
Fun in CS2∗

Amalia Duch, Jordi Petit, Enric Rodrı́guez-Carbonell and Salvador Roura
Departament de Llenguatges i Sistemes Informàtics

Universitat Polit̀ecnica de Catalunya, Barcelona, Catalonia
contact@jutge.org

Keywords: Data Structures: Algorithms: Computer Game: Computer Game’s Player:Programming.

Abstract: We report our experience of including the implementation of a player of a computer game as a programming
project in a CS2 course focusing in data structures and algorithms. Every semester, an instructor designs the
rules of a game, prepares its visualization, and implements an elementary player with a very simple strategy.
The game is then delivered to students who, as a first step in order to passthe project, must program a player
that wins the elementary player. Then, a tournament begins among all thestudents with accepted players. At
every round of this tournament a player is eliminated until just one player,the champion, survives. Grades for
this assignment are computed automatically and increasingly with respect tothe round where students have
been eliminated. The result is a fun and very motivating programming experience for our students.

1 INTRODUCTION

As professors of algorithmic subjects, we face nowa-
days that, frequently, our students are poorly moti-
vated by our class matters but pretty hooked to com-
puter games. So, following the saying“If the moun-
tain will not come to Muhammad, then Muhammad
must go to the mountain”, we have decided to intro-
duce computer games in our data structures and algo-
rithms courses.

We have done so by means of a programming ac-
tivity consisting in the implementation of a strategy
for a player of a computer game. The goal is that the
programming of this player should involve the imple-
mentation of some of the algorithms and data struc-
tures taught during the course, and to motivate for the
self study of others.

Here, to program a player consists in designing
strategies to move some tokens, having complete in-
formation of the map in which the tokens are ly-
ing and about the rest of the players. In fact, each
player controls a set of configurations that will inter-
act with the game by reading information about the
game world and inform of its moves to interact with
it at each turn.

Note that games are meant to be played by pro-
grams, and to be seen by humans. There is no human
interaction during the games. The program to con-

∗Work supported by the Generalitat de Catalunya’s
project ALBCOM (ref. 2009 SGR 1137).

trol the intelligence of a player is written before each
match starts.

The program submitted by a student (a player) will
be faced to the programs submitted by other students,
and will get better or worse score depending on the
way it is planned, i.e., how good is in practice its
programmed strategy. Unlike most exercises of the
course, this project is open: it is not about solving
a specific problem, but to prepare a strategy, to study
the strategies of the opponent players, and, if required,
adjust or reprogram the own strategy.

The idea was inspired by the ICPC-Challenges or-
ganized by ACM during the World Finals of their
annual ACM International Collegiate Programming
Contest2. A similar initiative is the AI Challenge3.

The performance of this lab assignment encour-
ages, among other skills, algorithmic programming
aspects (implementing their own strategy), program-
ming related to artificial intelligence (controlling the
heuristics of the agents that appear in the game) and
even good programming habits, because the players
are expected to change over the project duration to
adapt to their peers’ strategies, and thus, the students
with the most flexible and maintainable code will be
benefited.

There are several other initiatives that include au-
tomatic evaluation and assessment systems, digital
and web support, competitive and problem oriented

2Seehttp://icpc.baylor.edu.
3Seehttp://aichallenge.org.

learning, among others (Giḿenez et al., 2012; Douce
et al., 2005; Saikkonen et al., 2001; Joy et al., 2005;
Cheang et al., 2003; Kosowski et al., 2007; Kur-
nia et al., 2001; Revilla et al., 2008). But, as we
will show, thanks to the enthusiasm that video games
rouse amongst students, the experience presented in
this paper is particularly engaging.

2 CONTEXT AND GOALS

This project is included as part of the “Data Structures
and Algorithms” course of the Facultat d’Informàtica
de Barcelona and the “Algorithmics” course at the
Facultat de Matem̀atiques i Estad́ıstica (both at the
Universitat Polit̀ecnica de Catalunya). These courses
(with minor differences between them) start by intro-
ducing the concepts of algorithm analysis, together
with the required basic mathematical tools. Then,
these bases are used to study and analyze various im-
plementations of classic and essential algorithms and
data structures (sorting and searching, divide and con-
quer, dynamic programming, hashing, balanced bi-
nary trees, graph traversal, shortest paths, among oth-
ers).

These courses intend to combine basic theoreti-
cal aspects of algorithm design and analysis together
with several programming features. They consist of
6 ECTS4 that involve two hours of theory classes, one
hour of classes of problems and one hour of labora-
tory classes per week.

Inside such courses, the educational objectives of
the game are the following:

• To provide an original and motivating environ-
ment to facilitate the integration of generic and
technical skills.

• To supply an active learning activity that improves
the learning of programming, data structures and
algorithms.

• To encourage the development of competencies
such as the design and analysis of effective, ef-
ficient, collaborative and/or competitive strategies
to obtain well-defined objectives.

• To introduce didactic materials in new formats us-
ing new technologies (web, social networks, fo-
rum, graphics, etc.).

4ECTS stands for European Credit Transfer System,
which is a standard unit for comparing the study attainment
of students of higher education across the European Union.
One academic year corresponds to 60 ECTS-credits that are
equivalent to 1500–1800 hours of study, i.e., 25–30 hours
of study per credit.

• To promote the programming and the design of
efficient algorithms, improving the integration of
practical and theoretical learning.

• To offer tools that allow students to strengthen
competencies such as the gradual and continu-
ous improvement and/or overcoming of previous
work at both personal and social levels.

• To promote new evaluation mechanisms for the
skills of programming and design of efficient al-
gorithms.

3 DEVELOPMENT

The development of this activity has five main phases:
preparation, distribution, qualification, tournament,
and grading.

Preparation. A new game is created by one or more
instructors of the course; some actual games are pre-
sented later, in Section 4. A game consists of the fol-
lowing elements:

• Thedocumentationgives a basic overview of the
game, describes its goals and rules, and presents a
tutorial on how to use it.

• The interfaceof the game is the C++ API that
users will use to write their own strategies. It basi-
cally includes functions to query the current state
of the board and functions to order changes to the
agents in the board.

• The implementationof the game includes all nec-
essary coding to make the game work, such as
reading the initial boards, handling the rules, up-
dating the score, etc. It also includes theviewerof
the game, that is, the tool that will be used to see
games in a graphical way. For portability reasons,
this viewer is programmed in Javascript.

• An elementary player calledthe dummy, which
implements a fairly simple game strategy.

Distribution. All the above elements (including the
source files) are given to the students, with the excep-
tion of the dummy player, for which only the object
files are distributed. With this material, all students
can design, implement, run, debug and view their own
games at home as often as needed. In addition, stu-
dents are given access to an online web server that
will handle their submissions and games.

Moreover, we try to motivate students as much
as possible by designing advertisement posters of the
game. We hang them on the walls of classrooms and
campus squares.

Qualification. After distribution, students are given
three weeks to work on their own designing a strat-
egy and writing a program for their players. The only
requirement for their players to qualify is to consis-
tently beat the dummy player. This requirement is
necessary to ensure that a minimal coding effort is
done by each student; otherwise even an empty strat-
egy would qualify. In order to prove that they beat the
dummy player, students submit their programs to our
online judge, which checks that in four random games
against dummy players, the submitted player always
wins. Students have an unlimited number of oppor-
tunities to beat the dummy player within the three
weeks deadline.

Tournament and grand final. The most exciting
phase of the game consists in the play-off tourna-
ment, which starts after the previous deadline with
all the qualified players. Over a couple of weeks, the
game’s website automatically takes care of the tourna-
ment, handling matches among subgroups of students
(typically four) and performing the necessary rounds
to give a ranking to all the players by successively
eliminating the “worst player” of each round. All the
games and results disputed during the tournament are
publicly visible in the game website.

From round to round, students may still submit
new strategies that will replace their formers ones,
in order to try to react to the actions of their mates.
These replacement players must, of course, also beat
the dummy.

When only a few (16, say) players stand, a grand
final is organized in the conference room of the Fac-
ultat d’Informàtica de Barcelona to discover the final
champion. The surviving players are grouped into
semi-finals, and the winners of each semi-final dis-
pute the last round, where only one of them survives.
During the ceremony, the programmers of these best
players are invited to give a public short speech ex-
plaining how their players work and how they are pro-
grammed.

Grading. The total grade for our courses is a num-
ber between 0 (nothing) and 10 (perfect). Out of these
10 points, 9 come from standard evaluation systems
(tests, exams, lab assignments). Then, all the students
who beat the dummy before the deadline obtain one
point. In addition, and according to their final ranking
in the tournament, each student receives up to an extra
point to be added to his final grade (for a maximum
of 10, of course). This is computed proportionally to
the time their player is still in the game, thus the first
eliminated player gets no extra point while the cham-
pion gets one extra point.

4 ACTUAL GAMES

Over the past few semesters, we have created several
games, trying our best to get attractive and enjoyable
activities. All the games feature a board where several
agents controlled by four different players interact for
several rounds to get a final score. See Figure 1 for
some examples.

PacMan: This is an adaptation of the classical arcade
game for four players, where each player controls
his own pacman and three or four ghosts. Nor-
mal pills eaten by pacmen score points, and power
pills temporally boost pacmen to move faster and
to eat ghosts, in order to get extra points and
weaken adversaries.

Battle Royale: Each player controls several knights
and peasants. As they move to adjacent cells,
peasants colonize cells. Knights capture (kill) ad-
versary peasants to convert them to their team and
probabilistically fight adversary knights. For each
player, the score is the final number of colonized
cells. The name of the game comes from the fa-
mous Japanese cult film, just for the large number
of kills during each game.

Apocalypse Now: In this adaptation of the Viet-
nam war film, the goal of each player is to
control as many check points as possible. To
do so, each player can use soldiers, helicopters
and parachutists, who have different mobility at-
tributes depending on the terrain they move (jun-
gle, field, water or mountain) and have different
kinds of attack (body to body or napalm).

Tron: This is a variation of the classic game and film
where each player controls four light cycles that
should not crash with the prefixed walls in the
maze nor with trails of light that all light cycles
leave behind. In case of a crash, the light cycle
and its trail disappear from the board. The winner
is the last player that survives.

Dragon Ball: Inspired by the famous animated se-
ries, in this game each player must control Son
Goku in his quest to collect dragon balls and bring
them to hoi-poi capsules. In the process, play-
ers can launch kame hame attacks to other players
and use kinton clouds to move faster.

In all the games, the board is organized as a col-
lection of cells that induce a graph. At each round,
the movements of the agents are governed by each
player strategy and invoked through the game API.
Each player decides its movements for the next round
independently of the other players, and there is a ran-
domization process by which possible collisions are
resolved.

Battle Royale

PacMan

Tron

Dragon Ball

Figure 1: View of some games.

5 THE ONLINE SYSTEM

Students use a website to submit their solutions, check
whether their programs beat or not the dummy, re-
quest training games with other players (so that they
do not need to exchange their source code to play
games among them) and track the results of the
tournament games, which presumably determines the
quality of their programs. This website is largely in-
dependent of the game, so is reused each semester.

To dispute the games, our system uses the facili-
ties of the Jutge.org infrastructure, which is an educa-
tive online programming judge developed at our Uni-
versity and open to all users (Giménez et al., 2012).
In brief, Jutge.org offers a highly scalable and secure
system that processes submissions to programming
assignments and offers a verdict on their behavior.

The techniques to dispute our types of games must
however extend the security measures used in simi-
lar online judges (Forišek, 2006), because not only
they must prevent players to abuse or tamper the sys-
tem, but they also must prevent to cheat other players.
To do so, our system disputes the games by confin-
ing each player to its own process with its own user.
Moreover, there is an additional process that medi-
ates in their communication (to check that they obey
the rules of the game) and supervises the player pro-
cesses (to check that none exceeds memory or time
limits and to handle this case if needed).

While these levels of security can seem paranoid
at first, they are rather necessary, as some students are
able to devise contrived ways to try to cheat. For in-
stance, during the last semester, a group of students
has used knowledge on the way that the parameters
are pushed on the stack of function calls to locate
the memory positions that encode the walls of the
maze, and so could change them to their advantage.
While this hack worked with the distribution of code
we give to students and could amaze (or even terrify)
some of their opponents, it did not have any conse-
quences inside the server that plays the official tour-
nament thanks to not sharing the memory space.

In addition, our system interacts with the well-
known JPlag service to detect (and specially discour-
age) plagiarism (Prechelt et al., 2007). This could be
an important issue (it is not), because none of the sub-
mitted programs will normally be read.

As an example of the magnitude of the tourna-
ments, in the semester PacMan was played, we had
143 students that submitted 2929 programs, 749 of
them beating the dummy player. A total number of
7761 games were disputed and 2.2 GB of data storage
was needed.

I liked the game. It was easy to beat the
dummy player.

I would rather spend my
time studying theory than
programming my player.

To program a player is
much more motivating to
me than traditional pro-
gramming projects.

Competing against my
classmates in the game
motivates me.

I have taken the time to im-
prove my player after win-
ning the dummy player.

The documentation of the
game is right to me.

I would rather prefer this
course without game.

Figure 2: Results of the survey for the PacMan game (1: Strongly disagree→ 5: Strongly agree). Values are in percentages.

6 SUPPORT

It may be clear now that, besides the investment of
building an online system to process submissions, the
development of this activity repeatedly calls for some
effort of the course instructors.

This support starts at the preparation phase (we es-
timate that this involves about 40 hours of work), con-
tinues monitoring the game and reacting in the case
of need (we estimate this involves about 10 hours of
work) and finishes preparing the grand final.

Indeed, as most participants and many of their
classmates look forward to the grand final of the
game, this is an important event that is well pre-
pared in advance: slides, game matches, videos,
viewers, etc. The final is attended by many stu-
dents and faculty staff. It is worth commenting
also that in order to increase the students excitement
and expectation about the grand final, we design a
new visual interface (as attractive as possible) to-
gether with a stylish soundtrack. A video record-
ing the grand final of the Battle Royale game can
be found athttp://media.fib.upc.edu/fibtv/
streamingmedia/view/2/209. At the moment, this
is the video with most views among all videos posted
in our computer science school.

In addition, one has also to add up the time to give
support to the students that request help from their
instructors. Some of them require individual or group
office hours.

Figure 3: Results for the questionTime I have spent working
on my player.

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 0.2 0.4 0.6 0.8 1

Figure 4: Scatter plot of final grade (from 2 to 10) accord-
ing to rank in the PacMan tournament (from 0 [worst] to 1
[best]).

7 RESULTS

The game activity has been implemented as described
in the latest five semesters. It got a large percentage of
participation (always more than 90%) and almost all
students who tried it could enter a player into the tour-

nament, i.e., their player could win the dummy and
therefore, they passed the project. Moreover, since
to keep alive during the tournament provides extra
points for the course’s grade, this activity really helps
several students to pass the course (about a 20% of
students pass the whole course because of this extra
point).

In order to support these statements, last semester
we applied a survey to our students. Figures 2 and 3
show the results of each of the issues on which we
consulted students. The range of answers was from
1 (strongly disagree) to 5 (strongly agree). From the
surveys, we can infer that almost all students enjoy
the game activity, that they do not find too many prob-
lems in beating the dummy player, and that they pre-
fer it to more standard assignments. Also, they like
to compete against each other. Therefore, we have
corroborated that presenting the project as a game has
had a great impact on teaching. Moreover, this prac-
tice model is very attractive and motivating to our stu-
dents.

On the other hand, one could think about some
correlation between the ranking of the students in the
tournament and their final grades in the course. Fig-
ure 4 shows this information, and the Spearman’s rank
correlation concludes that although the correlation is
weak (Rho= 0.38), the correlation is statistically sig-
nificant (p-value= 2.757e−05).

As said, during the grand final, the programmers
of the best players explain their strategies. According
to their explanations, in a few cases it is possible to
reach the grand final with just a very simple player,
but in general, winners implement smart and compli-
cated strategies, with sophisticated algorithms.

8 DISCUSSION

Along this work we have described our experience in-
troducing programming computer strategies for com-
puter games into typical CS2 courses. We have shown
evidence on how this kind of programming activity is
fun and highly motivating to computer science and
mathematics students. This motivation also encour-
ages professors, and thus facilitates a pleasant work-
ing environment.

As a weak point of such a project, one can think
that students seem to be so hooked that they spend
more than the recommended hours to program and
improve their players, and this in detriment of the
hours they should dedicate to other parts of the course
and to other courses. But, when surveyed about this
issue, they did claim that they dedicated a big amount
of time and work, but that this was mostly in their free

personal time, which otherwise they would not have
dedicated to study.

Overall, we consider it such a successful experi-
ence that we want to continue improving and spread-
ing. Among the ideas we have to go further, it is worth
mentioning that the games we have created so far are
very competitive. So, in the future we would also
like to develop collaborative games in which players
should help each other in some way. On the other
hand, we want to extend our online system to offer
these games to the general public. A systematization
of the website and of the design process of new games
is under current development.

ACKNOWLEDGEMENTS

We thank Omer Giḿenez and Mario G. Munźon for
all their enthusiasm, ideas and programming time.

REFERENCES

Cheang, B., Kurnia, A., Lim, A., and Oon, W.-C. (2003).
On automated grading of programming assignments
in an academic institution.Computers & Education,
41(2):121–131.

Douce, C., Livingstone, D., and Orwell, J. (2005). Auto-
matic test-based assessment of programming: A re-
view. ACM Journal on Educational Resources in
Computing, 5(3).

Forišek, M. (2006). Security of Programming Contest Sys-
tems. In Dagiene, V. and Mittermeir, R., editors,In-
formation Technologies at School, pages 553–563.

Giménez, O., Petit, J., and Roura, S. (2012). Jutge.org: An
educational programming judge. InProc. of the 43rd
ACM Technical Symposium on Computer Science Ed-
ucation (SIGCSE-2012), pages 445–450. Association
for Computing Machinery.

Joy, M., Griffiths, N., and Boyatt, R. (2005). The BOSS on-
line submission and assessment system.ACM Journal
on Educational Resources in Computing, 5(3).

Kosowski, A., Malafiejski, M., and Noinski, T. (2007). Ap-
plication of an online judge & contester system in aca-
demic tuition. InICWL’07, pages 343–354.

Kurnia, A., Lim, A., and Cheang, B. (2001). Online judge.
Computers & Education, pages 299–315.

Prechelt, L., Malpohl, G., and Philippsen, M. (2007). JPlag:
finding plagiarisms among a set of programs.

Revilla, M., Manzoor, S., and Liu, R. (2008). Competitive
learning in informatics: The UVa online judge experi-
ence.Olympiads in Informatics, 2:131–148.

Saikkonen, R., Malmi, L., and Korhonen, A. (2001).
Fully automatic assessment of programming exer-
cises.ACM SIGCSE Bulletin, 33(3):133–136.

