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Abstract—We show how Max-SMT can be exploited in
constraint-based program termination proving. Thanks to ex-
pressing the generation of a ranking function as a Max-SMT
optimization problem where constraints are assigned different
weights, quasi-ranking functions –functions that almost satisfy all
conditions for ensuring well-foundedness– are produced in a lack
of ranking functions. By means of trace partitioning, this allows
our method to progress in the termination analysis where other
approaches would get stuck. Moreover, Max-SMT makes it easy
to combine the process of building the termination argument with
the usually necessary task of generating supporting invariants.
The method has been implemented in a prototype that has
successfully been tested on a wide set of programs.

I. INTRODUCTION

Proving termination is necessary to ensure total correctness

of programs. Still, termination bugs are difficult to trace and

are hardly notified: as they do not arise as system failures but

as unresponsive behavior, when faced to them users tend to

restart their devices without reporting to software developers.

Due to this, approaches for proving termination of imperative

programs have regained an increasing interest in the last

decade [1]–[4].

One of the major difficulties in these methods is that often

supporting invariants are needed. E.g., in [5] linear invariants

are exhaustively computed before termination analysis. In the

same paper a heuristic approach is also presented, which only

requires a light-weight invariant generator by restricting to

single-variable ranking functions. Another solution is proposed

in [6], where invariant generation is not performed eagerly

but on demand. By formulating both invariant and ranking

function synthesis as constraint problems, both can be solved

simultaneously, so that only the necessary supporting invari-

ants for the targeted ranking functions –namely, lexicographic

linear ranking functions– need to be discovered.

Based on [5], [6], we present a Max-SMT constraint-based

approach for proving termination. The crucial observation in

our method is that, albeit our goal is to show that transitions

cannot be executed infinitely by finding a ranking function

or an invariant that disables them, if we only discover an

invariant, or an invariant and a quasi-ranking function that

almost fulfills all needed properties for well-foundedness, we

have made some progress: either we can remove part of a

transition and/or we have improved our knowledge on the

behavior of the program. A natural way to implement this

idea is by considering that some of the constraints are hard

(the ones guaranteeing invariance) and others are soft (those

guaranteeing well-foundedness) in a Max-SMT framework.

Moreover, by giving different weights to the constraints we can

set priorities and favor those invariants and (quasi-) ranking

functions that lead to the furthest progress.

The technique has been implemented in our tool CppInv,

which analyses programs with integer variables and linear

expressions. Thanks to it, we have proved termination of

a wide set of programs, which have been taken from the

programming learning environment Jutge.org [7] and from

benchmark suites in the literature [8].

A. Related Work.

As mentioned above, our method is based on [5]. Namely,

we have borrowed the core argument for termination proofs,

which is based on iteratively discarding those transitions that

cannot be executed infinitely. However, we improve on the way

supporting invariants are generated. While in [5] invariants

are pre-computed in a process that is independent from the

termination analysis and which turns out to be the bottleneck

of the approach, we find lazily the invariants needed to ensure

that ranking functions meet their requirements.

Our research also builds upon [6], where the constraint-

based method [9] was first applied to termination. However, we

extend this work in several aspects. First, in that approach only

linear programs with unnested loops can be handled, while we

can deal with arbitrary control structures. Moreover, in [6] the

generation of their lexicographic ranking functions requires a

higher-level loop that, before sending the constraint problem to

the solver, determines the precedence of the transitions in the

lexicographic order. On the other hand, in our approach this

outer loop is not needed. Finally, thanks to assigning weights

to the constraints, unlike [6] we do not need to stipulate

the number of supporting invariants that will be needed a

priori, and hence our constraint problems are simpler. Further,

weights allow us to guide the solving engine in the search of

appropriate ranking functions and invariants.

In [10], the lexicographic approach of [6] is extended so as

to handle programs with complex control flow. However, their

method still requires to search for the right ordering of the

transitions in order to obtain a successful termination proof.

Moreover, in this technique the procedures for synthesizing

ranking functions and auxiliary invariants do not share enough

information, while in our proposal these mechanisms are

tightly coupled. Finally, in [8] a method closely related to ours

is presented. Both approaches, which have been developed

independently, go in the same direction of achieving a better

cooperation between the invariant and the ranking function



syntheses. Still, a significant difference is that we can exploit

the quasi-ranking functions produced in the absence of ranking

functions in order to progress in the termination analysis.

In addition to lexicographic ranking functions, there is a

group of effective tools whose termination arguments are

based on Ramsey’s Theorem and the notion of transition

invariant [11]. Transition invariants are over-approximations

of the transitive closure of the transition relation restricted

to the reachable state space. The crucial observation is that a

transitive relation that is disjunctively well-founded, i.e., that is

included in the union of well-founded relations, must be well-

founded too. Hence, if one is able to find a transition invariant

that is also disjunctively well-founded, the program must

be terminating. In [12], this transition invariant is computed

iteratively, starting from the empty relation, by discovering

unranked paths of the program thanks to a reachability check,

and using the approach in [3] for synthesizing new ranking

functions for them. On the other hand, in [13] the generation of

the disjunctively well-founded transition invariant is performed

bottom-up from innermost loops by identifying invariant and

transitive relations among a set of templates that are disjunc-

tively well-founded by construction. Nested loops are then

handled thanks to loop summarization. Our techniques can also

be seen as producing a disjunctively well-founded transition

invariant, being the difference with respect to the previous

approaches in the way new unranked paths are identified and

how a termination argument is generated for them.

Finally, a problem related to proving termination that has

recently raised interest in the area is that of conditional

termination: to synthesize automatically preconditions on the

inputs that ensure program termination. In this context, in [15]

the authors consider what they call potential ranking functions,

which are functions over program states that are bounded but

not necessarily decreasing. The quasi-ranking functions that

we consider here are more general, as for instance functions

that are decreasing but not bounded are also included. In [16],

the problem of conditional termination is also considered. The

approach is based on disjunctively well-founded relations as in

[12], but instead of identifying unranked program paths, thanks

to a dual inclusion the authors partition the transition relation

into those behaviors already proved to be terminating and those

whose status is still unknown. In our work we also proceed

by splitting the transition relation into a terminating part and

an unknown part. However, in [16] this division is achieved

by means of a fixpoint computation, while our approach is

constraint-based.

II. PRELIMINARIES

A. SMT and Max-SMT

Let P be a finite set of propositional variables. If p ∈ P ,

then p and ¬p are literals. The negation of a literal l, written

¬l, denotes ¬p if l is p, and p if l is ¬p. A clause is a

disjunction of literals. A propositional formula is a conjunction

of clauses. The problem of propositional satisfiability (abbrevi-

ated as SAT) consists in, given a formula, to determine whether

int main() {
int x, y, z;

ℓ1: while (y ≥ 1) {
x--;

ℓ2: while (y < z) {
x++; z--;

}
y = x+ y;

} }

ρτ1 : y ≥ 1, x′ = x− 1, y′ = y, z′ = z

ρτ2 : y < z, x′ = x+ 1, y′ = y, z′ = z − 1
ρτ3 : y ≥ z, x′ = x, y′ = x+ y, z′ = z

ℓ1

ℓ2

τ1

τ2

τ3

Θ(ℓ1) ≡ true

Θ(ℓ2) ≡ false

Fig. 1. Program and its transition system.

or not it is satisfiable, i.e., if it has a model: an assignment of

Boolean values to variables that satisfies the formula.

An extension of SAT is the satisfiability modulo theories

(SMT) problem [17]: to decide the satisfiability of a given

quantifier-free first-order formula with respect to a background

theory. Here we will consider the theories of linear arithmetic

(LA), where literals are linear inequalities, and the more

general theory of non-linear arithmetic (NA), where literals

are polynomial inequalities.

Another generalization of SAT is the Max-SAT problem

[17]: it consists in, given a weighted formula F where each

clause Ci has a weight ωi (a positive number or infinity), to

find the assignment such that the cost, i.e., the sum of the

weights of the falsified clauses, is minimized. Clauses with

infinite weight are called hard, while the rest are called soft.

Equivalently, the problem can be seen as finding the model

of the hard clauses such that the sum of the weights of the

falsified soft clauses is minimized.

Finally, the problem of Max-SMT[18] merges Max-SAT and

SMT, and is defined from SMT analogously to how Max-

SAT is derived from SAT. Namely, the Max-SMT problem

consists in, given a weighted formula, to find an assignment

that minimizes the sum of the weights of the falsified clauses

in the background theory.

B. Transition Systems, Invariants and Ranking Functions

Henceforth we will model imperative programs by means

of transition systems. A transition system S = (v,L,Θ, T )
consists of a tuple of variables v, a set of locations L, a map

Θ from locations to formulas characterizing the initial values

of the variables, and a set of transitions T . Each transition

τ ∈ T is a triple (ℓ, ℓ′, ρ), where ℓ, ℓ′ ∈ L are the pre and

post locations respectively, and ρ is the transition relation:

a formula over the program variables v and their primed

versions v′, which represent the values of the variables after

the transition. See Fig. 1 for an example of a program together

with a corresponding representation as a transition system.

From now on we assume that variables take integer values

and programs are linear, i.e., the initial conditions Θ and

transition relations ρ are described as conjunctions of linear

inequalities. Strict inequalities may be translated into non-strict

ones thanks to the integer type of the variables.



A state is an assignment of a value to each of the variables

in v. A configuration is a pair (ℓ, σ) consisting of a location ℓ

and a state σ. A computation is a (possibly infinite) sequence

of configurations (ℓ0, σ0), (ℓ1, σ1), ... such that σ0 |= Θ(ℓ0),
and for each pair of consecutive configurations (ℓi, σi) and

(ℓi+1, σi+1), there exists a transition τ = (ℓi, ℓi+1, ρ) ∈ T
such that (σi, σi+1) |= ρ. A configuration (ℓ, σ) is reachable

if there exists a computation ending at (ℓ, σ). A transition

system is said to be terminating if all its computations are

finite. The problem that we target in this work is, given a

transition system, to determine if it is terminating or not.

A transition τ = (ℓ, ℓ′, ρ) is disabled if it can never be

executed, i.e., if for all reachable configuration (ℓ, σ), there

does not exist any σ′ such that (σ, σ′) |= ρ. A transition

τ is called finitely executable if in any computation, τ is

only executed a finite number of times (in particular, if τ is

disabled). Otherwise, i.e., if there exists a computation where

τ is executed infinitely, we say that τ is infinitely executable.

An assertion is a first-order formula over v. An assertion I

is an invariant at location ℓ if for any reachable configuration

(ℓ, σ), it holds that σ |= I . An invariant map µ assigns an

invariant µ(ℓ) to each of the locations ℓ. An important class

of invariant maps is that of inductive invariant maps:

Definition 1: An invariant map µ is said to be inductive if:

• [Initiation] For every location ℓ ∈ L: Θ(ℓ) |= µ(ℓ)
• [Consecution] For every transition τ = (ℓ, ℓ′, ρ) ∈ T :

µ(ℓ) ∧ ρ |= µ(ℓ′)′.

Invariant maps are fundamental when analyzing program

termination. For instance, a transition τ = (ℓ, ℓ′, ρ) is proved to

be disabled if there is an invariant µ(ℓ) at location ℓ such that

µ(ℓ) ∧ ρ is unsatisfiable. In general, if µ is an invariant map,

then any transition τ = (ℓ, ℓ′, ρ) can be safely strengthened

by replacing the transition relation ρ by µ(ℓ) ∧ ρ.

The basic idea of the approach we follow for proving

program termination [5] is to argue by contradiction that no

transition is infinitely executable. First of all, no disabled

transition can be infinitely executable trivially. Moreover, one

just needs to focus on transitions joining locations in the

same strongly connected component (SCC): if a transition is

executed over and over again, then its pre and post locations

must belong to the same SCC. So let us assume that one has

found a ranking function for such a transition τ , according to:

Definition 2: Let τ = (ℓ, ℓ′, ρ) be a transition such that ℓ

and ℓ′ belong to the same SCC, denoted by C. A function

R : v → Z is said to be a ranking function for τ if:

• [Boundedness] ρ |= R ≥ 0
• [Strict Decrease] ρ |= R > R′

• [Non-increase] For every τ̂ = (ℓ̂, ℓ̂′, ρ̂) ∈ T such that

ℓ̂, ℓ̂′ ∈ C: ρ̂ |= R ≥ R′

Note that boundedness and strict decrease only depend on

τ , while non-increase depends on all transitions in the SCC.

The key result is that if τ = (ℓ, ℓ′, ρ) admits a ranking

function R, then it is finitely executable. Indeed, first notice

that if one can execute τ from a configuration (ℓ, σ) then

R(σ) ≥ 0, because of boundedness. Also, the value of R

at the states along any path contained in C cannot increase,

thanks to the non-increase property. Moreover, in any cycle

contained in C traversing τ , the value of R strictly decreases,

due to the strict decrease property. Now, let us assume that

there was a computation where τ was executed infinitely. Such

a computation would eventually visit only locations in C.

Because of the previous observations, by evaluating R at the

states at which τ is executed we could construct an infinitely

decreasing sequence of non-negative integers, a contradiction.

Finitely executable transitions can be safely removed from

the transition system as regards termination analysis. This in

turn may break the SCC’s into smaller pieces. If by applying

this reasoning recursively one can prove that all transitions are

finitely executable, then the transition system is terminating.

C. Constraint-Based Program Analysis

Here we review the constraint-based program analysis

approach [6], [9]. The idea is to consider a template for

candidate invariant properties (respectively, ranking functions),

e.g., linear inequalities (linear expressions). These templates

involve both program variables as well as unknowns whose

values have to be determined so as to ensure the required prop-

erties. To this end, the implications in Definition 1 (Definition

2) are expressed by means of constraints (hence the name of

the approach) on the unknowns. If implications are encoded

soundly, any solution to the constraints yields an invariant map

(ranking function). Specifically, if linear arithmetic is the target

language, this can be achieved with Farkas’ Lemma:

Theorem 1 (Farkas’ Lemma): Let S be a system of linear

inequalities Ax + b ≤ 0 (A ∈ Rm×n, b ∈ Rm) over real

variables xT = (x1, . . . , xn). When S is satisfiable, it entails

a linear inequality cTx + d ≤ 0 (c ∈ Rn, d ∈ R) iff there is

λ ∈ Rm such that λ ≥ 0, cT = λTA and d ≤ λT b. Further,

S is unsatisfiable iff 1 ≤ 0 can be so derived.

For clarity, henceforth the following notation is used. Given

a conjunction of linear inequalities Ax + b ≤ 0 and a linear

inequality cTx+d ≤ 0, where the coefficients aij , bi, cj , d may

be real numbers or unknowns, we denote by Ax + b ≤ 0 ⊢
cTx+ d ≤ 0 the set of constraints on the unknown coefficients

and on fresh real unknowns λ = (λ1, . . . , λm), consisting in

λ ≥ 0, cT = λTA and d ≤ λT b.

III. TERMINATION ANALYSIS WITH MAX-SMT

In this section we first describe a constraint-based method

for termination analysis that uses SMT and identify some of

its shortcomings (Sect. III-A). Then we show how Max-SMT

can be used to overcome these limitations (Sect. III-B).

A. An SMT Approach to Proving Termination

Following the approach described in Sect. II-B [5], to show

that a transition τ is finitely executable and thus discard it,

one needs either a disability argument or a ranking function

for it. To this end we construct a constraint system, i.e. an SMT

formula, whose solutions correspond to either an invariant that

proves disability, or a ranking function. Given an SCC, the

constraint system, if satisfiable, will allow discarding (at least,



but possibly more than) one of the transitions in the SCC. By

iterating this procedure until no cycles are left we will obtain

a termination argument for the SCC.

To construct the constraint system, first of all we consider:

• for each location ℓ, a linear invariant template Iℓ(v) ≡
iℓ,0 +

∑

v∈v iℓ,v · v ≤ 0, where iℓ,0, iℓ,v are unknown;

• a linear ranking function template R(v)≡r0+
∑

v∈v rv ·v,

where r0, rv are unknown.

Recall that ranking functions are associated to transitions,

not to locations. However, instead of introducing a template

for each transition, we just have one single template, which, if

the constraint system has a solution, will be a ranking function

for a transition to be determined by the solver.

Similarly to [6], we take the following constraints from the

definitions of inductive invariant and ranking function:

Initiation: For ℓ ∈ L: Iℓ
def
= Θ(ℓ) ⊢ Iℓ

Disability: For τ = (ℓ, ℓ′, ρ) ∈ T : Dτ
def
= Iℓ ∧ ρ ⊢ 1 ≤ 0

Consecution: For τ = (ℓ, ℓ′, ρ) ∈ T : Cτ
def
= Iℓ ∧ ρ ⊢ I ′ℓ′

Boundedness: For τ = (ℓ, ℓ′, ρ) ∈ T : Bτ
def
= Iℓ ∧ ρ ⊢ R ≥ 0

Strict Decrease: For τ = (ℓ, ℓ′, ρ) ∈ T : Sτ
def
= Iℓ ∧ ρ ⊢ R > R′

Non-increase: For τ = (ℓ, ℓ′, ρ) ∈ T : Nτ
def
= Iℓ ∧ ρ ⊢ R ≥ R′

Let L and T be the sets of locations and transitions in the

SCC in hand, respectively. Let also P be the set of pending

transitions, i.e., which have not been proved to be finitely

executable yet. Then we build the next constraint system:
∧

ℓ∈L

Iℓ∧
∧

τ∈T

(

Dτ∨Cτ

)

∧
∨

τ∈P

(

Dτ∨(Bτ∧Sτ )
)

∧
(

(
∧

τ∈P

Nτ )∨
∨

τ∈P

Dτ

)

.

The first two conjuncts guarantee that an invariant map is

computed; the other two, that at least one of the pending

transitions can be discarded. Notice that, if there is no disabled

transition, we ask that all transitions in P are non-increasing,

but only that at least one transition in P (the next to be

removed) is both bounded and strict decreasing. Note also

that for finding invariants one has to take into account all

transitions in the SCC, even those that have already been

proved to be finitely executable: otherwise some reachable

states might not be covered, and the invariant generation

would become unsound. Hence in our termination analysis we

consider two transition systems: the original transition system

for invariant synthesis, whose transitions are T and which

remains all the time the same; and the termination transition

system, whose transitions are P , i.e, where transitions already

shown to be finitely executable have been removed. This

duplication is similar to the cooperation graph of [8].

However, this first approach is problematic when a ranking

function needs several invariants. A possible solution is to

add more templates iteratively, so that for example initially

invariants consisting of a single linear inequality are tried,

if unsuccessful then invariants consisting of a conjunction of

two linear inequalities are tried, etc. But when proceeding in

this way, all problems before the right number of invariants

is found are unsatisfiable. This is wasteful, as no constructive

information is retrieved from unsatisfiable constraint systems.

Another problem with this method for analyzing termination

is that the kind of termination proofs it yields may be too

restricted. More specifically, when one proves that a transition

τ is finitely executable, then a single termination argument

shows there is no computation where τ appears infinitely.

Although this produces compact proofs, on the other hand

sometimes there may not exist such a unique reason for

termination, and it becomes necessary a more fine-grained

examination. However, the approach as presented so far does

not provide a natural way or guidance for refining the analysis.

B. A Max-SMT Approach to Proving Termination

The main contribution of our work is to show that the

constraint system can be expressed in such a way that, even

when it turns out to be unsatisfiable, some information useful

for refining the termination analysis can be obtained. The key

observation is that, even though our aim is to prove transitions

to be finitely executable (by finding a ranking function or an

invariant that disables them), if we just find an invariant, or an

invariant and a quasi-ranking function that is close to fulfill

all required conditions, we have progressed in our analysis.

The idea is to consider the constraints guaranteeing invari-

ance as hard, so that any solution to the constraint system will

satisfy them, while the rest are soft. Let us consider proposi-

tional variables pB, pS and pN, which intuitively represent if the

conditions of boundedness, strict decrease and non-increase in

the definition of ranking function are violated respectively, and

corresponding weights ωB, ωS and ωN. We consider now the

next constraint system (where soft constraints are written [·, ω],
and hard ones as usual):
∧

ℓ∈L

Iℓ∧
∧

τ∈T

(

Dτ ∨Cτ

)

∧
∨

τ∈P

(

Dτ ∨
(

(Bτ ∨pB)∧(Sτ ∨pS)
)

)

∧

(

(

∧

τ∈P

Nτ

)

∨
∨

τ∈P

Dτ∨pN

)

∧[¬pB, ωB]∧[¬pS, ωS]∧[¬pN, ωN].

Note that ranking functions have cost 0, and (if no transition

is disabled) functions that fail in any of the conditions are

penalized with the respective weight. Thus, the Max-SMT

solver looks for the best solution and gets a ranking function

if feasible; otherwise, the weights guide the search to get

invariants and quasi-ranking functions that satisfy as many

conditions as possible.

Hence this Max-SMT approach allows recovering informa-

tion even from problems that would be unsatisfiable in the

initial method. This information can be exploited to perform

dynamic trace partitioning [19] as follows. Assume that the

optimal solution to the above Max-SMT formula has been

computed, and let us consider a transition τ ∈ P such that

Dτ ∨ ((Bτ ∨ pB)∧ (Sτ ∨ pS)) evaluates to true in the solution.

Then we distinguish several cases depending on the properties

satisfied by τ and the computed function R:

• If τ is disabled then it can be removed.

• If R is non-increasing and satisfies boundedness and strict

decrease for τ , then τ can be removed too: R is a ranking

function for it.

• If R is non-increasing and satisfies boundedness for τ

but not strict decrease, one can split τ in the termination



transition system into two new transitions: one where

R > R′ is added to τ , and another one where R = R′

is enforced. Then the new transition with R > R′ is

automatically eliminated, as R is a ranking function for

it. Equivalently, this can be seen as adding R = R′ to τ .

Now, if the solver could not prove R to be a true ranking

function for τ because it was missing an invariant, this

transformation will guide the solver to find that invariant

so as to disable the transition with R = R′.

• If R is non-increasing and satisfies strict decrease for τ

but not boundedness, the same technique from above can

be applied: it boils down to adding R < 0 to τ .

• If R is non-increasing but neither strict decrease nor

boundedness are fulfilled for τ , then τ can be split into

two new transitions: one with R < 0, and another one

with R ≥ 0 ∧R = R′.

• If R does not satisfy the non-increase property, then it

is rejected; however, the invariant map from the solution

can be used to strengthen the transition relations for the

following iterations of the termination analysis.

Note this analysis may be worth applying on other transi-

tions τ in the termination transition system apart from those

that make Dτ ∨ ((Bτ ∨ pB) ∧ (Sτ ∨ pS)) true. E.g., if R is a

ranking function for a transition τ but fails to be so for another

one τ ′ because strict decrease does not hold, then, according

to the above discussion, τ ′ can be strengthened with R = R′.

On the other hand, working in this iterative way requires

imposing additional constraints to avoid getting to a standstill.

Namely, in the case where non-increase does not hold and

so one would like to exploit the invariant, it is necessary to

impose that the invariant is not redundant. More in detail,

let us consider a fixed location ℓ, and let I
(1)
ℓ , . . . , I

(k)
ℓ be

the previously computed invariants at location ℓ. Then Iℓ, the

invariant to be generated at ℓ, is redundant if it is implied

by I
(1)
ℓ , ..., I

(k)
ℓ , i.e., if Eℓ

def
= ∀v (I

(1)
ℓ (v) ∧ . . . ∧ I

(k)
ℓ (v) →

Iℓ(v)). So we impose pN → ¬
∧

ℓ∈L Eℓ to ensure that violating

non-increase leads to non-redundant invariants. Conditions are

added similarly to avoid redundant quasi-ranking functions.

Another advantage of this Max-SMT approach is that by

using different weights we can express priorities over condi-

tions. Since, as explained above, violating the property of non-

increase invalidates the computed function R, it is convenient

to make ωN the largest weight. On the other hand, when non-

increase and boundedness are fulfilled but not strict decrease

an equality is added to the transition, whereas when non-

increase and strict decrease are fulfilled but not boundedness

just an inequality is added. As we prefer the former to the

latter, in our implementation (see Sect. V) we set ωB > ωS.

A further improvement is the generation of termination

implications. A termination implication at a location ℓ is an

assertion J(v) such that any transition in the termination

transition system that leads into ℓ implies it, i.e., it holds

that ρ |= J(v′), where ρ is the relation of the transition.

Thus, J will eventually hold when ℓ is reached (although,

unlike ordinary invariants, may not initially be true; see

(c)(a) (b) (d)

Θ(ℓ1) ≡ true Θ(ℓ2) ≡ false

ρτ1 : y ≥ 1, x′ = x− 1, y′ = y, z′ = z

ρτ1.2 : x < 0, y ≥ 1, x′ = x− 1, y′ = y, z′ = z

ρτ2 : y < z, x′ = x+ 1, y′ = y, z′ = z − 1
ρτ3 : y ≥ z, x′ = x, y′ = x+ y, z′ = z

ρτ ′3 : y ≥ 1, y ≥ z, x′ = x, y′ = x+ y, z′ = z

ℓ1ℓ1ℓ1 ℓ1

ℓ2ℓ2ℓ2 ℓ2

τ1τ1 τ1.2τ1.2

τ2

τ3 τ ′3 τ ′3

Fig. 2. Evolution of the termination transition system: initially (a) and after
the first (b), second (c) and third (d) round.

Example 1 below). Hence, it can be propagated forward in

the termination transition system to the transitions going out

from ℓ. To produce termination implications, for each location

ℓ a new linear inequality template Jℓ(v) is introduced and the

following constraint is imposed:
∧

τ=(ℓ̂,ℓ,ρ)∈P
(Dτ ∨ I

ℓ̂
∧ ρ ⊢

J ′

ℓ) . Additional constraints are enforced to ensure that new

termination implications are not redundant with the already

computed invariants and termination implications.

Example 1: Let us show a termination analysis of the

program in Fig. 1. In the first round, the solver finds the

invariant y ≥ 1 at ℓ2 and the ranking function z for τ2.

While y ≥ 1 can be added to τ3 (resulting into a new

transition τ ′3), the ranking function allows eliminating τ2 from

the termination transition system (see Fig. 2 (b)).

In the second round, the solver cannot find a ranking

function. However, thanks to the Max-SMT formulation, it can

produce the quasi-ranking function x, which is non-increasing

and strict decreasing for τ1, but not bounded. This quasi-

ranking function can be used to split transition τ1 into two

new transitions τ1.1 and τ1.2 as follows:

ρτ1.1 : x ≥ 0, y ≥ 1, x′ = x− 1, y′ = y, z′ = z

ρτ1.2 : x < 0, y ≥ 1, x′ = x− 1, y′ = y, z′ = z

Then τ1.1 is immediately removed, since x is a ranking

function for it. The current termination transition system is

given in Fig. 2 (c).

In the third and final round, the termination implication

x < 0 is generated at ℓ2, together with the ranking function

y for transition τ ′3. Note that the termination implication is

crucial to prove the strict decrease of y for τ ′3, and that the

previously generated invariant y ≥ 1 at ℓ2 is needed to ensure

boundedness. Now τ ′3 can be removed, which makes the graph

acyclic (see Fig. 2 (d)). This concludes the termination proof.



x < 0

x > 0

y < 0

y > 0

z < 0

z > 0

Fig. 3. Chain of locations obtained from a sequence of statements
assume(x 6= 0); assume(y 6= 0); assume(z 6= 0). Note disequalities are
not natively supported, and so have to be split into disjunctions of inequalities.

IV. IMPLEMENTATION

The method presented in Sect. III has been implemented in

the tool CppInv1. This section describes this implementation.

CppInv admits code written in C++ as well as in the lan-

guage of T2 [10]. The system analyses programs with integer

variables, linear expressions and function calls. Variables of

other data types, such as floating-point variables, are treated

as unknown values. Function calls are handled with techniques

similar to those in [20], although currently the returned value

is ignored. Further, for recursive functions, after a function call

we assign unknowns to all variables that can be modified in the

call (i.e., global variables and variables passed by reference).

In the transformation from the source code to the internal

transition system representation, CppInv attempts to reduce

the number of locations by composing transitions. Still, this

preprocessing may result in an exponential growth in the

number of transitions. As our technique does not require

minimized transition systems for soundness, the tool stops this

location minimization if a threshold number of transitions is

reached. Moreover, whenever a chain of locations connected

by transitions that do not modify variables (see Fig. 3) is

detected, CppInv does not attempt to eliminate the locations:

since no variable is updated, in these transitions any function

satisfies the non-increase condition, while no ranking function

is possible. For this reason, when producing the constraints,

these transitions are ignored as far as termination is concerned,

and are only considered for the generation of invariants.

Once the input is represented as a transition system, the ac-

tual termination analysis starts. See function proved TS term:

bool proved TS term(Trans Sys S = (v, L, Θ, T )) {
// C is the list of SCC’s topologically sorted according to ordering ≺
(C, ≺) = compute SCCs and topologically sort(S);
for (C ∈ C by ≺) {

(L, T ) = (locations(C), transitions(C));
P = copy(T );

for (ℓ ∈ L : ∃(ℓ̂, ℓ, ρ) ∈ T with ℓ̂ ∈ Ĉ ≺ C)
Θ(ℓ) = Θ(ℓ) ∨ SPost(ρ);

if (not proved SCC term(L, T, P )) return false; }
return true ; }

The SCC’s are computed and topologically sorted, and each

SCC is processed according to this order. Processing an SCC

involves first performing a copy of the transitions for keeping

track of those not proven finitely executable yet. Then the

initial conditions are updated with the strongest postconditions

of the incoming transitions from previous SCC’s, where the

strongest postcondition of a transition relation ρ(v, v′) is the

1CppInv, together with all benchmarks used in the experimental evaluation
of Sect. V, is available at www.lsi.upc.edu/∼albert/cppinv-term-bin.tar.gz.

assertion SPost(ρ)(v) ≡ ∃w ρ(w, v). Finally the SCC is

analysed for termination. If it could not be proved terminating,

the procedure stops. Otherwise the next SCC is dealt with.

The analysis of termination of SCC’s is orchestrated by the

function proved SCC term:

bool proved SCC term(Set Loc L, Set Trans T , Set Trans P ) {
if ( dis trans (L, T , P ) or rank fun(L, T , P ) or term impl(L, T , P )){

if (P == ∅) return true;
for (C′ SCC in the graph of P ) {

T ′ = transitions(C′);
if (T ′ 6= ∅ and not proved SCC term(L, T , T ′)) return false; }

return true ; }
else return false ; }

It takes as arguments: a set of locations L and a set of transi-

tions T , corresponding to an SCC of the transition system; and

the termination transition system: a non-empty set P ⊆ T of

transitions that still have to be proved finitely executable. As

explained in Sect. II-B, one may assume that the graph induced

by P is strongly connected. The function returns true if all

transitions in P can be proved finitely executable. We found

out that, instead of directly solving the full constraint system

introduced in Sect. III-B, in practice it is preferable to proceed

by phases. Each phase2 (functions dis trans, rank fun and

term imp) attempts to remove transitions from P by different

means, and returns true if P has become empty or it is no

longer strongly connected. In the former case, we are done. In

the latter, the same procedure is recursively called. If after all

phases P is non-empty, we report failure to prove termination.

In the first phase (function dis trans), CppInv attempts

to eliminate transitions with disability arguments by gen-

erating the appropriate invariants (neither ranking functions

nor termination implications are considered at this point).

This is achieved by solving the following Max-SMT formula:
∧

ℓ∈L Iℓ∧
∧

τ∈T (Dτ∨Cτ )∧(
∨

τ∈T Dτ∨pD)∧[¬pD, ωD]
3, where

pD is a propositional variable meaning that no transition can

be disabled, and ωD is the corresponding weight. Transitions

that are detected to be disabled (by means of a call to an

SMT solver) are removed both from the original and the

termination transition system. Invariants are used to strengthen

the transition relations as described in Sect. II-B. The process

is repeated while new transitions can be disabled.

bool dis trans (Set Loc L, Set Trans T , Set Trans P ) {
cont = true;
while (cont) {
cont = false;
for (τ = (ℓ, ℓ′, ρ) ∈ P )

if (ρ is UNSAT) // τ is disabled
(T , P ) = (T − {τ}, P − {τ});

if (P == ∅) return true;

H =
∧

ℓ∈L

Iℓ ∧
∧

τ∈T

(Dτ ∨ Cτ ) ∧
∨

τ∈T

(Dτ ∨ pD);

S = [¬pD, ωD];
(I, c) = solve(H ∧ S); // I invariant map, c cost of solution
if (c == ∞) break; // No solution to hard clauses
for (ℓ ∈ L, (ℓ, ℓ′, ρ) ∈ T ) // Strengthen relation with invariant
ρ = ρ ∧ I(ℓ);

if (c == 0) cont = true; }
return not is strongly connected (P ); }

2These phases have a time limit in our implementation although this is not
made explicit in the pseudo-code shown below.

3Constraints that avoid redundancy are not included for simplicity.

www.lsi.upc.edu/~albert/cppinv-term-bin.tar.gz


In the second phase (function rank fun), the system elim-

inates transitions by using ranking functions as arguments

(termination implications are not considered at this point). If

the computed function R satisfies the non-increase property,

then each of the transitions τ in the termination transition

system is examined and either removed if R is a ranking

function for τ , or split otherwise, as described in Sect. III-B.

bool rank fun(Set Loc L, Set Trans T , Set Trans P ){
while (true) {

H =
∧

ℓ∈L

Iℓ ∧
∧

τ∈T

Cτ ∧
∨

τ∈P

(
(Bτ ∨ pB) ∧ (Sτ ∨ pS)

)
∧
∧

τ∈P

(Nτ ∨ pN)

S = [¬pB, ωB] ∧ [¬pS, ωS] ∧ [¬pN, ωN];
(I,R, c) = solve(H ∧ S);
if (c == ∞) return false; // No solution to hard clauses
for (ℓ ∈ L, (ℓ, ℓ′, ρ) ∈ T ) // Strengthen relation with invariant
ρ = ρ ∧ I(ℓ)

for (τ = (ℓ, ℓ′, ρ) ∈ P )
if (ρ is UNSAT) // τ is disabled

(T , P ) = (T − {τ}, P − {τ});
if (non increase(R))

for (τ ∈ P )
if (bounded(τ , R) and strict decrease(τ , R)) P = P − {τ};
else split (τ , R, P ); // Splits τ

if (P == ∅ or not is strongly connected(P )) return true; } }

The third and final phase (function term impl, not detailed

here for lack of space) is very similar to the previous one, with

the difference that termination implications are also included.

As regards the constraints, we restrain ourselves to invari-

ants and ranking functions with integer coefficients, since this

allows us to exploit efficient non-linear solving techniques

[21]. Moreover, in order to perform integer reasoning, the

following variation of Farkas’ Lemma, based on the Gomory-

Chvátal cutting plane rule [22], is employed:

Lemma 1: Let Ax+b ≤ 0 (A ∈ R
m×n, b ∈ R

m) be a system

of linear inequalities over integer variables xT = (x1, . . . , xn),
and cTx+d ≤ 0 (c ∈ Zn, d ∈ R) be a linear inequality. If there

is λ ∈ R
m, i ∈ Z and f ∈ R such that λ ≥ 0, cT = λTA,

λT b = i − f , 0 ≤ f < 1 and i ≥ d, then Ax + b ≤ 0 entails

cTx+ d ≤ 0.

Lemma 1 allows transforming an ∃∀ problem into an ∃
problem. If all coefficients in the premise are known values,

the resulting satisfiability problem is an SMT problem over

LA. Otherwise, an SMT problem over NA is obtained. Fur-

thermore, as some unknowns are integer (the coefficients) and

some are real (the multipliers), the resulting problems have

mixed types.

CppInv uses Barcelogic [23] for solving the generated

constraints. The Max-SMT(NA) solver for mixed non-linear

arithmetic in Barcelogic extends the techniques presented in

[21] for solving SMT(NIA) problems. This is achieved by

allowing integer and real variables in the underlying linear

arithmetic solver, and wrapping this solver with a branch-and-

bound scheme for optimization [18].

V. EXPERIMENTAL EVALUATION

In this section we show experiments that evaluate the

performance of CppInv on a wide set of examples, which have

been taken from the online programming learning environment

Jutge.org [7] (see www.jutge.org), and from benchmark suites

in [8] and in research.microsoft.com/en-us/projects/t2/. We

TABLE I
RESULTS WITH BENCHMARKS FROM T2

#ins. noMS MS MS+QR MS+QR+TI T2

Set1 449 212 220 228 238 245

Set2 472 245 252 262 276 279

TABLE II
RESULTS WITH BENCHMARKS FROM Jutge.org.

#ins. CppInv T2

P11655 367 324 328

P12603 149 143 140

P12828 783 707 710

P16415 98 81 81

P24674 177 171 168

P33412 603 478 371

#ins. CppInv T2

P40685 362 324 329

P45965 854 780 793

P70756 280 243 235

P81966 3642 2663 926

P82660 196 174 177

P84219 413 325 243

provide here a comparison with the new version of T2, which

according to the results given in [8] is performing much better

when proving termination than most of the existing tools, in-

cluding Terminator [12], AProVE [25] or ARMC [24], among

others. We have also tried CProver [13] and Loopfrog [14],

but the results were not good on these sets of benchmarks. All

experiments were performed on an Intel Core i7 with 3.40GHz

clock speed and 16 GB of RAM.

The first two considered sets of benchmarks are those

provided by the T2 developers. Following the experiments

in [8], we have set a 300 secs. timeout. To show the impact of

the different techniques described in the paper, Table I presents

the number of instances in each set (#ins.) and the number of

those that we proved terminating with the following settings:

• (noMS) implements the generation of invariants and rank-

ing functions using a translation to SMT(NA), but without

using Max-SMT, i.e. with all constraints hard. The fact

that this plain version can already prove many instances

hints on the goodness of our underlying algorithm and

the impact of using our NA-solver in this application.

• (MS) implements the generation of invariants and ranking

functions using Max-SMT(NA), where the constraints

imposed by the ranking function are added as soft.

• (MS+QR) adds to the previous case the possibility to use

quasi-ranking functions.

• (MS+QR+TI) adds to the previous case the possibility to

infer termination implications.

Note that every added improvement allows us to prove

some more instances, while none is lost due to the additional

complexity of the constraints generated.

Moreover, by looking into the results in more detail, we

have observed that our tool and T2 complement each other

to some extent: in Set1 CppInv can prove 7 instances which

cannot be proved by T2, while we cannot prove 14 which

can be handled by T2; similarly, in Set2 CppInv can prove

8 programs which cannot be proved by T2, while we cannot

prove 11 that can be handled by T2. The average time in YES

answers of T2 is 2.9 secs and of CppInv is 12.8 secs.

In Table II, we show the comparison of CppInv (with

all described techniques) and T2 on our benchmarks from

the programming learning environment Jutge.org, which is

www.jutge.org
http://research.microsoft.com/en-us/projects/t2/


ℓ1 ℓ2

y > 0 ∧ y′ = y − 1 ∧ x′ = x− 1
y ≤ 0

y < 0 ∧ y′ = y + x

Θ(ℓ1) ≡ x > y ∧ y ≥ 0 Θ(ℓ2) ≡ false

Fig. 4. Program that requires invariants from previous SCC’s.

currently being used in several programming courses in the

Universitat Politècnica de Catalunya. The benchmark suite

consists of thousands of solutions written by students to

12 different programming problems. These programs can be

considered challenging since most often they are not the

most elegant solution but one with many more conditional

statements than necessary (e.g., the largest instance we can

successfully handle has nearly 700 transitions). Here, due to

the size of the benchmark suites (see column #ins.), for the

execution of both tools we have set a 120 secs. timeout.

The average time in YES answers of T2 is 1.7 secs. and of

CppInv is 1.6 secs. Note that, in order to run these benchmarks

in T2, we have translated them into T2 format using our

intermediate transition graph. This may be a disadvantage for

T2, as it happens in the reverse way when CppInv is run on T2
benchmark set. In particular, we think the bad performance of

T2 in sets P33412, P81966 and P84219 may be related to the

way we handle division, which is crucial in these examples.

VI. CONCLUSIONS AND FUTURE WORK

In short, the contributions of this paper are:

• a novel Max-SMT constraint-based approach to proving

termination. Thanks to expressing the synthesis of a

ranking function and a supporting invariant as a Max-

SMT problem, we achieve a better guided and more fine-

grained termination analysis than SMT-based methods.

Max-SMT reveals to be a convenient framework for

constraint-based termination analysis. In addition to our

method, other techniques such as unaffecting score max-

imization [10] can be naturally modeled in Max-SMT.

• a prototype of termination analyzer for (a subset of) C++.

One of the shortcomings of our approach is that invariant

synthesis is restricted to a single SCC. If invariants from

previous SCC’s have not been generated but are later required,

our technique cannot prove termination. E.g., in the program

shown in Fig. 4, the invariant x > 0 must be discovered

at ℓ1 so as to prove that the rightmost transition is finitely

executable, although it is not necessary for proving that the

leftmost loop is terminating. For future work we plan to

develop techniques to overcome this kind of situations. A

promising idea is to consider initiation conditions as soft:

then the generated quasi-invariants represent what is missing

from previous SCC’s, and then can be propagated backwards.

Alternatively, these quasi-invariants can be used to split the

initial conditions of the current SCC. Finally, as a byproduct,

this would allow us to solve the conditional termination

problem as well.
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