A Parametric Approach for Smaller and Better
Encodings of Cardinality Constraints

Ignasi Ajo!, Robert Nieuwenhufs Albert Oliverag, Enric Rodiguez-Carbonéll

1 Theoretical Computer Science, TU Dresden, Germany
2 Technical University of Catalonia, Barcelona

Abstract. Adequate encodings for high-level constraints are a key ingredient fo
the application of SAT technology. In particulagrdinality constraintstate that

at most (at least, or exactlik)out of n propositional variables can be true. They
are crucial in many applications. Although sophisticated encodings fdinzdity
constraints exist, it is well known that for smalandk straightforward encodings
without auxiliary variables sometimes behave better, and that the chotbe of
right trade-df between minimizing either the number of variables or the number
of clauses is highly application-dependent. Here we build upon previous w
on Cardinality Networks to get the best of several worlds: we develoaren
consistent encoding that, by recursively decomposing the constrtirgrimaller
ones, allows one to decide which encoding to apply to each sub-consTiaimt.
process minimizes a functioh numvars+ numclauseswherea is a parameter
that can be tuned by the user. Our careful experimental evaluationssihat
(e.g., fora = 5) this new technique produces much smaller encodings in variables
andclauses, and indeed strongly improves SAT solvers’ performance.

1 Introduction

This paper presents a new encoding into SATcafdinality constraintsthat is, con-
straints of the formx; +- - - + X, # k, wherek is a natural number, the are propositional
variables, and the relation operator # belong&to-, <, >, =}. Cardinality constraints
are present in many practical SAT applications, such as tativel scheduling [17] or
timetabling [4]. They also arise as components of some S¥kd techniques, e.qg., for
MaxSAT [11].

Here we are interested in encoding a cardinality const@intth a clause seb
(possibly with auxiliary variables) that is not only equisfiable, but als@rc-consistent
given a partial assignme#, if x; is true (false) in every extension éfsatisfyingC,
then unit propagating on S setsx; to true (falsﬁ Enforcing arc-consistency by unit
propagation in this way has of course an important positipact on the practical
efficiency of SAT solvers.

A straightforward encoding of a cardinality constraxat+ - - - + X, < k is to state,
for each subseY of {xi,..., X,} with |Y| = k + 1, that at least one variable ¥fmust
be false. This can be done by assert{pyj) clauses of the fornx; v ... v %. This
kind of construction frequently works well, although it iSeaurse not reasonable for

3 Sometimes this notion is callegkneralized arc-consistency

largen andk, which is our aim in this work. Successively more sophisédancodings
using auxiliary variables have been defined that requirefalauses (see Sectibh 2).
But still, for smalln andk the straightforward encodings may behave better in pectic
An additional issue is that, for thdfiiency of the SAT solver, the choice of the right
trade-df between minimizing either the number of auxiliary variabde the number of
clauses is highly application-dependent.

Here we build upon and improve previous work on encodinginatity constraints
with Cardinality Networks[[2,3], which us®(nlog? k) variables and clauses (see Sec-
tion[d). The idea is to get the best of several worlds: we dgvalhybrid arc-consistent
encoding that, by recursively decomposing the constraitt smaller ones, allows
one to decide whether to apply a recursive (see Seflion 4)direat (see Section
[B) encoding to each sub-constraint. This process minindzZesctiona - numvars +
numclauseswhereA is a parameter that can be tuned by the user (see Seéttioni6). Ou
experimental evaluation shows that (e.g.,fof 5) this new technique produces much
smaller encodings in variablesd clauses, and indeed strongly improves the perfor-
mance of SAT solvers (see Sectldn 7).

2 Related Work

Because of their practical importance, encodings of catijnconstraints into SAT
have been thoroughly studied over the last few years. Irsiiion we review some of
the most important works in the literature.

In [20], Warners considered the more general pseudo-Boateae, where con-
straints are of the forray x; +. . . + an X, < Kk, being theg;’s and thek integer coéficients
and thex;’s Boolean variables. The encoding is based on using addensuimbers
represented in binary. For cardinality constraints theodimg use<O(n) clauses and
variables, but does not preserve arc consistency.

Bailleux and Boufkhad presented in [5] an arc-consistenbdimg of cardinality
constraints that useé®(nlogn) variables and(n?) clauses. The encoding consists of a
totalizerand acomparator The totalizer can be seen as a binary tree, where the leaves
are thex’s variables. Each inner node is labeled with a nuntend uses auxiliary
variables to represent, in unary, the sum of the leaves afdhesponding subtree. As
for the comparator, it is easily encoded thanks to the urgpyesentation, which also
allows handling constraints of the forka < x; + ... + X, < ky without splitting.

A more applied work is the one ofiBtner and Rintanemn [19]. Although their main
interest was in planning, they suggested two encodingsrdireglity constraints. The
first one is based on encoding an injective mapping betweetridlex;’s variables and
k elements. It use®(nk) clauses and variables and is not arc-consistent. The other
encoding is a small modification dfi[5]. Based on the obs@wahat counting up to
k + 1 sufices, they can reduce the number of variables and clausesrusadh node.
The resulting encoding requir€{nk) variables an@(nk?) clauses, which improves on
[B] if kis small enough.

In [18], Sinz proposed two ffierent encodings, both based on counters. The first
encoding uses a sequential counter where numbers areeatgdsn unary. It needs
O(nk) clauses and variables and is arc-consistent. The secanid based on a parallel

counter, where numbers are represented in binary. It res{n) clauses and variables,
but is not arc-consistent.

Another kind of encoding was used in [6], where a BDD-likehteique was pro-
posed for pseudo-Boolean constraints. The encoding isarsistent, and use3(n?)
clauses and variables when applied to cardinality comggralhe idea is as follows:
given a pseudo-Boolean constragak; +. . . + a,Xn < Kk, the root of the BDD is labeled
with variableD,x, expressing that the sum of the firsterms is at mosk. The two cor-
responding children arBn_1x andDn_1x—4,, indicating the two cases that correspond
to settingx, to false and true, respectively. Then the necessary clarseadded to
express the relationship between the variables, andltcages are treated accordingly.

The same authors presented [in [7] a polynomial and arc-stemsiencoding of
pseudo-Boolean constraints. When restricted to cardyraditstraints it is similar to [5],
but the latter is better in terms of size.

Yet another approach for encoding cardinality constrairts suggested in[1]. The
authors revisit the idea of using totalizers, and realia¢ thtalizers require two param-
eters: the encoding used (unary or binary) and the way tlaéizets are grouped (e.qg.
(@+b)+(c+d)or(((@a+b)+c)+d)). Athorough experimentation is performed,
to which they add two extra aspects: lfow to order the variables; anil)(the use of
encodings in parallel, hoping the SAT solver will focus oa thost appropriate one for
each problem.

Finally, Eén and $rensson [10] presented three encodings for pseudo-Bootea
straints. The first encoding is BDD-based, similai {o [6]Je Becond one, based on adder
networks, improves that df [20] in that it uses less addersigstill linear and does not
preserve arc consistency. Finally, their third encodingsi&orting Networkq8]. A
Sorting Network takes input variableg;(.. X,) and returns as outputg(. ..y,) the
sorted input values in decreasing order. Hence, an outpisthlayy will become true
iff there are at leadt true input variables, and fals€ ithere are at least — k + 1
false ones. Now, to express + - - - + X, > K, it suffices to add a unit clausg; simi-
larly, for x; + - - - + X, < k one addsj;1, and both are added if the relation4s This
encoding, when restricted to cardinality constraintsserees arc consistency and re-
quiresO(nlog? n) clauses and variables. The Cardinality Networks ofl [2e8luce this
to O(nlog? k), which is important as often > k.

A similar approach uses so-called Pairwise Cardinalitywdeks (9], which are
based on Pairwise Sorting Networks [15] instead of Sortimgadrks. By means of
partial evaluation, this method also achie@{s log? k) variables and clauses. Finally,
we were recently informed that a hybrid approach based anvRai Cardinality Net-
works similar to that presented here was implemented in Bte 8/stem[13]. However,
no detailed description or experimental evaluation islatée. Moreover, our proposal
in this paper is more general, in the sense that it allows $lee to tune the parameter
when minimizing the objective functioh- numvars+ numclauses

3 Preliminaries

In this work we describe a method for producing cardinalgyworks that generalizes
the construction of_[3]. The core idea of these approachéghwdates back ta [8],

consists in encoding a circuit that implements mergesornbgns of a set of clauses.
The most basic components of these circuits are 2-comparato

A 2-comparatoris a sorting network of size 2, i.e., it has 2 input variabbesgnd
X2) and 2 output variableg/{ andy,) such thaty, is true if and only if at least one of
the input variables is true, and is true if and only if both two input variables are true.
In the following, 2-comparators are denoted By, §,) = 2-Comp, Xo). As pointed
out in [3], for encoding<-constraints, only the three clauses on the first row of[Big. 1
are needed to guarantee arc-consistency. The three ctautiessecond row siice for
>-constraints and all six must be present when encoditgnstraints. Note that the
usual polarity argument [16] cannot be directly appliedeh@s we are interested not
only in preserving satisfiability, but also arc-consisieander unit propagation.

X1 = Y1, X2 = Y1, Xt AXp = Yo, Xp —e—N1
X2V, XY, AR > 1

Xo —e—Y2

Fig. 1: A 2-comparator: clauses (left) and graphical repméstion (right).

4 Arbitrary-Sized Recursive Cardinality Networks

In this section we generalize the recursive constructiazaodinality networks given in
[3] by allowing inputs and outputs of any size, not necessarpower of two. Not only
does this avoid adding dummy variables that are not actnakyed (which, as will be
seen in Sectiohl 7, has an impact on performance on its owhl$w becomes useful
when combining with the direct (non-recursive) constmuusi of Sectiohls.

In what follows, we denote byr| and[r] the floor and ceiling functions respec-
tively. Moreover, for simplicity, we will assume that thensiraint to be encoded is a
<-constraint. However, similar constructions for the otbenstraints can be devised.

4.1 Merge Networks

A merge networkakes as input two (decreasingly) ordered sets of sizmsdb and
produces a (decreasingly) ordered set of sizeb. We can build a merge network with
inputs €, ..., %) and 3, ..., X;) in a recursive way as follollls

— If a=b =1, a merge network is a 2-comparator:
Mergef; ;) := 2-Compéy, X;).
— If a= 0, a merge network returns the second input:
Merge(;xq, X5, . ..,) 1= (X1, X5, . .., Xp).

4 Notice we use the notation Merg&(X’) instead of Merge), (X)) for simplicity.

— If aandb are evena > 0,b > 0 and eithem > 1 orb > 1, let us define

(71,23, ..., Za-3,Z0-1, _ Mergey, Xs, ..., Xa—1;
Za41,Za43, - - - > Zasb-1) X35 X, ..y Xp_1)s

(22,2, ...,202,Z0, _ Mergelz, Xs, ..., Xa;
Za+2, Za+47 LR Za+b) X,27 XZ‘,’ LR} X{))?

(Y2, ¥3) = 2-Compe,, z3),
(ya+b—2, Ya+b—1) = Z'Compea+b—2, Za+b—1)-

Then,
Mergefa, Xz, . . . » Xa; X3, Xp, -+ -, Xp) 1= (21, Y2, Y3 - - - » Yarb-1, Zasb)-
— If aisevenbis odd,a> 0,b > 0 and eithem > 1 orb > 1, let us define

(71,23, ...,251, Merges, X3, . . ., Xa-1;
Za+1’ Za+3, cee Za+b) X;]_7 X‘,?p st Xé))’

(22’ 24, e 269 Za+2, Merge(XZ, X4, cees Xa,
Za+4, e Za+b—1) X’25 X:ly s Xt’)_l)7

(Y2,y3) = 2-Compg, zs),

(Yarb-1, Yasb) = 2-COMPCarb-1, Zash).

Then,
Mergei, Xo, . . ., Xa; X1, X5, - . ., Xp) i= (Z1, Y2, Y3, - - - , Yasb-1, Ya+b)-

— If aandb are odda > 0,b > 0 and eithea > 1 orb > 1, let us define

(21,23, ..., Za-2, Z0, _ Mergely, Xa, . . ., Xa;
za+1’ Za+3’ sy Za+b) Xgl_y Xé’ cee Xt/))’

(22,24, ...,2a-3,Za-1, Mergeo, Xs, . . ., Xa-3, Xa-1;
Za+2, Zatds - - - 5 Za+b—1) X’2, sz) X{/J_l)s

(Y2,y3) = 2-Compg,, z3),
(Ya+b-2, Yarb-1) = 2-COMPCasb-2, Zarb-1)-

Then,
Mergeé(l’ X27 LR Xa, X&.’ X’Z’ cee X{)) = (Zl, YZ, y3’ LR} Ya+b—1, Za+b)-

— The remaining cases are defined thanks to the symmetry ofergerfunction, i.e.,
due to MergeX, X’') = Merge(X’, X).

The base cases do not require any explanation. As regardsdhisive ones, first
notice that the set of values, X, . .., Xa, X, X5, . . ., X, is always preserved. Further, the

X1 — 4 Z
X1 — o Z b\, Z
Xl | ’2\7 z Xo 1 4 y | V%) i 1
2 [»—| 2 X3] || 23 y2
X3 — o Eii y2 X4] Z4 — y3
X B 4 k6 HMerg HMerg - Ya
Merge,;| |Merge,; - Ya , 21 %2 = Y5
d Be X1 B Z5 - Y6
Xl — — 25 L ZG X/ —1— —|
Xp —fs = | 2 Z - Y7
Z Xy || - z
Xl — — »Zl\
Xo | 4 .| Z -7
X |] zt— Y2
X4 |+ o Z RE
X5 || e @* 54
- Y5
Merge,;| |Merge;, Ve
S 0 1mlw
2] Z - 28

Fig. 2: Different examples of merge networks.

output bits are sorted, & > 241, Zi = Z2+1)+1, i1 = Z2+1) ANAZoi41 > Zogi1y1
imply that mingai, zi 1) > max@g1), Z2i+1)+1)- Figure[2 shows examples of some of
these recursive cases.

The number of auxiliary variables and clauses of a merge ar&tdefined in this
way can be recursively computed. A merge network with inpfitsize (1 1) needs 2
variables and 3 clauses. A merge network with inputs of $zk) (heeds no variables
and clauses. A merge network with inputs of siagbf with a > 1 orb > 1 needs
Vi + Vs + 2| 222 variables andC; + C; + 3 | 252 | clauses, wher¥; andC; are
the number of variables and clauses in a merge network withtéof size([2], [5]),
andV;, C; are idem in a merge network with inputs of sige | , ng))

In comparison to[[3], in that work it was assumed that b = 2™ for somem > 0.
Thanks to this, only one base case<b = 1) and one recursive casa p even) were
considered there. All the other cases introduced here a&aeddor arbitrary andb.

4.2 Sorting Networks

A sorting networktakes an input of size and sorts it. It can be built in a recursive way
as follows, using the same strategy as in mergesort:

— If n= 1, the output of the sorting network is its input:

Sortingf,) = xg

— If n=2, a sorting network is a single merge (i.e., a 2-comparator)
Sortingy, Xo) := Mergey; Xo).
— Forn > 2, takel with 1 < | < n: Let us define

(z1,2,...,2) = Sort?ng@q, X250 vy X)),
(Zi+1, 242, - - - Zn) = Sorting+1, Xi+2, - - -, Xn),
(Y1, Y2, --..Yn) = Merge@., 2, z; 21, . . ., Zn).

Then,
Sortingg, X2, . .., Xn) = (Y1, Y25 - - - » ¥n)-

Again, the number of auxiliary variables and clauses ne@ud#uese networks can be
recursively computed. A sorting network of input size 1 reeed variables and clauses.
A sorting network of input size 2 needs 2 variables and 3 €lsuA sorting network
of input sizen composed by a sorting network of sizand a sorting network of size
n -1 needsV; + V, + V3 variables andC; + C, + C3 clauses, whereV, C,), (V2,C,)
are the number of variables and clauses used in the sortingrie of sized andn-1,
and {/3, C3) are the number of variables and clauses needed in the metgerk with
inputs of sizesl(n—1).

In comparison to 3], in that work is assumed to be a power of two. Moreover, in
the recursive cades always chosen to be'2, while here we can build sorting networks
of any size, and have the additional freedom of choosing ittes ©f the two sorting
network components.

4.3 Simplified Merge Networks

A simplified mergés a reduced version of a merge, used when we are only interast
some of the outputs, but not all. Recall that we want to eneodenstraint of the form

X1 + ...+ X, < k, and hence we are only interested in the first 1 bits of the sorted
output. Thus, in &-simplified merge network, the inputs are two sorted seceein
variables K1, Xo, . . ., Xa; X1, X5, - - ., X;), and the network produces a sorted output of the
desired sizeg, (Y1,Y2,...,Yc). The network satisfies thgt is true if there are at least
true inputs. We can build a recursive simplified merge agfait

— Ifa=b=c=1,letus add the clauses — y, x; —)E Then:
SMergg(X1; X7) =Y.
— If a> ¢, we can ignore the last— c bits of the first input (similarly itb > ¢):
SMerge(Xy, X2, . .., Xa; X1, . . ., Xp) = SMerge(Xy, Xo, ..., X X4, . . ., Xp).
— If a+ b < ¢, the simplified merge is a merge:
SMerge(Xy, ..., Xa; Xq, ..., Xp) = Mergef, ..., Xa; X4, . .., Xp).

5 Notice that these clauses correspond to the bit of the 2-comparator wigh iodex. Clause
X1 A X2 — y does not need to be included here following the reasoning given in SE:tion

— Ifab<c, a+b>candciseven: Let us define
(21,2, ..., 241) = SMerge ;.1 (X1, X3, .- -3 X1, X3, - -),
(2,2, ...,2) = SMerge (X2, X4, . . . X5, X}, - -),
(Y2,y3) = 2-Compg, z),

(Ye-2,Ye-1) = 2-Compgc_2, Z.1).
and add the clauses — Y., Z.;1 — Y¢. Then,

SMerge(Xu, Xa, - - - » Xa; Xis Xps -+ > X)) := (21, Y2, Y35 - - - » Vo)
—Ifa,b<c, a+b>candc> 1lisodd: Letus define
(z1,23,...,2) = SMerge%l(xl, X3, ... 3 X1, X5, .0,
(2,24, ..., 2-1) = SMerge%(xz, Xay oo Xp, Xy),
(Y2, ¥3) = 2-Compe,, z3),

(Ye1.Ye) = 2-Comple_1,Z).
Then,
SMerge(xe. X, Xai X4, X Xp) = (22,2, Y3, .. Vo).

X4

Xo ——
Xg——f oo

4l
T
% |
| L8
YA Y3
3-SMergg,| @4-SMergg, ;/ X4+ 4 ill
Xg oo Z Y5 2-SMergg, 3-smargg,lﬁ 4
-
Pag

I [1]

I 1]
o
5

l

X6a—|
X7 4—n

l

Fig. 3: Two examples of simplified merge networks.

Figurd3 shows two examples of simplified merges: The firsstiogvs a 6-simplified
merge with inputs of sizes 3 and 4. The second one correspords-simplified merge
with inputs of sizes 2 and 4.

We can recursively compute the auxiliary variables andsgauneeded in simplified
merge networks. In the recursive case, we riéed V, + ¢ — 1 variables an€; + C, +
C; clauses, wherevg, Cs), (V2, C,) are the number of clauses and variables needed in
simplified merge networks of siz¢$2], [5], S| +1). (|2].]3].[5]). and

3c-3 i i
Cy= > |'fc!s odd,
3212 ifciseven.

Compared to[[3], there it was assumed that b = 2™ for somem > 0, and
¢ = 2™+ 1. Similarly to merge networks, only one base case and ongsige case
were considered. All the other cases introduced here adedder arbitrarya, b andc.

4.4 m-Cardinality Networks

An m-cardinality networkakes an input of size and outputs the firsh sorted bits. Re-
cursively, amrm-cardinality network with inpuky, X, .. ., X, can be defined as follows:

— If n < m, a cardinality network is a sorting network:
Cardn(Xq, X2, . . ., Xn) := Sortingy, X2, . . . , Xn)-
— If n> m, takel with 1 < | < n. Let us define

(21,2, . ..,2n) = Cardn(X, X2, . . ., X)),
(7,2, ..., 275) = Cardn(X1, X2, - - - » Xn),
(yl7 YZ’ ERRR ym) = SMergen(Z.L 227 LEEX} ZA: Za_, 2’27 AR} Z’B)7

whereA = min{l, m} andB = min{n — |, m}. Then,

Cardn(Xe, X2, . .., %) = (Y1, Y2, - - - » Yim)-

Again, the number of auxiliary variables and clauses neédettiese networks
can be recursively computed. Ancardinality network of siz&n composed by am-
cardinality network of sizéand arm-cardinality network of size—1 needsv; +V>+V;
variables andC; + C, + C3 clauses, wheré/, C,), (V2, C,) are the number of variables
and clauses used in tihecardinality networks of sizdsandn-1, and {3, C3) are idem
in them-simplified merge network with inputs of sizes (rflim}, min{n — I, m}).

Compared td[3], in that worknis assumed to be a power of two, amd multiple
of m. Moreover, similarly to sorting networks, in the recurseasel is always chosen
to bem, while here we have an additional degree of freedom.

Using the same techniques [[3] one can easily prove thearsistency of the
encoding.

Theorem 1. The Recursive Cardinality Network encoding is arc-coesistconsider
a cardinality constraint X+ ... + X, < K, its corresponding cardinality networy,

V2, -y Yi1) = Cardg1(Xa, X2, . . ., Xn), @nd the unit clausewyy, . If we now set to true k
input variables, then unit propagation sets to false thea#img n— k input variables.

Proof (sketch)The proof relies on the following lemmas, which formalize thropa-
gation properties of the building blocks of cardinalitywetks:

Lemma 1 (Merge Networks).Let S be the set of clauses of
(V1. Y2, - -, Yarb) = Mergefa, Xo, . . ., Xa; Xp, X5, - -, Xp).
Letpge NwithO< p<aand0<qg<hb. Then:

SU{X]J"-’XD?X&""’X&}':Upyla-"7yp+q
If p<aandg<bthen SU{Xy,...,Xp, X, ..., X5 Yprge1) Fup xp+1,xq+l

Xq Yprart
If p=aandg< bthen SU({xg,...,Xp, X, .. ,x(q,yp+q+1 Fup Xg41-
<> Xg» Yprar1

PwDnpR

If p<aandg=bthen SU{xay,...,Xp, X}, ..., Xy Vprars) EUP Xpet.

10

Lemma 2 (Sorting Networks).Let X = (X, X2, ..., X%n), X’ € X and S be the set of
clauses ofyi, ¥, ..., ¥n) = Sorting(X). Let p= |X’|. Then:

1. SUX hupyl,...,yp.
2. If p=[X] < n, then SU X" U (Y1} Fup X for all x; ¢ X'.

Lemma 3 (Simplified Merge Networks).Let S be the set of clauses of

(Y1, Y2 - - - Ye) = SMerge(Xa, X2, - - ., Xa; X1, Xo, . . -, Xp)-
Letpge Nbesuchthad < p<a,0<qg<b. Then:

1. Ifp+qg<c,then SU X1, -+ s Xps X4, -5 Xg}h EUP Y15 -+ -5 Ypig: L

2. Ifp<a,g<band prq<c,then Su{xy, ..., Xp, Xi, - .-, X Yprara) Fup Xp+1, Xgu1-
3. Ifp=a,g<band p+qg<c,then SU{X...,Xp, Xy, ..., XG Yprar1} Fup Xge1-

4. Ifp<a,g=band p+qg<c,then SU{Xts -+ Xps X4, - - -5 X Yprar1} Fup Xpi1-
Lemma 4 (Cardinality Networks). Let X = (Xg, X2, ..., %), X’ € X and S be the set
of clauses ofyy, ya, . . ., ¥m) = Cardn(X). Let p=|X’|. Then:

1 Ifp<m,then SUX Eupyi,....Yp.
2. If p<m, then SU X' U {¥p1} Eup X for all x; ¢ X'.

Each lemma is proved by induction and using the correspgridimmas of the inner
building blocks. The proofs of Lemmik 1 did 3 require considdour cases according
to the parities of andg. Finally, the theorem follows as a corollary of Lemma 4.

For the sake of illustration, let us prove the cage < c, a+ b > ¢, with c even, of
the inductive case of propeiffy 1 in Lemima 3. So, let us consigeset of clauses of

(z1,Y2, Y35 - - -, Ye) = SMerge(Xu, Xa, - - -, Xa; X3, Xo, - - - » Xp)
consisting of the clauses — Y., z.;1 — Y. and those in

(21,23, ..., Z11) = SMerge .1 (X1, X3, .- -5 X4, X3, .. .),
(22,24, ..., %) = SMerge (X2, X4, . .. X5, X},),
(y2,¥3) = 2-Compg, z3),

(Ye-2,Ye-1) = 2-Comple-2, Z.-1).

Letp,ge NsuchthatO< p<a 0<qg<bandp+qg<c If p=qg=0there
is nothing to prove. Otherwise let us sh&w {xq, ..., Xp, X}, ..., X3} Eup 21, Yi for all
2<i<p+aq.

Here we focus on the subcageand g even, being the other three cases analo-
gous. Hence, lep = 2p’ andqg = 29'. In Xy, X, ..., Xp there arep’ odd indices and
p’ even indices. Similarly, ing, X, ..., X, there areq’ odd indices andy even in-
dices. Thus, using the IH (notg + g < ¢/2 < ¢/2 + 1), we have that the clauses
of the subnetwork#, zs, ..., Z.+1) = SMerge,, (X1, X3, - - . ; X, X3, . . .) propagate by
unit propagation the literalg,, ..., g .q)-1; and that the clauses ofy(z, ..., z) =
SMerge (X2, X4, - - - ; X5, X3, . . .) propagate by unit propagation the literals..., oy +.q)-
Altogether, all literalsz; with 1 < j < p+ g can be propagated by unit propagation.

Letustake 2< i < p+ q. If i is odd then, thanks to literals ; andz and clause
Z_1 Az — Y; of the 2-comparaton(_;,y;) = 2-Compg_1, z), literal y; is propagated.
If i is even, then thanks to literaland clause; — vy, literaly; is propagated too.

11

5 Direct Cardinality Networks

In this section we introduce an alternative technique falding cardinality networks
which we calldirect, as it is non-recursive. This method uses many fewer auxiiari-
ables than the recursive approach explained in Selction théwther hand, the number
of clauses of this construction makes it competitive onlysimall sizes. However, this
is not a problem as we will see in Sectldn 6, as the two teclesigan be combined.

As in the recursive construction described in Sedtion 4bthileling blocks of direct
cardinality networks are merge, sorting and simplified raergtworks:

— Merge Networks They are defined as follofiis

Mergei, Xo, . . ., Xa; X1, X5, - - ., Xp) i= (Y1, Y2, Y3, - - - » Yarb-1, Ya+b)

with clausegx — yi, X; = yj, X AXj = V¥iyj © 1<i<a 1< j<b}. Notice we
needa + b variables andb + a + b clauses.

— Sorting Networks. A sorting network can be built as follows:

Sortingfa, X2, - .., Xn) 1= (Y1, Y2, - - .. Yn)s

with clausegx;, A X, A=A X, = ¥ : I1<sksnl<gii<iz<---<ig<n}
Therefore, we need auxiliary variables and™- 1 clauses.

— Simplified Merge Networks The definition ofc-simplified merge is the same as
in Sectior[4, except for the cases in whiglb < canda + b > ¢, where:
SMerge(Xe, Xz, - - - » Xa; X4, %o, - - +» Xp) := (Y1, Y2, - - -» Vo),
with clausegX — Vi, Xj = ¥, XAXj = Vi) 1<i<al<j<bi+j<ch
This approach needsvariables andg + b)c — 451 — 2&-D _ b0 ¢lauses.

— m-Cardinality Networks . As in Sectioii ¥4, except for the case- m, where:

Cardn(Xe, Xz, - -, %) 1= (Y1. Y2, - -, Ym)
with clauseqx, A X, A---AX, =2 ¥ : 1<k<ml<ii<iz<---<ix<nh
This approach needsvariables andy) + (3) +--- + (1) clauses.
As regards the arc-consistency of the encoding, the foligwian be easily proved:
Theorem 2. The Direct Cardinality Network encoding is arc-consistent

Proof (sketch)The proof uses lemmas analogous to Lemmas [, 2, 8land 4. & ill
tration purposes, let us show propdry 1 in Lenitha 3. Let usiden the clause set of
(Y1, Y2, - - .. ¥e) = SMerge(Xa, X, . . ., Xa; X1, X5, ..., X)), 1.€.,
X =Y, Xj =y, XAX =Yy I<i<al<j<bi+j<ch

Letp,ge Nbesuchthatk p<a 0<qg<bandp+gq=<clfp=qgq=0
there is nothing to prove. Otherwise let us consider K < p+q. Let0<i < pand
O0<j<qgbesuchthai+ j=k Ifi=0thenj=kand the claus& — y; propagates
Yk. Similarly, if j = 0 theni = k and the clause — y; propagategy. Finally, if i > 1
andj > 1 the clause; A X — Yi+j propagategk.

5 Direct merge networks are similar to the totalizers of [7].

12

6 Combining Recursive and Direct Cardinality Networks

The recursive approach produces shorter networks thanirtet dpproach when the
input is middle-sized. Still, the recursive method for Hin a network needs to induc-
tively produce networks for smaller and smaller input siZésome point, the networks
we need have a fiiciently small number of inputs such that the direct methodtmald
them using fewer clauses and variables than the recursp@agh. Here anixed en-
codingis presented: large cardinality networks are build withrémirsive approach but
their components are produced with the direct approacteif gize is small enough.

In more detail, assume a merge of input siaeendb is needed. We can use the
direct approach, which needs = a + b auxiliary variables an€Cp = ab+a+b
clauses; or we could use the recursive approach. With thesiee approach, we have
to built two merge networks of siz€g 2], [2]) and (| 2], |2]). These networks are
also built with this mixed approach. Then, we compute thesg#a and variables needed
in the recursive approack’r andCg, with the formula of Section 4l Mg = Vi + Vo +
2| 251] Cr=Cy+Co+3| 22| where /1, Cy) and 2, C,) are, respectively, the
number of variables and clauses needed in the recursiveemetgorks.

Finally, we compare the values ¥k, Vp, Cgr andCp, and decide which method is
better for building the merge network. Notice that we carmiiimize both the number
of variables and clauses; therefore, here we try to minintizefunctiona - V + C, for
some fixed valua > 0[1 The parametet allows us to adjust the relative importance of
the number of variables with respect to the number of claokése encoding. Notice
that this algorithm for building merge networks (and simylasorting, simplified merge
and cardinality networks) can easily be implemented withagigic programming. See
Section[¥ for an experimental evaluation of the numbers afbes and clauses in
cardinality networks built with this mixed approach.

The arc-consistency of the mixed encoding easily followsTfithe arc-consistency
of the two encodings it is based on.

Theorem 3. The Mixed Cardinality Network encoding is arc-consistent.

Proof (sketch)The proof uses lemmas analogous to Lemfids @] 2, 3land 4. In turn
these lemmas are proved by combining the proofs outlinedhaéoflem$ il and) 2.

7 Experimental Evaluation

In previous workl[3], it was shown that power-of-two (Recdue$ Cardinality Networks
have overall better performance than other well-known wdthsuch as Sorting Net-
works [10], Adders[[10] and the BDD-based encoding of [6]wimat follows we will
show that the generalization of Cardinality Networks tataaby size and their combi-
nation with Direct Encodings, yielding what we have calleel¥ixed approach, makes
them significantly better, both in the size of the encoding e SAT solver runtime.

We start the evaluation focusing on the size of the resudtimgpding. In Figurgl4 we
show a representative graph, which indicates the sizerrimstef variables and clauses,
of the encoding of a cardinality network with input size 10@ aarying output sizen.

7 This function can be replaced by any other monotone function that cefficiently evaluated.

13

It can be seen that, since we minimize the functloW + C, whereV is the number
of variables andC the number of clauses, the biggeis, the fewer variables we obtain,
at the expense of a slight increase in the number of claudss, A can be seen that
using power-of-two Cardinality Networks as in [3] is padiiarly harmful whenm is
slightly larger than a power of two.

wwwn RECUrSIVE With powér—of—two size
Recursive with arbitrary size
Mixed, 1 = 0.5

[Mixed, A = 5 :
........... Mixed,4=30 . . .

N
o
o
o
-

Variables

1000

10 20 40

-« Recursive with power-of-two size
Recursive with arbitrary size
L Mixed, 1 = 0.5 o
s Mixed, 1 =5
----------- Mixed, 1 = 30
4000 o,

Clauses

2000

10 20 40
m

Fig. 4: Number of variables and clauses generateMixgd and the Recursive Cardi-
nality Networks approaches with input size 100 anffedént output sizes.

Although having a smaller encoding is beneficial, this stidnd accompanied with
a reduction in SAT solver runtime. Hence, let us now move &ess how our new
encoding &ects the performance of SAT solvers. In this evaluationdiditéon to con-
sidering the power-of-two Recursive Cardinality Netwoik$3] (Power-of-two CN),
the (arbitrary-size) Recursive Cardinality Networks preed in Sectiohl4Arbitrary-
sized CN and theMixed approach of Sectiohl 6, we have also included other well-
known encodings in the literature: the adder-based engadidder) of [10] and the
BDD-based encodingBDD) of [6]. We believe these encodings are representative of
all different approaches that have been used to deal with cardipatistraints. Other
works, like the adder-based encoding ofi[20], the BDD-basedof [10] or the work by
Anbulagan and Grastienl[1], are small variations or contimna of the encodings we

14

have chosen. Moreover, we have implemented an SMT-basedaghpSMT) to Car-
dinality Constraints. In a nutshell, we have coupled a SAVesawith a theory solver
that handles all cardinality constraints. As soon as a nalidly constraint is violated
by the current partial assignment, the SAT solver is foreebacktrack and, when the
value of a variable can be propagated thanks to a cardir@aitgtraint, this informa-
tion is passed to the SAT solver. In other words, cardinalitystraints are not translated
into SAT, but rather tackled by a dedicated algorithm, simih nature to what some
pseudo-Boolean solvers do. Seel[14] for more informati@muaBMT.

The SAT solver we have used in this evaluation is Lingelingiam ala, a state-of-
the-art CDCL (Conflict-Driven Clause Learning) SAT solveat implements several
in/preprocessing techniques. All experiments were conduanesl 2Ghz Linux Quad-
Core AMD with the three following sets of benchmarks:

1.-MSU4 suite.These benchmarks are intermediate problems generated ibypéet
mentation of thensudalgorithm [12], which reduces a Max-SAT problem to a series o
SAT problems with cardinality constraints. Thesudimplementation was run of a va-
riety of problems (filter design, logic synthesis, minimwine test pattern generation,
haplotype inference and maximum-quartet consistency) fhe Partial Max-SAT divi-
sion of the Third Max-SAT evaluatifinThe suite consists of about 14000 benchmarks,
each of which contains multipke-cardinality constraints.

2.-Discrete-event system diagnosis suit€he second set of benchmarks we have used
is the one introduced in [1]. These problems come from diseggent system (DES)
diagnosis. As it happened with the Max-SAT problems, a siliftS problem produced

a family of “SAT + cardinality constraints” problems. This way, out of thegbly 600
DES problems, we obtained a set of around 6000 benchmaxdtspéavhich contained

a single very large-cardinality constraint.

3.-Tomography suite.The last set of benchmarks we have used is the one introduced
in [5]. The idea is to first generate &hx N grid in which some cells are filled and some
others are not. The problem consists in finding out which leditled cells using only
the information of how many filled cells there are in each rmeiyymn and diagonal. For
that purpose, variables; are used to indicate whether callj) is filed and severak-
cardinality constraints impose how many filled cells theeein each row, column and
diagonal. We generated 2600 benchmarks (100 instanceadbrsizeN = 15...40).
Results are summariZ®ch Table[1, which compares thdixed (with A = 5) en-
coding with the aforementioned encodings. The time limiswat to 600 seconds per
benchmark and we only considered benchmarks for which at @ of the meth-
ods took more than 5 seconds. There are three tables, onadbrbenchmark suite.
In each table, columns indicate in how many benchmark#fited encoding exhibits
the corresponding speed-up or slow-down factor with resigethe method indicated
in each row. For example, in the table for t&U4 suite, the first row indicates that in
43 benchmarks, Power-of-two Cardinality Networks timed (@®) whereas our new
encoding did not. The columns next to it indicate that in 7@2ddhmarks the novel
encoding was at least 4 times faster, in 2957 between 2 anae$ fiaster, etc.

8 Seehttp://www.maxsat.udl.cat/08/index.php?disp=submitted-benchmarks.
9 Seehttp://www.lsi.upc.edu/ oliveras/espai/CP13.ods for detailed data.

15

[Speed-up factor of Mixed][Slow-down factor of Mixed]|
[TO 4 2 15]TOr||I5 2 4 TOJIor|

MSU4 suite

Power-of-two CN (43 732 2957 12785010||1 23 13 11 | 48
Arbitrary-sized CN [10 149 544 726|1429|(3 106 43 80 | 232
Adder 985 1207 1038 125a1480||0 13 36 40 | 89
BDD 187 1139 1795 1292413|(4 10 31 36 | 81
SMT 1143 323 102 53 [1621|(0 1417 211 63 [1691
DES suite

Power-of-two CN [13 21 265 638] 937
Arbitrary-sized CN |19 21 75 404| 519
Adder 218 235 611 1283347
BDD 705 3944 759 51 |5459
SMT 3003 1134 262 73 4472

O O| O U1| O
[63]
W
N
N
a
(@)

Tomography suite
Power-of-two CN [118 388 408 175/1089||64 82 159 121| 426
Arbitrary-sized CN [104 430 432 169 1135|[67 81 158 11 | 417

Adder 492 591 371 143/1597{|14 20 39 35 | 108
BDD 0 0 0 0 0 [[112 1367 184 51 [1714
SMT 0 10 25 11 | 46 |[112 1250 155 68 | 1585

Table 1: Comparison of SAT solver runtime. Figures show nemdf benchmarks in
which Mixed shows the corresponding speedsligw-down factor w.r.t. other methods.

We can see from the table that in thiSU4 andDES suites, which contain bench-
marks coming from real-world applications, our new encgdimgeneral outperforms
the other methods (except for some instances in whioted times out and the other
cardinality network-based encodings do not; alsdviiaU4, SMT andMixed obtain
comparable results). We want to remark that the gain comisfimm using arbitrary-
sized networks as well as from combining them with directoelings, as can be seen
from the second row of each table. In particular, this shdwesrtegative impact of the
dummy variables of [3], which hinder the performance inespit the unit propagation
of the SAT solver. Finally, in th@omography suite, the BDD-based encoding and the
SMT system outperform all other methods, but among the rfefteoapproaches the
Mixed encoding exhibits the best performance. AltogetherMineed encoding is the
most robust technique according to the results of this etaln.

8 Conclusion and Future Work

The contributions of this paper aré} &n extension of the recursive cardinality networks
of [3] to arbitrary input and output sizest)(a non-recursive construction of cardinality
networks that is competitive for small size#i;)(a parametric combination of these two
approaches for producing cardinality networks that noy anproves on the size of the
encoding, but also yields significant speedups in SAT sqlegformance.

As regards future work, we plan to develop encoding techesdior cardinality
constraints that do not process constraints one-at-alimeimultaneously, in order to
exploit their similarities. We foresee that the flexibiliy the approach presented here
with respect to the original construction id [3], will opdretdoor to sharing the internal
networks among the cardinality constraints present in a @ablem.

Acknowledgments. Abio is supported by DFG Graduiertenkolleg 1763 (QuantLA).
All other authors are partially supported by Spanish MEICINN under SweetLogics
project (TIN 2010-21062-C02-01). We also thank the revia/fer their comments.

16
References

1. Anbulagan and Alban Grastien. Importance of Variables Semantic mENoding of Car-
dinality Constraints. In V. Bulitko and J. C. Beck, editdEsghth Symposium on Abstraction,
Reformulation, and Approximation, SARA !@AAI, 2009.

2. Roberto A, Robert Nieuwenhuis, Albert Oliveras, and Enric Rgdez-Carbonell. Cardi-
nality networks and their applications. limt. Conf. Theory and Applications of Satisfiability
Testing (SAT), LNCS 450ftages 167-180, 2009.

3. Roberto A, Robert Nieuwenhuis, Albert Oliveras, and Enric Rgdez-Carbonell. Cardi-
nality Networks: a theoretical and empirical stu@onstraints 16(2):195-221, 2011.

4. Roberto Agn Acha and Robert Nieuwenhuis. Curriculum-based course timetabling with
SAT and MaxSAT.Annals of Operations Researgtages 1-21, February 2012.

5. Olivier Bailleux and Yacine Boufkhad. flicient CNF Encoding of Boolean Cardinality
Constraints. In F. Rossi, editdPrinciples and Practice of Constraint Programming, 9th
International Conference, CP '08olume 2833 of.ecture Notes in Computer Scienpages
108-122. Springer, 2003.

6. Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel. A translatiépseudo boolean
constraints to satJSAT 2(1-4):191-200, 2006.

7. Olivier Bailleux, Yacine Boufkhad, and Olivier Roussel. New Encgdiaf Pseudo-Boolean
Constraints into CNF. In O. Kullmann, editdr2th International Conference on Theory and
Applications of Satisfiability Testing, SAT ;0&lume 5584 of_ecture Notes in Computer
Sciencepages 181-194. Springer, 2009.

8. K. E. Batcher. Sorting Networks and their Applications AIRIPS Spring Joint Computing
Conferencepages 307-314, 1968.

9. Michael Codish and Moshe Zazon-Ivry. Pairwise cardinality netai«drkEdmund M. Clarke
and Andrei Voronkov, editord,PAR (Dakar) volume 6355 ofLecture Notes in Computer
Sciencepages 154-172. Springer, 2010.

10. Niklas Een and Niklas 8rensson. Translating Pseudo-Boolean Constraints into 3a\r-
nal on Satisfiability, Boolean Modeling and Computatiari—26, 2006.

11. Zhaohui Fu and Sharad Malik. Solving the minimum-cost satisfiabildlpm using SAT
based branch-and-bound searchPhoceedings of the 2006 IEERCM international con-
ference on Computer-aided desjd@CAD 06, pages 852—-859, New York, NY, USA, 2006.
ACM.

12. J. Marques-Silva and J. Planes. Algorithms for Maximum Satisfiab#ityguUnsatisfiable
Cores. In2008 Conference on Design, Automation and Test in Europe Confe@Ad&
'08, pages 408-413. IEEE Computer Society, 2008.

13. Amit Metodi, Michael Codish, and Peter J. Stuckey. Boolean eaqgagwation for concise
and dficient sat encodings of combinatorial problendsArtif. Intell. Res. (JAIR)46:303—
341, 2013.

14. Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. SolviAg§ 8nd SAT Mod-
ulo Theories: From an abstract Davis—Putnam-Logemann-Lovetanddure to DPLL(T).
Journal of the ACM, JACMB3(6):937-977, 2006.

15. lan Parberry. The pairwise sorting netwoParallel Processing Letter®:205-211, 1992.

16. David A. Plaisted and Steven Greenbaum. A structure-preseiansgecform translationl.
Symb. Comput2(3):293-304, 1986.

17. Andreas Schutt, Thibaut Feydy, Peter J. Stuckey, and Mark Gad&a Why cumulative
decomposition is not as bad as it sounds.Plnceedings of the 15th international confer-
ence on Principles and practice of constraint programmi@§’09, pages 746—761, Berlin,
Heidelberg, 2009. Springer-Verlag.

17

18. C. Sinz. Towards an optimal CNF encoding of boolean cardinalitgtcaints. In P. v. Beek,
editor, Principles and Practice of Constraint Programming, 11th Internationahference,
CP '05, volume 3709 of ecture Notes in Computer Scienpages 827-831. Springer, 2005.

19. M. Bittner and J. Rintanen. Satisfiability planning with constraints on the numtses-of
tions. In S. Biundo, K. L. Myers, and K. Rajan, editot&th International Conference on
Automated Planning and Scheduling, ICAPS,’pages 292—299. AAAI, 2005.

20. Joost P. Warners. A Linear-Time Transformation of Linear Uiaéities into Conjunctive
Normal Form.Information Processing Letter§8(2):63—69, 1998.

	A Parametric Approach for Smaller and Better Encodings of Cardinality Constraints

