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Abstract. Adequate encodings for high-level constraints are a key ingredient for
the application of SAT technology. In particular,cardinality constraintsstate that
at most (at least, or exactly)k out of n propositional variables can be true. They
are crucial in many applications. Although sophisticated encodings for cardinality
constraints exist, it is well known that for smalln andk straightforward encodings
without auxiliary variables sometimes behave better, and that the choice ofthe
right trade-off between minimizing either the number of variables or the number
of clauses is highly application-dependent. Here we build upon previous work
on Cardinality Networks to get the best of several worlds: we develop anarc-
consistent encoding that, by recursively decomposing the constraint into smaller
ones, allows one to decide which encoding to apply to each sub-constraint.This
process minimizes a functionλ ·numvars+numclauses, whereλ is a parameter
that can be tuned by the user. Our careful experimental evaluation shows that
(e.g., forλ = 5) this new technique produces much smaller encodings in variables
andclauses, and indeed strongly improves SAT solvers’ performance.

1 Introduction

This paper presents a new encoding into SAT ofcardinality constraints, that is, con-
straints of the formx1+ · · ·+xn # k, wherek is a natural number, thexi are propositional
variables, and the relation operator # belongs to{<, >,6,>,=}. Cardinality constraints
are present in many practical SAT applications, such as cumulative scheduling [17] or
timetabling [4]. They also arise as components of some SAT-based techniques, e.g., for
MaxSAT [11].

Here we are interested in encoding a cardinality constraintC with a clause setS
(possibly with auxiliary variables) that is not only equisatisfiable, but alsoarc-consistent:
given a partial assignmentA, if xi is true (false) in every extension ofA satisfyingC,
then unit propagatingA on S setsxi to true (false)3. Enforcing arc-consistency by unit
propagation in this way has of course an important positive impact on the practical
efficiency of SAT solvers.

A straightforward encoding of a cardinality constraintx1 + · · · + xn 6 k is to state,
for each subsetY of {x1, . . . , xn} with |Y| = k + 1, that at least one variable ofY must
be false. This can be done by asserting

( n
k+1

)

clauses of the formxi1 ∨ . . . ∨ xik+1. This
kind of construction frequently works well, although it is of course not reasonable for

3 Sometimes this notion is calledgeneralized arc-consistency.
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largen andk, which is our aim in this work. Successively more sophisticated encodings
using auxiliary variables have been defined that require fewer clauses (see Section 2).
But still, for smalln andk the straightforward encodings may behave better in practice.
An additional issue is that, for the efficiency of the SAT solver, the choice of the right
trade-off between minimizing either the number of auxiliary variables or the number of
clauses is highly application-dependent.

Here we build upon and improve previous work on encoding cardinality constraints
with Cardinality Networks [2,3], which useO(n log2 k) variables and clauses (see Sec-
tion 3). The idea is to get the best of several worlds: we develop a hybrid arc-consistent
encoding that, by recursively decomposing the constraint into smaller ones, allows
one to decide whether to apply a recursive (see Section 4) or adirect (see Section
5) encoding to each sub-constraint. This process minimizesa functionλ · numvars+
numclauses, whereλ is a parameter that can be tuned by the user (see Section 6). Our
experimental evaluation shows that (e.g., forλ = 5) this new technique produces much
smaller encodings in variablesand clauses, and indeed strongly improves the perfor-
mance of SAT solvers (see Section 7).

2 Related Work

Because of their practical importance, encodings of cardinality constraints into SAT
have been thoroughly studied over the last few years. In thissection we review some of
the most important works in the literature.

In [20], Warners considered the more general pseudo-Boolean case, where con-
straints are of the forma1x1+ . . .+anxn ≤ k, being theai ’s and thek integer coefficients
and thexi ’s Boolean variables. The encoding is based on using adders for numbers
represented in binary. For cardinality constraints the encoding usesO(n) clauses and
variables, but does not preserve arc consistency.

Bailleux and Boufkhad presented in [5] an arc-consistent encoding of cardinality
constraints that usesO(n logn) variables andO(n2) clauses. The encoding consists of a
totalizerand acomparator. The totalizer can be seen as a binary tree, where the leaves
are thexi ’s variables. Each inner node is labeled with a numbers and usess auxiliary
variables to represent, in unary, the sum of the leaves of thecorresponding subtree. As
for the comparator, it is easily encoded thanks to the unary representation, which also
allows handling constraints of the formk1 ≤ x1 + . . . + xn ≤ k2 without splitting.

A more applied work is the one of B̈uttner and Rintanen [19]. Although their main
interest was in planning, they suggested two encodings of cardinality constraints. The
first one is based on encoding an injective mapping between the truexi ’s variables and
k elements. It usesO(nk) clauses and variables and is not arc-consistent. The other
encoding is a small modification of [5]. Based on the observation that counting up to
k + 1 suffices, they can reduce the number of variables and clauses usedin each node.
The resulting encoding requiresO(nk) variables andO(nk2) clauses, which improves on
[5] if k is small enough.

In [18], Sinz proposed two different encodings, both based on counters. The first
encoding uses a sequential counter where numbers are represented in unary. It needs
O(nk) clauses and variables and is arc-consistent. The second one is based on a parallel



3

counter, where numbers are represented in binary. It requiresO(n) clauses and variables,
but is not arc-consistent.

Another kind of encoding was used in [6], where a BDD-like technique was pro-
posed for pseudo-Boolean constraints. The encoding is arc-consistent, and usesO(n2)
clauses and variables when applied to cardinality constraints. The idea is as follows:
given a pseudo-Boolean constrainta1x1+ . . .+anxn ≤ k, the root of the BDD is labeled
with variableDn,k, expressing that the sum of the firstn terms is at mostk. The two cor-
responding children areDn−1,k andDn−1,k−an, indicating the two cases that correspond
to settingxn to false and true, respectively. Then the necessary clausesare added to
express the relationship between the variables, and trivial cases are treated accordingly.

The same authors presented in [7] a polynomial and arc-consistent encoding of
pseudo-Boolean constraints. When restricted to cardinality constraints it is similar to [5],
but the latter is better in terms of size.

Yet another approach for encoding cardinality constraintswas suggested in [1]. The
authors revisit the idea of using totalizers, and realize that totalizers require two param-
eters: the encoding used (unary or binary) and the way the totalizers are grouped (e.g.
(a + b) + (c + d) or (((a + b) + c) + d) ). A thorough experimentation is performed,
to which they add two extra aspects: (i) how to order the variables; and (ii ), the use of
encodings in parallel, hoping the SAT solver will focus on the most appropriate one for
each problem.

Finally, Eén and S̈orensson [10] presented three encodings for pseudo-Boolean con-
straints. The first encoding is BDD-based, similar to [6]. The second one, based on adder
networks, improves that of [20] in that it uses less adders, but is still linear and does not
preserve arc consistency. Finally, their third encoding uses Sorting Networks[8]. A
Sorting Network takes input variables (x1 . . . xn) and returns as outputs (y1 . . . yn) the
sorted input values in decreasing order. Hence, an output variableyk will become true
iff there are at leastk true input variables, and false iff there are at leastn − k + 1
false ones. Now, to expressx1 + · · · + xn > k, it suffices to add a unit clauseyk; simi-
larly, for x1 + · · · + xn 6 k one addsyk+1, and both are added if the relation is=. This
encoding, when restricted to cardinality constraints, preserves arc consistency and re-
quiresO(n log2 n) clauses and variables. The Cardinality Networks of [2,3] reduce this
to O(n log2 k), which is important as oftenn≫ k.

A similar approach uses so-called Pairwise Cardinality Networks [9], which are
based on Pairwise Sorting Networks [15] instead of Sorting Networks. By means of
partial evaluation, this method also achievesO(n log2 k) variables and clauses. Finally,
we were recently informed that a hybrid approach based on Pairwise Cardinality Net-
works similar to that presented here was implemented in the BEE system [13]. However,
no detailed description or experimental evaluation is available. Moreover, our proposal
in this paper is more general, in the sense that it allows the user to tune the parameterλ
when minimizing the objective functionλ · numvars+ numclauses.

3 Preliminaries

In this work we describe a method for producing cardinality networks that generalizes
the construction of [3]. The core idea of these approaches, which dates back to [8],
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consists in encoding a circuit that implements mergesort bymeans of a set of clauses.
The most basic components of these circuits are 2-comparators.

A 2-comparatoris a sorting network of size 2, i.e., it has 2 input variables (x1 and
x2) and 2 output variables (y1 andy2) such thaty1 is true if and only if at least one of
the input variables is true, andy2 is true if and only if both two input variables are true.
In the following, 2-comparators are denoted by (y1, y2) = 2-Comp(x1, x2). As pointed
out in [3], for encoding6-constraints, only the three clauses on the first row of Fig. 1
are needed to guarantee arc-consistency. The three clauseson the second row suffice for
>-constraints and all six must be present when encoding=-constraints. Note that the
usual polarity argument [16] cannot be directly applied here, as we are interested not
only in preserving satisfiability, but also arc-consistency under unit propagation.

x1 → y1, x2 → y1, x1 ∧ x2 → y2,

x1 → y2, x2 → y2, x1 ∧ x2 → y1

x1

x2

y1

y2

Fig. 1: A 2-comparator: clauses (left) and graphical representation (right).

4 Arbitrary-Sized Recursive Cardinality Networks

In this section we generalize the recursive construction ofcardinality networks given in
[3] by allowing inputs and outputs of any size, not necessarily a power of two. Not only
does this avoid adding dummy variables that are not actuallyneeded (which, as will be
seen in Section 7, has an impact on performance on its own), but also becomes useful
when combining with the direct (non-recursive) constructions of Section 5.

In what follows, we denote by⌊r⌋ and ⌈r⌉ the floor and ceiling functions respec-
tively. Moreover, for simplicity, we will assume that the constraint to be encoded is a
6-constraint. However, similar constructions for the otherconstraints can be devised.

4.1 Merge Networks

A merge networktakes as input two (decreasingly) ordered sets of sizesa andb and
produces a (decreasingly) ordered set of sizea+ b. We can build a merge network with
inputs (x1, . . . , xa) and (x′1, . . . , x

′
b) in a recursive way as follows4:

– If a = b = 1, a merge network is a 2-comparator:

Merge(x1; x′1) := 2-Comp(x1, x′1).

– If a = 0, a merge network returns the second input:

Merge(;x′1, x
′
2, . . . , x

′
b) := (x′1, x

′
2, . . . , x

′
b).

4 Notice we use the notation Merge(X; X′) instead of Merge((X), (X′)) for simplicity.



5

– If a andb are even,a > 0, b > 0 and eithera > 1 orb > 1, let us define

(z1, z3, . . . , za−3, za−1,

za+1, za+3, . . . , za+b−1)
=

Merge(x1, x3, . . . , xa−1;
x′1, x

′
3, . . . , x

′
b−1),

(z2, z4, . . . , za−2, za,

za+2, za+4, . . . , za+b)
=

Merge(x2, x4, . . . , xa;
x′2, x

′
4, . . . , x

′
b),

(y2, y3) = 2-Comp(z2, z3),
. . .

(ya+b−2, ya+b−1) = 2-Comp(za+b−2, za+b−1).

Then,

Merge(x1, x2, . . . , xa; x′1, x
′
2, . . . , x

′
b) := (z1, y2, y3, . . . , ya+b−1, za+b).

– If a is even,b is odd,a > 0, b > 0 and eithera > 1 orb > 1, let us define

(z1, z3, . . . , za−1,

za+1, za+3, . . . , za+b)
=

Merge(x1, x3, . . . , xa−1;
x′1, x

′
3, . . . , x

′
b),

(z2, z4, . . . , za, za+2,

za+4, . . . , za+b−1)
=

Merge(x2, x4, . . . , xa;
x′2, x

′
4, . . . , x

′
b−1),

(y2, y3) = 2-Comp(z2, z3),
. . .

(ya+b−1, ya+b) = 2-Comp(za+b−1, za+b).

Then,

Merge(x1, x2, . . . , xa; x′1, x
′
2, . . . , x

′
b) := (z1, y2, y3, . . . , ya+b−1, ya+b).

– If a andb are odd,a > 0, b > 0 and eithera > 1 orb > 1, let us define

(z1, z3, . . . , za−2, za,

za+1, za+3, . . . , za+b)
=

Merge(x1, x3, . . . , xa;
x′1, x

′
3, . . . , x

′
b),

(z2, z4, . . . , za−3, za−1,

za+2, za+4, . . . , za+b−1)
=

Merge(x2, x4, . . . , xa−3, xa−1;
x′2, x

′
4, . . . , x

′
b−1),

(y2, y3) = 2-Comp(z2, z3),
. . .

(ya+b−2, ya+b−1) = 2-Comp(za+b−2, za+b−1).

Then,

Merge(x1, x2, . . . , xa; x′1, x
′
2, . . . , x

′
b) := (z1, y2, y3, . . . , ya+b−1, za+b).

– The remaining cases are defined thanks to the symmetry of the merge function, i.e.,
due to Merge(X,X′) = Merge(X′,X).

The base cases do not require any explanation. As regards therecursive ones, first
notice that the set of valuesx1, x2, . . . , xa, x′1, x

′
2, . . . , x

′
b is always preserved. Further, the
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Fig. 2: Different examples of merge networks.

output bits are sorted, asz2i ≥ z2(i+1), z2i ≥ z2(i+1)+1, z2i+1 ≥ z2(i+1) andz2i+1 ≥ z2(i+1)+1

imply that min(z2i , z2i+1) ≥ max(z2(i+1), z2(i+1)+1). Figure 2 shows examples of some of
these recursive cases.

The number of auxiliary variables and clauses of a merge network defined in this
way can be recursively computed. A merge network with inputsof size (1,1) needs 2
variables and 3 clauses. A merge network with inputs of size (0,b) needs no variables
and clauses. A merge network with inputs of size (a,b) with a > 1 or b > 1 needs
V1 + V2 + 2

⌊

a+b−1
2

⌋

variables andC1 + C2 + 3
⌊

a+b−1
2

⌋

clauses, whereV1 andC1 are
the number of variables and clauses in a merge network with inputs of size

(⌈

a
2

⌉

,
⌈

b
2

⌉)

,

andV2,C2 are idem in a merge network with inputs of size
(⌊

a
2

⌋

,
⌊

b
2

⌋)

.

In comparison to [3], in that work it was assumed thata = b = 2m for somem≥ 0.
Thanks to this, only one base case (a = b = 1) and one recursive case (a, b even) were
considered there. All the other cases introduced here are needed for arbitrarya andb.

4.2 Sorting Networks

A sorting networktakes an input of sizen and sorts it. It can be built in a recursive way
as follows, using the same strategy as in mergesort:

– If n = 1, the output of the sorting network is its input:

Sorting(x1) := x1
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– If n = 2, a sorting network is a single merge (i.e., a 2-comparator):

Sorting(x1, x2) := Merge(x1; x2).

– For n > 2, takel with 1 6 l < n: Let us define

(z1, z2, . . . , zl) = Sorting(x1, x2, . . . , xl),
(zl+1, zl+2, . . . , zn) = Sorting(xl+1, xl+2, . . . , xn),

(y1, y2, . . . , yn) = Merge(z1, z2, zl ; zl+1, . . . , zn).

Then,

Sorting(x1, x2, . . . , xn) := (y1, y2, . . . , yn).

Again, the number of auxiliary variables and clauses neededin these networks can be
recursively computed. A sorting network of input size 1 needs no variables and clauses.
A sorting network of input size 2 needs 2 variables and 3 clauses. A sorting network
of input sizen composed by a sorting network of sizel and a sorting network of size
n − l needsV1 + V2 + V3 variables andC1 + C2 + C3 clauses, where (V1,C1), (V2,C2)
are the number of variables and clauses used in the sorting networks of sizesl andn− l,
and (V3,C3) are the number of variables and clauses needed in the merge network with
inputs of sizes (l,n− l).

In comparison to [3], in that workn is assumed to be a power of two. Moreover, in
the recursive casel is always chosen to ben/2, while here we can build sorting networks
of any size, and have the additional freedom of choosing the sizes of the two sorting
network components.

4.3 Simplified Merge Networks

A simplified mergeis a reduced version of a merge, used when we are only interested in
some of the outputs, but not all. Recall that we want to encodea constraint of the form
x1 + . . . + xn 6 k, and hence we are only interested in the firstk + 1 bits of the sorted
output. Thus, in ac-simplified merge network, the inputs are two sorted sequences of
variables (x1, x2, . . . , xa; x′1, x

′
2, . . . , x

′
b), and the network produces a sorted output of the

desired size,c, (y1, y2, . . . , yc). The network satisfies thatyr is true if there are at leastr
true inputs. We can build a recursive simplified merge as follows:

– If a = b = c = 1, let us add the clausesx1→ y, x′1→ y5. Then:

SMerge1(x1; x′1) := y.

– If a > c, we can ignore the lasta− c bits of the first input (similarly ifb > c):

SMergec(x1, x2, . . . , xa; x′1, . . . , x
′
b) = SMergec(x1, x2, . . . , xc; x′1, . . . , x

′
b).

– If a+ b 6 c, the simplified merge is a merge:

SMergec(x1, . . . , xa; x′1, . . . , x
′
b) = Merge(x1, . . . , xa; x′1, . . . , x

′
b).

5 Notice that these clauses correspond to the bit of the 2-comparator with lower index. Clause
x1 ∧ x2 → y does not need to be included here following the reasoning given in Section3.
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– If a,b 6 c, a+ b > c andc is even: Let us define
(z1, z3, . . . , zc+1) = SMergec/2+1(x1, x3, . . . ; x′1, x

′
3, . . .),

(z2, z4, . . . , zc) = SMergec/2(x2, x4, . . . ; x′2, x
′
4, . . .),

(y2, y3) = 2-Comp(z2, z3),
. . .

(yc−2, yc−1) = 2-Comp(zc−2, zc−1).

and add the clauseszc→ yc, zc+1→ yc. Then,

SMergec(x1, x2, . . . , xa; x′1, x
′
2, . . . , x

′
b) := (z1, y2, y3, . . . , yc),

– If a,b 6 c, a+ b > c and c > 1 is odd: Let us define

(z1, z3, . . . , zc) = SMergec+1
2

(x1, x3, . . . ; x′1, x
′
3, . . .),

(z2, z4, . . . , zc−1) = SMergec−1
2

(x2, x4, . . . ; x′2, x
′
4, . . .),

(y2, y3) = 2-Comp(z2, z3),
. . .

(yc−1, yc) = 2-Comp(zc−1, zc).

Then,
SMergec(x1, x2, . . . , xa; x′1, x

′
2, . . . , x

′
b) := (z1, y2, y3, . . . , yc).

x7

x6

x5

x4

x3

x2

x1

z7

z6

z5

z4

z3

z2 z1

z1

y6

y5

y4

y3

y2
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z5

z4

z3

z2
z1

z1

y5

y4

y3

y2

2-SMerge2,1 3-SMerge2,1

Fig. 3: Two examples of simplified merge networks.

Figure 3 shows two examples of simplified merges: The first oneshows a 6-simplified
merge with inputs of sizes 3 and 4. The second one correspondsto a 5-simplified merge
with inputs of sizes 2 and 4.

We can recursively compute the auxiliary variables and clauses needed in simplified
merge networks. In the recursive case, we needV1 +V2 + c− 1 variables andC1 +C2 +

C3 clauses, where (V1,C1), (V2,C2) are the number of clauses and variables needed in
simplified merge networks of sizes

(⌈

a
2

⌉

,
⌈

b
2

⌉

,
⌊

c
2

⌋

+ 1
)

,
(⌊

a
2

⌋

,
⌊

b
2

⌋

,
⌊

c
2

⌋)

, and

C3 =

®

3c−3
2 if c is odd,

3c−2
2 + 2 if c is even.

Compared to [3], there it was assumed thata = b = 2m for somem ≥ 0, and
c = 2m + 1. Similarly to merge networks, only one base case and one recursive case
were considered. All the other cases introduced here are needed for arbitrarya, b andc.
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4.4 m-Cardinality Networks

An m-cardinality networktakes an input of sizen and outputs the firstmsorted bits. Re-
cursively, anm-cardinality network with inputx1, x2, . . . , xn can be defined as follows:

– If n 6 m, a cardinality network is a sorting network:

Cardm(x1, x2, . . . , xn) := Sorting(x1, x2, . . . , xn).

– If n > m, takel with 1 6 l < n. Let us define

(z1, z2, . . . , zA) = Cardm(x1, x2, . . . , xl),
(z′1, z

′
2, . . . , z

′
B) = Cardm(xl+1, xl+2, . . . , xn),

(y1, y2, . . . , ym) = SMergem(z1, z2, . . . , zA; z′1, z
′
2, . . . , z

′
B),

whereA = min{l,m} andB = min{n− l,m}. Then,

Cardm(x1, x2, . . . , xn) := (y1, y2, . . . , ym).

Again, the number of auxiliary variables and clauses neededin these networks
can be recursively computed. Anm-cardinality network of sizen composed by anm-
cardinality network of sizel and anm-cardinality network of sizen− l needsV1+V2+V3

variables andC1+C2+C3 clauses, where (V1,C1), (V2,C2) are the number of variables
and clauses used in them-cardinality networks of sizesl andn− l, and (V3,C3) are idem
in them-simplified merge network with inputs of sizes (min{l,m},min{n− l,m}).

Compared to [3], in that workm is assumed to be a power of two, andn a multiple
of m. Moreover, similarly to sorting networks, in the recursivecasel is always chosen
to bem, while here we have an additional degree of freedom.

Using the same techniques in [3] one can easily prove the arc-consistency of the
encoding.

Theorem 1. The Recursive Cardinality Network encoding is arc-consistent: consider
a cardinality constraint x1 + . . . + xn 6 k, its corresponding cardinality network(y1,

y2, ..., yk+1) = Cardk+1(x1, x2, . . . , xn), and the unit clause¬yk+1. If we now set to true k
input variables, then unit propagation sets to false the remaining n− k input variables.

Proof (sketch).The proof relies on the following lemmas, which formalize the propa-
gation properties of the building blocks of cardinality networks:

Lemma 1 (Merge Networks).Let S be the set of clauses of

(y1, y2, . . . , ya+b) = Merge(x1, x2, . . . , xa; x′1, x
′
2, . . . , x

′
b).

Let p,q ∈ N with 0 ≤ p ≤ a and0 ≤ q ≤ b. Then:

1. S∪ {x1, . . . , xp, x′1, . . . , x
′
q} |=UP y1, . . . , yp+q.

2. If p < a and q< b then S∪ {x1, . . . , xp, x′1, . . . , x
′
q, yp+q+1} |=UP xp+1, x′q+1.

3. If p = a and q< b then S∪ {x1, . . . , xp, x′1, . . . , x
′
q, yp+q+1} |=UP x′q+1.

4. If p < a and q= b then S∪ {x1, . . . , xp, x′1, . . . , x
′
q, yp+q+1} |=UP xp+1.
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Lemma 2 (Sorting Networks).Let X = (x1, x2, . . . , xn), X′ ⊆ X and S be the set of
clauses of(y1, y2, . . . , yn) = Sorting(X). Let p= |X′|. Then:

1. S∪ X′ |=UP y1, . . . , yp.

2. If p = |X′| < n, then S∪ X′ ∪ {yp+1} |=UP xi for all xi < X′.

Lemma 3 (Simplified Merge Networks).Let S be the set of clauses of

(y1, y2, . . . , yc) = SMergec(x1, x2, . . . , xa; x′1, x
′
2, . . . , x

′
b).

Let p,q ∈ N be such that0 ≤ p ≤ a, 0 ≤ q ≤ b. Then:

1. If p+ q ≤ c, then S∪ {x1, . . . , xp, x′1, . . . , x
′
q} |=UP y1, . . . , yp+q.

2. If p < a, q< b and p+q < c, then S∪{x1, . . . , xp, x′1, . . . , x
′
q, yp+q+1} |=UP xp+1, x′q+1.

3. If p = a, q< b and p+ q < c, then S∪ {x1, . . . , xp, x′1, . . . , x
′
q, yp+q+1} |=UP x′q+1.

4. If p < a, q= b and p+ q < c, then S∪ {x1, . . . , xp, x′1, . . . , x
′
q, yp+q+1} |=UP xp+1.

Lemma 4 (Cardinality Networks). Let X = (x1, x2, . . . , xn), X′ ⊆ X and S be the set
of clauses of(y1, y2, . . . , ym) = Cardm(X). Let p= |X′|. Then:

1. If p ≤ m, then S∪ X′ |=UP y1, . . . , yp.

2. If p < m, then S∪ X′ ∪ {yp+1} |=UP xi for all xi < X′.

Each lemma is proved by induction and using the corresponding lemmas of the inner
building blocks. The proofs of Lemmas 1 and 3 require considering four cases according
to the parities ofp andq. Finally, the theorem follows as a corollary of Lemma 4.

For the sake of illustration, let us prove the casea,b 6 c, a+ b > c, with c even, of
the inductive case of property 1 in Lemma 3. So, let us consider the set of clauses of

(z1, y2, y3, . . . , yc) = SMergec(x1, x2, . . . , xa; x′1, x
′
2, . . . , x

′
b)

consisting of the clauseszc→ yc, zc+1→ yc and those in

(z1, z3, . . . , zc+1) = SMergec/2+1(x1, x3, . . . ; x′1, x
′
3, . . .),

(z2, z4, . . . , zc) = SMergec/2(x2, x4, . . . ; x′2, x
′
4, . . .),

(y2, y3) = 2-Comp(z2, z3),
. . .

(yc−2, yc−1) = 2-Comp(zc−2, zc−1).

Let p,q ∈ N such that 0≤ p ≤ a, 0 ≤ q ≤ b and p + q ≤ c. If p = q = 0 there
is nothing to prove. Otherwise let us showS ∪ {x1, . . . , xp, x′1, . . . , x

′
q} |=UP z1, yi for all

2 ≤ i ≤ p+ q.
Here we focus on the subcasep and q even, being the other three cases analo-

gous. Hence, letp = 2p′ andq = 2q′. In x1, x2, . . . , xp there arep′ odd indices and
p′ even indices. Similarly, inx′1, x

′
2, . . . , x

′
q there areq′ odd indices andq′ even in-

dices. Thus, using the IH (notep′ + q′ ≤ c/2 < c/2 + 1), we have that the clauses
of the subnetwork (z1, z3, . . . , zc+1) = SMergec/2+1(x1, x3, . . . ; x′1, x

′
3, . . .) propagate by

unit propagation the literalsz1, ..., z2(p′+q′)−1; and that the clauses of (z2, z4, . . . , zc) =
SMergec/2(x2, x4, . . . ; x′2, x

′
4, . . .) propagate by unit propagation the literalsz2, ...,z2(p′+q′).

Altogether, all literalszj with 1 ≤ j ≤ p+ q can be propagated by unit propagation.
Let us take 2≤ i ≤ p + q. If i is odd then, thanks to literalszi−1 andzi and clause

zi−1 ∧ zi → yi of the 2-comparator (yi−1, yi) = 2-Comp(zi−1, zi), literal yi is propagated.
If i is even, then thanks to literalzi and clausezi → yi , literal yi is propagated too.
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5 Direct Cardinality Networks

In this section we introduce an alternative technique for building cardinality networks
which we calldirect, as it is non-recursive. This method uses many fewer auxiliary vari-
ables than the recursive approach explained in Section 4. Onthe other hand, the number
of clauses of this construction makes it competitive only for small sizes. However, this
is not a problem as we will see in Section 6, as the two techniques can be combined.

As in the recursive construction described in Section 4, thebuilding blocks of direct
cardinality networks are merge, sorting and simplified merge networks:

– Merge Networks. They are defined as follows6:

Merge(x1, x2, . . . , xa; x′1, x
′
2, . . . , x

′
b) := (y1, y2, y3, . . . , ya+b−1, ya+b),

with clauses{xi → yi , x′j → y j , xi ∧ x′j → yi+ j : 1 6 i 6 a,1 6 j 6 b}. Notice we
needa+ b variables andab+ a+ b clauses.

– Sorting Networks. A sorting network can be built as follows:

Sorting(x1, x2, . . . , xn) := (y1, y2, . . . , yn),

with clauses{xi1 ∧ xi2 ∧ · · · ∧ xik → yk : 1 6 k 6 n,1 6 i1 < i2 < · · · < ik 6 n}.
Therefore, we needn auxiliary variables and 2n − 1 clauses.

– Simplified Merge Networks. The definition ofc-simplified merge is the same as
in Section 4, except for the cases in whicha,b 6 c anda+ b > c, where:

SMergec(x1, x2, . . . , xa; x′1, x
′
2, . . . , x

′
b) := (y1, y2, . . . , yc),

with clauses{xi → yi , x′j → y j , xi ∧ x′j → yi+ j : 1 6 i 6 a,1 6 j 6 b, i + j 6 c}.

This approach needsc variables and (a+ b)c− c(c−1)
2 −

a(a−1)
2 −

b(b−1)
2 clauses.

– m-Cardinality Networks . As in Section 4, except for the casen > m, where:

Cardm(x1, x2, . . . , xn) := (y1, y2, . . . , ym)

with clauses{xi1 ∧ xi2 ∧ · · · ∧ xik → yk : 1 6 k 6 m,1 6 i1 < i2 < · · · < ik 6 n}.
This approach needsm variables and

(n
1

)

+
(n

2

)

+ · · · +
(n

m

)

clauses.

As regards the arc-consistency of the encoding, the following can be easily proved:

Theorem 2. The Direct Cardinality Network encoding is arc-consistent.

Proof (sketch).The proof uses lemmas analogous to Lemmas 1, 2, 3 and 4. For illus-
tration purposes, let us show property 1 in Lemma 3. Let us consider the clause set of
(y1, y2, . . . , yc) = SMergec(x1, x2, . . . , xa; x′1, x

′
2, . . . , x

′
b), i.e.,

{xi → yi , x′j → y j , xi ∧ x′j → yi+ j : 1 6 i 6 a,1 6 j 6 b, i + j 6 c}.

Let p,q ∈ N be such that 0≤ p ≤ a, 0 ≤ q ≤ b and p + q ≤ c. If p = q = 0
there is nothing to prove. Otherwise let us consider 1≤ k ≤ p + q. Let 0 ≤ i ≤ p and
0 ≤ j ≤ q be such thati + j = k. If i = 0 then j = k and the clausex′j → y j propagates
yk. Similarly, if j = 0 theni = k and the clausexi → yi propagatesyk. Finally, if i ≥ 1
and j ≥ 1 the clausexi ∧ x′j → yi+ j propagatesyk.

6 Direct merge networks are similar to the totalizers of [7].
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6 Combining Recursive and Direct Cardinality Networks

The recursive approach produces shorter networks than the direct approach when the
input is middle-sized. Still, the recursive method for building a network needs to induc-
tively produce networks for smaller and smaller input sizes. At some point, the networks
we need have a sufficiently small number of inputs such that the direct method can build
them using fewer clauses and variables than the recursive approach. Here amixed en-
codingis presented: large cardinality networks are build with therecursive approach but
their components are produced with the direct approach if their size is small enough.

In more detail, assume a merge of input sizesa andb is needed. We can use the
direct approach, which needsVD = a + b auxiliary variables andCD = ab + a + b
clauses; or we could use the recursive approach. With the recursive approach, we have
to built two merge networks of sizes

(⌈

a
2

⌉

,
⌈

b
2

⌉)

and
(⌊

a
2

⌋

,
⌊

b
2

⌋)

. These networks are
also built with this mixed approach. Then, we compute the clauses and variables needed
in the recursive approach,VR andCR, with the formula of Section 4.1:VR = V1 + V2 +

2
⌊

a+b−1
2

⌋

,CR = C1 +C2 + 3
⌊

a+b−1
2

⌋

, where (V1,C1) and (V2,C2) are, respectively, the
number of variables and clauses needed in the recursive merge networks.

Finally, we compare the values ofVR, VD, CR andCD, and decide which method is
better for building the merge network. Notice that we cannotminimize both the number
of variables and clauses; therefore, here we try to minimizethe functionλ · V +C, for
some fixed valueλ > 0.7 The parameterλ allows us to adjust the relative importance of
the number of variables with respect to the number of clausesof the encoding. Notice
that this algorithm for building merge networks (and similarly, sorting, simplified merge
and cardinality networks) can easily be implemented with dynamic programming. See
Section 7 for an experimental evaluation of the numbers of variables and clauses in
cardinality networks built with this mixed approach.

The arc-consistency of the mixed encoding easily follows from the arc-consistency
of the two encodings it is based on.

Theorem 3. The Mixed Cardinality Network encoding is arc-consistent.

Proof (sketch).The proof uses lemmas analogous to Lemmas 1, 2, 3 and 4. In turn,
these lemmas are proved by combining the proofs outlined in Theorems 1 and 2.

7 Experimental Evaluation

In previous work [3], it was shown that power-of-two (Recursive) Cardinality Networks
have overall better performance than other well-known methods such as Sorting Net-
works [10], Adders [10] and the BDD-based encoding of [6]. Inwhat follows we will
show that the generalization of Cardinality Networks to arbitrary size and their combi-
nation with Direct Encodings, yielding what we have called theMixed approach, makes
them significantly better, both in the size of the encoding and the SAT solver runtime.

We start the evaluation focusing on the size of the resultingencoding. In Figure 4 we
show a representative graph, which indicates the size, in terms of variables and clauses,
of the encoding of a cardinality network with input size 100 and varying output sizem.

7 This function can be replaced by any other monotone function that can beefficiently evaluated.
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It can be seen that, since we minimize the functionλ ·V+C, whereV is the number
of variables andC the number of clauses, the biggerλ is, the fewer variables we obtain,
at the expense of a slight increase in the number of clauses. Also, it can be seen that
using power-of-two Cardinality Networks as in [3] is particularly harmful whenm is
slightly larger than a power of two.

Recursive with power-of-two size
Recursive with arbitrary size
Mixed, λ = 0.5
Mixed, λ = 5
Mixed, λ = 30

m

Va
ria

bl
es

10 20 40

1000

2000

Recursive with power-of-two size
Recursive with arbitrary size
Mixed, λ = 0.5
Mixed, λ = 5
Mixed, λ = 30

m

C
la

us
es

10 20 40

2000

4000

Fig. 4: Number of variables and clauses generated byMixed and the Recursive Cardi-
nality Networks approaches with input size 100 and different output sizesm.

Although having a smaller encoding is beneficial, this should be accompanied with
a reduction in SAT solver runtime. Hence, let us now move to assess how our new
encoding affects the performance of SAT solvers. In this evaluation, in addition to con-
sidering the power-of-two Recursive Cardinality Networksin [3] (Power-of-two CN),
the (arbitrary-size) Recursive Cardinality Networks presented in Section 4 (Arbitrary-
sized CN) and theMixed approach of Section 6, we have also included other well-
known encodings in the literature: the adder-based encoding (Adder) of [10] and the
BDD-based encoding (BDD) of [6]. We believe these encodings are representative of
all different approaches that have been used to deal with cardinality constraints. Other
works, like the adder-based encoding of [20], the BDD-basedone of [10] or the work by
Anbulagan and Grastien [1], are small variations or combinations of the encodings we
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have chosen. Moreover, we have implemented an SMT-based approach (SMT) to Car-
dinality Constraints. In a nutshell, we have coupled a SAT solver with a theory solver
that handles all cardinality constraints. As soon as a cardinality constraint is violated
by the current partial assignment, the SAT solver is forced to backtrack and, when the
value of a variable can be propagated thanks to a cardinalityconstraint, this informa-
tion is passed to the SAT solver. In other words, cardinalityconstraints are not translated
into SAT, but rather tackled by a dedicated algorithm, similar in nature to what some
pseudo-Boolean solvers do. See [14] for more information about SMT.

The SAT solver we have used in this evaluation is Lingeling versionala, a state-of-
the-art CDCL (Conflict-Driven Clause Learning) SAT solver that implements several
in/preprocessing techniques. All experiments were conductedon a 2Ghz Linux Quad-
Core AMD with the three following sets of benchmarks:

1.-MSU4 suite.These benchmarks are intermediate problems generated by animple-
mentation of themsu4algorithm [12], which reduces a Max-SAT problem to a series of
SAT problems with cardinality constraints. Themsu4implementation was run of a va-
riety of problems (filter design, logic synthesis, minimum-size test pattern generation,
haplotype inference and maximum-quartet consistency) from the Partial Max-SAT divi-
sion of the Third Max-SAT evaluation8. The suite consists of about 14000 benchmarks,
each of which contains multiple6-cardinality constraints.

2.-Discrete-event system diagnosis suite.The second set of benchmarks we have used
is the one introduced in [1]. These problems come from discrete-event system (DES)
diagnosis. As it happened with the Max-SAT problems, a single DES problem produced
a family of “SAT+ cardinality constraints” problems. This way, out of the roughly 600
DES problems, we obtained a set of around 6000 benchmarks, each of which contained
a single very large6-cardinality constraint.

3.-Tomography suite.The last set of benchmarks we have used is the one introduced
in [5]. The idea is to first generate anN×N grid in which some cells are filled and some
others are not. The problem consists in finding out which are the filled cells using only
the information of how many filled cells there are in each row,column and diagonal. For
that purpose, variablesxi j are used to indicate whether cell (i, j) is filled and several=-
cardinality constraints impose how many filled cells there are in each row, column and
diagonal. We generated 2600 benchmarks (100 instances for each sizeN = 15. . . 40).

Results are summarized9 in Table 1, which compares theMixed (with λ = 5) en-
coding with the aforementioned encodings. The time limit was set to 600 seconds per
benchmark and we only considered benchmarks for which at least one of the meth-
ods took more than 5 seconds. There are three tables, one for each benchmark suite.
In each table, columns indicate in how many benchmarks theMixed encoding exhibits
the corresponding speed-up or slow-down factor with respect to the method indicated
in each row. For example, in the table for theMSU4 suite, the first row indicates that in
43 benchmarks, Power-of-two Cardinality Networks timed out (TO) whereas our new
encoding did not. The columns next to it indicate that in 732 benchmarks the novel
encoding was at least 4 times faster, in 2957 between 2 and 4 times faster, etc.

8 Seehttp://www.maxsat.udl.cat/08/index.php?disp=submitted-benchmarks.
9 Seehttp://www.lsi.upc.edu/˜oliveras/espai/CP13.ods for detailed data.
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Speed-up factor of Mixed Slow-down factor of Mixed
TO 4 2 1.5 TOT. 1.5 2 4 TO TOT.

MSU4 suite
Power-of-two CN 43 732 2957 12785010 1 23 13 11 48
Arbitrary-sized CN 10 149 544 726 1429 3 106 43 80 232
Adder 985 1207 1038 12504480 0 13 36 40 89
BDD 187 1139 1795 12924413 4 10 31 36 81
SMT 1143 323 102 53 1621 0 1417 211 63 1691

DES suite
Power-of-two CN 13 21 265 638 937 6 12 7 46 71
Arbitrary-sized CN 19 21 75 404 519 5 12 11 45 73
Adder 218 235 611 12832347 0 5 3 42 50
BDD 705 3944 759 51 5459 0 0 0 0 0
SMT 3003 1134 262 73 4472 0 15 19 15 49

Tomography suite
Power-of-two CN 118 388 408 175 1089 64 82 159 121 426
Arbitrary-sized CN 104 430 432 169 1135 67 81 158 11 417
Adder 492 591 371 143 1597 14 20 39 35 108
BDD 0 0 0 0 0 112 1367 184 51 1714
SMT 0 10 25 11 46 112 1250 155 68 1585

Table 1: Comparison of SAT solver runtime. Figures show number of benchmarks in
whichMixed shows the corresponding speed-up/slow-down factor w.r.t. other methods.

We can see from the table that in theMSU4 andDES suites, which contain bench-
marks coming from real-world applications, our new encoding in general outperforms
the other methods (except for some instances in whichMixed times out and the other
cardinality network-based encodings do not; also, inMSU4, SMT andMixed obtain
comparable results). We want to remark that the gain comes both from using arbitrary-
sized networks as well as from combining them with direct encodings, as can be seen
from the second row of each table. In particular, this shows the negative impact of the
dummy variables of [3], which hinder the performance in spite of the unit propagation
of the SAT solver. Finally, in theTomography suite, the BDD-based encoding and the
SMT system outperform all other methods, but among the rest of the approaches the
Mixed encoding exhibits the best performance. Altogether, theMixed encoding is the
most robust technique according to the results of this evaluation.

8 Conclusion and Future Work

The contributions of this paper are: (i) an extension of the recursive cardinality networks
of [3] to arbitrary input and output sizes; (ii ) a non-recursive construction of cardinality
networks that is competitive for small sizes; (iii ) a parametric combination of these two
approaches for producing cardinality networks that not only improves on the size of the
encoding, but also yields significant speedups in SAT solverperformance.

As regards future work, we plan to develop encoding techniques for cardinality
constraints that do not process constraints one-at-a-timebut simultaneously, in order to
exploit their similarities. We foresee that the flexibilityof the approach presented here
with respect to the original construction in [3], will open the door to sharing the internal
networks among the cardinality constraints present in a SATproblem.
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