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Abstract. We present a powerful computational method for automat-
ically generating polynomial invariants of hybrid systems with linear
continuous dynamics. When restricted to linear continuous dynamical
systems, our method generates a set of polynomial equations (algebraic
set) that is the best such over-approximation of the reach set, under the
assumption that in every eigenvalue a + ib, the constants a and b are
rational. The extension to hybrid systems is achieved using the abstract
interpretation framework over the lattice defined by algebraic sets. Alge-
braic sets are represented using canonical Gröbner bases and the lattice
operations are effectively computed via appropriate Gröbner basis ma-
nipulations.

1 Introduction

Verification of hybrid systems is a challenging problem. While testing can
guarantee the correctness of a specific behavior of the system, verification at-
tempts to provide correctness guarantee for all possible behaviors of the system.
This extensive coverage is achieved, in most cases, by representing and manip-
ulating sets of states of the system, rather than a single state. This jump from
working with a single state, as in testing, to working with sets of states, as in
verification, is also the main source of computational challenges in verification.

Arguably the most significant strides in the development of formal methods
and verification technology were made in the form of developing effective repre-
sentations for sets of states. The binary decision diagram representation provided
a crucial breakthrough for hardware circuit verification, and region construction
played a similar role for timed systems. In this paper, we argue that a canonical
basis representation for algebraic sets provides an effective choice for a class of
hybrid systems with linear continuous dynamics.

A good representation for a set of states is one that allows efficient compu-
tation of some basic operations. In the case of discrete state transition systems,
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these operations are well understood. Depending on the exact verification proce-
dure, some or all of the set union, set intersection, set complement, subset, and
projection operators may be required [Hen]. In the case of hybrid systems, we ad-
ditionally require that the representation behaves “nicely” along the continuous
evolutions at different locations of the hybrid system.

This paper explores the representation of sets of states Set ⊆ Rn by the set
of polynomials P ∈ Q[X1, . . . , Xn] that form the kernel of Set , that is, P (s) = 0
for all s ∈ Set . Such a set of polynomials has several nice algebraic properties. It
is an ideal and has a finite basis representation. Furthermore, there is a canonical
fully-reduced basis, called a Gröbner basis, which can be effectively computed
(cf. ordered binary decision diagrams [Bry92]). The set union, set intersection,
and set inclusion operators are efficiently computable on these canonical bases.
The same is also true of the quantifier-elimination (projection) operator.

Using the above properties of the canonical ideal basis, we show that both
continuous and discrete behaviors of hybrid systems can be processed. The main
contributions of this paper are:
(i) We show that, for linear continuous dynamical systems where every eigenvalue
a+ib has rational real and imaginary parts, the best algebraic over-approximation
of the reach set can be computed (Section 3). The proof of this result borrows
some key insights from Lafferriere, Pappas and Yovine [LPY01], who use semi-
algebraic sets and show that exact reach sets can be computed for more restricted
classes of linear vector fields.
(ii) We show that the method for over-approximating reach sets for linear dynam-
ical systems can be extended to hybrid systems using an abstract interpretation
framework, thanks to the various nice computational properties of Gröbner bases
(Section 4). We also present some experimental results obtained by using our
method to generate polynomial invariants for hybrid systems (Section 5).

1.1 Related Work

Sankaranarayanan et al. [SSM04a] presented an approach for generating poly-
nomial equational invariants for hybrid systems with more general (nonlinear)
polynomial dynamics. However, their approach is based on guessing a tem-
plate for the invariant and generating constraints that would guarantee that
the guessed parametric polynomial equation is an inductive invariant. We re-
strict ourselves to linear dynamics, but our method is not based on guessing a
template. Moreover, we provide certain completeness guarantees for our method.
Each polynomial equation generated by Sankaranarayan et al. is required to be
inductive; this need not be true in our case. On the other hand, any extension
of our method to hybrid systems with more general continuous dynamics would
require the use of heuristics, such as [TK04,SSM04a].

Region graphs suffice to compute exact reach sets for timed automata [AD94].
Polygonal sets have been used as representations for computing reachable states
for linear hybrid automata [ACHH93]. For more complex continuous dynam-
ics, various representations have been used for computing over-approximations



of the reach sets, such as, union of convex polytopes [CK98], union of hyper-
rectangles [DM98], and ellipsoids [KV02]. Similar in the spirit of the result pre-
sented here, Kurzhanski and Varaiya [KV02] show that the best ellipsoidal over-
approximation of the reach set for certain linear systems can be computed. We
also note here that some of the above works use abstract interpretation ideas,
most notably in the form of widening to accelerate reachability (or fixpoint)
computation [HH95,DM98].

Exact reach sets for a class of linear vector fields were computed as semi-
algebraic sets over state variables and special variables representing exponen-
tial or trigonometric functions [LPY01]. We contrast algebraic sets with semi-
algebraic sets as a choice for representing sets of states. As mentioned above, the
former admit unique canonical representations on which various set operations
and quantifier-elimination operation can be efficiently performed. Algebraic sets
are defined as the zeros of a finite set of polynomials equations. Semi-algebraic
sets, on the other hand, are boolean combinations of sets defined by polyno-
mial equations and inequalities. By definition, they are closed under boolean
operations. However, there is no standard notion of canonical representation for
semi-algebraic sets. There is a quantifier-elimination procedure, but it is quite
complex, both in theory and practice.

2 Preliminaries: Ideals of Polynomials

Let K[X] denote the set of polynomials over the variables X = {x1, . . . , xn}
with coefficients in the field K (K = R, Q). Given a set S ⊆ Kn of points, we
are interested in those polynomials P that evaluate to 0 at S, that is, P (s) =
0,∀s ∈ S. These polynomials form an ideal : an ideal is a set I ⊆ K[X] such that
it includes 0, is closed under addition and if P ∈ K[X] and Q ∈ I, then PQ ∈ I.

Given a set of polynomials B ⊆ K[X], the ideal generated by B is

〈B〉 = {f ∈ K[X] | ∃k ≥ 1 f =
k∑

j=1

PjQj with Pj ∈ K[X], Qj ∈ B}.

For an ideal I, a set of polynomials B such that I = 〈B〉 is called a basis of
I. By Hilbert’s basis theorem, all ideals of polynomials admit a finite basis.
Thus, any ideal is associated to a finite system of polynomial equalities: the
ideal I = 〈P1(X), ..., Pk(X)〉 corresponds naturally to the system {P1(X) = 0,
..., Pk(X) = 0}. The solutions to this system are the common zeroes of all the
polynomials in I; this set of points, denoted by V(I) = {s ∈ Kn|P (s) = 0 ∀P ∈
I}, is called the variety of I (over Kn). A variety is also called an algebraic set.

For instance, the ideal 〈x(x2 + y2 − 1), y(x2 + y2 − 1)〉 is associated to the
system {x(x2 + y2 − 1) = 0, y(x2 + y2 − 1) = 0}. Its solution, which defines the
variety V(〈x(x2 + y2− 1) ,y(x2 + y2− 1)〉), is the union of the circle x2 + y2 = 1
and the origin. Notice that this set, unlike convex polyhedra [HPR94,CK98], is
not convex or even connected.



Reciprocally, given a set of points S ⊆ Kn, the polynomials vanishing on this
set form the ideal I(S) = {P ∈ K[X]| P (s) = 0 ∀s ∈ S}, called the ideal of
S. Notice that, for arbitrary ideals, the inclusion I ⊆ IV(I)1 may be strict: the
variety of the ideal of all multiples of x2 is just the origin, V(〈x2〉) = {0}; but
I({0}) = 〈x〉, and x 6∈ 〈x2〉. We are interested in the ideals for which the equality
IV(I) = I holds; these ideals are complete in the sense that they include all
polynomials that evaluate to 0 at the points of the variety V(I) they represent.
Since any ideal I satisfying IV(I) = I is the ideal of the variety V(I), such an
ideal is called an ideal of variety.

3 Linear Systems

A linear (continuous dynamical) system CS is a tuple (X, Init , A, b) where
X = {x1, ..., xn} is a finite set of variables interpreted over the reals R, X = Rn

is the set of all valuations of the variables X, Init ⊆ X is the set of initial states,
and A ∈ Qn×n and b ∈ Qn×1 are the matrices that constrain the dynamics of
CS by the differential equation ẋ = Ax + b. Since interest is in computational
feasibility, the matrices A and b are assumed to contain rational entries.

The semantics, [[CS]], of a linear system CS = (X, Init , A, b) over an interval
I = [t0, t1] ⊆ R is a collection of mappings x : I 7→ X satisfying (i) the initial
condition: x(t0) ∈ Init , and (ii) the continuous dynamics: for all t ∈ [t0, t1],
ẋ(t) = Ax(t) + b. In case the interval I is left unspecified, it is assumed to be
the interval [0,∞).

We say that a state s ∈ X is reachable in a continuous dynamical system CS
if there exists a function x ∈ [[CS]] such that s = x(t) for some t ∈ I. The set,
Reach(CS), is defined as the set of all reachable states of the system CS.

The problem of computing the exact reachability set Reach(CS) for a given
dynamical system CS is intractable in general. However, for purposes of verifi-
cation of safety properties, it often suffices to compute an over-approximation
(or superset) of the reachable set of states—if the over-approximation does not
intersect the set of bad states, then the original system will never reach a bad
state. An over-approximation of the reachable states is also called an invariant
of the system. The most precise invariant of a system is its exact reach set.

Lafferriere, Pappas and Yovine showed that the exact reach set can be com-
puted for a subclass of linear continuous dynamical systems [LPY01]. Subse-
quently, it was shown that invariants (that is, over-approximations) could be
effectively constructed for more general classes of linear systems [Tiw03]. We
show here that the most precise equational invariant for a class of linear sys-
tems (that allows for more complex dynamics than the one in [LPY01]) can be
computed.

Assume that the eigenvalues of A are of the form a + bi, where a, b ∈ Q and
i2 = −1. We do not assume that A is diagonalizable. The solution to the system

1 We write IV instead of I ◦V to denote the composition of I and V.



of differential equations ẋ = Ax + b is

Φ(s∗, t) = eAts∗ + eAt(
∫ t

0

e−Aτdτ) b , s∗ ∈ Init (1)

where Φ is the flow of the vector field. It can be easily proved that both eAt

and
∫ t

0
e−Aτdτ can be written as sums of terms of the form ctke±at cos(bt),

ctke±at sin(bt), where c ∈ Q, k ∈ N and the complex numbers λ = a + bi are the
eigenvalues of the matrix A.

The set of reachable states of CS is

Reach(CS) = {s ∈ Rn : ∃s∗, t. (t ≥ 0 ∧ s∗ ∈ Init ∧ s = Φ(s∗, t))} (2)

We can express the solution Φ(s∗, t) given in Equation 1 in terms of polynomials
using up to four auxiliary variables u, v, w, z. Specifically, since we assume that
all eigenvalues of A are of the form a + bi with a, b ∈ Q, we can find positive
rational numbers p, q such that, for any eigenvalue λ = a + bi of A, there exist
integers cλ, dλ such that cλ = a/p and dλ = b/q . Now we just need to replace
ept by u, e−pt by v, cos(qt) by w and sin(qt) by z: for any eigenvalue λ = a + bi,
we replace eat by u|cλ| or v|cλ| depending on whether a > 0 or a < 0 respectively;
cos(bt) and sin(bt) can be similarly expressed in terms of w and z. Therefore,
we can express the flow Φ as a polynomial over the initial conditions and the
dummy variables t, u, v, w, z. The reach set from Equation 2 can now be written
as

∃s∗, t, u, v, w, z . (t ≥ 0 ∧ s∗ ∈ Init ∧ s = Φ(s∗, t, u, v, w, z) ∧
u = ept ∧ v = e−pt ∧ w = cos(qt) ∧ z = sin(qt)) (3)

The exponentials and the trigonometric functions are eliminated by intro-
ducing new equations uv = 1 and w2 + z2 = 1 that capture the dependencies
between ept, e−pt, cos(qt) and sin(qt). Clearly, the resulting formula, given below,
represents an invariant of CS.

∃s∗, t, u, v, w, z . (t ≥ 0 ∧ u ≥ 1 ∧ s∗ ∈ Init ∧ s = Φ(s∗, t, u, v, w, z) ∧
uv = 1 ∧ w2 + z2 = 1) (4)

Using quantifier elimination for reals, this method gives a semi-algebraic invari-
ant for the linear system CS. Unfortunately, the formula above does not capture
all semi-algebraic relationships that exist between t, u, v, w and z.

One of the main observations of this paper is that the two equations uv = 1
and w2 +z2 = 1 are sufficient to capture all algebraic invariants of CS. Further-
more, to compute the algebraic invariants, the expensive step that involves doing
quantifier elimination over the reals can be replaced by a Gröbner basis [CLO96]
computation step, which is simpler and often more efficient in practice. Since we
use Gröbner bases to eliminate variables, we need to employ an elimination
term ordering in which the auxiliary variables are the biggest. In summary, the



method to compute the strongest algebraic invariants of CS is to use Gröbner
bases to eliminate the quantified variables in Equation 4.

The main result of the paper is that, if the initial conditions are described
by means of an ideal of variety, we obtain all polynomials that evaluate to 0 at
the exact reachability set of CS.

Theorem 1. Let CS = (X,V(I∗), A, b) be a linear system, where I∗ ⊆ Q[X∗]
is the ideal of variety of initial states. Let P1, ..., Pn ∈ Q[X∗, t, u, v, w, z] be the
polynomials approximating the flow Φ defined above. Then,

I(Reach(CS)) = 〈I∗,−x1 + P1, . . . ,−xn + Pn, uv − 1, w2 + z2 − 1〉 ∩ R[X]

Proof. The ⊇ inclusion is obvious. For the ⊆ inclusion, take an arbitrary polyno-
mial q ∈ I(Reach(CS)). Normalize the polynomial q using the following rewrite
rules2 to get a new polynomial r:

x1 → P1, . . . , xn → Pn, uv → 1, w2 → −z2 + 1

Our goal is to prove that r ∈ 〈I∗〉 (as an ideal in R[X, X∗, t, u, v, w, z]). Since
we have eliminated all occurrences of uv, w2 and xi, the polynomial r must be
of the form∑
l,m,n≥0

almn(X∗)tlumzn+blmn(X∗)tlumwzn+clmn(X∗)tlvmzn+dlmn(X∗)tlvmwzn

with a finite number of non-vanishing terms. We need to prove that the polyno-
mials almn(X∗), blmn(X∗), clmn(X∗), and dlmn(X∗) are in IV(I∗) = I∗. So, we
will prove that ∀s∗ ∈ V(I∗), almn(s∗) = blmn(s∗) = clmn(s∗) = dlmn(s∗) = 0.

Fix s∗ ∈ V(I∗). Under the substitution xi 7→ Pi, u 7→ ept, v 7→ e−pt, w 7→
cos(qt), z 7→ sin(qt), X∗ 7→ s∗, the polynomial q evaluates to 0 (for all t ≥ 0),
and so do the polynomials uv− 1, w2 + z2− 1,−xi +Pi. Therefore, we have that
for all t ≥ 0, R(t) := r(s∗, t, ept, e−pt, cos(qt), sin(qt)) = 0, or equivalently∑

l,m≥0

tlempt(
∑
n≥0

almn(s∗) sinn(qt) + blmn(s∗) sinn(qt) cos(qt))+

tle−mpt(
∑
n≥0

clmn(s∗) sinn(qt) + dlmn(s∗) sinn(qt) cos(qt)) = 0

Since this function evaluates to 0 for all t ≥ 0, we claim without proof that
almn(s∗) = blmn(s∗) = clmn(s∗) = dlmn(s∗) = 0. This completes the proof. �

Example 1. Consider the following system of differential equations, which de-
scribes the dynamics of a charged particle under the influence of a magnetic

2 Simplification of q by a rewrite rule l → r simply means that you replace l by
r in q. Experts in Gröbner bases will notice that we are using the term ordering
lex(X > u > v > w > z > t > X∗).



field: 
ẋ
ẏ
v̇x

v̇y

 =


0 0 1 0
0 0 0 1
0 0 0 −1/2
0 0 1/2 0




x
y
vx

vy


The solution is given by{

x = x∗ + 2 sin(t/2) v∗x + (2 cos(t/2)− 2) v∗y vx = cos(t/2) v∗x − sin(t/2) v∗y
y = y∗ + (−2 cos(t/2) + 2) v∗x + 2 sin(t/2) v∗y vy = sin(t/2) v∗x + cos(t/2) v∗y

where x∗, y∗, v∗x, v∗y stand for the initial values. In this case the eigenvalues of
the system matrix are 0, i/2 and −i/2, which is consistent with the fact that
the non-algebraic terms in the solution are cos(t/2), sin(t/2). By introducing the
variables w and z to replace cos(t/2) and sin(t/2) respectively, we can rewrite
the solution as follows (there are no exponential terms in this case):{

x = x∗ + 2zv∗x + (2w − 2)v∗y vx = wv∗x − zv∗y
y = y∗ + (−2w + 2) v∗x + 2zv∗y vy = zv∗x + wv∗y

Now assume that the initial conditions satisfy v∗x = 2, v∗y = −2. Therefore we
have to eliminate x∗, y∗, v∗x, v∗y , w, z from the ideal

〈v∗x − 2, v∗y + 2,−x + x∗ + 2zv∗x + (2w − 2)v∗y ,−y + y∗ + (−2w + 2) v∗x + 2zv∗y ,

−vx + wv∗x − zv∗y ,−vy + zv∗x + wv∗y , w2 + z2 − 1〉
The elimination of the auxiliary variables yields the ideal 〈v2

x + v2
y − 8〉, which

corresponds to the law of conservation of energy. �

The method for generating the most precise equational (algebraic) invariants
of linear systems can be extended to handle state invariants that are specified
as polynomial equations. Before eliminating the quantified variables from Equa-
tion 4, we add all the equations representing any state invariant that may be
true.

It is difficult to generalize the method to compute the best semi-algebraic
invariant. Whereas the two equations uv = 1 and w2 + z2 = 1 capture all al-
gebraic relationships between the functions ept, e−pt, sin(qt) and cos(qt), there
is no finite set (basis) of inequalities that captures all the semi-algebraic rela-
tionships between these functions. This also partly explains why the decidability
results [LPY99,LPY01] are not easy to generalize.

3.1 Generalization to Arbitrary Eigenvalues

The ideas proposed above to handle exponential and trigonometric terms can
be generalized to arbitrary eigenvalues as follows.

Let L be the set of all eigenvalues of the matrix A. First, let us deal with
the exponential terms. To that end, we define R = {±Re(λ) |λ ∈ L}\{0}. Since
R is finite, we can obtain a finite basis B = {p1, ..., pk} of the Q-vector space
generated by R. By definition, this set has the properties that:



1. ∀a ∈ R, ∃ca
1 , ..., ca

k ∈ Q such that a =
∑k

i=1 ca
i pi.

(B is a system of generators)
2. ∀c1, ..., ck ∈ Q such that

∑k
i=1 cipi = 0, c1 = · · · = ck = 0.

(B is Q-linearly independent)

Further, by multiplying the elements in B by appropiate correction factors,
we can ensure that the coefficients ca

i are integers, i.e. ∀a ∈ R, ∃ca
1 , ..., ca

k ∈ Z such
that a =

∑k
i=1 ca

i pi. By introducing the auxiliary variables ui = epit, vi = e−pit:

eat = e
Pk

i=1 ca
i pit =

k∏
i=1

eca
i pit =

k∏
i=1

{
u
|ca

i |
i if sign(ca

i ) = 1
v
|ca

i |
i if sign(ca

i ) = −1

So we can substitute the exponentials by means of the auxiliary variables.

Example 2. Let us consider that L = {λ1, λ2, λ3, λ4} = {1+
√

2, 1−
√

2, 1/2, 1/3}.
Taking B = {p1, p2} = {1 +

√
2, 1/6} as a basis, all coefficients are integers:

λ1 = p1, λ2 = −p1 + 12p2, λ3 = 3p2, λ4 = 2p2. So, if u1 = e(1+
√

2)t, v1 =
e−(1+

√
2)t, u2 = e(1/6)t, v2 = e−(1/6)t, then for instance e(1−

√
2)t = v1u

12
2 . ut

As regards trigonometric terms, the same ideas apply: we define I = {Im(λ) |
λ ∈ L} \ {0} and introduce 2l auxiliary variables wj , zj standing for cos(qjt),
sin(qjt) for 1 ≤ j ≤ l for certain Q-linearly independent q1, ..., ql ∈ R.

The following theorem (which we claim without proof) is an extension of
Theorem 1:

Theorem 2. Let CS = (X,V(I∗), A, b) be a linear system, where I∗ ⊆ Q[X∗]
is the ideal of variety of initial states. Let P1, ..., Pn ∈ Q[X∗, t, u1, v1, ..., uk, vk,
w1, z1, ..., wl, zl] be the polynomials approximating the flow Φ. Then,

I(Reach(CS)) = 〈I∗,−x1 + P1, . . . ,−xn + Pn,

u1v1 − 1, ..., ukvk − 1, w2
1 + z2

1 − 1, ..., w2
l + z2

l − 1〉 ∩ R[X]

4 Hybrid Systems

In this section we extend the technique for generating algebraic invariants
to hybrid systems using abstract interpretation [CC77]. At each location, we
restrict ourselves to linear continuous dynamics.

A hybrid system HS = (L, X, T , (Init)`∈L, (A)`∈L, (b)`∈L) consists of a finite
set L of locations; a finite set of continuous dynamical systems (X, Init`, A`, b`),
one associated with each location ` ∈ L; and a finite set T ⊂ L×L×2X× (X →
X) of discrete transitions. A discrete transition τ = (`, `′, γ, α) ∈ T consists of
a source location ` ∈ L, a target location `′ ∈ L, a guard γ which is a boolean
function of the variables X, and an action α which is a multiple assignment
of the variables. A state of the system HS is given by a location ` ∈ L and a
valuation s ∈ X = Rn of the variables over the real numbers.



The semantics, [[HS]], of a hybrid system HS is a collection of infinite se-
quences of states (`, s) ∈ L × X of the form (`0, s0), (`1, s1), (`2, s2), . . . such
that s0 ∈ Init`0 specifies an initial state, and for each pair of consecutive states
(`i, si), (`i+1, si+1) one of the two transition conditions holds:
- discrete transition: there exists a transition τ = (`i, `i+1, γ, α) ∈ T which is
enabled, i.e. γ(si) = true, and such that si+1 = α(si).
- continuous transition: the control location does not change, in other words
`i = `i+1 = `; and there is a trajectory going from si to si+1 along the flow
determined by A`, b`, i.e. there exist a time interval δ ≥ 0 and a differentiable
function x : [0, δ] → X such that x(0) = si, x(δ) = si+1 and ẋ(t) = A`x + b`

(and the state invariant, if any, holds).
A state (`, s) is reachable if there exists a sequence in [[HS]] where it appears.

The set of all reachable states of a hybrid system HS is denoted by Reach(HS).
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ṫ = 1

magnetic '

&

$

%
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x = 0 → vx := −vx; b := b + 1

Fig. 1. Dynamics of a charged particle

Example 3. The hybrid system in Figure 1, taken from [SSM04b], models the
position (x, y) and the velocity (vx, vy) of a charged particle on a plane with a
reflecting barrier at x = 0 and a magnetic field perpendicular to the plane in the
region x ≥ d (where d ≥ 0 is a parameter of the system). The variable b counts
the number of times the particle has collided against the reflecting barrier, and
t is a clock that measures the total time elapsed.

The hybrid system has three locations: in locations left and right, the particle
is moving freely under no external force, either toward or away from the barrier,
while in location magnetic it is moving under the effect of the magnetic field. The
three discrete transitions model the movement of the particle in and out of the
magnetic field and its collision with the barrier. In our analysis, we assume that
initially the particle is moving right with vx = 2, vy = −2 and x = y = t = b = 0;
also, the parameters d and a are set to 2 and 1/2 respectively. �

4.1 Reachable States as Fixpoints

Let us denote by Reach = Reach(HS) the set of all reachable states of a
hybrid system HS. Given a location `, we also write Reach` to represent the set
of all reachable states at location `, i.e. Reach` = {s | (`, s) ∈ Reach}.



We first characterize the (tuple of) reachable states (Reach`)`∈L using a
system of fixpoint equations. Consider a discrete transition τ = (`, `′, γ, α). The
states at location ` where transition τ is enabled are given by Reach` ∩ γ. After
firing the transition, the new states reached are given by α(Reach` ∩ γ), where
α represents the mapping that updates the values of the variables. The set of
states in which location `′ is entered is obtained by summing up over all discrete
transitions that lead to `′:

Init`′ ∪ (
⋃

(`,`′,γ,α)∈T

α(Reach` ∩ γ)) .

The above states provide the initial conditions for the continuous evolution at
`′. Now, Reach`′ is obtained thus:

Reach`′ =
⋃
t≥0

Φ`′(Init`′ ∪ (
⋃

(`,`′,γ,α)∈T

α(Reach` ∩ γ)), t) . (5)

The above system of equations defines (Reach)`∈L in terms of itself. The least
fixpoint of this system of equations (with respect to the inclusion ⊆ ordering) is
the exact set of reachable states of HS. However, any fixpoint (not necessarily
the least) will give an over-approximation of the exact reach set.

The ability to compute a fixpoint of the above equations depends on the
choice of the representation for sets of states. Some choices are convex polyhedra
[CK98], algebraic sets, semi-algebraic sets [LPY01], and ellipsoidal sets [KV02].
We have used algebraic sets in Section 3 to represent sets reachable under con-
tinuous flow. Using the results from Section 3, in the next subsections we will
show how algebraic solutions of the Fixpoint Equation 5 can be computed. The
general framework (originally defined for discrete transition systems) is called
abstract interpretation [CC77].

4.2 Abstract Interpretation

Abstract interpretation [CC77] is a general framework for discovering invari-
ant properties for a given discrete transition system. It works by solving a fixpoint
equation X = F (X) (which determines the reachable sets for that system) over
an abstract domain. The abstract domain is defined by the representation used
for specifying sets of states. The application of abstract interpretation involves:

1. Choosing an abstract domain A: Each element in the abstract domain repre-
sents a set of states. The original fixpoint equation X = F (X) (defined over
arbitrary sets of states X) is transformed into a fixpoint equation Y = G(Y )
over the sets of states Y defined by the abstract domain.

2. Computing a solution of the fixpoint equation Y = G(Y ) over the abstract
domain iteratively: A solution of the equation Y = G(Y ) is obtained by com-
puting a fixpoint of the recurrence Y0 = ⊥ (the least element of the abstract
domain), Yk+1 = G(Yk). This recurrence may not necessarily converge in a
finite number of steps; in this case the termination is forced by means of the
application of a widening operator ∇ : A × A → A, at the cost of further
over-approximation. Such an operator must satisfy:



– ∀Y1, Y2 ∈ A, Y1 ⊆ Y1∇Y2 and Y2 ⊆ Y1∇Y2.
– For any increasing chain Y0 ⊆ Y1 ⊆ · · · , the new increasing chain defined

by Y ′
0 = Y0, Y ′

k+1 = Y ′
k∇Yk+1 is not strictly increasing (that is, it finitely

converges).
Under these hypotheses, the last element of the finite sequence Y ′

0 , Y ′
1 , Y ′

2 , . . .
yields a solution of the fixpoint equation.

4.3 Operations with Ideals of Variety

We now show that the abstract domain of algebraic sets, represented as ideals
of variety, can be used to compute polynomial invariants for hybrid systems.
In Section 2 we presented this domain, and Section 3 showed how to handle
continuous evolution (that is, the Φ function in the Fixpoint Equation 5). We
now show how the rest of the operators used in Equation 5, viz. the assignment
transformation α, the set union ∪ and the set intersection ∩, can be effectively
computed over our choice of abstract domain. We will also present a widening
operator to guarantee termination.

Specifically, we use the following operations on algebraic sets (represented as
ideals) to abstract the corresponding operations on (arbitrary) sets, see [RCK04]:

Assignment Transformation→Elimination of Variables. Given an ideal of vari-
ety I = 〈P1(X), ..., Pk(X)〉 and a multiple (polynomial) assignment (x1, . . . , xn)
:= (α1(X), . . . , αn(X)), we introduce auxiliary variables X̄ = {x̄1, . . . , x̄n}, to
denote the values of the variables before the assignment. Then the relationship
between the values before and after the assignment is described by the ideal

〈P1(X̄), . . . , Pk(X̄), x1 − α1(X̄), . . . , xn − αn(X̄)〉.

The output ideal of variety can be obtained by eliminating the auxiliary variables
X̄ in the ideal above by means of well-known elimination techniques based on
Gröbner bases [CLO96].

Union of States → Intersection of Ideals. Given two ideals of variety I and
J , the union of the states represented by I and J is represented by the ideal
I(V(I) ∪V(J)), which is equal to I ∩ J by duality. Therefore, the output ideal
of variety is the intersection ideal I ∩ J .

Intersection of States → Sum and Quotient of Ideals. Given two ideals of variety
I = 〈P1, ..., Pk〉 and J = 〈Q1, ..., Ql〉, we distinguish two cases:

– We want to represent V(I) ∩V(J) (this is the case when guards have poly-
nomial equalities like x = 0). The sum of ideals I + J = 〈P1, ..., Pk, Q1, ...,
Ql〉, which is generated by the union of the bases, has the property that
V(I + J) = V(I) ∩ V(J). However, I + J may not be an ideal of variety;
therefore we have to compute its closure IV(I + J)3.

3 If we take the complex numbers C as the field for the coefficients instead of R, by
Hilbert’s Nullstellensatz IV = Rad, the radical operator, which can be effectively
computed.



– We want to represent V(I) ∩ (Kn \V(J)) = V(I) \V(J) (this is the case
when guards have polynomial disequalities like x 6= 0). The quotient I : J
of ideals satisfies that I : J = I(V(I) \V(J)), i.e. it is the maximal set of
polynomials that evaluate to 0 at V(I) \V(J). Thus we take I : J as the
output ideal of variety.

Widening Operator. Given two ideals of variety I and J , we are interested in
under-approximating the ideal I ∩ J so that we can guarantee termination of
the fixpoint computation. One way to achieve this is to restrict I ∩ J to poly-
nomials that have degree less or equal than a prefixed degree bound d. As the
ideal generated by these polynomials may not be an ideal of variety, the closure
operator IV must be applied. Formally, given two ideals of variety I, J and a
degree bound d, the widening is defined as:

I∇dJ = IV({P ∈ GB(I ∩ J,�) | degree(P ) ≤ d}) ,

where GB(K,�) stands for a Gröbner basis of an ideal K with respect to the
graded term ordering4 �. We are experimenting with other widening operators
that would allow the generalization of Theorem 1 to hybrid systems.

It is well-known in computational algebraic geometry that canonical repre-
sentation for I∩J , I∪J , I : J , and elimination ideals can be effectively computed
from the corresponding representations for I and J .

Example 4. In the hybrid system model of the charged particle, let us denote by
Iright , Imagnetic and Ileft the ideals of variety corresponding to the states right ,
magnetic and left respectively. As the initial state is right with vx = 2, vy = −2,
x = y = b = t = 0, we get the following system of fixpoint equations: Iright = φright(〈vx − 2, vy + 2, x, y, t, b〉 ∩ α(IV(Ileft + 〈x〉)))

Imagnetic = φmagnetic(IV(Iright + 〈x− d〉))
Ileft = φleft(IV(Imagnetic + 〈x− d〉))

where α transforms (vx, b) into (−vx, b + 1) and leaves the rest of the variables
unchanged, and the φ’s are the mappings abstracting the flows in continuous
transitions, taking as input an ideal of initial conditions and returning an ideal
of invariant polynomials (computed using the technique described in Section 3).

We approximate the fixpoint of this equation by using the widening operator
∇2. We get the following invariants:

Iright = 〈vy + 2, v2
x − 4〉 Ileft = 〈vy + 2, v2

x − 4〉
Imagnetic = 〈x− 2vy − 4− d, v2

x + v2
y − 8〉

The reason why we get v2
x = 4 both at right and left is that our hybrid system

allows undesired behaviors, such as the particle in mode right making a transi-
tion to magnetic and then instantly moving again to left with no time elapse.
4 Gröbner bases and graded term orderings are used in this definition because they

allow us to prove that, when employing this widening operator, the fixpoint com-
putation yields all the polynomial invariants of degree ≤ d, see [CLO96,RCK04].



However, using the implicit invariants vx ≥ 0 at right and vx ≤ 0 at left , we
deduce that vx = 2 at right and vx = −2 at left . Now we can get a more precise
result by adding these invariants to the guards. After this second computation,
finally we obtain

Iright = 〈vy + 2, vx − 2, 2db− 8b + y + x〉
Imagnetic = 〈x− 2vy − 4− d, v2

x + v2
y − 8, 2vx + y + 2db− 8b− 4 + d〉

Ileft = 〈vy + 2, vx + 2, 2db− 8b + y − 8− x〉

5 Examples

In this section we apply our method for generating invariant polynomial
equations to some hybrid systems taken from the literature. As an optimization,
we did not compute the closure IV always; nonetheless, the obtained invariants
sufficed for proving the properties of interest. We have implemented the tech-
niques presented here in the algebraic geometry tool Macaulay 2 [GS] using a
PC running Linux with a 2.5 GHz. processor and 512 MB of memory.
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Fig. 2. Hybrid system for a thermostat

Thermostat. Figure 2 shows a hybrid system, taken from [HHWT98], modeling a
thermostat. The system has three locations: in (on, 1) and (on, 2) the thermostat
is on, while in (off ) the thermostat is off. There are three clocks: t tracks the
time elapsed at the current location, y tracks the total time, and z tracks the
time the thermostat has been on. There are also two parameters a and b that
limit the maximum time the thermostat is in the locations. The initial state is
(on, 2) with t = y = z = 0. Using ∇2, in 0.44 seconds we get the invariants I(on,2) = 〈y − t, z − t〉

I(off) = 〈−a2 + ab + az + bz − by + bt〉
I(on,1) = 〈a2 − 2ab− az − bz + by + at〉

In [HHWT98] it was proved that, for a = ln(3), b = ln(2), the thermostat is
on between 23.17/60 ≈ 38.6% and 23.51/60 ≈ 39.2% of the time within the
first 60 time units of operation. We can use the polynomial invariants above to
refine these bounds. At location (off ), from the implicit invariant 0 ≤ t ≤ a and
−a2 + ab + az + bz − by + bt = 0 we get that

a2 − 2ab + by

a + b
≤ z ≤ a2 − ab + by

a + b
.



We also get the same inequalities at location (on, 1) by using the implicit in-
variant 0 ≤ t ≤ b and a2 − 2ab− az − bz + by + at = 0. Substituting a = ln(3),
b = ln(2), y = 60, we get the interval [23.03/60, 23.46/60] ≈ [38.4%, 39.1%] ,
which provides us with a better upper bound.

Train System. The hybrid system shown in Figure 3 and taken from [SSM04b]
models a train accelerating (location acc), moving at constant speed (location
cons) and decelerating until stopping (location dec). Once the train has halted,
it remains quiet for 2 seconds. There are four variables: the position of the train
x, its velocity v, a clock t and a counter s of the number of stops made so far.
The initial state is acc with x = v = s = t = 0.
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Fig. 3. Train system

We obtain the following invariants in 0.32 seconds using ∇2:

Iacc = 〈−4x + v2 − 115s + 20t− 10v〉
Idec = 〈4x + 115s− 20t− 20v + 75 + 2v2〉

Icons = 〈v − 5, 4x + 115s− 20t + 25〉

Note that these invariants, e.g. 4x + 115s− 20t− 20v + 75 + 2v2 = 0 at dec, can
be found analytically by computing the distance covered x in terms of the other
variables.

Charged Particle Revisited. Consider the hybrid system of the charged particle.
Assume now that both the distance parameter d and the magnetic field mag-
nitude a are left unknown (which is a more general setting than in [SSM04b]).
Under these conditions the vector field in magnetic is no longer linear. How-
ever, notice that, since a is constant, the solution to the system of differential
equations still has the same structure as in Section 3, with the difference that a
may appear in a denominator. We overcome this problem by introducing a new
auxiliary variable a′ to represent the value a−1 (we assume that a 6= 0; the case
a = 0 is straightforward to analyze). We also employ the polynomial aa′ − 1 to
represent the equation aa−1 = 1.

As before, due to imprecisions in our modeling, we first obtain the following
invariants:

Iright = 〈vy + 2, v2
x − 4〉 Ileft = 〈vy + 2, v2

x − 4〉
Imagnetic = 〈ax− ad− vy − 2, v2

x + v2
y − 8〉



These polynomials were computed in 1.80 seconds with ∇2. Again, by using the
implicit invariants vx ≥ 0 at right and vx ≤ 0 at left , we deduce that vx = 2
at right and vx = −2 at left . Adding these invariants to the guards and re-
computing the fixpoint, in 0.70 seconds we get:

Iright = 〈vy + 2, vx − 2,−ax + 4b− 2adb− ay〉
Imagnetic = 〈ax− ad− vy − 2, v2

x + v2
y − 8, ay − 4b + 2adb− 2 + ad + vx〉

Ileft = 〈vy + 2, vx + 2, 4b− 2adb− ay + 4− 2ad + ax〉

Let us see some properties of the system that these invariants allow us to
prove. First, by using the invariant ax+ay = 4b−2adb at right we can compute
the height where the particle collides as a function of the bounce counter b: by
setting x = 0 we get y = 2b(2−ad)/a. In particular, if ad = 2 the particle returns
to the origin for every bounce. Moreover, the invariants ax = ad + vy + 2 and
v2

x +v2
y = 8 let us find the maximum horizontal distance covered by the particle:

the maximum distance is achieved when ẋ = vx = 0, i.e. vy = ±2
√

2; then this
distance is x = d + (2

√
2 + 2)/a when a > 0, x = d + (−2

√
2 + 2)/a when a < 0

(the feasible solutions satisfy x ≥ d).

6 Conclusions

We presented a computational method for generating the most precise alge-
braic invariant for linear dynamical systems whose eigenvalues have rational real
and imaginary components. We then extended this method to compute equa-
tional invariants for hybrid systems using an abstract interpretation approach.
The main computational technique is based on Gröbner basis computation and
we do not use the prohibitively expensive (quantifier elimination) decision pro-
cedures for the reals. Canonical Gröbner bases provide a useful representation
for sets of states as they have several important properties such as canonicity,
closure under boolean operations and quantifier elimination. We showed results
of running the proposed method on example hybrid systems discussed in the
literature.

As future work, we plan to integrate our techniques with other approaches
dealing with inequalities. The resulting method would allow a much more precise
analysis of hybrid systems with a wider range of applicability.
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