomial equalities:

xr1=0Vzr=1<21(xzo—1)=0

m (Miller-Olm & Seidl, 2004): polynomial equality invariants
in programs with just disequality conditions
e Disadvantages: inhibitor arcs cannot be considered
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Related Work (2)
Alternating Bit Protocol

- (o)
IR
o)

6

p7\

P3

1—E — p8 i p12
DEae e
|
]

m |inear inequality analysis is too coarse
m [ here are inhibitor arcs
m Polynomial invariants prove the protocol correct
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Conclusions

m Generated invariants for Petri nets using polynomial
invariant inference

m Applied polynomial invariants to show absence of deadlocks

m Shown several non-trivial examples that can be analyzed
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Introduction (1)

m Hybrid Systems: discrete systems embedded in analog
environments

s Examples:
e A thermostat that heats/cools depending on the
temperature in the room

maximum temperature

T THERMOSTAT THERMOSTAT ¢

HEATING COOLING
minimum temperature

e A robot controller that changes the direction of
movement if the robot is too close to a wall.
e A biochemical reaction whose behaviour depends on
the concentration of the substances in the environment
29



Introduction (2)

s Applications:

Automotive Control
Avionics

Transportation Networks
Manufacturing

Robotics

Analysis of Biological Processes

Need for verification of safety properties !
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Preliminaries (1)

m A hybrid system is a finite automaton with real-valued
variables that change continuously according to a system of
differential equations at each location of the automaton

maximum temperature

1“»1«

minimum temperature

initial X=3
condition
R G G
ON _ OFF
x=1

m Restrict to linear differential equations at locations
32
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Preliminaries (2)

m A computation is a sequence of states
(discrete location,valuation of variables)

(lo,x0), (l1,21), (I2, z2), ...
such that

1. Initial state (lg,zg) satisfies the initial condition
2. For each consecutive pair of states (I;,x;), (l;41,%41):

e Discrete transition: there is a transition of the
automaton (I;,l;41,p) such that (z;,z;,41) = p

or

e Continuous evolution: there is a trajectory going
from x; to z;,4.1 along the flow determined by the
differential equation x = Ax + B at location [; = ;41

34



Preliminaries (3)

m A state is reachable if there exists a computation where it
appears

m Goal: generate invariant polynomial equalities
e We know how to deal with discrete systems
e How to handle continuous evolution 7

—— computing polynomial invariants of
linear systems of differential equations
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Invariants of Linear Systems
Problem

m Given a system =z = Ax + B and a set of initial values Inat,
find polynomials p evaluating to O at reachable points:

Vax* € Init, Vt> 0 p(P(x*,t)) =0

where ®(x*,t) is the flow = solution to z = Ax + B with
initial condition «* A

TN
NS
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Invariants of Linear Systems
Form of the Flow

m Solution to £ = Az 4+ B with initial condition z*
d(z*,t) = elz* + eAt(f(g e ATdr) B

s Can be expressed as polynomials in ¢, eTat, cos(bt), sin(bt),
where A = a + b: are eigenvalues of matrix A.

x O 0 1 0] x
Y | 0 0 O 1 Yy
v | | 00 0 -1/2 Uy
Uy O 0 1/2 0] Vy
(= "+ 2sin(t/2)vi + (2cos(t/2) — 2) v}
] v = y*—|—(—2cos(t/2)+2)v;—|—25in(t/2)fu;
vy = C€0s(t/2)v; —sin(t/2) vy
v = sin(t/2) v; + cos(t/2) v,
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Invariants of Linear Systems
Elimination of Time (1)

m Idea: eliminate terms depending on t from the flow
= Simple case:
eigenvalues of matrix A have real and imaginary parts in Q
e Jp € Q such that for all exponential terms e%:
e = (eP))C for a certain c € Z
If we introduce new variables u = ePt, v = e Pt

then either e = ylcl or et = yl¢l

e For trigonometric terms similarly for ¢ € Q and new
variables w = cos(qt), z = sin(qt)
39



Invariants of Linear Systems
Elimination of Time (2)

s Eliminate auxiliary variables using uwv = 1 and w2 + 22 =
by means of Grobner bases
m Use elimination term ordering with the auxiliary variables

the biggest ones
INITIAL CONDITIONS

FLOW o= o
(= x*—I—QZU;—I—(Qw—Q)’U; {UZ = -2
. — ij_( w2y, AUXILIARY
o = st EQUATIONS
{ w2422 = 1
U
v2 + vg =

(conservation of energy)

40



Invariants of Linear Systems
Elimination of Time (3)

m General case: similarly by computing Q-bases of the real
and imaginary parts of eigenvalues of matrix A

e Exponential terms: new variables =1, y1, ..., T, Vi
satisfying x;y; = 1

e [rigonometric terms: new variables wq, z1, ..., wy, 2
satisfying wj2 + sz —

m All polynomial invariants of linear system are generated

41
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Invariants of Hybrid Systems

Abstract Semantics of Continuous
Evolution
m System of linear differential equations =z := Az + B with
flow equations &4, ..., &, in variables x, =*, u;, v;, wj, Zj
m Input ideal: I
m Output ideal:
(I(x «— x*), P, ..., Pn, u;v; — 1,w]2 ~+ zj2 — 1) N R[x]
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Invariants of Hybrid Systems
Examples (1)

Variable b counts the number of bounces against wall

RIGHT MAGNETIC LEFT
INITIAL ' ST | '
CONDITIONS x = x=d—skip | Y=Y x=d—skip | % X
_ y=Vy V.= —v./2 = Y=Yy
VX_ ___________ > . . 2 y . .
Vy:—2 \./X=Vy=0 \;y:VX/Z \./X=Vy:0
X=y=b=0 b=0 4 h=0 b=0
T X=0—=Vy:=—Vy : b:=b+1
RIGHT — v, =-2A v, =2 A 2db—8b+y—+x =0
MAGNETIC — x—2vy—d:4/\v%—|—v§:8/\21);,;—1—y—|—2db—8b—|—d:4
LEFT — vy,=-2Av,=-2A2db—8b+y—x =38
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Invariants of Hybrid Systems
Examples (2)

Variable t counts the time at current location
Variable y counts the total time elapsed

Variable z counts the time the heater has been on
----- t=y=z= 0 |[INITIAL CONDITIONS

. _ S
= . t=a = t:=0 = 1
B t=a-b =t=0 |F1 o

. - . .

y=1 )./—14 y=1
z=1 z=0| t=b —t=0|2=1
ON, OFF ON;

Safety requirement: heater on < 40 % of the first 60 seconds
—— proved using polynomial invariants

ONy — y=t AN z=1t
OFF — —a’+4+ab+az+bz—by+bt=0
ON; — a2—2ab—az—bz—|—by—|—at20
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Related Work (1)

m (Sankaranarayanan & Sipma & Manna, 2004):
discovery of polynomial equality invariants using
constrained-based invariant generation and heuristics

m Advantages:
e Polynomial vector fields allowed in differential equations

m Disadvantages:
e NO completeness result

47



Related Work (2)

m (Laferriere & Pappas & Yovine, 1999):
computation of exact reachability set using
polynomial inequalities and quantifier elimination

m Advantages:
e Polynomial inequalities more expressive than equalities:

exact characterization of reachability set

m Disadvantages:
e More restricted linear systems: eigenvalues in Q or i-Q

e NO extension to hybrid systems
e Quantifier elimination more costly than Grobner bases
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Conclusions

m Method for finding all polynomial equality invariants of
general linear systems:

1. Solve differential equations
2. Eliminate time with Grobner bases

e Auxiliary variables

u; <« Pt w; < Cos(qt)
v, « e Pt z; <> sin(qt)

e Auxiliary equations:
u;v; = 1, wiz—l—zz-z:l

m Extension to hybrid systems using the abstract
interpretation framework
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