
Generating All Polynomial Invariants in

Simple Loops ?

E. Rodŕıguez-Carbonell a,∗, D. Kapur b

aSoftware Department, Technical University of Catalonia,
Jordi Girona, 1-3 08034 Barcelona (Spain)

bDepartment of Computer Science, University of New Mexico,
Albuquerque NM 87131-0001 (USA)

Abstract

This paper presents a method for automatically generating all polynomial invariants in simple
loops. It is first shown that the set of polynomials serving as loop invariants has the algebraic
structure of an ideal. Based on this connection, a fixpoint procedure using operations on ideals
and Gröbner basis constructions is proposed for finding all polynomial invariants. Most impor-
tantly, it is proved that the procedure terminates in at most m + 1 iterations, where m is the
number of program variables. The proof relies on showing that the irreducible components of
the varieties associated with the ideals generated by the procedure either remain the same or
increase their dimension at every iteration of the fixpoint procedure. This yields a correct and
complete algorithm for inferring conjunctions of polynomial equalities as invariants. The method
has been implemented in Maple using the Groebner package. The implementation has been used
to automatically discover non-trivial invariants for several examples to illustrate the power of
the technique.

Key words:
Loop invariant, Ideal of polynomials, Gröbner basis

1. Introduction

Program verification based on Floyd-Hoare’s inductive assertion method, using pre-
conditions, postconditions and loop invariants, was considered a major research problem

? This is a full version of the article appeared in ISSAC 2004 proceedings.
∗ Corresponding author.

Email addresses: erodri@lsi.upc.edu (E. Rodŕıguez-Carbonell), kapur@cs.unm.edu (D. Kapur).

URLs: www.lsi.upc.edu/~erodri (E. Rodŕıguez-Carbonell), www.cs.unm.edu/~kapur (D. Kapur).

Preprint submitted to Elsevier Science 26 January 2007

in the seventies, leading to the development of many program verification systems. How-
ever, limited progress was made in achieving the goal of mechanical verification of (even
partial) correctness of programs because:
• theorem provers, needed to establish the validity of the verification conditions, were

not sufficiently powerful;
• programs had to be annotated with loop invariants, for which user’s intervention was

critical; the few tools developed then (German and Wegbreit, 1975) for this purpose
were not effective.

Nonetheless, for life-critical systems it is still imperative to verify properties of pro-
grams (Hoare, 2003). With substantial progress in automated reasoning, several verifica-
tion techniques have emerged in the form of static analysis of programs (type checking,
type inference, extended static checking, abstract interpretation, etc.), model checking,
as well as applications of theorem proving to the verification of software and hardware.
However, the annotation burden remains. Our work attempts to deal with the problem
of automatically generating loop invariants, which is still unsolved.

In (Rodŕıguez-Carbonell and Kapur, 2005), an abstract framework for finding loop
invariants was presented. Properties of the language used for expressing invariants were
identified so that a generic correct and complete procedure for computing loop invariants
could be formulated.

In this paper, which is an extended version of (Rodŕıguez-Carbonell and Kapur,
2004b), we instantiate the approach proposed in (Rodŕıguez-Carbonell and Kapur, 2005)
when invariants are expressed as conjunctions of polynomial equalities. We consider pro-
grams composed by simple loops, i.e., unnested loops. It is shown that for a given loop,
the set {p} of polynomials such that p = 0 is an invariant, i.e., p evaluates to 0 when-
ever the control flow reaches the loop entry point, is a polynomial ideal; this ideal is
henceforth called the invariant polynomial ideal of the loop. A fixpoint procedure for
computing such ideal of polynomials is proposed, which is shown to be correct and com-
plete. If a loop does not have any non-trivial polynomial invariant, the procedure will
generate the polynomial 0 (which is equivalent to true) as invariant.

The main result of this paper is a proof of termination of the procedure for finding
polynomial invariants when assignment statements appearing in a loop are restricted to
be solvable (which generalise affine assignments) and have positive rational eigenvalues
(this technical restriction is motivated later in the paper). It is shown that the invariant
ideal is computed in at mostm+1 iterations, wherem is the number of program variables.
The proof of termination uses techniques from algebraic geometry to analyse the variety
associated with the ideal approximating, at every iteration of the procedure, the invariant
polynomial ideal of the loop. It is shown that the irreducible components of the varieties
associated with the generated ideals either remain the same or increase their dimension at
every iteration. Thus, at each step, either the invariant polynomial ideal has already been
computed, or the minimum of the dimensions of the non-invariant irreducible components
of the associated variety increases.

This proof of termination requires that assignments are solvable mappings with posi-
tive rational eigenvalues. However, we are unware of any example for which the procedure
does not terminate. We thus conjecture that the requirement of solvable mappings pos-
sessing positive rational eigenvalues is unnecessary. In fact, it is also proved in the paper
that, if the assignment statements in the body of a loop commute (i.e., the order in

2

which assignments are executed does not affect the result), the procedure for discovering
invariants terminates in at most n+ 1 iterations, where n is the number of assignments
in the body of the loop; this latter proof does not require the positiveness or rationality
of the eigenvalues of the assignments.

The procedure for discovering invariants has been implemented in Maple using the
Groebner package for manipulating ideals (see (Cox et al., 1996) for theoretical details).
The implementation has been successfully applied to several non-trivial programs to
automatically generate conjunctions of polynomial equalities as loop invariants. Some of
these examples are used in this paper to illustrate the key concepts of the approach.

The rest of the paper is organised as follows. After reviewing related work in the next
subsection, we introduce the theoretical notions in Section 2. In Section 3 we describe in
detail the kind of loops we are going to consider. In Section 4 it is shown that the set
of invariant polynomials of a loop has the algebraic structure of an ideal, which immedi-
ately suggests that polynomial ideal theory and algebraic geometry can give insight into
the problem of finding loop invariants. Section 5 presents the procedure for generating
polynomial invariants, expressed in terms of ideals. Section 6 gives the proofs of termi-
nation of the invariant generation procedure. We show in Section 7 how to implement
this procedure using Gröbner bases. We illustrate the method in Section 8 with some
examples; a table is also given providing information on programs successfully analysed
with our implementation. Finally, Section 9 summarises the contributions of the paper
and gives an overview on future research.

1.1. Background and Related Work

The problem of discovering invariants is a cornerstone in the verification of systems.
For this reason, invariant generation has been a major research goal since the seventies
(Wegbreit, 1974, 1975; German and Wegbreit, 1975; Katz and Manna, 1976; Cousot and
Cousot, 1976; Suzuki and Ishihata, 1977; Dershowitz and Manna, 1978). More specifically,
the synthesis of invariant affine equalities between program variables, a particular case
of invariant polynomial equalities, was first addressed in (Karr, 1976).

Recently, the interest in automatically deriving invariants of imperative programs has
resurged. For example, in (Gulwani and Necula, 2005) a unified framework for random
interpretation is proposed, which allows the extension of randomised intraprocedural
analysers to context-sensitive interprocedural analysers; further, this framework is in-
stantiated, e.g., for the discovery of invariant affine equalities.

Among the recent work on invariant generation, a remarkable amount of literature has
been devoted to the class of polynomial equality invariants. For example, for programs
with affine assignments, Müller-Olm and Seidl (Müller-Olm and Seidl, 2004b) have pro-
posed an interprocedural method for computing polynomial equalities of bounded degree
as invariants. The same authors (Müller-Olm and Seidl, 2004a) have also designed a
technique for discovering all the polynomial invariants of bounded degree in a program
with polynomial assignments and disequality tests.

In (Sankaranarayanan et al., 2004), Sankaranarayanan et al. have also presented a
method for discovering invariant polynomials. Their technique is an instance of the so-
called constraint-based invariant generation approach, as opposed to classical abstract
interpretation: it starts with a template polynomial with undetermined coefficients; then,
by imposing that the template is invariant, a system of constraints is obtained by means
of the Gröbner basis algorithm and heuristics; finally, the system of constraints is solved

3

and each solution for the values of the coefficients yields an invariant. Kapur has proposed
a related approach using quantifier elimination (Kapur, 2003). Unlike these techniques, a
major aspect of our work is that an implementation of our method has been performed,
which has been successfully applied on many examples (see Sections 7.1 and 8 for details).

Finally, in (Rodŕıguez-Carbonell and Kapur, 2004a; Rodriguez-Carbonell and Kapur,
2007) we have presented an approach based on abstract interpretation for generating
polynomial invariants of bounded degree. Whereas the technique can be applied to nested
loops and takes into account tests in conditional statements and loops, in order to guaran-
tee termination it is necessary to employ a widening operator, which may miss invariants.
A similar method has been suggested by Colón (Colón, 2004) based on the concept of
pseudo-ideal.

In contrast to the aforementioned techniques, from a theoretical viewpoint the ap-
proach proposed in this paper has the advantage of not requiring any a priori bound on
the degrees of the polynomials to be generated. This allows us to find all polynomial
invariants, which is regarded as a “challenging open problem” (Müller-Olm and Seidl,
2004a), at the cost of restricting the structure of the programs to which the method can
be applied.

2. Preliminaries

Given a field K, let K[x] = K[x1, ..., xm] denote the ring of polynomials in the variables
x = (x1, ..., xm) with coefficients from K. An ideal is a non-empty set I ⊆ K[x] that is
closed under addition and is such that if p ∈ K[x] and q ∈ I , then pq ∈ I . Given a set of
polynomials S ⊆ K[x], the ideal spanned by S is

{q ∈ K[x] | ∃k ≥ 1 q =
k∑

j=1

pjqj with pj ∈ K[x], qj ∈ S} .

This is the minimal ideal containing S, and we denote it by 〈S〉K[x] or simply by 〈S〉.
For an ideal I ⊆ K[x], a set S ⊆ K[x] such that I = 〈S〉 is called a basis of I , and we
say that S generates I . Given two ideals I , J ⊆ K[x], their intersection I ∩J is an ideal;
however, there is no general expression for a basis of I ∩ J in terms of generators of I
and J .

For any set S of polynomials in K[x], the variety of S over Km is defined as its set of
zeroes, V(S) = {ω ∈ Km | p(ω) = 0 ∀p ∈ S}. When taking varieties we can assume S
to be an ideal, since V(〈S〉) = V(S). For A ⊆ Km, the ideal I(A) = {p ∈ K[x]| p(ω) =
0 ∀ω ∈ A} is called the ideal of A. We write IV(S) instead of I(V(S)).

Ideals and varieties are dual concepts, in the sense that, given any two ideals I, J ,
V(I ∩ J) = V(I) ∪ V(J) and, if I ⊆ J , then V(I) ⊇ V(J). Further, for A,B ⊆ Km

(in particular, if A, B are varieties), then I(A ∪ B) = I(A) ∩ I(B) and A ⊆ B implies
I(A) ⊇ I(B). For any ideal I , the inclusion I ⊆ IV(I) always holds; IV(I) represents the
largest set of polynomials with the same zeroes as I 1 . Since any I satisfying I = IV(I)
is the ideal of the variety V(I), we say that any such I is an ideal of variety. For any

1 If the field K is algebraically closed then IV(I) = Rad(I), the radical of I, which is the set of
polynomials p such that there exists k ∈ N satisfying pk ∈ I.

4

A ⊆ Km, it can be seen that the ideal I(A) is an ideal of variety, i.e., IVI(A) = I(A).
For further detail on these concepts, see (Cox et al., 1996).

A polynomial mapping is a vector of polynomials g = (g1, ..., gm) ∈ K[x]
m

. In partic-
ular, a mapping g is said to be affine if it is of the form g(x) = Ax + b, where A is an
m×m matrix with coefficients in K, and b ∈ Km.

A polynomial mapping g ∈ K[x]
m

is invertible if ∃g′ ∈ K[x]
m

such that g′(g(x)) =
g(g′(x)) = x; unless otherwise stated, g−1 denotes this mapping g′. Given a set S ⊆
K[x] and a polynomial mapping g ∈ K[x]m, we define their composition as S ◦ g(x) =
{p(g1(x), ..., gm(x)) ∈ K[x] | p ∈ S}. If I ⊆ K[x] is an ideal and g is an invertible
polynomial mapping, then I ◦ g(x) is also an ideal.

3. Programming Model

In this section we present our programming model: the domain of variables, the struc-
ture of loops and the expressions allowed in programs. Below, we give the intuition behind
this programming model and, in particular, the rationale for the restrictions imposed on
assignments.

Since our goal is to automatically generate polynomial equalities as invariants, we
must approximate tests, as well as assignments, by polynomials. In the case of tests, we
have decided to ignore them, since including conditions easily leads to non-computability:
in (Müller-Olm and Seidl, 2004) it is proved that the set of all affine equality invariants is
not computable if affine equality tests are allowed; in particular, the set of all polynomial
equality invariants is not computable if polynomial equality tests are permitted. More-
over, despite the loss of precision involved with this abstraction, we were able to employ
the generated invariants in order to prove the partial correctness of many programs, some
of which are shown in Sections 7 and 8.

Regarding assignments, if arbitrary polynomial mappings are allowed, their repeated
applications can lead to non-polynomial effects. For example, even if an assignment is
as simple as x := 2x, its repeated application gives x = 2k x0 after k applications
on the starting value x0 of x. However, in the case of affine mappings, their repeated
applications can be expressed in terms of polynomials multiplied by exponentials of the
eigenvalues of the transformation matrices. Further, these exponentials can be related to
each other using auxiliary variables and polynomial relations. It will be shown that for
affine mappings, their repeated applications can indeed be expressed in a “polynomial
manner.”

In fact, the requirement that the assignments be affine can be relaxed. To that end
we introduce the notion of solvable mappings; these are recursively built using blocks of
variables, starting with a block of variables whose assignments are expressed as affine
transformations. Moreover, the proof of termination of the proposed procedure needs yet
another condition, namely that the eigenvalues of the transformation matrices associated
with the assignments be positive and rational.

3.1. Simple Loops

Let x = (x1, x2, ..., xm) be the program variables, which are assumed to take rational
values. Regarding loop structure, the commands we allow in loops are assignments and
conditional statements. Programs may have to be abstracted so that guards in loops

5

and conditional statements can be ignored; in such cases, it is often useful to represent
a conditional statement if B(x) then x := f (x) else x := g(x) as x := f(x) or

x := g(x) (thus ignoring the boolean condition B(x)). Thus we assume that loops have
the following simple form:

while ? do

x := f1(x);
or

· · ·
or

x := fn(x);
end while,

where each x := fi(x) is a vector of simultaneous assignments of all the variables, i.e.,
fi : Qm → Qm (1 ≤ i ≤ n), and ? means that the exit condition is ignored. Any sequence
of successive assignments of variables can be transformed into this form without loss of
generality (with the variables not being assigned getting the identity map).

3.2. Solvable Mappings

In this section we introduce the concept of solvable mapping, which generalises that
of affine mapping. Intuitively, a solvable mapping g is a polynomial mapping such that
the recurrence xs+1 = g(xs) can be solved effectively and such that its solution (which
is given by the general power gs) has a “polynomial structure”, i.e., it can be expressed
as a vector of polynomials, possibly using new variables related by polynomial equations
(see the example below).

Given g ∈ Q[x]m and a subvector of the variables w ⊆ x, we write gw = (gj)xj∈w :

Qm → Q|w|. For instance, for the mapping g(a, b, p, q) = (a− 1, b, p, q + bp):

ga(a, b, p, q) = a− 1 ,

g(a,b,p)(a, b, p, q) = (a− 1, b, p) ,

gq(a, b, p, q) = q + bp .

Definition 1 Let g ∈ Q[x]
m

be a polynomial mapping. g is solvable if there exists a
partition of x into subvectors of variables, x = w1 ∪ · · · ∪wk, wi ∩wj = ∅ if i 6= j, such
that ∀j : 1 ≤ j ≤ k we have

gwj (x) = Mjwj
T + Pj(w1, ...,wj−1) ,

where Mj ∈ Q|wj |×|wj | is a matrix and Pj is a vector of |wj | polynomials in the ring
Q[w1, ...,wj−1]. For j = 1, P1 must be a constant vector, implying that gw1

is an affine
mapping.

The eigenvalues of g are the eigenvalues of the matrices Mj , 1 ≤ j ≤ k.

In our programming model, assignment mappings have to be solvable with positive
rational eigenvalues. We show in Section 8 that there are many programs that satisfy
this requirement.

6

Notice that any affine mapping g(x) = Ax + b is solvable, since we can take w1 = x,
M1 = A, P1 = b, and then the eigenvalues of g are the eigenvalues of A. Consider for
example the following loop, which is an abstraction of a program that computes the
product of two integers x and y:

(a, b, p, q):=(x, y, 1, 0);
while ? do

(a, b, p, q) := (a/2, b/2, 4p, q);
or (a, b, p, q) := (a− 1, b, p, q + bp);
or (a, b, p, q) := (a, b− 1, p, q + ap);
or (a, b, p, q) := (a− 1, b− 1, p, q + (a+ b− 1)p);

end while

For instance, the first assignment mapping g1(a, b, p, q) = (a/2, b/2, 4p, q) is affine and
therefore solvable; its eigenvalues are {1/2, 4, 1}. Also the non-linear mapping g2(a, b, p, q)
= (a − 1, b, p, q + bp) is solvable: we can take w1 = (a, b, p), M1 = diagonal(1, 1, 1),
P1 = (−1, 0, 0), as (g2)(a,b,p) = (a − 1, b, p); and then w2 = (q), with M2 = (1) and
P2 = (bp), as (g2)q = q + bp. In this case the eigenvalues of g2 are just {1}.

To motivate the term solvable , let us compute g2
s for an arbitrary s ∈ N, which is the

effect of applying the second assignment s times. This is equivalent to explicitly solving
the recurrence (as+1, bs+1, ps+1, qs+1) = g2(as, bs, ps, qs), whose (symbolic) solution is
g2

s(a0, b0, p0, q0). We first solve the recurrence for as, bs, ps (notice the correspondence
with the partition of the variables above):

as+1 = as − 1
bs+1 = bs
ps+1 = ps

=⇒

as = a0 − s
bs = b0
ps = p0

Now, as qs+1 = qs + bsps, by plugging in the expressions for the variables that have
already been solved we get the recurrence qs+1 = qs + b0p0. The solution to this equation
is qs = q0 + b0p0s, and thus g2

s(a, b, p, q) = (a− s, b, p, q+ bps). Notice that, in this case,
we have obtained a vector of polynomials in the program variables a, b, p, q and in the
auxiliary variable s. In Section 7, this observation is generalised to all solvable mappings
with positive rational eigenvalues.

4. Ideals of Invariant Polynomials

In this section we give the definition of invariant polynomial for the loops we are
considering, and we also see that the algebraic structure of an ideal is the natural object
when studying them.

Intuitively, an invariant polynomial is a polynomial that evaluates to 0 at any program
state at the loop entry point. For example, in the loop

(a, b, c):=(0, 1, 1);
while ? do

(a, b, c):=(a+ 1, b+ c+ 2, c+ 2);
end while

7

it can be seen that the polynomials c − 2a − 1 and b − (a + 1)2 always yield 0 when
evaluated at the loop entry point, and so are invariant.

We write the tuple of right-hand sides of loop assignments f1, ...,fn as (f). Consider
the set of strings over the alphabet [n] = {1, ..., n}, which we denote by [n]∗. For every
string σ ∈ [n]∗ we inductively define the mapping (f)σ as

(f)λ(x) = x, (f)σ.i(x) = fi((f)σ(x)) ,

where λ is the empty string. Each string σ represents an execution path of the loop, and
(f)σ maps initial states of the loop to states after executing the path σ.

Definition 2 Given a set of initial conditions I0 ⊆ Q[x], a polynomial p ∈ Q[x] is
invariant at the loop entry point with respect to I0 if

∀σ ∈ [n]∗ ∀ω ∈ V(I0), p((f)σ(ω)) = 0 .

Notice that, if the polynomial p is invariant with respect to I0, then it is invariant
with respect to 〈I0〉, as V(I0) = V(〈I0〉). So we can assume that I0 is always an ideal.
In the example above, we have I0 = 〈a, b− 1, c− 1〉.

The following result shows that the set of all polynomial invariants with respect to a
given I0 is an ideal:

Proposition 3 Given an ideal I0 ⊆ Q[x],

I∞ := {p ∈ Q[x] | ∀σ ∈ [n]∗ ∀ω ∈ V(I0) p((f)σ(ω)) = 0}

is an ideal.

Proof. As 0 ∈ I∞, the sum of two polynomials in I∞ is in I∞, and the product of an
arbitrary polynomial by a polynomial in I∞ is in I∞ too, I∞ is an ideal. 2

We will refer to I∞ as the invariant polynomial ideal of the loop. By Hilbert’s basis
theorem, I∞ has a finite basis. The conjunction of polynomial equations corresponding
to the polynomials in any of its bases, completely describes the invariants of the loop.
The key challenge is in computing I∞. The rest of the paper addresses this issue.

5. Invariant Generation Procedure

In this section we describe a fixpoint procedure which, given the assignment mappings
f1, ...,fn and an ideal I0 of polynomials satisfied by the initial values, returns the invari-
ant polynomial ideal I∞ on termination. We will refer to it as the Invariant Generation
Procedure.

In order to have a one-to-one correspondence between ideals and varieties, we need
that all ideals below, including I0, be ideals of variety, i.e., I = IV(I). The Invariant
Generation Procedure 2 is as follows:

2 This procedure can be seen in the abstract interpretation framework (Cousot and Cousot, 1977) as
an accelerated forward propagation using ideals of polynomials as abstract values. For the sake of self-
containedness, we have not used this approach.

8

Input:

• The solvable mappings with positive rational eigenvalues f1, ...,fn

of the assignments.
• An ideal I0 of polynomials satisfied by the initial values such that
I0 = IV(I0).

Output:

• The invariant polynomial ideal I∞.

var I, I ′ : ideals in Q[x] end var

I := I0
do

I ′ := I
I :=

⋂

s∈N

⋂n
i=1 I ◦ fi

−s(x)
while I ′ 6= I
return I

The assignment mappings are invertible, as solvable mappings with positive rational
eigenvalues are invertible (see Appendix A.2).

Theorem 5 below ensures that, on termination, the result, i.e., the ideal stored in the
variable I , is correct, in the sense that all polynomials contained in it are invariant for
the loop, and complete, in the sense that it does not miss any polynomial invariant.

Let us denote the ideal stored in the variable I at the N -th iteration by IN . We need
the following lemma:

Lemma 4 ∀N ∈ N, I∞ ⊆ IN .

Proof. Let us prove the lemma by induction over the number of iterations N . If N = 0,
since ∀ω ∈ V(I0) ∀p ∈ I∞ p(ω) = 0, we have I∞ ⊆ IV(I0) = I0.

Now let us prove the inductive step. If I∞ ⊆ IN , as IN+1 = ∩s∈N ∩n
i=1 IN ◦ fi

−s(x),
it is enough to prove that I∞ ⊆ ∩s∈N ∩n

i=1 I∞ ◦ fi
−s(x). We have to show that for any

s ∈ N and 1 ≤ i ≤ n, I∞ ⊆ I∞ ◦ fi
−s(x), or equivalently that ∀p ∈ I∞, p(fi

s(x)) ∈ I∞.
But this is the case, as ∀σ ∈ [n]∗ , ∀ω ∈ V(I0),

p(fi
s((f)σ(ω))) = p((f)σ.

s times

︷︸︸︷
i.···.i (ω)) = 0 .

2

Theorem 5 If the Invariant Generation Procedure terminates, I = I∞.

Proof. By Lemma 4, I ⊇ I∞. Below, we show that I ⊆ I∞. We prove that ∀p ∈ I
∀σ ∈ [n]∗ ∀ω ∈ V(I0) p((f)σ(ω)) = 0 by induction over the length of σ.

If σ = λ, then ∀p ∈ I ∀ω ∈ V(I0) p((f)λ(ω)) = 0 as I ⊆ I0. Now, assume that the
claim holds for strings of length ≤ k. Given σ of length k + 1, we can write σ = τ.i for
certain τ ∈ [n]∗ of length k and i such that 1 ≤ i ≤ n. But if the procedure terminates,

9

then I ⊆ ∩s∈N ∩n
i=1 I ◦ fi

−s(x); in particular, I ⊆ I ◦ fi
−1(x), i.e., ∀p ∈ I p(fi(x)) ∈ I .

Then

p((f)σ(ω)) = p((f)τ.i(ω)) = p(fi((f)τ (ω))) = 0

by induction hypothesis. 2

6. Termination of the Invariant Generation Procedure

In this section, we give a proof of termination of the Invariant Generation Procedure
under the condition that the assignment mappings are solvable and have positive eigen-
values. For the sake of simplicity, we will work in the real field R. As in Section 5, let IN

stand for the ideal computed at the end of the N -th iteration of the Invariant Generation
Procedure.

As a motivating example for illustrating the key ideas, consider the following loop:

(x, y):=(0, 0);
while ? do

(x, y):=(x+ 1, y); or (x, y):=(x, y + 1);
end while

This toy program begins with the point (0, 0) and then repeatedly chooses non-
deterministically to move horizontally or vertically, thus covering all pairs of natural
numbers N × N.

Let us apply the procedure. In this case we have that

f1(x, y) = (x + 1, y), f1
−s(x, y) = (x − s, y) ,

f2(x, y) = (x, y + 1), f2
−s(x, y) = (x, y − s) .

As both x and y are initialised to 0 before entering the loop, I0 = 〈x, y〉. So I0 ◦
f1

−s(x, y) = 〈x − s, y〉 and I0 ◦ f2
−s(x, y) = 〈x, y − s〉. We have to compute

⋂

s∈N I0 ◦

fi
−s(x, y) for i = 1, 2. The finite intersection from 0 to a certain N ∈ N is (for i = 1)

N⋂

s=0

I0 ◦ f1
−s(x, y) =

N⋂

s=0

〈x− s, y〉 =
〈 N∏

s=0

(x− s), y
〉

,

as
⋂N

s=0〈x−s〉 = 〈
∏N

s=0(x−s)〉: since 〈x−s〉 is the set of all multiples of x−s,
⋂N

s=0〈x−s〉

is the set of common multiples of x− s for 0 ≤ s ≤ N ;
∏N

s=0(x− s) is the least common

multiple of x− s for 0 ≤ s ≤ N , and so it is a generator of
⋂N

s=0〈x − s〉.
Now, if s ranges in N, then

∏

s∈N(x − s) is not a polynomial anymore, and so it

cannot be in the intersection. Thus
⋂

s∈N I0 ◦ f1
−s(x, y) = 〈y〉. Analogously,

⋂

s∈N I0 ◦

f2
−s(x, y) = 〈x〉. Finally, I1 = 〈y〉 ∩ 〈x〉 = 〈xy〉 as xy is the least common multiple

of x and y. Figure 1 shows the corresponding variety, together with the initial point
and its successive images by f1 and f2. Notice that the dimensions of both irreducible
components of V(I1), the two coordinate axes, are greater than the dimension of V(I0),
the origin.

10

()V I0

)1IV(

x

y

2
f

(0,0) f 2

(0,0) 1f 2
1f

(0,0)

(0,0)

2

Fig. 1. Varieties of V(I0) and V(I1)

Let us apply another iteration of the Invariant Generation Procedure. Using a similar

argument as above,
⋂

s∈N I1 ◦ f1
−s(x, y) =

⋂

s∈N I1 ◦f2
−s(x, y) = {0}. Thus I2 = {0}. It

is clear that in the following iteration, the procedure terminates yielding only the trivial

invariant, which is the polynomial equation 0 = 0. Again, notice that the dimension of
V(I2) = R2 is greater than the dimension of V(I1).

In this example, the dimension of (the variety of) the computed ideal increases at each

step until termination. We show below that in general, at each step either the invariant
polynomial ideal has been computed or the minimum dimension of the non-invariant

irreducible components of the variety increases.

6.1. Proof of Termination

The key concept in the proof of termination is that of dimension of a variety (Becker
and Weispfenning, 1993):

Definition 6 Given a variety V 6= ∅, its (Krull) dimension is

dimV = max{d | V = V0 ⊃ V1 ⊃ · · · ⊃ Vd,with the Vi irreducible varieties} .

Important properties are that the dimension is monotone, i.e., V ⊆W implies dim V ≤
dimW , and that dim Rm = m.

We also recall the following basic theorem from algebraic geometry (see Cox et al.

(1996) for example):

Theorem 7 Any variety V can be uniquely expressed as a finite union of irreducible

varieties Vi with Vi 6⊆ Vj for i 6= j (i.e., irredundant varieties).

The varieties Vi appearing in this unique decomposition are called the irreducible

components of V .
In order to show termination of the Invariant Generation Procedure, we also need the

following auxiliary results:

Theorem 8 In the Invariant Generation Procedure, ∀N ∈ N IN = IV(IN).

11

Proof. See at the end of Appendix A.1. 2

Theorem 9 Let J ⊆ R[x] be a prime ideal of variety and g ∈ R[x]m be a solvable
mapping with positive eigenvalues. Then

⋂

s∈N J ◦ g−s(x) is also a prime ideal. Moreover,
if g(V(J)) 6⊆ V(J), then dimV(

⋂

s∈N J ◦ g−s(x)) > dimV(J).

Proof. Let us denote the ideal
⋂

s∈N J ◦ g−s(x) by I . The ideal I is prime by Theorem
29 in Appendix A.2 and Theorem 31 in Appendix A.3, respectively. For the second claim,
let d = dim V(J) and V0 = V(J) ⊃ V1 ⊃ · · · ⊃ Vd be a maximal chain of irreducible
varieties. Since I is prime, V(I) is irreducible. Moreover, V(I) ⊇

⋃

s∈N g
s(V(J)) ⊃ V(J),

as g(V(J)) 6⊆ V(J) by hypothesis. So, V(I) ⊃ V(J) ⊃ V1 ⊃ · · · ⊃ Vd is a chain of
irreducible varieties, and therefore dimV(I) ≥ d+ 1 > d = dimV(J). 2

Lemma 10 If J,K ⊆ R[x] are ideals and g ∈ R[x]m is an invertible polynomial map-
ping, then (J ∩K) ◦ g(x) = (J ◦ g(x)) ∩ (K ◦ g(x)).

Proof. Let us see ⊆. Let p ∈ (J∩K)◦g(x). Then there exists q ∈ J∩K such that p = q◦g.
Since q ∈ J , p ∈ J ◦ g(x). And as q ∈ K, p ∈ K ◦ g(x). So p ∈ (J ◦ g(x)) ∩ (K ◦ g(x)).

Now let us see ⊇. Let p ∈ (J ◦ g(x)) ∩ (K ◦ g(x)). Then there exist q ∈ J such that
p = q◦g and q′ ∈ K such that p = q′ ◦g. Thus q = q◦g◦g−1 = p◦g−1 = q′ ◦g◦g−1 = q′.
So q = q′ ∈ J ∩K and p ∈ (J ∩K) ◦ g(x). 2

Finally we give the proof of termination of the Invariant Generation Procedure. The
main idea is as follows. We first show that V(IN+1) can be decomposed as the union
of: i) the irreducible components of V(IN) that are invariant, in the sense that they are
preserved by all assignment mappings; and ii), other irreducible varieties related to the
non-invariant irreducible components of V(IN). Moreover, the minimum dimension of
the varieties in ii) is strictly greater than the minimum dimension of the non-invariant
irreducible components of V(IN). The key observation is that, if IN+1 is not the invariant
polynomial ideal, and thus there are irreducible components of V(IN+1) that are not in-
variant, then these non-invariant components must appear in ii). Therefore, the minimum
dimension of the non-invariant irreducible components has increased strictly. However,
this dimension cannot increase indefinitely: since there are m variables x1, ..., xm, we get
the final bound m+ 1.

Theorem 11 The Invariant Generation Procedure terminates in at most m + 1 itera-
tions.

Proof. Let us fix N ∈ N. We denote by Irr(V(IN)) = {V1, ..., Vk} the irreducible compo-
nents of V(IN). We define Jj := I(Vj). Then the Jj are prime ideals, IV(Jj) = IVI(Vj) =
I(Vj) = Jj , and by Theorem 8,

IN = IV(IN) = I
(k⋃

j=1

Vj

)

=

k⋂

j=1

I(Vj) =

k⋂

j=1

Jj .

Then, using the above equation and Lemma 10,

12

IN+1 =

n⋂

i=1

⋂

s∈N

IN ◦ fi
−s(x) =

=

n⋂

i=1

⋂

s∈N

(k⋂

j=1

Jj

)

◦ fi
−s(x) =

k⋂

j=1

n⋂

i=1

⋂

s∈N

Jj ◦ fi
−s(x) , (1)

and

V(IN+1) = V
(k⋂

j=1

n⋂

i=1

⋂

s∈N

Jj ◦ fi
−s(x)

)

=

k⋃

j=1

n⋃

i=1

V
(⋂

s∈N

Jj ◦ fi
−s(x)

)

.

For 1 ≤ i ≤ n and 1 ≤ j ≤ k such that fi(V(Jj)) ⊆ V(Jj), by induction ∀s ∈ N

fi
s(V(Jj)) ⊆ V(Jj); and therefore ∀s ∈ N,

Jj = IV(Jj) ⊆ I(fi
s(V(Jj))) = IV(Jj ◦ fi

−s(x)) = Jj ◦ fi
−s(x) .

As Jj = Jj ◦ fi
0(x), Jj = ∩s∈N Jj ◦ fi

−s(x) and V(Jj) = V(∩s∈N Jj ◦ fi
−s(x)). Let us

write Inv = {(i, j) | fi(V(Jj)) ⊆ V(Jj)}. Now we can decompose V(IN+1) as follows:

V(IN+1) =

k⋃

j=1

n⋃

i=1

V
(⋂

s∈N

Jj ◦ fi
−s(x)

)

=

=

(
⋃

(i,j)∈Inv

V
(⋂

s∈N

Jj ◦ fi
−s(x)

))

∪

(
⋃

(i,j)6∈Inv

V
(⋂

s∈N

Jj ◦ fi
−s(x)

))

=

=
(⋃

(i,j)∈Inv

V(Jj)
)

∪

(
⋃

(i,j)6∈Inv

V
(⋂

s∈N

Jj ◦ fi
−s(x)

))

=

=
(k⋃

j=1
∃i | (i,j)∈Inv

V(Jj)
)

∪

(
⋃

(i,j)6∈Inv

V
(⋂

s∈N

Jj ◦ fi
−s(x)

))

=

=
(k⋃

j=1
∀i | (i,j)∈Inv

V(Jj)
)

∪

(
⋃

(i,j)6∈Inv

V
(⋂

s∈N

Jj ◦ fi
−s(x)

))

.

The last equality follows from the fact that if there exist i, i′ such that (i, j) ∈ Inv
and (i′, j) 6∈ Inv, then V(Jj) ⊂ V(

⋂

s∈N Jj ◦ fi′

−s(x)); so V(Jj) is already taken into
account on the right-hand side of the union.

By Theorem 9, all the varieties in this decomposition are irreducible. So the varieties
in the (unique irredundant) irreducible decomposition of V(IN+1) must appear in the
above union.

For each ideal IN computed by the Invariant Generation Procedure we distinguish
two cases:

(1) ∀i, j such that 1 ≤ i ≤ n, 1 ≤ j ≤ k we have (i, j) ∈ Inv, which implies Jj =
∩s∈N Jj ◦ fi

−s(x). Then by Equation (1), IN+1 = IN and so IN = I∞.

13

(2) ∃i, j such that 1 ≤ i ≤ n, 1 ≤ j ≤ k and (i, j) 6∈ Inv. Then we can define

∆(IN) = min{dimV | V ∈ Irr(V(IN)) and ∃i such that fi(V) 6⊆ V } ,

where Irr(V(IN)) is the set of irreducible components of V(IN).
Further, if IN+1 6= I∞, IN+1 must satisfy Case (2). Then

∆(IN+1) = min{dimV | V ∈ Irr(V(IN+1)) and ∃i such that fi(V) 6⊆ V } ≥

≥min{dimV(∩s∈N Jj ◦ fi
−s(x))| (i, j) 6∈ Inv} >

>min{dimV(Jj)| ∃i such that (i, j) 6∈ Inv} = ∆(IN) ,

as by Theorem 9, fi(V(Jj)) 6⊆ V(Jj) implies dimV(∩s∈N Jj ◦ fi
−s(x)) > dimV(Jj).

Finally, let us assume that the procedure takes more thanm+1 iterations to terminate,
and we will get a contradiction. In this case we have that ∀N : 1 ≤ N ≤ m, IN 6= I∞. As
we have seen above, this implies Case (2), in particular that ∆(IN) > ∆(IN−1). Since
∆(I0) ≥ 0, by induction ∆(Im) ≥ m. So Im = R[x] and V(Im) = Rm. But then it is
impossible that ∃i : 1 ≤ i ≤ n such that fi(R

m) 6⊆ Rm. 2

Thus, given a loop with m variables and n non-deterministic assignments which are
solvable mappings with positive rational eigenvalues, the Invariant Generation Procedure
takes at most m + 1 iterations to terminate. Nevertheless, the computational complex-
ity of each of these iterations may be proportional to the number of assignments n and
doubly exponential in the number of variables m, due to the application of the Gröbner
basis algorithm. Other related approaches using Gröbner bases as well, such as (Sankara-
narayanan et al., 2004), also have this severe theoretical complexity bound. Similarly,
the approach proposed in (Kapur, 2003), which relies on real quantifier elimination, also
has a worst-case complexity which is doubly exponential in the number of variables m.
Moreover, the method presented in (Müller-Olm and Seidl, 2004a) does not allow upper
complexity bounds, as the proof of termination of the proposed algorithm depends on
Hilbert’s basis theorem.

On the other hand, the methods based on linear algebra, like (Müller-Olm and Seidl,
2004b) and (Colón, 2004), have complexity which is polynomial in the number of variables
m if the degree is fixed a priori; however, they are exponential once the degree is left as
a parameter.

6.2. Commuting Assignments

In the case where a loop has many variables whereas the number of assignments in the
body of the loop is small, we are able to derive a better upper bound on the number of
iterations until termination provided the assignments are commuting. This condition will
be satisfied, for example, if different assignments change different subsets of variables.

More specifically, in this section we prove that if assignment mappings commute, i.e.,
fi ◦ fj(x) = fj ◦ fi(x) for 1 ≤ i, j ≤ n, the procedure terminates in at most n + 1
iterations, where n is the number of non-deterministic assignments in the body of the
loop (in other words, the number of branches control flow may take). Notice that, unlike
in the proof of termination above, we do not require any condition on the positivity of
the eigenvalues of assignment mappings.

14

We first prove a more general fact, namely, that at the N -th iteration of the Invariant
Generation Procedure, the effect of all possible compositions of assignments with ≤ N−1
alternations has been considered. Using this general result we show that, if the assignment
mappings commute, then an arbitrary execution path has the same effect as the first
assignment mapping being executed first followed by the second assignment followed by
the third assignment, etc. I.e., the order in which assignment mappings are executed does
not matter.

Given a string σ ∈ [n]∗ we define ν(σ), the number of alternations of σ as:

• ν(λ) = −1 (λ is the empty string),
• ν(i) = 0,
• ν(i.j.σ) = ν(j.σ) if i = j,
• ν(i.j.σ) = 1 + ν(j.σ) if i 6= j,
(1 ≤ i, j ≤ n).

Lemma 12 ∀N ∈ N,

IN =
⋂

ν(σ)≤N−1

I0 ◦ ((f)σ)−1(x) .

Proof. Let us prove it by induction over N . If N = 0, then the only string σ such that
ν(σ) ≤ −1 is σ = λ, the empty string. Since I0 ◦ ((f)λ)−1(x) = I0, our claim holds.

Now let us assume that N > 0. By definition of IN ,

IN =

n⋂

i=1

⋂

s∈N

IN−1 ◦ fi
−s(x) .

Applying the induction hypothesis and using Lemma 10,

IN =

n⋂

i=1

⋂

s∈N

(⋂

ν(σ)≤N−2

I0 ◦ ((f)σ)−1
)

◦ fi
−s(x) =

=

n⋂

i=1

⋂

s∈N

⋂

ν(σ)≤N−2

(I0 ◦ ((f)σ)−1) ◦ fi
−s(x) =

=

n⋂

i=1

⋂

s∈N

⋂

ν(σ)≤N−2

I0 ◦ (((f)σ)−1 ◦ fi
−s)(x) =

=

n⋂

i=1

⋂

s∈N

⋂

ν(σ)≤N−2

I0 ◦ (fi
s ◦ (f)σ)−1(x) =

=

n⋂

i=1

⋂

s∈N

⋂

ν(σ)≤N−2

I0 ◦ ((f)σ.

s times
︷︸︸︷
i.···.i)−1(x) =

⋂

ν(σ)≤N−1

I0 ◦ ((f)σ)−1(x) .

15

2

Theorem 13 If the assignment mappings fi commute, i.e., ∀i, j : 1 ≤ i, j ≤ n fi ◦
fj(x) = fj ◦fi(x), then the Invariant Generation Procedure terminates in at most n+1
iterations.

Proof. In order to prove that the Invariant Generation Procedure terminates in at most
n + 1 iterations, we have to show that In+1 = In. Now, for any string σ (in particular,
if ν(σ) ≤ n), we can build a string τ of the form 1k1 .2k2 . · · · .nkn such that ν(τ) ≤ n− 1
and (f)σ = (f)τ by rearranging the mappings fi, which by hypothesis commute. Then,
by Lemma 12

In+1 =
⋂

ν(σ)≤n

I0 ◦ ((f)σ)−1(x) =
⋂

ν(τ)≤n−1

I0 ◦ ((f)τ)−1(x) = In .

So the procedure terminates in at most n+ 1 iterations. 2

7. Approximating with Gröbner Bases

In this section, we show how the Invariant Generation Procedure can be implemented
with Gröbner bases and elimination theory. We also prove that the approximations per-
formed are precise enough so as to guarantee that we do not lose completeness.

The Invariant Generation Procedure cannot be directly implemented because of

I :=
⋂

s∈N

n⋂

i=1

I ◦ fi
−s(x) ,

since infinite intersection of ideals cannot be effectively computed.
By considering s as a new variable, if a general expression for each fi

−s for 1 ≤ i ≤ n
can be computed as a polynomial in the variables x, s, then s can be eliminated. Assuming
that fi

−s(x) ∈ Q[s,x]m and given a basis of the ideal I ⊆ Q[x], we get a basis of the
ideal I ◦fi

−s(x) ⊆ Q[s,x] by substituting the variables x by fi
−s(x) in the polynomials

in the basis of I . Then Gröbner bases can be used to compute the finite intersection
∩n

i=1I ◦ fi
−s(x). From the ideal thus obtained, we can compute an elimination ideal

eliminating s, again using a Gröbner basis algorithm with an elimination term ordering
in which s is bigger than all other variables x. In other words, we eliminate s from
∩n

i=1I ◦ fi
−s(x).

For instance, in the example from Section 4, there is one single assignment mapping
f(a, b, c) = (a + 1, b + c + 2, c + 2). By linear algebra, we compute f s(a, b, c) = (a +
s, b + sc + s + s2, c + 2s); the inverse f−s(a, b, c) = (a − s, b − sc − s + s2, c − 2s) is
obtained by substituting s by −s. Since before executing the loop a = 0, b = c = 1, we
have I0 = 〈a, b− 1, c− 1〉. Then I0 ◦f−s(a, b, c) = 〈a− s, b− sc− s+ s2 − 1, c− 2s− 1〉,
which after elimination of the variable s yields 〈c− 2a− 1, b− (a+ 1)2〉. As c − 2a− 1
and b − (a + 1)2 are invariant polynomials, the procedure has reached a fixpoint and
terminates.

16

Nevertheless, there is a problem with this approach: the hypothesis fi
−s(x) ∈ Q[s,x]

does not necessarily hold in general. Consider the example from Section 3; exponential

terms might appear:

f1(a, b, p, q) = (a/2, b/2, 4p, q) ,

f1
−s(a, b, p, q) = (2sa, 2sb, (1/4)sp, q) .

Notice that f1
−s is not a polynomial mapping in s, a, b, p, q. However, if new auxiliary

variables are introduced to replace 2s, (1/2)s, say u, v, respectively, then

f1
−s(a, b, p, q) = (ua, ub, v2p, q),

subject to the polynomial relation uv = 1. In this case, the eigenvalues of f1 are

{1/2, 4, 1}, which yield the exponential terms 2s and (1/4)s in f1
−s ; the variables u and

v are introduced to substitute for these exponentials so that f1
−s can be represented as

a polynomial mapping. In general, the following result enables to express powers of solv-

able mappings with positive rational eigenvalues as polynomial mappings using auxiliary

variables:

Theorem 14 Let g ∈ Q[x]m be a solvable mapping with positive rational eigenvalues.

Then ∀j : 1 ≤ j ≤ m, ∀s ∈ Z , gs
j (x), the j-th component of gs(x) (where negative

exponents mean powers of the inverse of g), can be expressed as

gs
j (x) =

rj∑

l=1

Pjl(s,x)(γjl)
s ,

where for 1 ≤ j ≤ m, there exists rj ∈ N such that for 1 ≤ l ≤ rj , Pjl ∈ Q[s,x] and

γjl ∈ Q+. Moreover, each γjl is a product of eigenvalues of g.

For the proof, see Appendix A.2. To represent gs as a polynomial mapping (or equiva-

lently g−s, by substitution of s by −s), auxiliary variables are introduced to substitute for

exponential terms (e.g., u, v for 2s, (1/2)s, respectively, in the example); these variables

are eliminated by means of a suitable elimination ordering employing the polynomial

relations between them (e.g., uv − 1 in the example).

Let us see how auxiliary variables can be employed to substitute for exponential terms

in general. For any γ ∈ Q+, there exists a unique prime decomposition of the form

γ =
∏k

i=1 λ
ρi

i , where the λi are primes and ρi ∈ Z for 1 ≤ i ≤ k. Therefore we can

compute a “base” {λ1, ..., λk} ⊂ N of prime numbers such that for any eigenvalue γ,

γ =
∏k

i=1 λ
ρi

i for certain ρi ∈ Z. The powers γs can then be expressed in terms of new

variables ui and vi that are introduced to replace λs
i and λ−s

i , respectively, for each λi:

γs =

k∏

i=1

λsρi

i =

k∏

i=1

uρi

i if ρi > 0

v−ρi

i if ρi < 0

17

By Theorem 14, for 1 ≤ i ≤ n there exists a polynomial mapping Fi = Fi(s,u,v,x) :
Q1+2k+m → Qm such that ∀s0 ∈ N,

fi
s0(x) = Fi(s0,λ

s0 ,λ−s0 ,x) and fi
−s0(x) = Fi(−s0,λ

−s0 ,λs0 ,x) ,

where u = (u1, ..., uk), v = (v1, ..., vk) and λs0 = (λs0
1 , ..., λ

s0

k).
In our previous example, we have taken {2} as a base of prime numbers, and intro-

duced variables u, v to represent 2s and (1/2)s respectively. Moreover, uv− 1 is required
to eliminate these new variables. In general, it is necessary to consider all polynomial
relations between s, the λs

i and the λ−s
i in order to eliminate the auxiliary variables.

Lemma 32 in Appendix B shows that L = {u1v1 − 1, ..., ukvk − 1} characterises the set
of all these polynomial relations.

Finally, it is possible to weaken the restriction of positiveness on the eigenvalues of
assignment mappings as follows. If there is any negative eigenvalue, it is only necessary

to introduce a new variable t to replace (−1)s in the fi
−s(x); the equality

(
(−1)s0

)2
= 1

∀s0 ∈ N yields the polynomial t2 − 1, which plays a similar role as the polynomials
uivi − 1 above. Moreover, if any of the assignment mappings is not invertible, i.e., 0 is
an eigenvalue, then the algorithm can be modified so that it can be applied also in this
case, basically by performing, instead of the assignment

I :=

n⋂

i=1

⋂

s∈N

I ◦ fi
−s(x) ,

the assignment

I :=

n⋂

i=1

⋂

s∈N

(

〈I(x′), x − fi
s(x′)〉 ∩ Q[x]

)

,

where the projection is computed by elimination of variables. For the sake of simplicity,
in this paper we have focused on positive rational eigenvalues.

7.1. Implementation

In the algorithm below, ideals are represented by their Gröbner bases using some
term ordering. Checking that the assignment mappings fi are solvable with positive
rational eigenvalues is done using linear algebra. Then the powers fi

−s are computed and
expressed as polynomial mappings denoted by Fi, possibly employing the parameter s
and additional auxiliary variables u,v introduced to replace exponential terms; relations
among auxiliary variables are specified using L = {u1v1 − 1, ..., ukvk − 1}.

Input:

• The solvable mappings with positive rational eigenvalues f1, ...,fn

of the assignments.
• A set S0 of polynomials satisfied by the initial values such that
I0 = IV(I0), where I0 = 〈S0〉.

Output:

• A finite basis for the invariant polynomial ideal I∞.

18

var S, S′ : sets of polynomials in Q[x] end var

1: S := GB(S0,�)
2: do

3: S′ := S
4: S := GB(

⋂n
i=1〈L ∪ (S ◦ Fi(−s,v,u,x))〉Q[s,u,v,x],�) ∩ Q[x]

5: while S′ 6= S
6: return S

Line 4 corresponds to the assignment I :=
⋂

s∈N

⋂n
i=1 I ◦ fi

−s(x) of the algorithm

in Section 5. The inverse power fi
−s(x) is represented by Fi(−s,v,u,x), as ∀s0 ∈ N

fi
−s0(x) = Fi(−s0,λ

−s0 ,λs0 ,x) by construction of Fi. The polynomials L are added
to the set of polynomials S to take into account the relationships between the powers of
the exponentials. The function GB computes the reduced Gröbner basis of its input ideal,
specified as a finite set of polynomials, with respect to a term ordering. The intersection of
ideals is performed by using Gröbner bases methods. In particular, the intersection with
Q[x] corresponds to the elimination of the variables s,u,v; to that end, the term ordering
� can be either a block term ordering or a lexicographic term ordering in which s,u,v
are the biggest variables. Finally, the equality test on ideals at Line 5 is implemented
by comparing the reduced Gröbner bases with respect to �, as every ideal has a unique
reduced Gröbner basis once the ordering is fixed.

The following result ensures that the above implementation is correct and complete:

Theorem 15 If the Invariant Generation Procedure terminates, the implementation
also terminates in at most the same number of iterations with output S such that 〈S〉Q[x]

= I∞.

See Appendix B. The proof is based on two facts: i) the inclusion I∞ ⊆ 〈S〉 always
holds, and in particular, on termination; and ii) at any iteration, the ideal I computed by
the Invariant Generation Procedure includes the ideal 〈S〉 generated by the polynomials
obtained in the implementation. So, if the Invariant Generation Procedure terminates,
we have I = I∞ ⊆ 〈S〉 ⊆ I . Therefore all inclusions are in fact equalities, and the
implementation terminates with a set of polynomials generating I∞ in at most the same
number of steps as the Invariant Generation Procedure.

A variation of the above algorithm employing additional heuristics to speed up the
computation has been implemented in Maple. The implementation has been successfully
used to automatically discover invariants of many non-trivial programs. Some of these
are discussed below as well as in Section 8. As the reader will notice, many of these
invariants are not easy to deduce by hand.

The following example comes from a program for computing the product of two integer
numbers X and Y :

(x, y, z):=(X,Y, 0);
while ? do

(x, y, z):=(2x, (y − 1)/2, x+ z); or (x, y, z):=(2x, y/2, z);
end while

We express the powers of the assignments as polynomial mappings as follows:

f1(x, y, z) = (2x, y/2− 1/2, x+ z) ,

19

f2(x, y, z) = (2x, y/2, z) ,

f1
−s(x, y, z) = ((1/2)sx, 2sy + 2s − 1, z + ((1/2)s − 1)x) ,

f2
−s(x, y, z) = ((1/2)sx, 2sy, z) ,

F1(−s, v, u, x, y, z) = (vx, uy + u− 1, z + (v − 1)x) ,

F2(−s, v, u, x, y, z) = (vx, uy, z) ,

where the variables u, v represent 2s and (1/2)s respectively. We get the following trace
(to illustrate the proof of termination in Section 6, we also give, for each iteration, the
dimension of the variety corresponding to the computed ideal):

iteration 0 −→ {x−X, y − Y, z}, dimension 2;
iteration 1 −→ {xz − z − zX,−XY + z + xy, yz + zyX − zXY + z}, dimension 3;
iteration 2 −→ {z + xy −XY }, dimension 4;
iteration 3 −→ {z + xy −XY }, dimension 4.

Therefore, in only 3 iterations, the algorithm terminates with the invariant polynomial
z + xy −XY .

Consider now the following loop, which is an abstraction of a program in (Knuth,
1969) to find a factor of a number N with only addition and subtraction:

(r, x, y):=(R2 −N, 2R+ 1, 1);
while ? do

(r, y):=(r − y, y + 2); or (r, x):=(r + x, x+ 2);
end while

In this case we just have to add one new variable s:

f1(r, x, y) = (r − y, x, y + 2) ,

f2(r, x, y) = (r + x, x+ 2, y) ,

F1(−s, r, x, y) = f1
−s(r, x, y) = (r + sy − (s+ 1)s, x, y − 2s) ,

F2(−s, r, x, y) = f1
−s(r, x, y) = (r − sx+ (s+ 1)s, x− 2s, y) .

Using S0 = {r−R2 +N, x− 2R− 1, y− 1}, we get the following trace (again we also
indicate the dimensions of the varieties):

iteration 0 −→ {r −R2 +N, x− 2R− 1, y − 1}, dimension 2;
iteration 1 −→ {xy − 2yR− y − x+ 2R+ 1, x2 − y2 − 4r − 4N − 2x+ 2y, y3 + 4ry −
4yR2 + 4yN − 3y2 − 4r + 4R2 − 4N + 3y − 1}, dimension 3;
iteration 2 −→ {x2 − y2 − 4r − 4N − 2x+ 2y}, dimension 4;
iteration 3 −→ {x2 − y2 − 4r − 4N − 2x+ 2y}, dimension 4.

So the algorithm terminates in 3 iterations as well yielding the invariant x2 − y2 −
4r − 4N − 2x+ 2y .

20

As illustrated using the above two examples, the algorithm terminates in iterations

fewer than the number of variables plus one. This was proved in Section 6 for solvable

assignment mappings with rational positive eigenvalues.

We have yet to find an example for which the above procedure does not terminate. Our

experience suggests to us conjecturing that insofar as the effect of assignment mappings

has a “polynomial structure”, i.e., can be presented using polynomials possibly involving

new variables and relations on these variables, the procedure always terminates.

8. Examples

The procedure discussed in Section 7.1 has been implemented in Maple. Below we show

some of the loops whose polynomial invariants have been successfully computed using

this implementation. Again, to illustrate the ideas presented in the proof of termination

in Section 6, we give, for each iteration, the corresponding dimension.

Example 16 The next loop is a version of a program taken from (Petter, 2004):

(x, y):=(0, 0);

while ? do

(x, y):=(x + y5, y + 1);

end while

For this example we get the following trace:

iteration 0 −→ {x, y}, dimension 0;

iteration 1 −→ {−12x+ 2y6 − 6y5 + 5y4 − y2}, dimension 1;

iteration 2 −→ {−12x+ 2y6 − 6y5 + 5y4 − y2}, dimension 1.

Finally, the invariant 12x = 2y6 − 6y5 + 5y4 − y2 is obtained. Notice that, though the

degree of the polynomial is high, the procedure takes just 2 iterations to generate it.

Example 17 The following loop has been extracted from (Cousot and Cousot, 1977):

(i, j):=(2, 0);

while ? do

(i, j):=(i+ 4, j); or (i, j):=(i+ 2, j + 1);

end while

For this case we get the following ideals:

iteration 0 −→ {j, i− 2}, dimension 0;

iteration 1 −→ {ji− 2j − 2j2}, dimension 1;

iteration 2 −→ {0}, dimension 2;

iteration 3 −→ {0}, dimension 2.

After 3 iterations, the algorithm stabilises but only a trivial loop invariant is generated.

Since our technique is complete, it can be asserted that there are no non-trivial invariant

polynomial equalities for this loop. This is consistent with the results obtained by Cousot

and Halbwachs, who did not find any linear invariant equalities for this example.

21

Example 18 The next example, taken from (Dijkstra, 1976), is a version of Euclid’s
algorithm that computes at the same time the least common multiple and the greatest
common divisor of two natural numbers a and b:

(x, y, u, v):=(a, b, b, a);
while x 6= y do

if x > y
(x, y, u, v):=(x− y, y, u, u+ v);

else

(x, y, u, v):=(x, y − x, u+ v, v);
end if

end while

If we apply the Invariant Generation Procedure to the above program (ignoring con-
ditions), we get the invariant ux+ vy − 2ab in 4 iterations:

iteration 0 −→ {x− a, y − b, u− b, v − a}, dimension 2;
iteration 1 −→ {y + u− 2b, x+ v − 2a, uv − ua− vb+ ba}, dimension 3;
iteration 2 −→
{ux−2ba+ vy,−2xb+xy+uv−2vb−2ya−2ua+6ba, 2yua−2yba+ vy2−u2v+2u2a−
6uba+ 2uvb+ 4b2a− 2yvb}, dimension 4;
iteration 3 −→ {ux+ vy − 2ba}, dimension 5;
iteration 4 −→ {ux+ vy − 2ba}, dimension 5.

The invariant ux + vy − 2ab is fundamental in order to prove that on termination
lcm(a, b) = (u+ v)/2.

Example 19 The following program is yet another version of Euclid’s algorithm. It
computes the greatest common divisor of two natural numbers together with Bezout’s
coefficients:

(a, b, p, q, r, s):=(x, y, 1, 0, 0, 1);
while a 6= b do

if a > b
(a, b, p, q, r, s):=(a− b, b, p− q, q, r − s, s);

else

(a, b, p, q, r, s):=(a, b− a, p, q − p, r, s− r);
end if

end while

iteration 0−→
{a− x, b− y, p− 1, q, r, s− 1}, dimension 2;
iteration 1 −→
{s−1, p−1, qr,−a+x+ry, br−a+x, qx− b+y, qa−b+y, ba−bx−ay+xy}, dimension
3;
iteration 2 −→
{sp− s− p+ 1, qr− p− s+ 2, br+x− sa, qx− b+ sy, bp− qa− y, xp− a+ ry,−sa+ sx+
sry+a−x− ry, sqa− qa− sb+ sy+ b− y, s2ya− sba+xsb−asy−xsy+ ba− bx+xy},
dimension 4;

22

iteration 3 −→
{−sp+ 1 + qr, br + x− sa, qx− b+ sy, bp− qa− y, xp− a+ ry}, dimension 5;
iteration 4 −→
{−sp+ 1 + qr, br + x− sa, qx− b+ sy, bp− qa− y, xp− a+ ry}, dimension 5.

In this case, in 4 iterations, the procedure yields the invariant:

1 + qr = sp ∧ rb+ x = sa ∧ qx+ sy = b ∧ aq + y = bp ∧ px+ ry = a ,

which can be used to prove that, on termination, (p, r) and (q, s) are Bezout’s coefficients
for x and y.

As mentioned earlier, the algorithm in Section 7.1 has been implemented in Maple,
employing additional heuristics to speed up the computation. For instance, when there
are two or more assignments, looking for polynomial invariants for all the branches to-
gether from the very beginning requires computing a lot of intersections of ideals at the
same time. In order to avoid this, we can first find invariants for one branch; then find
invariants for two branches, the previous and another one; and so on, until considering
all possible branches. 3 This implementation in Maple has been successfully used to au-
tomatically discover invariants of many non-trivial programs. The table in Figure 2 gives
a representative list of the examples attempted so far. There is a row for each program;
the columns provide the following information (for those programs which are formed by
a sequence of loops of the kind considered here, the data for each loop is provided, except
for the timings, which are added up):

• 1st column is the name of the program.
• 2nd column states what the program does.
• 3rd column gives the citation from where the program was picked (the entry (?) is for

the examples developed by the authors 4).
• 4th column gives the number of variables in the loop.
• 5th column gives the number of branches in the body of the loop.
• 6th column gives the number of polynomials in the invariant.
• 7th column gives the maximum degree of the polynomials in the invariant.
• 8th column gives the number of times the main loop of the Invariant Generation

Procedure is executed.
• 9th column gives the time (in seconds) taken by the implementation of the algorithm

in Maple, running on a Pentium 4 with a 3.4 GHz. processor and 2 Gb of memory.
• 10th column gives the time (in seconds) taken by an implementation of the method in

(Rodŕıguez-Carbonell and Kapur, 2004a) running on the same machine (timeouts are
set to 300 seconds and are represented by TO; the degree bound that has been taken
is the maximum degree from the 7th column).

3 However, this strategy increases the theoretical number of iterations of the procedure: as we execute
the basic algorithm n times, each of which takes at most m + 1 iterations, we may need up to nm + n
iterations to terminate. Still, this upper bound is far from being reached in the experimental evaluation
shown in Figure 2.
4 Program prod4 is the example presented in Section 3.2.

23

Name Function Source m n] d Ite. Time Other

dijkstra 2
√

(Dijkstra, 1976) 4 1-2 2-1 1-2 2-3 1.5 1.4

divbin division (Kaldewaij, 1990) 4 1-2 2-1 1-2 2-3 2.1 1.2

freire1 2
√

(Freire, 2002) 3 1 1 2 2 0.7 0.5

freire2 3
√

(Freire, 2002) 4 1 3 2 2 0.7 1.0

cohencu cube (Cohen, 1990) 4 1 4 2 2 0.7 1.2

fermat factor (Bressoud, 1989) 5 2 1 2 4 0.8 1.1

wensley division (Wegbreit, 1974) 5 2 3 2 4 1.1 1.1

euclidex gcd (?) 8 2 5 2 5 1.4 2.1

lcm lcm (Dijkstra, 1976) 6 2 1 2 5 1.0 1.3

prod4 product (?) 6 4 1 3 7 2.1 4.8

knuth factor (Knuth, 1969) 8 4 1 3 7 55.4 2.8

petter1 power sum (Petter, 2004) 2 1 1 2 2 1.0 0.5

petter2 power sum (Petter, 2004) 2 1 1 3 2 1.1 0.8

petter3 power sum (Petter, 2004) 2 1 1 4 2 1.3 4.2

petter4 power sum (Petter, 2004) 2 1 1 5 2 1.3 TO

petter5 power sum (Petter, 2004) 2 1 1 6 2 1.4 TO

Fig. 2. Table of examples

In general, the implementation in Maple of the proposed method works quite fast:

it took just over 2 seconds to analyse all of the examples, except for knuth; in this

particular case, the algorithm in (Rodŕıguez-Carbonell and Kapur, 2004a) is better, while

for the rest, either both algorithms perform similarly, or the one presented here is better.

More specifically, it can observed that, for the sequence of programs petter1, etc., the

behaviour of the proposed method is more robust and no timeouts are obtained. One

can draw the conclusion that, for programs with a single branch, like petter1, etc., the

approach developed in this paper tends to work better than the other one, especially

when the degree of the invariants is high.

9. Conclusions

The main contributions of this paper are:

(1) We prove that the invariant polynomial ideal of a loop is computed in at most m+1

steps, where m is the number of program variables.

(2) If assignment mappings commute, i.e., fi ◦ fj(x) = fj ◦ fi(x) for 1 ≤ i, j ≤ n, we

show that the invariant polynomial ideal is computed in at most n+1 steps, where

n is the number of branches in the loop body.

(3) We explain how the procedure for computing the invariant polynomial ideal can be

approximated using Gröbner bases. And moreover, we prove that this approxima-

tion is exact, i.e., the algorithm computes the invariant ideal of the loop.

24

(4) The algorithm has been implemented in Maple and successfully used to compute
invariant polynomial equalities for many non-trivial examples. Some of these ex-
amples are discussed in the paper.

For future work, we are interested in exploring the proposed research along several
directions:

• study more general conditions under which the Invariant Generation Procedure termi-
nates: since we are unware of any example for which the procedure does not terminate,
we conjecture that the requirement of solvable mappings possessing positive rational
eigenvalues is unnecessary. We are particularly interested in extending the proof of
termination to the cases where the eigenvalues of the assignment mappings may be
negative or null.

• enrich the programming model so as to consider nested loops and procedure calls, as
well as tests in conditional statements and loops. In particular, the approach presented
in this paper could be merged with the method described in (Rodŕıguez-Carbonell
and Kapur, 2004a), which can handle both nested loops and tests; the former would
accelerate the fixpoint computation of the latter while avoiding the application of
widening, thus leading to an improvement on the timing and precision of the overall
analysis.

• identify other languages to which the ideas here presented apply and which are rich
enough to specify properties of data structures such as arrays, records, pointers, etc.

• integrate these and other techniques for mechanically inferring loop invariants, together
with theorem proving components, into a tool for program verification.

Acknowledgements

This research was partially supported by an NSF ITR award CCR-0113611, the Prince
of Asturias Endowed Chair in Information Science and Technology at the University of
New Mexico and an FPU grant from the Spanish Secretaŕıa de Estado de Educación y
Universidades, ref. AP2002-3693. The authors would also like to thank A. Chtcherba, G.
Godoy, R. Nieuwenhuis, A. Oliveras and the anonymous referees of previous versions of
this paper for their comments.

A. Auxiliary Results for the Proof of Termination

Below we prove in detail all of the auxiliary results required in the proof of termination
of the Invariant Generation Procedure.

A.1. I = IV(I) Is Invariant in the Invariant Generation Procedure

The following results are aimed at showing that ∀N ∈ N, IN is an ideal of variety; in
other words, that I = IV(I) is invariant in the Invariant Generation Procedure. In order
to prove that, we have to show that it holds at the beginning, and that it is preserved
at each step of the procedure. To that end, we will see that the property is closed under
intersection of ideals and under the mapping between ideals J 7→

⋂

s∈N J ◦ f−s(x).
The following lemma shows that the property of being an ideal of variety is closed

under intersection:

25

Lemma 20 If J,K ⊆ R[x] are ideals of variety, then J ∩K is also an ideal of variety.

Proof. IV(J ∩K) = I(V(J) ∪ V(K)) = IV(J) ∩ IV(K) = J ∩K. 2

The goal of the following four results is to prove that being an ideal of variety is
preserved by J 7→

⋂

s∈N J ◦ g−s(x). First we need the next lemma, which shows the dual
relation between the composition ◦ and the concept of variety of an ideal.

Lemma 21 Given an invertible polynomial mapping g ∈ R[x]m and an ideal J ⊆ R[x],
V(J ◦ g(x)) = g−1(V(J)).

Proof. Let us see the ⊆ inclusion. Let ω ∈ V(J ◦ g(x)), and take any p ∈ J . Then
p(g(ω)) = 0 since p ◦ g ∈ J ◦ g(x). So g(ω) ∈ V(J), and thus ω ∈ g−1(V(J)).

For the other inclusion, let ω ∈ g−1(V(J)). Then g(ω) ∈ V(J). Now let us take any
p ∈ J ◦ g(x). Then there exists q ∈ J such that p = q ◦ g, and p(ω) = q(g(ω)) = 0 since
g(ω) ∈ V(J) and q ∈ J . Therefore ω ∈ V(J ◦ g(x)). 2

Now we show that being an ideal of variety is closed under the operator ◦:

Lemma 22 If J ⊆ R[x] is an ideal of variety and g ∈ R[x]m is an invertible polynomial
mapping, then J ◦ g(x) = IV(J ◦ g(x)).

Proof. It is enough to show that J ◦ g(x) ⊇ IV(J ◦ g(x)), since the other inclusion is
trivial. Let p ∈ IV(J ◦ g(x)). First, let us show that p ◦ g−1(x) ∈ IV(J): indeed, given
any ω ∈ V(J) we have p ◦ g−1(ω) = 0 since p ∈ I(g−1(V(J))) by Lemma 21. But then
p ◦ g−1(x) ∈ IV(J) = J , which implies that p(x) = (p ◦ g−1) ◦ g(x) ∈ J ◦ g(x). 2

Lemma 23 If J ⊆ R[x] is an ideal of variety and g ∈ R[x]m is an invertible polynomial
mapping, then

⋂

s∈N

J ◦ g−s(x) = I
(⋃

s∈N

V(J ◦ g−s(x))
)

.

Proof. Let us see the ⊇ inclusion. Let p ∈ I(
⋃

s∈N V(J ◦ g−s(x))). Let us assume that
p 6∈

⋂

s∈N J ◦ g−s(x) and we will get a contradiction. Under this hypothesis there exists
s0 ∈ N such that p 6∈ J ◦ g−s0(x). Since p ∈ I(

⋃

s∈N V(J ◦ g−s(x))), in particular
p ∈ IV(J ◦ g−s0(x)) = J ◦ g−s0(x) (by Lemma 22), which is impossible.

Now let us see the other inclusion. Let p ∈
⋂

s∈N J ◦ g−s(x). Then for any ω ∈
⋃

s∈N V(J ◦ g−s(x)) there exists s0 ∈ N such that ω ∈ V(J ◦ g−s0(x)). Since p ∈
⋂

s∈N J ◦ g−s(x) ⊆ J ◦ g−s0(x), p(ω) = 0. So p ∈ I(
⋃

s∈N V(J ◦ g−s(x))). 2

Finally, the next lemma shows that the property J = IV(J) is preserved by J 7→
⋂

s∈N J ◦ g−s(x):

26

Lemma 24 If J ⊆ R[x] is an ideal of variety and g ∈ R[x]m is an invertible polynomial

mapping, then

⋂

s∈N

J ◦ g−s(x) = IV(
⋂

s∈N

J ◦ g−s(x)) .

Proof. By Lemma 23,

IV(
⋂

s∈N

J ◦ g−s(x)) = IVI(
⋃

s∈N

V(J ◦ g−s(x))) =

= I(
⋃

s∈N

V(J ◦ g−s(x))) =
⋂

s∈N

J ◦ g−s(x)) .

2

Theorem 8 In the Invariant Generation Procedure, ∀N ∈ N IN = IV(IN).

Proof. Let us prove it by induction over N . For N = 0 it is true by construction. Now

let us consider the case N > 0. By induction hypothesis, IN−1 = IV(IN−1). And by

Lemma 24, for 1 ≤ i ≤ n:

⋂

s∈N

IN−1 ◦ fi
−s(x) = IV(

⋂

s∈N

IN−1 ◦ fi
−s(x)) .

Then, by Lemma 20, IN = IV(IN). 2

A.2. Powers of Solvable Mappings

Given a solvable mapping g, we can compute its s-th natural power, which is the

s-fold composition of g: gs = g ◦g ◦ · · ·◦g (s times). These gs have the structure of sums

of products of polynomials and exponentials (Lemma 25 and Proposition 26). In order

to define real powers of solvable mappings (not necessarily natural powers), we use this

expression of sums of products of polynomials and exponentials to extend the definition;

for the expression to make sense, it is not necessary that s be a natural number, but it

may be any real number (note that, however, in the real case we lose the original meaning

of s-fold composition 5).

After defining real powers of solvable mappings this way, it is proved that real powers

behave like any reasonable definition of “power” should (Lemma 27 and Proposition 28),

i.e., g0 is the identity and gs+t = gs ◦ gt (just like 20 = 1 and 2s+t = 2s · 2t). Theorem

14 is a corollary of Lemma 27 and Proposition 28 that is required in Section 7.

5 This is similar to combinatorial numbers: By definition, C(n, k) = n ·(n−1) · · · (n−k+1)/k! . Though
for the combinatorial meaning it is required n, k ∈ N, using the expression n · (n − 1) · · · (n − k + 1)/k!
we can define C(n, k) for n ∈ R, e.g., C(3/2, 2) = (3/2 · 1/2)/2 = 3/8.

27

Finally it is shown in Theorem 29 that, if J is an ideal of variety and g is a solvable
mapping with positive eigenvalues, then

⋂

s∈N

J ◦ g−s(x) =
⋂

s∈R

J ◦ g−s(x) ,

which is required in the proof of termination.
In all this subsection, let K be either Q or R. First we need the following lemma, which

describes the solutions of the recurrences that arise when computing natural powers of
solvable mappings. We will extensively use the theory of generating functions, linear
recurrences with constant coefficients and rational functions, and we are not giving all
the details; the interested reader may consult, e.g., (Stanley, 1997, p. 200, Section 4) to
fully understand the proof.

Lemma 25 Consider a recurrence

x
(s+1)
1
...

x
(s+1)
h

 = M

x
(s)
1
...

x
(s)
h

 + Q(s,y) ,

where M ∈ Kh×h is a matrix with eigenvalues in K and Q is a vector of h functions of
the form

∑r
l=1 Ql(s,y)µs

l , where for 1 ≤ l ≤ r, Ql ∈ K[s,y] and µl ∈ K (the y variables
represent parameters). Then the solutions of the recurrence have the form:

x
(s)
j =

rj∑

l=1

Pjl(s,y,x
(0))(γjl)

s ,

where for 1 ≤ j ≤ h, there exists rj ∈ N such that for 1 ≤ l ≤ rj , Pjl ∈ K[s,y,x(0)] and
the γjl ∈ K are either eigenvalues of M or belong to the set of µl bases of exponentials
in Q(s,y).

Proof. By linear algebra, ∃S, J ∈ Kh×h such that det(S) 6= 0 and J = S−1MS is the
Jordan normal form of M . By making a change of variables and splitting the variables
into independent sets, we can assume without loss of generality that M has the structure
of a Jordan block, i.e., for a certain λ eigenvalue of M

M =

λ
1 λ

. . .

1 λ

.

We denote by Xj(z) the generating function of the sequence (x
(s)
j)s∈N. Since the com-

ponents of Q(s,y) are linear combinations of exponentials with polynomial coefficients,
the corresponding generating functions are rational functions Uj(z,y)/Vj(z) such that
the roots of the Vj are the µl bases of exponentials in Q(s,y).

28

From the recurrence we get the following system of equations for the Xj :

X1(z)−x
(0)
1

z
...

Xh(z)−x
(0)

h

z

= M

X1(z)
...

Xh(z)

 +

U1(z,y)
V1(z)

...
Uh(z,y)
Vh(z)

 .

The solution to this system is

X1(z)
...

Xh(z)

 = (I − zM)−1

x
(0)
1
...

x
(0)
h

 + z

U1(z,y)
V1(z)

...
Uh(z,y)
Vh(z)

 ,

where

(I − zM)−1 =

1
1−λz

z
(1−λz)2

1
1−λz

...
. . .

. . .
zh−1

(1−λz)h · · · z
(1−λz)2

1
1−λz

.

Therefore, the generating functions Xj are also rational functions with poles which are
either eigenvalues of M or µl bases of exponentials in Q(s,y). From the theory of rational
generating functions, we get that the solutions to the recurrence have the form as in the
statement of the lemma. 2

Now we can characterise natural powers of solvable mappings by using the equivalence
of computing powers and solving recurrences:

Proposition 26 Let g ∈ K[x]m be a solvable mapping with eigenvalues in K. Then
∀j : 1 ≤ j ≤ m ∀s ∈ N gs

j (x), the j-th component of gs(x), can be expressed as

gs
j (x) =

rj∑

l=1

Pjl(s,x)(γjl)
s ,

where for 1 ≤ j ≤ m, there exists rj ∈ N such that for 1 ≤ l ≤ rj , Pjl ∈ K[s,x] and
each γjl ∈ K is a product of eigenvalues of g.

Proof. The statement is equivalent to the following one. Given a solvable mapping

g ∈ K[x]m with eigenvalues in K, we have to prove that the general solution of the
recurrence x(s+1) = g(x(s)) has the form for 1 ≤ j ≤ m:

x
(s)
j =

rj∑

l=1

Pjl(s,x
(0))(γjl)

s, 1 ≤ j ≤ m, s ≥ 0 ,

29

where for 1 ≤ j ≤ m, there exists rj ∈ N such that for 1 ≤ l ≤ rj , Pjl ∈ K[s,x(0)] and
each of the γjl ∈ K is a product of eigenvalues of g.

Since g is solvable, there exists a partition of the set of variables x, x =
⋃k

i=1 wi with
wi ∩ wj = ∅ if i 6= j, such that ∀i : 1 ≤ i ≤ k we have

gwi(x) = Miwi
T + Pi(w1, ...,wi−1) ,

where Mi ∈ K|wi|×|wi| is a matrix and Pi is a vector of |wi| polynomials with coefficients
in K and depending on the variables in w1, ...,wi−1.

Let us prove the proposition by induction over i, the counter of the sets in the partition.
By renaming the variables, we can assume without loss of generality that there exist 0 =
h0 ≤ h1 ≤ h2 ≤ · · · ≤ hk = m such that ∀i : 1 ≤ i ≤ k wi = {xhi−1+1, xhi−1+2, ..., xhi

}.

For i = 0 we want to prove that ∀j such that 1 ≤ j ≤ h1, x
(s)
j has the form like in the

statement. For the first h1 variables we have the recurrence:

x
(s+1)
1
...

x
(s+1)
h1

 = M1

x
(s)
1
...

x
(s)
h1

 + P1 ,

where M1 is a matrix and P1 is a constant vector. By Lemma 25, the x
(s)
j have the

desired form for 1 ≤ j ≤ h1. Moreover, since P1 is constant, for 1 ≤ j ≤ h1 the bases of

exponentials in x
(s)
j are eigenvalues of M1, and therefore eigenvalues of g.

Now for i > 0 we have the recurrence:

x
(s+1)
hi−1+1

...
x

(s+1)
hi

 = Mi

x
(s)
hi−1+1

...
x

(s)
hi

 + Pi(x

(s)
1 , ..., x

(s)
hi−1

) .

By induction hypothesis, ∀j : 1 ≤ j ≤ hi−1 x
(s)
j has the form like in the statement.

Therefore, if ∀j : 1 ≤ j ≤ hi−1 we plug the solution x
(s)
j in Pi(x

(s)
1 , ..., x

(s)
hi−1

), we get that

Pi(x
(s)
1 , ..., x

(s)
hi−1

) is a vector of functions of the form

r∑

l=1

Ql(s, x
(0)
1 , ..., x

(0)
hi−1

)µs
l ,

where for 1 ≤ l ≤ r, Ql ∈ K[s, x
(0)
1 , ..., x

(0)
hi−1

] and each of the µl ∈ K is a product of

eigenvalues of g (since ∀j : 1 ≤ j ≤ hi−1 the bases of exponentials in the solutions

x
(s)
j are products of eigenvalues of g). By Lemma 25 again, ∀j : hi−1 < j ≤ hi the

x
(s)
j have the required form, and the bases of exponentials appearing in them are either

eigenvalues of Mi or bases of exponentials in Pi(x
(s)
1 , ..., x

(s)
hi−1

); in either case, the bases

of exponentials in the x
(s)
j are products of eigenvalues of g, which is what we wanted to

see. 2

30

Given a solvable mapping g ∈ R[x]m with positive eigenvalues, the exponential terms
(γjl)

s in the proposition above are well-defined for any s ∈ R. Thus, it is possible to
extend the powers of a solvable mapping with positive eigenvalues gs to general s ∈ R by
using the right-hand side formula in Proposition 26. In order to show that gs for s ∈ R

is well-defined, in the sense that g0(x) = x and gs+t(x) = gs(gt(x)) for any s, t ∈ R, we
need the following lemma:

Lemma 27 Let ϕ : R → R be a function of the form ϕ(s) =
∑

γ∈Γ pγ(s)γs for a certain

Γ ⊂ R+ which is finite and such that ∀γ ∈ Γ, pγ ∈ R[s] and pγ 6= 0. If ∀n ∈ N ϕ(n) = 0,
then Γ = ∅ (and therefore ϕ ≡ 0).

Proof. Let us assume that Γ 6= ∅ and we will get a contradiction. Let γ∗ = maxγ∈Γ γ.
Then ∀γ ∈ Γ, γ 6= γ∗ implies γ < γ∗. So

lim
s→∞

ϕ(s)

γs
∗

= lim
s→∞

pγ∗(s) .

And since ∀n ∈ N ϕ(n) = 0, we have that lims→∞(ϕ(s)/γs
∗) = lims→∞ pγ∗(s) = 0, which

implies pγ∗ = 0. But this is impossible. 2

Now we can show well-definedness of real powers of solvable mappings with positive
eigenvalues:
Proposition 28 Let g ∈ R[x]m be a solvable mapping with positive eigenvalues. Then
∀ω ∈ Rm g0(ω) = ω and ∀s, t ∈ R, gs+t(ω) = gs(gt(ω)).

Proof. Since 0 ∈ N, ∀ω ∈ Rm g0(ω) = ω by Proposition 26. Now let us fix ω ∈ Rm and
define G(s, t) := gs+t(ω) − gs(gt(ω)). By Proposition 26 again, ∀s, t ∈ N, G(s, t) = 0.
Let us fix s ∈ N. Then all the components of G(s, t) are of the form like in Lemma 27.
Since ∀t ∈ N G(s, t) = 0, we get that ∀t ∈ R G(s, t) = 0. So ∀s ∈ N ∀t ∈ R, G(s, t) = 0.
Now if we fix t ∈ R, again by using the same argument we get ∀s ∈ R G(s, t) = 0. Thus
finally ∀s, t ∈ R, G(s, t) = 0. 2

In particular, the above proposition implies that g−1 is the inverse of g. Moreover,
Theorem 14 from Section 7 follows immediately:

Theorem 14 Let g ∈ Q[x]m be a solvable mapping with positive rational eigenvalues.
Then ∀j : 1 ≤ j ≤ m ∀s ∈ Z gs

j (x), the j-th component of gs(x) (negative exponents
mean powers of the inverse of g), can be expressed as

gs
j (x) =

rj∑

l=1

Pjl(s,x)(γjl)
s ,

where for 1 ≤ j ≤ m, there exists rj ∈ N such that for 1 ≤ l ≤ rj , Pjl ∈ Q[s,x] and
γjl ∈ Q+. Moreover, each γjl is a product of eigenvalues of g.

Finally, the following is the main result of this subsection:

31

Theorem 29 Let J ⊆ R[x] be an ideal of variety and g ∈ R[x]m be a solvable mapping
with positive eigenvalues. Then

⋂

s∈N

J ◦ g−s(x) =
⋂

s∈R

J ◦ g−s(x) .

Proof. It is obvious that
⋂

s∈N J ◦ g−s(x) ⊇
⋂

s∈R J ◦ g−s(x). Let us see the other
inclusion. Let p ∈

⋂

s∈N J ◦ g−s(x). So p ∈ I(
⋃

s∈N V(J ◦ g−s(x))) = I(
⋃

s∈N gs(V(J)))
by Lemmas 21 and 23.

We want to see that p ∈
⋂

s∈R J ◦ g−s(x), or equivalently that ∀s ∈ R, p ∈ J ◦ g−s(x)
= IV(J ◦ g−s(x)) = I(gs(V(J))). So we have to prove that ∀ω ∈ V(J) and ∀s ∈ R then
(p ◦ gs)(ω) = 0.

Now fix any ω ∈ V(J) and consider the function ϕω : R → R, ϕω(s) = p(gs(ω)).
Since by hypothesis p ∈ I(

⋃

s∈N gs(V(J))), we have that ∀s ∈ N ϕω(s) = p(gs(ω)) = 0.
By Lemma 27, ϕω ≡ 0. Therefore ∀ω ∈ V(J) and ∀s ∈ R, (p ◦ gs)(ω) = 0. 2

A.3. Primality

We recall that an ideal J ⊆ R[x] is prime if, given polynomials p, q ∈ R[x], p · q ∈ J
implies that either p ∈ J or q ∈ J . The following two results show that primality is
preserved under the mapping J 7→

⋂

s∈R J ◦ g−s(x). More precisely, we will prove that
if J ⊆ R[x] is a prime ideal of variety and g ∈ R[x]m is a solvable mapping with positive
eigenvalues, then

⋂

s∈R

J ◦ g−s(x)

is also a prime ideal.

Lemma 30 If J ⊆ R[x] is a prime ideal and g ∈ R[x]m is an invertible polynomial
mapping, then J ◦ g(x) is also a prime ideal.

Proof. Let p, q be such that p · q ∈ J ◦ g(x). We have to see that either p ∈ J ◦ g(x) or
q ∈ J ◦ g(x). As J is prime, p · q ∈ J ◦ g(x) ⇒ (p · q) ◦g−1(x) = p ◦ g−1(x) · q ◦g−1(x) ∈
J ⇒ p ◦ g−1(x) ∈ J or q ◦ g−1(x) ∈ J ⇒ p ∈ J ◦ g(x) or q ∈ J ◦ g(x). 2

Theorem 31 Let J ⊆ R[x] be a prime ideal of variety and g ∈ R[x]m be a solvable
mapping with positive eigenvalues. Then

⋂

s∈R J ◦ g−s(x) is also a prime ideal.

Proof. Let p, q be such that pq ∈
⋂

s∈R J ◦ g−s(x). We have to see that either p ∈
⋂

s∈R J ◦ g−s(x) or q ∈
⋂

s∈R J ◦ g−s(x). But pq ∈
⋂

s∈R J ◦ g−s(x) implies that ∀s ∈
R pq ∈ J ◦ g−s(x); and as J ◦ g−s(x) is prime by Lemma 30, we have that either
p ∈ J ◦ g−s(x) or q ∈ J ◦ g−s(x). Since J = IV(J), we have p ∈ J ◦ g−s(x) ⇔
p ∈ IV(J ◦ g−s(x)) ⇔ ∀ω ∈ V(J ◦ g−s(x)) = gs(V(J)), p(ω) = 0 ⇔ ∀ω ∈ V(J),
p(gs(ω)) = 0; and similarly for q.

32

Now let us distinguish two cases. Let us first assume that ∃s∗ ∈ R such that ∀n ∈ N

∃s∗n such that |s∗−s∗n| < 1/(n+1) and p ∈ J◦g−s∗
n(x). Let us take an arbitrary ω ∈ V(J)

and define the function ϕω : R → R, ϕω(s) = p(gs(ω)). Clearly ϕω is analytical. But
since ∀n ∈ N we have that p ∈ J ◦ g−s∗

n(x), then ∀n ∈ N p(gs∗
n(ω)) = 0; and moreover,

s∗n → s∗. As ϕω is analytical, ϕω(s) = 0 ∀s ∈ R. Since ω ∈ V(J) is arbitrary, we have
that ∀ω ∈ V(J) ∀s ∈ R p(gs(ω)) = ϕω(s) = 0. This implies that ∀s ∈ R p ∈ J ◦ g−s(x),
or equivalently p ∈

⋂

s∈R J ◦ g−s(x).
Now let us assume the contrary. So let us assume that ∀s∗ ∈ R ∃n ∈ N such that

∀s∗n ∈ (s∗ − 1/(n + 1), s∗ + 1/(n + 1)), then p 6∈ J ◦ g−s∗
n(x); but this implies that

q ∈ J ◦ g−s∗
n(x). Let us take any s∗ ∈ R. Given ω ∈ V(J) we define the analytical

function ψω : R → R, ψω(s) = q(gs(ω)). Then there exists n∗ ∈ N such that ∀s ∈ (s∗ −
1/(n∗+1), s∗+1/(n∗+1)), q(gs(ω)) = ψω(s) = 0. Thus, since ψω is analytical, ψω(s) = 0
∀s ∈ R. Following a similar argument as above, we get that q ∈

⋂

s∈R J ◦ g−s(x) in this
case. 2

B. Correctness and Completeness of the Implementation

First of all, we need the following technical lemma, which shows that the set of all
polynomial relations between the powers of the eigenvalues and their inverses can be
characterised:

Proposition 32 Let λ1, ..., λk be different prime numbers. Let L = {u1v1 −1, ..., ukvk −
1}. Then L generates the set of all polynomial relations between the powers of these prime
numbers, i.e.,

〈L〉Q[s,u,v] = {p ∈ Q[s,u,v] | ∀s0 ∈ N p(s0,λ
s0 ,λ−s0) = 0} .

Proof. The ⊆ inclusion is obvious. Now let us prove ⊇. Let p be such that ∀s0 ∈ N

p(s0,λ
s0 ,λ−s0) = 0. Let us take any term ordering � and let us divide p into L. Then

we get polynomials r, p1, ..., pk ∈ Q[s,u,v] such that

p(s,u,v) = r(s,u,v) +

k∑

i=1

pi(s,u,v) · (uivi − 1) .

We want to show that r = 0. Let us assume that r 6= 0 and we will get a contradiction.
We can write

r(s,u,v) =
∑

α,β∈Nk

Pα,β(s)uαvβ ,

where uα =
∏k

i=1 u
αi

i , vβ =
∏k

i=1 v
βi

i and Pα,β ∈ Q[s] are polynomials such that at
least one of them is not null, and only finitely many of them are not null.

Then ∀s0 ∈ N we have that

0 = p(s0,λ
s0 ,λ−s0) = r(s0,λ

s0 ,λ−s0) =
∑

α,β∈Nk

Pα,β(s0)

k∏

i=1

λ
(αi−βi)s0

i .

33

Given α,β ∈ Nk, let us define λα,β =
∏k

i=1 λ
αi−βi

i . Then the above equation can be
expressed as ∀s0 ∈ N

0 =
∑

α,β∈Nk

Pα,β(s0)λ
s0

α,β
. (B.1)

Now let us see that, ∀α,β,γ, δ ∈ Nk, if (α,β) 6= (γ, δ) then λα,β 6= λγ,δ. Let us
assume the contrary, i.e., that λα,β = λγ,δ and we will get a contradiction. If λα,β =

λγ,δ, then
∏k

i=1 λ
αi−βi−γi+δi

i = 1. As the λi are different prime numbers, we necessarily
have that αi − βi − γi + δi = 0 for 1 ≤ i ≤ k. Moreover, since no monomial of r can be
divided by the uivi by the properties of the division algorithm, either αi = 0 or βi = 0,
and either γi = 0 or δi = 0. If αi = 0, then βi = δi − γi, and as βi ≥ 0 and either
γi = 0 or δi = 0, we get that 0 = γi = αi and βi = δi. The case βi = 0 is symmetric. So
λα,β = λγ,δ implies (α,β) = (γ, δ).

Let α∗,β∗ ∈ Nk be such that λα∗,β∗ = max{λα,β|Pα,β 6= 0}. Notice that α∗,β∗

are well defined, since r 6= 0 by hypothesis. By definition, and as (α,β) 6= (γ, δ) implies
λα,β 6= λγ,δ, we have that (α,β) 6= (α∗,β∗) implies λα,β < λα∗,β∗ .

Now we divide Equation (B.1) into (λα∗,β∗)s0 and get that ∀s0 ∈ N

0 =
∑

α,β∈Nk

Pα,β(s0)
(λα,β

λα∗,β∗

)s0

.

Taking limits, 0 = lims0→∞ Pα∗,β∗(s0), which contradicts Pα∗,β∗ 6= 0. 2

We also need the following lemma. It intuitively means that Fi(−s,v,u,x) and
Fi(s,u,v,x) are “inverses modulo 〈L〉” (where the Fi refer to the mappings from The-
orem 14 in Section 7):

Lemma 33 For 1 ≤ i ≤ n and ∀q ∈ Q[x] we have that

q(x) − q(Fi(s,u,v,Fi(−s,v,u,x))) ∈ 〈L〉Q[s,u,v,x] .

Proof. We can write

q(x) − q(Fi(s,u,v,Fi(−s,v,u,x))) =
∑

α∈Nm

Rα(s,u,v) xα ,

where xα =
∏m

j=1 x
αj

j and Rα ∈ Q[s,u,v] are polynomials such that only a finite number
of them are different from 0. Then ∀s0 ∈ N

q(x) − q(Fi(s0,λ
s0 ,λ−s0 ,Fi(−s0,λ

−s0 ,λs0 ,x))) =

= q(x) − q(fi
s0(fi

−s0(x))) = 0 .

Therefore ∀s0 ∈ N we have

∑

α∈Nm

Rα(s0,λ
s0 ,λ−s0) xα = 0 ,

34

which implies that ∀α ∈ Nm Rα ∈ 〈L〉Q[s,u,v]. Thus

q(x) − q(Fi(s,u,v,Fi(−s,v,u,x))) ∈ 〈L〉Q[s,u,v,x] .
2

The following result intuitively means that we do not lose invariant polynomials in
our approximation:

Proposition 34 The inclusion I∞ ⊆ 〈S〉Q[x] holds in all the executions of the imple-
mentation.

Proof. The inclusion holds at the beginning as I∞ ⊆ IV(〈S0〉) = 〈S0〉 = 〈S〉. It remains
to be seen that the inclusion is preserved at each iteration. From now on, 〈〉 means
〈〉Q[s,u,v,x]. It suffices to see that

I∞ ⊆
n⋂

i=1

〈L ∪ (I∞ ◦ Fi(−s,v,u,x))〉 .

So for 1 ≤ i ≤ n we have to see that I∞ ⊆ 〈L ∪ (I∞ ◦ Fi(−s,v,u,x))〉. Given q ∈ I∞,
we want to show that q ∈ 〈L ∪ (I∞ ◦ Fi(−s,v,u,x))〉.

First, we show that q(Fi(s,u,v,x)) ∈ 〈L ∪ I∞〉. If we divide q(Fi(s,u,v,x)) into a
Gröbner basis p1, ..., pK of I∞ with respect to any term ordering �, we get R,Q1, ..., QK ∈
Q[s,u,v,x] such that

q(Fi(s,u,v,x)) = R+

K∑

j=1

Qjpj .

We want to show R ∈ 〈L〉. As q ∈ I∞, ∀s0 ∈ N, q(Fi(s0,λ
s0 ,λ−s0 ,x)) = q(fi

s0(x)) ∈
I∞. But the remainder obtained when dividing q(fi

s0(x)) ∈ I∞ into p1, ..., pK is 0. As
p1, ..., pK is a Gröbner basis, it can be proved that ∀s0 ∈ N, R(s0,λ

s0 ,λ−s0 ,x) = 0.
We write R(s,u,v,x) =

∑

α∈Nm Rα(s,u,v) xα, where xα =
∏m

j=1 x
αj

j and Rα ∈
Q[s,u,v] are polynomials such that only a finite number of them are different from 0.
We have that ∀s0 ∈ N

0 = R(s0,λ
s0 ,λ−s0 ,x) =

∑

α∈Nm

Rα(s0,λ
s0 ,λ−s0) xα .

So ∀α ∈ Nm ∀s0 ∈ N, Rα(s0,λ
s0 ,λ−s0) = 0. By Proposition 32, Rα ∈ 〈L〉Q[s,u,v].

So R ∈ 〈L〉 and q(Fi(s,u,v,x)) ∈ 〈L ∪ I∞〉. As q(Fi(s,u,v,x)) ∈ 〈L ∪ I∞〉 and L ⊂
Q[s,u,v], substituting x by Fi(−s,v,u,x),

q(Fi(s,u,v,Fi(−s,v,u,x))) ∈ 〈L ∪ (I∞ ◦ Fi(−s,v,u,x))〉 .

From Lemma 33, q(x)−q(Fi(s,u,v,Fi(−s,v,u,x))) ∈ 〈L〉. Therefore q(x) ∈ 〈L∪ (I∞ ◦
Fi(−s,v,u,x))〉. 2

35

Finally, the last theorem implies trivially that the implementation is correct and com-
plete:

Proof of Theorem 15. Let us denote by IN the ideal computed at the end of the N -th
iteration in the Invariant Generation Procedure; and, analogously, let SN be the set of
polynomials computed at the end of the N -th iteration in the implementation.

First, we prove that ∀N ∈ N, 〈SN 〉 ⊆ IN . Then the termination of the Invariant
Generation Procedure will imply a chain of equalities that will yield the theorem.

So let us prove that ∀N ∈ N, 〈SN 〉 ⊆ IN by induction on N . If N = 0 there is nothing
to prove, since by definition I0 = 〈S0〉Q[x].

If N > 0,

IN =
⋂

s∈N

n⋂

i=1

IN−1 ◦ fi
−s(x) ,

〈SN 〉 = Q[x] ∩
(n⋂

i=1

〈L ∪ (SN−1 ◦ Fi(−s,v,u,x))〉Q[s,u,v,x]

)

.

Given q ∈ SN , for 1 ≤ i ≤ n and s0 ∈ N we have to show that q ∈ IN−1 ◦ fi
−s0(x). By

induction hypothesis, it is enough to see that q ∈ 〈SN−1〉 ◦ fi
−s0(x).

Now, if SN−1 = {p1, ..., pl} there exist polynomials Pr, Lj ∈ Q[s,u,v,x] for 1 ≤ r ≤ l
and 1 ≤ j ≤ k such that

q(x) =
l∑

r=1

Pr(s,u,v,x) pr(Fi(−s,v,u,x)) +
k∑

j=1

Lj(s,u,v,x) (ujvj − 1) .

For any s0 ∈ N, by evaluating conveniently the auxiliary variables,

q(x) =

l∑

r=1

Pr(s0,λ
s0 ,λ−s0 ,x) pr(Fi(−s0,λ

−s0 ,λs0 ,x))+

+

k∑

j=1

Lj(s0,λ
s0 ,λ−s0 ,x) · 0 =

l∑

r=1

Pr(s0,λ
s0 ,λ−s0 ,x) pr(fi

−s0(x)) .

So q ∈ 〈SN−1〉 ◦ fi
−s0(x) indeed. Therefore ∀N ∈ N, 〈SN 〉 ⊆ IN .

Now, if the Invariant Generation Procedure terminates in N iterations, by Theorem
5 IN = IN−1 = I∞. Then, by Proposition 34, 〈SN−1〉 ⊆ IN−1 = I∞ ⊆ 〈SN 〉. But
〈SN 〉 ⊆ 〈SN−1〉 clearly holds. So 〈SN−1〉 = 〈SN 〉, which implies SN = SN−1 as both
are Gröbner bases. Thus, the implementation terminates in at most the same number of
iterations as the Invariant Generation Procedure with 〈S〉 = I∞. 2

References

Becker, T., Weispfenning, V., 1993. Gröbner Bases. A Computational Approach to Com-
mutative Algebra. Springer-Verlag.

36

Bressoud, D. M., 1989. Factorization and Primality Testing. Springer-Verlag.
Cohen, E., 1990. Programming in the 1990s. Springer-Verlag.
Colón, M., 2004. Approximating the Algebraic Relational Semantics of Imperative Pro-

grams. In: International Symposium on Static Analysis (SAS 2004). Vol. 3148 of Lec-
ture Notes in Computer Science. Springer-Verlag, pp. 296–311.

Cousot, P., Cousot, R., April 1976. Static Determination of Dynamic Properties of Pro-
grams. In: Robinet, B. (Ed.), Proceedings of the 2nd International Symposium on
Programming. pp. 106–130.

Cousot, P., Cousot, R., 1977. Abstract Interpretation: a Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: Conference
Record of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. pp. 238–252.

Cox, D., Little, J., O’Shea, D., 1996. Ideals, Varieties and Algorithms. An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Springer-Verlag.

Dershowitz, N., Manna, Z., 1978. Inference Rules for Program Annotation. In: Proceed-
ings of the 3rd International Conference on Software Engineering. pp. 158–167.

Dijkstra, E., 1976. A Discipline of Programming. Prentice Hall.
Freire, P., 2002. www.pedrofreire.com/crea2 en.htm?

German, S., Wegbreit, B., 1975. A Synthesizer of Inductive Assertions. IEEE Transac-
tions on Software Engineering 1 (1), 68–75.

Gulwani, S., Necula, G. C., 2005. Precise interprocedural analysis using random interpre-
tation. In: Palsberg, J., Abadi, M. (Eds.), Proceedings of the 32nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. ACM, pp. 324–337.

Hoare, T., 2003. The Verifying Compiler: A Grand Challenge for Computing Research.
Journal of the ACM 50 (1), 63–69.

Kaldewaij, A., 1990. Programming. The Derivation of Algorithms. Prentice-Hall.
Kapur, D., 2003. Automatically Generating Loop Invariants using Quantifier Elimination.

Technical Report TR-CS-2003-58, Department of Computer Science, UNM, 2003. Also
in the Proc. of 10th International IMACS Conference on Applications of Computer
Algebra (ACA 2004), Lamar, TX, July 2004.

Karr, M., 1976. Affine Relationships Among Variables of a Program. Acta Informatica
6, 133–151.

Katz, S., Manna, Z., April 1976. Logical Analysis of Programs. Communications of the
ACM 19 (4), 188–206.

Knuth, D. E., 1969. The Art of Computer Programming. Volume 2, Seminumerical Al-
gorithms. Addison-Wesley.

Müller-Olm, M., Seidl, H., 2004. A Note on Karr’s Algorithm. In: 31 Int. Coll. on Au-
tomata, Languages and Programming (ICALP). LNCS 3142. Springer-Verlag, pp.
1016–1028.

Müller-Olm, M., Seidl, H., 2004a. Computing Polynomial Program Invariants. Informa-
tion Processing Letters (IPL) 91 (5), 233–244.

Müller-Olm, M., Seidl, H., 2004b. Precise interprocedural analysis through linear algebra.
In: ACM SIGPLAN Principles of Programming Languages (POPL 2004). pp. 330–341.

Petter, M., 2004. Berechnung von polynomiellen invarianten. Master’s the-
sis, Fakultät für Informatik, Technische Universität München, available at
http://www2.cs.tum.edu/ petter/da.

37

Rodŕıguez-Carbonell, E., Kapur, D., 2004a. An Abstract Interpretation Approach for Au-
tomatic Generation of Polynomial Invariants. In: International Symposium on Static
Analysis (SAS 2004). Vol. 3148 of Lecture Notes in Computer Science. Springer-Verlag,
pp. 280–295.

Rodŕıguez-Carbonell, E., Kapur, D., 2004b. Automatic Generation of Polynomial Loop
Invariants: Algebraic Foundations. In: International Symposium on Symbolic and Al-
gebraic Computation 2004 (ISSAC04). ACM Press, pp. 266–273.

Rodŕıguez-Carbonell, E., Kapur, D., 2005. Program Verification Using Automatic Gen-
eration of Invariants. In: 1st International Colloquium on Theoretical Aspects of Com-
puting (ICTAC’04). Vol. 3407 of Lecture Notes in Computer Science. Springer-Verlag,
pp. 325–340.

Rodriguez-Carbonell, E., Kapur, D., 2007. Automatic generation of polynomial invariants
of bounded degree using abstract interpretation. Science of Computer Programming
64 (1), 54–75.

Sankaranarayanan, S., Sipma, H. B., Manna, Z., 2004. Non-linear Loop Invariant Genera-
tion Using Gröbner Bases. In: ACM SIGPLAN Principles of Programming Languages
(POPL 2004). pp. 318–329.

Stanley, R., 1997. Enumerative Combinatorics. Vol. 1. Cambridge University Press.
Suzuki, N., Ishihata, K., 1977. Implementation of an Array Bound Checker. In: Proceed-

ings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages. ACM Press, pp. 132–143.

Wegbreit, B., February 1974. The Synthesis of Loop Predicates. Communications of the
ACM 17 (2), 102–112.

Wegbreit, B., September 1975. Property Extraction in Well-founded Property Sets. IEEE
Transactions on Software Engineering 1 (3), 270–285.

38

