
Automatic Generation of Polynomial Loop Invariants:
Algebraic Foundations ∗ †

Enric Rodrı́guez-Carbonell
LSI Department

Technical University of Catalonia
Barcelona, Spain

erodri@lsi.upc.es

Deepak Kapur
Department of Computer Science

University of New Mexico
Albuquerque, New Mexico, USA

kapur@cs.unm.edu

ABSTRACT
In [17], an abstract framework for automatically generat-
ing loop invariants of imperative programs was proposed.
This framework was then instantiated for the language of
conjunctions of polynomial equations for expressing loop in-
variants. This paper presents an algebraic foundation of the
approach. It is first shown that the set of polynomials serv-
ing as loop invariants has the algebraic structure of an ideal.
Using this connection, it is proved that the procedure for
finding invariants can be expressed using operations on ide-
als, for which Gröbner basis constructions can be employed.
Most importantly, it is proved that if the assignment state-
ments in a loop are solvable –in particular, affine– mappings
with positive eigenvalues, then the procedure terminates in
at most 2m+1 iterations, where m is the number of variables
changing in the loop. The proof is done by showing that the
irreducible subvarieties of the variety associated with a poly-
nomial ideal approximating the invariant polynomial ideal
of the loop either stay the same or increase their dimension
in every iteration. This yields a correct and complete al-
gorithm for inferring conjunctions of polynomial equations
as invariants. The method has been implemented in Maple
using the Groebner package. The implementation has been
used to automatically discover nontrivial invariants for sev-
eral examples to illustrate the power of the technique.

1. INTRODUCTION
Program verification based on Floyd-Hoare-Dijkstra’s induc-
tive assertion method, using pre/postconditions and loop
invariants, was considered a major research problem in the

∗This research was partially supported by an NSF ITR
award CCR-0113611, the Prince of Asturias Endowed Chair
in Information Science and Technology at the University of
New Mexico and an FPU grant from the Spanish Secretaŕıa
de Estado de Educación y Universidades, ref. AP2002-3693.
†An extended version of this paper is available at
www.lsi.upc.es/~erodri

seventies, leading to the development of many program ver-
ification systems. However, limited progress was made in
achieving the goal of mechanical verification of properties of
programs because (i) theorem provers, needed to establish
the validity of the verification conditions, were not powerful
enough and (ii) the user had to manually annotate programs
with loop invariants, because the few existing tools ([10]) for
this purpose at that moment were not sufficiently effective.

Nonetheless, for life-critical applications it is still impera-
tive to verify properties of programs ([11]). With substan-
tial progress in automated reasoning, several techniques for
verification have emerged in the form of static analysis of
programs (type checking, type inference, extended static
checking, etc.), model checking as well as verifying prop-
erties of software and hardware using theorem proving tech-
niques. However, the annotation burden remains. Our work
attempts to deal with the problem of automatically gener-
ating loop invariants, which is still unsolved.

In [17], an abstract framework for finding invariants of sim-
ple loops with nondeterministic conditional statements and
assignments was presented. Properties of the language used
for expressing invariants were identified so that a generic cor-
rect and complete procedure for computing loop invariants
could be formulated. This framework was then instantiated
for the language of conjunctions of polynomial equations.

In this companion paper, we provide an algebraic founda-
tion of the approach proposed in [17] when invariants are ex-
pressed as conjunction of polynomial equations. It is shown
that for a given loop, the set {p} of polynomials such that
p = 0 is invariant, i.e., p evaluates to 0 at the header when-
ever the body of the loop is executed, is a polynomial ideal;
this ideal is henceforth called the invariant polynomial ideal
of the loop. (This is very satisfying as it establishes a con-
nection between the concept of invariant as used in program-
ming languages and the concept of invariant as used in alge-
braic geometry.) Any conjunction of polynomial equations
such that the polynomials are a basis of this ideal is shown
to be inductive, i.e., it holds when entering the loop and
is preserved by every iteration of the loop. Moreover, such
formula is the strongest among all the inductive invariants
of the loop when invariants are conjunctions of polynomial
equations. Using Hilbert’s basis theorem, we also establish
the existence of such an inductive invariant for a given loop.

One of the main results in this paper is a proof of termina-
tion of a procedure for discovering such invariants in the case
of loops with solvable assignments –in particular, affine–
that have positive eigenvalues. It is shown that the invari-
ant ideal is computed in at most 2m + 1 iterations, where
m is the number of variables that change their value in the
loop. The termination proof uses techniques from algebraic
geometry to analyze the variety associated with the ideal
approximating, at every iteration of this procedure, the in-
variant polynomial ideal of the loop. It is shown that either
the invariant polynomial ideal is already computed, or the
minimum dimension of the noninvariant irreducible compo-
nents of the variety increases. The procedure is shown to be
correct and complete. If a loop does not have any polyno-
mial invariant, the procedure will generate the polynomial
0 (which is equivalent to true) as the invariant.

If assignment mappings commute, it can also be shown that
the procedure for discovering invariants terminates in at
most n + 1 iterations, where n is the number of branches
in the body of the loop. In particular, if there are no condi-
tionals in the body of the loop, the procedure terminates in
at most 2 iterations.

The procedure for discovering invariants has been imple-
mented in Maple using the Groebner package for manipulat-
ing ideals (see [6] as an introduction to Gröbner basis algo-
rithm, commutative algebra and algebraic geometry). The
procedure has been sucessfully applied on several nontriv-
ial imperative loop programs to automatically generate con-
junctions of polynomial equations as loop invariants. Some
of these examples are used in this paper to illustrate key
concepts of the proposed approach. In Section 6, a table is
given providing information on other examples successfully
attempted using the procedure.

The rest of the paper is organized as follows. After reviewing
related work in the next subsection, in Section 2 we intro-
duce the notation and describe the kind of loops and the
domain of variables we are going to consider. From Section
3 onwards, we focus on conjunctions of polynomial equa-
tions as loop invariants. It is shown that the set of invariant
polynomials of a loop has the algebraic structure of an ideal,
which immediately suggests that polynomial ideal theory
and algebraic geometry can give insight into the problem of
finding loop invariants. Section 4 presents the procedure for
finding polynomial invariants, expressed in terms of ideals.
The key ideas used in its proof of termination are discussed;
a detailed complete proof can be found in the longer version
of this paper available on the web. In Section 5 we show
how to implement this procedure using Gröbner bases, and
in Section 6 we demonstrate the power of the method with a
table of examples. Finally, Section 7 concludes with a sum-
mary of the contributions of the paper and an overview of
future research.

1.1 Related Work
Automatic discovery of invariants was an active research
topic in the early 70’s, but interest in it dwindled in the
80’s. Now, it seems to have caught on again.

Our techniques build upon the difference equations method
([8], [14]), which proceeds in two steps: i) by means of re-

currence equations (also called difference equations), an ex-
plicit expression is found for the value of each variable as a
function of the number of loop iterations s, other variables
that remain constant in the loop, and the input values; and
ii), the variable s is eliminated to obtain invariant relations.
The main obstacles in mechanizing this approach were: i)
finding a generic expression for the values of variables in
loops with conditionals or nested loops was not normally
possible; and ii), eliminating loop counters had to be done
by hand. For polynomial invariants, we show that quantifier
elimination and elimination theory can be quite helpful.

Karr [13] gave an algorithm for finding linear equalities as
loop invariants. This work was extended by Cousot and
Halbwachs [5], who applied the model of abstract interpreta-
tion [4] for finding invariant linear inequalities using widen-
ing operators. Like our techniques, both of these papers
were based on forward propagation and fixed point compu-
tation (see [21]). Recently, Colón et al [3] have applied non-
linear constraint solving for discovering linear inequalities
without having to use widening operators and/or fix-point
computation.

Karr’s approach has been recently extended by Müller-Olm
and Seidl [16] for finding polynomial equalities of bounded
degree as invariants of programs with affine assignments.
They used backward propagation and weakest preconditions,
instead of forward propagation and strongest postconditions.

During the course of this research, we learned in Novem-
ber/December 2003 about [18], in which the authors pro-
posed a method for generating nonlinear polynomial loop
invariants. The method starts with a template polynomial
with undetermined coefficients and attempts to find values
for the coefficients using the Gröbner basis algorithm so that
the instantiated template is invariant. A similar approach
was presented by Kapur in a colloquium at the Department
of Computer Science, University of New Mexico, in Novem-
ber 2003 (see www.cs.unm.edu/colloquia/index.html).

Our method, in contrast to [16, 18], does not have to assume
a priori any structure (such as bounded degree) on the poly-
nomials serving as invariants. All the examples shown in [18]
can be handled using our method, which is complete for the
class of loops considered in this paper, whereas [18] have to
employ lots of heuristics to solve the examples in their pa-
per. Moreover, we are able to handle solvable mappings as
assignments, which generalize affine mappings. Finally, our
method is already implemented.

2. BACKGROUND: PROGRAMMING
MODEL AND DEFINITIONS

For simplicity, a simple programming language consisting
of multiple assignment statements, nondeterministic condi-
tional statements and loop constructs is assumed; this is
similar to Dijkstra’s guarded command language ([7]). Us-
ing the proposed approach, it is possible to handle loop
and conditional tests expressed as conjunction of polyno-
mial equations; however, we assume them to be true to keep
the presentation simple.

Let x1, x2, ..., xm be the variables whose values change dur-
ing the execution of a given loop. We assume that they take

rational values. Let x̄ stand for the tuple of these variables.

Loop: while true do
if true → x̄ :=f1(x̄);
...
[] true → x̄ :=fi(x̄);
...
[] true → x̄ :=fn(x̄);
end if

end while

where fi : Qm → Qm for 1 ≤ i ≤ n to reflect that an
assignment statement is, in general, a multiple assignment
possibly changing all the variables.

Intuitively speaking, the assignment mappings fi’s allowed
are such that values of xi’s at any iteration can be expressed
as polynomials in the initial values of these variables when
the loop is entered; affine mappings defined below have this
property. Later on solvable mappings are introduced, for
which the values of the variables at any iteration can also
be expressed as polynomials, using additional variables to
represent exponentials (e.g. 2n to deal with assignments
such as x := 2x) as shown below.

To analyze execution paths of a given loop with n branches,
consider the set of all finite strings over the alphabet [n] =
{1, ..., n}. Let (f) stand for the tuple f1, ..., fn. Correspond-
ing to every string σ, we inductively define (f)σ as

(f)λ(x̄) = x̄, (f)σ.k(x̄) = fk((f)σ(x̄)), 1 ≤ k ≤ n,

where λ denotes the empty string. Each σ represents an
execution path, and (f)σ maps initial values of the variables
to the values after executing the path σ.

2.1 Definitions
Given a field K, we denote by K[z̄] = K[z1, ..., zl] the ring of
polynomials in the variables z1, ..., zl with coefficients from
K. An ideal is a set I ⊆ K[z̄] which is closed under addition
and such that, if p ∈ K[z̄] and q ∈ I, then pq ∈ I. Given
a set of polynomials S ⊆ K[z̄], the ideal spanned by S is

{p ∈ K[z̄] | ∃k ≥ 1 p =
Pk

j=1 pjqj with pj ∈ K[z̄], qj ∈ S}.
We denote it by 〈S〉K[z̄] or simply by 〈S〉. The variety of

S over Kl is defined as its set of zeroes, V(S) = {ᾱ ∈ Kl|
p(ᾱ) = 0 ∀p ∈ S}. For an ideal I ⊆ K[z̄], a set S ⊆ K[z̄] such
that I = 〈S〉 is called a basis of I. Finally, if A ⊆ Kl the
ideal I(A) = {p ∈ K[z̄]| p(ᾱ) = 0 ∀ᾱ ∈ A} is the annihilator
of A. If S ⊆ K[z̄], we will write IV(S) instead of I(V(S)).

A mapping g : Km → Km is said to be affine if it is of the
form g(x̄) = Ax̄ + b, where A is an m × m matrix with co-
efficients in K, and b ∈ Km. Thus, each variable is replaced
in an affine assignment by a linear polynomial.

A polynomial mapping g = (g1, ..., gm) ∈ K[z̄, x̄]m, where z̄
are auxiliary variables, generalizes an affine mapping. The
mapping g maps a set of polynomials S ⊆ K[x̄, x̄∗] into the
ideal

〈{p(g(z̄, x̄), x̄∗) ∈ K[z̄, x̄, x̄∗] | p(x̄, x̄∗) ∈ S}〉

obtained by replacing each variable xi in p by the polynomial
gi in g; this is denoted by subs(g, S). In particular, if B is
a basis of an ideal I, then subs(g, B) = subs(g, I).

A polynomial mapping g ∈ K[x̄]m is polynomially invertible
if ∃g′ ∈ K[x̄]m polynomial mapping such that g′(g(x̄)) = x̄;
we will denote it by g−1.

As discussed later, the termination of the procedure pro-
posed in Section 4 for generating polynomial invariants can
be established only for those invertible polynomial mappings
which are solvable and such that the eigenvalues of their
transformation matrices (which is A in the case of an affine
mapping Ax̄ + b) are positive reals. Intuitively, a solvable
mapping g is a polynomial mapping such that the recur-
rence x̄s+1 = g(x̄s) can be solved effectively and such that
its solution (which is given by the general power gs) can be
expressed as a polynomial in x̄, s and some additional vari-
ables needed to deal with exponentials. We formally define
solvable mappings in Section 4.1 before discussing the proof
of termination of the proposed procedure.

3. INVARIANT POLYNOMIALS FORM AN
IDEAL

An invariant is a formula which is true at the beginning of
the loop body whenever it is executed. In order to deal with
variables which are initialized to unknown parameters rather
than to values in Q or even uninitialized, an invariant may
depend not only on variables x̄ representing the values of the
variables at any iteration at the header of the loop, but also
on variables x̄∗ standing for the initial values before entering
the loop. However, if any of the variables is initialized to
some specific value or a relation among initial values is given,
this information can also be used for discovering invariants.
In the examples discussed in the paper, unknowns x̄∗ are
assumed as the initial values of x̄; we also use rational initial
values for the variables (or any relation on initial values)
whenever it is possible. After general expressions for the
invariants are discovered, any other known initial values for
the variables can be substituted in the invariants.

We only consider polynomial equations (strictly speaking,
conjunctions of polynomial equations) as invariants. We will
often abuse the notation by writing a polynomial equation
p = 0 as the polynomial p. Any relation among the initial
values of variables is assumed to be expressed as conjunction
of polynomial equations as well.

Definition 1. Given a set I0 ⊆ Q[x̄∗], a polynomial p ∈
Q[x̄, x̄∗] is invariant with respect to I0 if ∀σ ∀ᾱ∗ ∈ V(I0),
p((f)σ(ᾱ∗), ᾱ∗) = 0.

If a polynomial p is invariant with respect to I0, then it is
invariant with respect to 〈I0〉, as V(I0) = V(〈I0〉). So I0

can be assumed to be an ideal.

Lemma 1. Polynomials serving as invariants of a loop
(or an execution path) form an ideal.

Proof: It is easy to see that if polynomials p and q are
invariant with respect to I0, then p + q as well as ap are
also invariant with respect to I0 for any a ∈ Q[x̄, x̄∗]. Thus,
polynomials serving as invariants constitute an ideal.

Let P∞ stand for the set of all invariant polynomials, which
can also be expressed as follows:

Theorem 1. Given an ideal I0 ⊆ Q[x̄∗],

P∞ =
\
σ

˘
p ∈ Q[x̄, x̄∗]|∀ᾱ∗ ∈ V(I0), p((f)σ(ᾱ∗), ᾱ∗) = 0

¯
is an ideal.

We will refer to this ideal as the invariant polynomial ideal
of the loop. For every p ∈ P∞, p is an invariant polynomial.

Using Hilbert’s basis theorem, the ideal P∞ above has a
finite basis. Any finite basis of P∞, say B, can be used to
construct a formula

V
p∈B p = 0. This formula is proved in

[17] to be the strongest invariant expressible as a conjunction
of polynomial equations for the above loop.

4. INVARIANT GENERATION
PROCEDURE

We discuss below a procedure for computing the invariant
polynomial ideal P∞ for a given loop. Since the procedure is
based on the forward semantics of the assignment statement,
it is necessary to require that each assignment mapping fi

be not only a polynomial mapping but also be invertible.
Later, for showing the termination of the procedure, it is
further required that fi be solvable as defined below, with
its associated transformation matrices having positive real
eigenvalues. The ideal I0 relating initial values of variables
is assumed to have the property that I0 = IV(I0). Recall
that in the procedure below, fi is a m-tuple of polynomials
corresponding to m simultaneous assignments.

Invariant Generation Procedure
Input: Invertible mappings f1, ..., fn of assignments

An ideal I0 of polynomials satisfied by
the initial values such that I0 = IV(I0)

Output: Invariant ideal P∞
var I ′, I : ideals in Q[x̄, x̄∗] end var

I ′ := Q[x̄, x̄∗]
I := 〈{x1 − x∗1, ..., xm − x∗m} ∪ I0〉
while I ′ 6= I do

I ′ := I
I :=

T∞
s=0

Tn
i=1 subs(f−s

i , I)
end while
return I

In [17], an abstract procedure for generating loop invariants
is given in terms of formulas in first-order predicate calcu-
lus. After instantiation for the case of conjunctions of poly-
nomial equations, this abstract procedure yields the above
procedure. The following theorem is a direct consequence of
the results in that paper and ensures that on termination,
the result, i.e. the ideal stored in the variable I, is correct,
in the sense that all polynomials contained in it are invari-
ant for the loop, and complete, in the sense that it contains
the whole invariant polynomial ideal.

Theorem 2. If the Invariant Generation Procedure ter-
minates, I = P∞.

4.1 Termination of the Procedure
The main result of the paper is that the above procedure ter-
minates if assignment mappings are solvable and the eigen-

values of the associated transformation matrices are posi-
tive real numbers. Thus, the procedure is a complete algo-
rithm for loops with such assignment statements, generating
the strongest possible invariant expressible as conjunction of
polynomial equations.

Theorem 3. If each assignment mapping fi in a loop
is solvable and the associated transformation matrices have
positive real eigenvalues, then the Invariant Generation Pro-
cedure terminates in at most 2m + 1 iterations, where m is
the number of changing variables in the loop.

Due to lack of space, the proof of the theorem is not included
below; we informally review the main idea and state the key
steps of the proof. A complete proof is given in the long
version of this paper at www.lsi.upc.es/~erodri. First we
define solvable mappings, which generalize affine mappings.

4.1.1 Solvable Mappings
A solvable mapping is a generalization of an affine mapping.
It is defined recursively by partitioning variables into a se-
quence of subsets with the mapping for the bottom subset
defined to be affine and serving as the basis. A subset of
variables higher in the sequence is defined only in terms of
lower subsets.

Definition 2. Given a polynomial mapping g ∈ Q[x̄]m,
g is solvable if there exists a partition of x̄, x̄ = w̄1∪· · ·∪w̄k,
w̄i ∩ w̄j = ∅ if i 6= j, such that ∀j : 1 ≤ j ≤ k we have

gw̄j (x̄) = Mjw̄
T
j + Pj(w̄1, ..., w̄j−1)

where Mj ∈ Q|w̄j |×|w̄j | is a matrix and Pj is a vector of |w̄j |
polynomials with coefficients in Q[w̄1, ..., w̄j−1]. For j = 1,
P1 must be a constant vector, implying that gw̄1 is an affine
mapping.

The eigenvalues of g are defined as the union of the eigen-
values of the matrices Mj, 1 ≤ j ≤ k.

Note that any affine mapping g(x̄) = Ax̄ + b is solvable,
since w̄1 = x̄, M1 = A, P1 = b; the eigenvalues of g are the
eigenvalues of A. For example, the affine mappings of the
assignments in the body of the following loop:

(x, y, z):=(X, Y, 0);
while true do

if true → (x, y, z):=(2x, y/2− 1/2, x + z);
[] true → (x, y, z):=(2x, y/2, z);
end if

end while

are solvable. In both cases the eigenvalues are {2, 1/2, 1}.

The nonlinear mapping g(a, b, p, q) = (a − 1, b, p, q + bp)
is solvable even though it is not affine because of the 4th

component. Take w̄1 = (a, b, p), M1 = diagonal(1, 1, 1),
P1 = (−1, 0, 0). Then, w̄2 = q, with M2 = (1) and P2 = bp.
The eigenvalues of g are just {1}.

It can be shown that gs(a, b, p, q) = (a − s, b, p, q + bps).
The reader should note that gs can indeed be expressed as
polynomials in a, b, p, q and in the auxiliary variable s.

For the mapping g(x, y, z) = (2x, y/2, z), it can be seen that
gs(x, y, z) = (2sx, 1/2sy, z), which can be expressed as a
polynomial mapping using additional variables u, v standing
for 2s, 1/2s, respectively, giving gs(x, y, z) = (ux, vy, z) with
uv = 1. This is discussed in detail in Section 5.

4.1.2 Outline of the Termination Proof
Let JN be the ideal computed at the end of the N -th iter-
ation of the Invariant Generation Procedure. The variety
V(JN) can be decomposed as the union of irreducible sub-
varieties.1 The variety V(JN+1) associated with JN+1 at
the end of the (N + 1)-th iteration is related to V(JN) by
separately analyzing the effect of each assignment mapping
fi on each irreducible subvariety of V(JN). To illustrate the
key ideas below, consider the following loop:

(x, y):=(0, 0);
while true do

if true → (x, y) :=(x + 1, y);
[] true → (x, y) :=(x, y + 1);
end if

end while

This toy program begins with the point (0, 0) and then
repeteadly chooses nondeterministically to move horizon-
tally or vertically, covering all the pairs of natural numbers
N× N.

Applying the above procedure,

f1(x, y) = (x + 1, y), fs
1 (x, y) = (x + s, y)

f2(x, y) = (x, y + 1), fs
2 (x, y) = (x, y + s).

As both x and y are initialized to 0 before entering the loop,
I0 = 〈x∗, y∗〉. So J0 = 〈x∗, y∗, x−x∗, y− y∗〉 = 〈x∗, y∗, x, y〉
after simplifying the basis. Then

subs(f−s
1 , J0) = 〈x∗, y∗, x− s, y〉

and ∞\
s=0

subs(f−s
1 , J0) = 〈x∗, y∗, y〉.

x can have any value after the first assignment has been
executed arbitrarily many times. Similarly,

subs(f−s
2 , J0) = 〈x∗, y∗, x, y − s〉,

∞\
s=0

subs(f−s
2 , J0) = 〈x∗, y∗, x〉,

J1 = (∩∞s=0subs(f−s
1 , J0)) ∩ (∩∞s=0subs(f−s

2 , J0)) =

= 〈x∗, y∗, xy〉.

The dimension of the associated variety has gone up by 1.

1It is a well-known result in algebraic geometry that any va-
riety V can be expressed in a unique way as a finite union of
irreducible varieties Vi such that Vi 6⊂ Vj for i 6= j (i.e. they
are irredundant) [6]. The varieties Vi’s appearing in this
unique decomposition are called the irreducible components
of V .

The projection of the variety on x and y, with the initial
point and its sucessive images by f1 and f2 is given below.

-

6

x

y

u s s s sss fs
2 (0, 0), s ∈ N

fs
1 (0, 0), s ∈ N(0, 0)

V(xy)

����������������������������

��
��
��
��
��
��
��
��
��

At the next step, ∩∞s=0subs(f−s
1 , J1) = ∩∞s=0subs(f−s

2 , J1) =
〈x∗, y∗〉. Thus

J2 = (∩∞s=0subs(f−s
1 , J1)) ∩ (∩∞s=0subs(f−s

2 , J1)) =

= 〈x∗, y∗〉

Again the dimension of the associated variety is gone up by
1. Since there are no more polynomials in the x, y variables
anymore, the procedure terminates in the next iteration (in
this case with the trivial invariant 0 = 0). The projection
of V(J2) on x, y is the whole plane R2.

In this example, the dimension of the variety of the com-
puted ideal increases at each step until getting the invariant
polynomial ideal, where the variety and its dimension do not
change. In general, at each step either the invariant ideal
has been computed, or the minimum dimension of the nonin-
variant irreducible components of the variety increases. We
now give the key arguments in the proof of termination.

1. It is shown that given a prime ideal J , its image by
subs under an invertible polynomial mapping g is also
a prime ideal.

Using this proposition, it is proved that given an irre-
ducible variety V (and its associated prime ideal J),
the Zariski closure of the union of its iterated images,
i.e., ∪s∈Ngs(V) under a solvable mapping g is either
V itself or another irreducible variety V ′ such that
dim(V ′) > dim(V), provided the transformation ma-
trices associated with g have positive real eigenvalues.
In the example, the Zarisky closure of ∪s∈Nfs

1 (0, 0) cor-
responds to the x-axis, which is irreducible and has one
dimension more than (0, 0), the origin. Analogously,
the Zarisky closure of ∪s∈Nfs

2 (0, 0) is the y-axis, which
again has dimension 1.

2. Every irreducible subvariety of V(JN) thus transforms
under such a solvable assignment mapping to the same
irreducible subvariety in an irreducible decomposition
of V(JN+1) or to an irreducible subvariety of a higher
dimension. But we may not get an irredundant union
of irreducible subvarieties of V(JN+1), as two distinct
irreducible subvarieties of V(JN) may transform to the

same irreducible subvariety under g. In the second it-
eration of the example, it can be seen that f1 trans-
forms the y-axis into R2 and leaves the x-axis the same;
and that f2 transforms the x-axis into R2 as well, and
leaves the y-axis as it was.

Furthermore, since an iteration of the procedure cap-
tures the effect of all assignment mappings fi’s in the
case the loop has many branches, an irreducible com-
ponent of V(JN) can map to a reducible subvariety in
V(JN+1). However, different irreducible subvarieties
of V(JN) map under distinct solvable mappings fi’s
to irreducible subvarieties of V(JN+1). In the exam-
ple we have that the origin (0, 0), which is irreducible,
yields V(xy), which is the union of two straight lines
and so is reducible; still, each fi has given a different
irreducible component of V(xy), namely each of the
two coordinate axes.

3. If V(JN+1) is different from V(JN), there is at least
one irreducible subvariety of V(JN) which is trans-
formed to an irreducible subvariety of higher dimen-
sion in V(JN+1). Furthermore, irreducible subvari-
eties which become invariant under assignment map-
pings in any given iteration of the procedure will con-
tinue to remain invariant in subsequent iterations as
well. Consequently, the dimension of noninvariant ir-
reducible subvarieties keeps increasing. Then the min-
imum dimension of the irreducible subvarieties which
do not remain invariant under assignment mappings
keeps increasing. In our example, we would get the
trace of dimensions 0-1-2.

4. Since there are 2m variables, the dimension can only
increase from 0 to 2m, thus implying that after at most
2m + 1 iterations, JN becomes invariant.

4.1.3 Commuting Solvable Mappings
If assignment mappings fi’s are solvable and commute, i.e.
fi ◦ fj = fj ◦ fi for 1 ≤ i, j ≤ n, it can be shown that
the Invariant Generation Procedure terminates in at most
n + 1 iterations, where n is the number of branches in the
body of the loop. In particular, if n = 1, i.e. there are
no conditional statements, the procedure takes at most 2
iterations to terminate.

The number of branches in a nontrivial loop is typically
much less than the number of changing variables (including
the case when there is only one branch in a loop, as in Ex-
ample 3 in Section 5.1). Then, if assignment mappings com-
mute, the termination is achieved in fewer iterations. The
requirement on solvable mappings that their transformation
matrices have positive eigenvalues can also be relaxed.

Theorem 4. If all pairs of invertible assignment map-
pings fi and fj commute, i.e., fi ◦ fj = fj ◦ fi, then the
Invariant Generation Procedure terminates in at most n+1
iterations, where n is the number of branches in the loop.

The proof of termination, which is totally orthogonal to
the previous one, provides additional insight into JN , the
ideal computed after N iterations of the Invariant Genera-
tion Procedure. The proof is based on the following general

observation: at the N -th iteration of the Invariant Gener-
ation Procedure, the ideal JN generated is the intersection
of the invariant polynomial ideals for all execution paths of
the loop with branches alternated with each other ≤ N − 1
times. Informally speaking, this amounts to capturing the
effect of all possible compositions of assignment mappings
with ≤ N − 1 alternations.

Given that assignment mappings commute, all execution
paths of a loop can be rearranged to have the same effect as
that of all execution paths with at most n− 1 alternations.
Therefore after the (n+1)-th iteration the Invariant Gener-
ation Procedure will reach its fixed point, as Jn+1 = Jn.

5. APPROXIMATING WITH GRÖBNER
BASES

The Invariant Generation Procedure cannot be directly im-
plemented because of

I :=

∞\
s=0

n\
i=1

subs(f−s
i , I)

since infinite intersection of ideals cannot be effectively com-
puted.

By treating s as a new variable, if a general expression for
each f−s

i for 1 ≤ i ≤ n can be computed as a polynomial
mapping in x̄, s, then s can be eliminated. Assuming that
f−s

i (x̄) ∈ Q[s, x̄] and given a basis for I ⊆ Q[x̄, x̄∗], we get
a basis for subs(f−s

i , I) ⊆ Q[s, x̄, x̄∗] by substituting the x̄
variables by f−s

i (x̄) in the polynomials in the basis of I.
Gröbner bases can be used to compute the finite intersec-
tion ∩n

i=1subs(f−s
i , I). From the ideal thus obtained we can

compute an elimination ideal in x̄ eliminating s, again using
a Gröbner basis algorithm with a term ordering in which s
is bigger than all other variables in x̄. In other words, we
eliminate s from ∩n

i=1subs(f−s
i , I).

It is shown below that if fi is a solvable mapping with ratio-
nal eigenvalues, then f−s

i can be expressed as a polynomial
mapping in x̄, s and possibly some additional variables to
substitute for exponentials of rationals. Consider the as-
signment mappings discussed in Section 4.1.1:

f2(x, y, z) = (2x, y/2, z).

It is easy to see that

fs
2 (x, y, z) = (2sx, (1/2)sy, z),

which is not a polynomial mapping in terms of x, y, z, s.
However, if new auxiliary variables are introduced to replace
2s, (1/2)s, say u, v, respectively, then

F2(u, v, x, y, z) = fs
2 (x, y, z) = (ux, vy, z),

subject to the polynomial relation uv = 1. Similarly, for
f1(x, y, z) = (2x, y/2− 1/2, x + z),

fs
1 (x, y, z) = (2sx, (1/2)sy + (1/2)s − 1, z + (2s − 1)x),

which can also be expressed as:

F1(u, v, x, y, z) = fs
1 (x, y, z) = (ux, vy + v− 1, z + (u− 1)x).

For both f1 and f2 the eigenvalues are {2, 1/2, 1}, which
yield the exponential terms 2s and (1/2)s in fs

1 , fs
2 ; the vari-

ables u and v are introduced to substitute these exponentials

so that fs
1 , fs

2 can be represented as polynomial mappings.
In general, the following result enables to express powers of
solvable mappings with rational eigenvalues as polynomial
mappings using auxiliary variables in a similar way:

Theorem 5. Let g ∈ Q[x̄]m be a solvable mapping with
rational eigenvalues. Then gs

j (x̄), the j-th component of
gs(x̄) for 1 ≤ j ≤ m, is

gs
j (x̄) =

rjX
l=1

Pjl(s, x̄)(γjl)
s, 1 ≤ j ≤ m, s ≥ 0

where for 1 ≤ j ≤ m, 1 ≤ l ≤ rj, Pjl ∈ Q[s, x̄] and each
γjl ∈ Q is a product of a subset of the eigenvalues of g.

The proof of the above theorem is based on the fact that:
i) a matrix M ∈ Qh×h with rational eigenvalues can be
decomposed as M = S−1TS, with S, T ∈ Qh×h, det(S) 6= 0
and T the Jordan normal form of M ; and ii), a sequence
(ϕs)s∈N is of the form

ϕs =

rX
l=1

Pl(s)(γl)
s, s ≥ 0

with the Pl’s polynomials for 1 ≤ l ≤ r if and only if its
generating function Φ(z) =

P∞
s=0 ϕsz

s is a rational function
(see [19] for an introduction to generating functions).

To represent gs as a polynomial mapping, auxiliary variables
are introduced to substitute for exponentials of eigenvalues
(e.g., u, v for 2s, (1/2)s, respectively, in the above example).
These auxiliary variables are related to each other using re-
lations (e.g., uv = 1). It can be shown that operations on
ideals over the quotient structure of polynomial rings as in-
duced by the relations on auxiliary variables have equivalent
behaviour. For the above example, operations on ideals are
done in the quotient structure induced by the ideal 〈uv− 1〉
on Q[u, v, x, y, z] using a term ordering in which u, v are big-
ger than x, y, z.

5.1 Implementation
In the algorithm below, ideals are represented by their re-
spective finite bases (often their Gröbner bases using some
term ordering). Checking that the assignment mappings
fi’s are solvable with positive rational eigenvalues can be
done easily using linear algebra. Then the powers fs

i ’s are
computed and expressed as polynomial mappings denoted
by Fi’s, possibly employing the parameter s and additional
auxiliary variables ū, v̄ introduced to replace exponentials
of eigenvalues and their inverses; relations among auxiliary
variables are specified using a basis L.2

Input: The solvable mappings with positive rational
eigenvalues f1, ..., fn of the assignments.
A set S0 of polynomials satisfied by the initial
values such that 〈S0〉 = IV(〈S0〉).

Output: A finite basis for the invariant ideal P∞
var: S′, S : sets of polynomials in Q[x̄, x̄∗]

Saux : set of polynomials in Q[s, ū, v̄, x̄, x̄∗]

2The rsolve command in Maple is helpful in solving recur-
rences.

compute fs
1 , ..., fs

n, F1, ..., Fn, L
S′ := {1}
S :=gbasis({x1 − x∗1, ..., xm − x∗m} ∪ S0,�)
while S′ 6= S do

S′ := S
Saux :=gbasis(

Tn
i=1〈subs(Fi(−s, v̄, ū, ·), S)〉, >)

Saux :=gbasis(Saux ∪ L,�)
S := { polynomials in Saux without s, ū, v̄}

end while
return S

The function gbasis computes the reduced Gröbner basis
of the input ideal, specified as a finite set of polynomials,
with respect to a term ordering. The intersection of ideals
is performed by using Gröbner bases methods. For elim-
inating the variables s, ū, v̄, either block term ordering or
lexicographic term ordering in which s, ū, v̄ are the highest
can be used. The equality test on ideals is implemented by
comparing reduced Gröbner bases with respect to the same
ordering, as every ideal has a unique reduced Gröbner basis
once the ordering is fixed.

A variation of the above algorithm employing additional
heuristics to speed up the computation has been imple-
mented in Maple. The implementation has been successfully
used to automatically discover invariants of many nontrivial
programs. Some of these are discussed below as well as in
the next section. As the reader will notice, the invariants of
the examples below are not easy to deduce even by hand.

Example 1. Consider the loop introduced in Section 4.1.1.
A Gröbner basis of the computed ideal as well as the dimen-
sion of the corresponding variety after every iteration are
given below.

iteration 0 −→ {z∗, x− x∗, y− y∗, z− z∗}, dimension 2

This states that x, y, z start with some unknown values
x∗, y∗ , z∗ respectively, except that z is initialized to be 0.
That is why z∗ = 0.

iteration 1 −→ {z∗, xz − z − zx∗,−x∗y∗ + z + xy, yz +
zyx∗ − zx∗y∗ + z}, dimension 3

iterations 2,3 −→ {z∗,−x∗y∗ + z + xy}, dimension 4

In 3 iterations, the algorithm terminates. The polynomial
equation z∗ = 0 is the equation satisfied by the initial values.
Substituting x∗ and y∗ in −x∗y∗ + z + xy by their initial
values X and Y , the invariant −XY + z + xy = 0, i.e.
z + xy = XY is obtained.

Example 2. For the loop:

(a, b, p, q):=(A, B, 1, 0);
while true do

if true → (a, b, p, q) := (a− 1, b, p, q + bp);
[] true → (a, b, p, q) := (a/2, b/2, 4p, q);
end if

end while

iteration 0 −→ {q∗, p∗ − 1, a − a∗, b − b∗, p − p∗, q − q∗},

dimension 2

iteration 1 −→ {q∗, p∗ − 1, pq − q, qb − qb∗, ba∗ − b∗a −
q, b∗aq − qa∗b∗ + q2, pb2 − b∗2, bpa − a∗b∗ + q, a2p2 − a2p −
pa∗2 + a∗2, a2pb∗ − a∗2b∗ + qa + qa∗}, dimension 3

iterations 2,3−→ {q∗, p∗−1, pb2−b∗2, bpa−a∗b∗+q, ba∗b∗

− b∗2a− qb, a2pb∗2 − a∗2b∗2 + 2qa∗b∗ − q2}, dimension 4

After substituting the initial values, the invariant is:

pb2 = B2 ∧ bpa + q = AB∧

∧ bAB = B2a + qb ∧ a2pB2 + 2qAB = A2B2 + q2

Example 3. The following example is a program for com-
puting the floor of the square root of a natural number:

(a, s, t):=(0, 1, 1);
while s ≤ N do

(a, s, t) :=(a + 1, s + t + 2, t + 2);
end while

iteration 0 −→ {t∗ − 1, s∗ − 1, a∗, a − a∗, s − s∗, t − t∗},
dimension 0

iterations 1,2 −→ {t∗ − 1, s∗ − 1, a∗, 2a− t + 1, a2 − s +
2a + 1}, dimension 1

The conjunction t = 2a+1∧s = a2 +2a+1 is automatically
generated as an invariant in 2 iterations.

6. EXAMPLES
The implementation has been used to discover invariants
on many programs; see the long version of this paper for a
detailed discussion. The table below gives a representative
list of the examples attempted so far. There is a row for each
program; the columns provide the following information:

• 1st column is the name of the program; 2nd column
states what the program does (the “toy” entry stands
for a toy example); 3rd column gives the citation from
where the program was picked (the entry (*) is for the
example developed up by the authors).

• 4th column gives the number of variables changing in
its loop; 5th column gives the number of branches in
the body of its loop.

• 6th column gives the number of polynomials in the in-
variant, which is the same as the size of the output; 7th
column gives the maximum degree of the polynomials
in the invariant; 8th column gives the number of times
the main loop of the Invariant Generation Procedure
is executed.

• 9th column gives the time taken by the implementation
running on a Pentium 4 2.53 GHz. processor with
512 Mb of memory. Notice that, except for the last
example, the implementation took less than 6 seconds
to complete on all of the other examples in the table,
indicating that it works quite fast.

1 2 3 4 5 6 7 8 9

freire1 2
√

[9] 2 1 1 2 2 < 3 s.

freire2 3
√

[9] 3 1 6 4 2 < 5 s.

cohencu cube [2] 4 1 4 2 2 < 5 s.
cousot toy [5] 2 2 0 - 4 < 4 s.
divbin division [12] 3 2 1 2 4 < 5 s.
dijkstra2 2

√
[7] 3 2 1 2 4 < 6 s.

fermat2 factor [1] 3 2 1 2 4 < 4 s.
wensley2 division [20] 4 2 3 2 4 < 5 s.
euclidex gcd (*) 6 2 5 2 5 < 6 s.
lcm2 lcm [7] 4 2 1 2 5 < 5 s.
factor factor [15] 4 4 1 3 7 < 20 s.

7. CONCLUSION
The main contributions of this paper are:

1. We prove that the set of invariant polynomials of a
loop has the algebraic structure of an ideal. Moreover,
for any finite basis of this ideal, the corresponding con-
junction of polynomial equations is the strongest pos-
sible inductive invariant for the loop expressible as a
conjunction of polynomial equations.

2. For solvable assignment mappings with positive real
eigenvalues, we prove that the invariant polynomial
ideal is computed in at most 2m + 1 steps, where m is
the number of changing variables in the loop.

3. For solvable assignment mappings that commute, i.e.
fi ◦ fj = fj ◦ fi for 1 ≤ i, j ≤ n, we show that the
invariant polynomial ideal is computed in at most n+1
steps, where n is the number of branches in the body
of the loop.

4. We show how the procedure for computing the in-
variant polynomial ideal can be approximated using
Gröbner bases computations. Moreover, for solvable
mappings with rational positive eigenvalues, this ap-
proximation is exact, i.e. the algorithm computes the
invariant ideal.

5. The algorithm has been implemented in Maple and
successfully used to compute conjunctions of polyno-
mial equations as invariants for many nontrivial exam-
ples.

For future work, we are interested in exploring the proposed
research along several directions:

• enrich the programming model to consider nested loops
and procedure calls, as well as using guards in condi-
tional statements and loops to discover invariants;

• identify other languages that can specify properties of
data structures such as arrays, records, pointers, etc.
and to which the above techniques extend;

• integrate this and other methods for mechanically in-
ferring loop invariants, together with theorem proving
components, into a powerful tool for verifying proper-
ties of programs.

Acknowledgements. The authors thank A. Chtcherba,
G. Godoy, R. Nieuwenhuis and A. Oliveras for their help,
advice and comments.

8. REFERENCES
[1] D. M. Bressoud. Factorization and Primality Testing.

Springer-Verlag, 1989.

[2] E. Cohen. Programming in the 1990s. Springer-Verlag,
1990.

[3] M. A. Colón, S. Sankaranarayanan, and H. Sipma.
Linear Invariant Generation Using Non-Linear
Constraint Solving. In Computer-Aided Verification
(CAV 2003), volume 2725 of Lecture Notes in
Computer Science, pages 420–432. Springer-Verlag,
2003.

[4] P. Cousot and R. Cousot. Abstract Interpretation: a
Unified Lattice Model for Static Analysis of Programs
by Construction or Approximation of Fixpoints. In
Conference Record of the Fourth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 238–252, 1977.

[5] P. Cousot and N. Halbwachs. Automatic Discovery of
Linear Restraints among Variables of a Program. In
Conference Record of the Fifth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 84–97, 1978.

[6] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties and
Algorithms. An Introduction to Computational
Algebraic Geometry and Commutative Algebra.
Springer-Verlag, 1998.

[7] E. Dijkstra. A Discipline of Programming. Prentice
Hall, 1976.

[8] B. Elspas, M. Green, K. Levitt, and R. Waldinger.
Research in Interactive Program-Proving Techniques.
Technical report, Stanford Research Institute, Menlo
Park, California, USA, May 1972.

[9] P. Freire. www.pedrofreire.com/crea2 en.htm?

[10] S. German and B. Wegbreit. A Synthesizer of
Inductive Assertions. IEEE Transactions on Software
Engineering, 1(1):68–75, 1975.

[11] T. Hoare. The Verifying Compiler: A Grand
Challenge for Computing Research. Journal of the
ACM, 50(1):63–69, 2003.

[12] A. Kaldewaij. Programming. The Derivation of
Algorithms. Prentice-Hall, 1990.

[13] M. Karr. Affine Relationships Among Variables of a
Program. Acta Informatica, 6:133–151, 1976.

[14] S. Katz and Z. Manna. Logical Analysis of Programs.
Communications of the ACM, 19(4):188–206, April
1976.

[15] D. E. Knuth. The Art of Computer Programming.
Volume 2, Seminumerical Algorithms.
Addison-Wesley, 1969.

[16] M. Müller-Olm and H. Seidl. Computing
Interprocedurally Valid Relations in Affine Programs.
In ACM SIGPLAN Principles of Programming
Languages (POPL 2004), pages 330–341, 2004.

[17] E. Rodŕıguez-Carbonell and D. Kapur. Automatic
Generation of Polynomial Loop Invariants for
Imperative Programs. www.lsi.upc.es/~erodri.

[18] S. Sankaranarayanan, H. B. Sipma, and Z. Manna.
Non-linear Loop Invariant Generation Using Gröbner
Bases. In ACM SIGPLAN Principles of Programming
Languages (POPL 2004), pages 318–329, 2004.

[19] R. Stanley. Enumerative Combinatorics, volume 1.
Cambridge University Press, 1997.

[20] B. Wegbreit. The Synthesis of Loop Predicates.
Communications of the ACM, 17(2):102–112,
February 1974.

[21] B. Wegbreit. Property Extraction in Well-founded
Property Sets. IEEE Transactions on Software
Engineering, 1(3):270–285, September 1975.

