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Overview of the Session

Pros/cons of SAT &
Constraint Programming

Satisfiability Modulo Theories

Theories for Global Constraints
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Good vs. Bad in SAT Solvers

What’s GOOD?

SAT solvers outperform other tools on real-world problems

with a single, fully automatic variable selection strategy!

Hence problem solving is essentially declarative

What’s BAD?

very low-level language: needs modeling and encoding tools

no good encodings for many aspects: arithmetic, ...

Optimization not as well studied as satisfiability
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Good vs. Bad in CP Solvers

What’s GOOD?

Expressive modeling constructs and languages

Specialized algorithms for many (global) constraints

Optimization aspects better studied

What’s BAD, or, well, not so good?

Biased by random or artificial problems (not realistic)

Performance(?)
(no learning, backtracking instead of backjumping, ...)

Not quite automatic or push-button
Heuristics tuning per problem (or even per instance)
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Why Are SAT Solvers Really Good?

Three key ingredients that only work if used TOGETHER:

Learn at each conflict the backjump clause as a lemma:

makes UnitPropagate more powerful

prevents future similar conflicts

Decide on variable with most occurrences in recent conflicts:

so-called activity-based heuristics

idea: work off clusters of tightly related variables

Forget from time to time low-activity lemmas:

crucial to keep UnitPropagate fast and afford memory usage

idea: lemmas from worked off clusters no longer needed!
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Not the Same Success in CP...

Not easy to get everything together right

Heuristics make solver work simultaneously on too unrelated
vars

would require storing too many lemmas at the same time

No simple uniform underlying language (as SAT’s clauses):

hard to express lemmas (in SAT, 1st-class citizens: clauses)

hard to understand conflict analysis

hard to implement things really efficiently

Learning lemmas not found very useful...

misled by random/academic pbs

Indeed, it is useless isolatedly, and also on random pbs!

Can we get the best of the two worlds?
See next slides for a solution
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Overview of the Session

Pros/cons of SAT & Constraint Programming

Satisfiability Modulo Theories

Theories for Global Constraints
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What is Satisfiability Modulo Theories (SMT)?

Some problems are more naturally expressed in other logics
than propositional logic, e.g:

Software verification needs reasoning about equality,
arithmetic, data structures, ...

SMT consists in deciding the satisfiability of a (ground)
first-order formula with respect to a background theory

Example ( Equality with Uninterpreted Functions – EUF ):

g(a)=c ∧ ( f (g(a)) 6= f (c) ∨ g(a)=d ) ∧ c 6=d

SMT is widely applied in hardware/software verification

Theories of interest here:
EUF, arithmetic, arrays, bit vectors, combinations of these

With other theories SMT can also be used
to solve Constraint Satisfaction Problems
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Lazy Approach to SMT

Methodology:

Example: consider EUF and

g(a)=c
︸ ︷︷ ︸

1

∧ ( f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

Send {1,2∨3, 4} to SAT solver

SAT solver returns model [1, 2, 4]
Theory solver says T-inconsistent
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Lazy Approach to SMT

Methodology:

Example: consider EUF and

g(a)=c
︸ ︷︷ ︸

1

∧ ( f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
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4

Send {1,2∨3, 4} to SAT solver

SAT solver returns model [1, 2, 4]
Theory solver says T-inconsistent

Send {1,2∨3, 4,1∨2∨4} to SAT solver

SAT solver returns model [1, 2, 3,4]
Theory solver says T-inconsistent
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Lazy Approach to SMT

Methodology:

Example: consider EUF and

g(a)=c
︸ ︷︷ ︸

1

∧ ( f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

Send {1,2∨3, 4} to SAT solver

SAT solver returns model [1, 2, 4]
Theory solver says T-inconsistent

Send {1,2∨3, 4,1∨2∨4} to SAT solver

SAT solver returns model [1, 2, 3,4]
Theory solver says T-inconsistent

Send {1,2∨3, 4,1∨2∨4,1∨2∨3∨4} to SAT solver

SAT solver says UNSATISFIABLE
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Lazy Approach to SMT (2)

Why “lazy”?
Theory information used lazily when checking T-consistency
of propositional models

Characteristics:

+ Modular and flexible

- Theory information does not guide the search

Tools:

Barcelogic (UPC)

CVC3 (Univ. New York +
Iowa)

DPT (Intel)

MathSAT (Univ. Trento)

Yices (SRI)

Z3 (Microsoft)

...
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Lazy Approach to SMT - Optimizations

Several optimizations for enhancing efficiency:

Check T-consistency only of full propositional models
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Lazy Approach to SMT - Optimizations

Several optimizations for enhancing efficiency:

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built
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Lazy Approach to SMT - Optimizations

Several optimizations for enhancing efficiency:

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, add ¬M as a clause
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Lazy Approach to SMT - Optimizations

Several optimizations for enhancing efficiency:

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, add ¬M as a clause

Given a T-inconsistent assignment M, identify a T-inconsistent
subset M0 ⊆ M and add ¬M0 as a clause
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Lazy Approach to SMT - Optimizations

Several optimizations for enhancing efficiency:

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, add ¬M as a clause

Given a T-inconsistent assignment M, identify a T-inconsistent
subset M0 ⊆ M and add ¬M0 as a clause

Upon a T-inconsistency, add clause and restart
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Lazy Approach to SMT - Optimizations

Several optimizations for enhancing efficiency:

Check T-consistency only of full propositional models

Check T-consistency of partial assignment while being built

Given a T-inconsistent assignment M, add ¬M as a clause

Given a T-inconsistent assignment M, identify a T-inconsistent
subset M0 ⊆ M and add ¬M0 as a clause

Upon a T-inconsistency, add clause and restart

Upon a T-inconsistency, do conflict analysis and backjump
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Lazy Approach to SMT - Important Points

Advantages of the lazy approach:

Everyone does what it is good at:

SAT solver takes care of Boolean information

Theory solver takes care of theory information

Theory solver only receives conjunctions of literals

Modular approach:

SAT solver and T-solver communicate via a simple API

SMT for a new theory only requires new T-solver

SAT solver can be extended to a lazy SMT system
with very few new lines of code (40?)
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Lazy Approach to SMT - Theory propagation

As pointed out the lazy approach has one drawback:

Theory information does not guide the search

How can we improve that? Theory propagation

T-Propagate

M || F ⇒ M l || F if

{

M |=T l
l or ¬l occurs in F and not in M

Search guided by T-Solver by finding T-consequences,
instead of only validating it as in basic lazy approach.

Naive implementation: Add ¬l . If T-inconsistent then infer l .

But for efficient T-Propagate we need specialized T-Solvers

This approach has been namedDPLL(T)
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DPLL(T) - Example

Consider again EUF and the formula:

g(a)=c
︸ ︷︷ ︸

1

∧ ( f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
︸︷︷︸

4

/0 || 1, 2∨3, 4 ⇒ (UnitPropagate)
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DPLL(T) - Example
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DPLL(T) - Example

Consider again EUF and the formula:
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3

) ∧ c 6=d
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4

/0 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 2 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 2 3 || 1, 2∨3, 4 ⇒ (T-Propagate)
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DPLL(T) - Example

Consider again EUF and the formula:

g(a)=c
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1 2 3 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 2 3 4 || 1, 2∨3, 4 ⇒ (Fail)
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DPLL(T) - Example

Consider again EUF and the formula:
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DPLL(T) - Example

Consider again EUF and the formula:

g(a)=c
︸ ︷︷ ︸

1

∧ ( f (g(a)) 6= f (c)
︸ ︷︷ ︸

2

∨ g(a)=d
︸ ︷︷ ︸

3

) ∧ c 6=d
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4

/0 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 2 || 1, 2∨3, 4 ⇒ (UnitPropagate)

1 2 3 || 1, 2∨3, 4 ⇒ (T-Propagate)

1 2 3 4 || 1, 2∨3, 4 ⇒ (Fail)

fail

No search!
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DPLL(T) - Overall algorithm

High-level view gives the same algorithm as a CDCL SAT solver:

while(true){

while (propagate_gives_conflict()){
if (decision_level==0) return UNSAT;
else analyze_conflict();

}

restart_if_applicable();
remove_lemmas_if_applicable();

if (!decide()) returns SAT; // All vars assigned
}

Differences are in:

propagate_gives_conflict

analyze_conflict
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DPLL(T) - Propagation

propagate_gives_conflict( ) returns Bool

// unit propagate
if ( unit_prop_gives_conflict() ) then return true

return false
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DPLL(T) - Propagation

propagate_gives_conflict( ) returns Bool

do {

// unit propagate
if ( unit_prop_gives_conflict() ) then return true

// check T-consistency of the model
if ( solver.is_model_inconsistent() ) then return true

// theory propagate
solver.theory_propagate()

} while (doneSomeTheoryPropagation)

return false
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DPLL(T) - Propagation (2)

Three operations:

Unit propagation (SAT solver)

Consistency checks (T-solver)

Theory propagation (T-solver)

Cheap operations are computed first

If theory is expensive, calls to T-solver are sometimes skipped

Only strictly necessary to call T-consistency at the leaves
(i.e. when we have a full propositional model)

T-propagation is not necessary for correctness
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DPLL(T) - Conflict Analysis

Remember conflict analysis in SAT solvers:

C:= conflicting clause

while C contains more than one lit of last DL

l:=last literal assigned in C
C:=Resolution(C,reason(l))

end while

// let C=C ′∨ l where l is the only lit of last DL
backjump(maxDL(C ′))
add l to the model with reason C
learn(C)

Introduction to SMT Solving CSP’s with SMT – p.18/35



DPLL(T) - Conflict Analysis

Conflict analysis in DPLL(T):

if boolean conflict then C:= conflicting clause
else C:=¬( solver.explain_inconsistency() )

while C contains more than one lit of last DL

l:=last literal assigned in C
C:=Resolution(C,reason(l))

end while

// let C=C ′∨ l where l is the only lit of last DL
backjump(maxDL(C ′))
add l to the model with reason C
learn(C)
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DPLL(T) - Conflict Analysis (2)

What does explain_inconsistency return?

An explanation of the inconsistency:
A (small) conjuntion of literals l1∧ . . .∧ ln such that:

It is T-inconsistent
Lits were in the model when T-inconsistency was detected

What is now reason(l)?

If l was unit propagated: clause that propagated it

If l was T-propagated:

An explanation of the propagation:
A (small) clause ¬l1∨ . . .∨¬ln∨ l such that:

l1∧ . . .∧ ln |=T l
l1, . . . , ln were in the model when l was T-propagated

Pre-compute explanations at each T-Propagate?
Better only on demand, during conflict analysis
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DPLL(T) - Conflict Analysis (3)

Let M be c=b and let F contain

a=b ∨ g(a) 6=g(b), h(a)=h(c) ∨ p, g(a)=g(b) ∨ ¬p

Take the following sequence:

1. Decide h(a) 6=h(c)

2. T-Propagate a 6=b (due to h(a) 6=h(c) and c=b)

3. UnitPropagate g(a) 6=g(b)

4. UnitPropagate p

5. Conflicting clause g(a)=g(b) ∨ ¬p

Explain(a 6=b) is {h(a) 6=h(c),c=b}

?

h(a)=h(c)∨c 6=b∨a 6=b

a=b∨g(a) 6=g(b)

h(a)=h(c)∨ p g(a)=g(b)∨¬p

h(a)=h(c)∨g(a)=g(b)

h(a)=h(c)∨a=b

h(a)=h(c) ∨ c 6=b
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DPLL(T) – T-Solver API in a Nutshell

What does DPLL(T) need from T-Solver?

T-consistency check of a set of literals M, with:

Explain of T-inconsistency:
find small T-inconsistent subset of M

Incrementality: if l is added to M,
check for M l faster than reprocessing M l from scratch.

Theory propagation: find input T-consequences of M, with:

Explain T-Propagate of l :
find (small) subset of M that T-entails l .

Backtrack n: undo last n literals added
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Overview of the Session

Pros/cons of SAT & Constraint Programming

Satisfiability Modulo Theories

Theories for Global Constraints

Introduction to SMT Solving CSP’s with SMT – p.22/35



SMT(all_different)

all_different(x1, . . . ,xn) if x1, . . . ,xn take different values

Global constraint appearing in many CSP’s

Example 1: Round-Robin Sports Scheduling

Example 2: Quasi-Group Completion (QGC)
Each row, column in a part. filled grid n×nmust contain 1,. . .n

Vars xi j standing for value at row i, column j

no repetitions in rows







all_different(x11,x12, . . . ,x1n−1,x1n)

. . .

all_different(xn1,xn2, . . . ,xnn−1,xnn)

no repetitions in cols







all_different(x11,x21, . . . ,xn−11,xn1)

. . .

all_different(x1n,x2n, . . . ,xn−1n,xnn)

Specialized filtering algorithms exist in CP
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SMT(all_different) (2)

3-D SAT encoding infers no value here by
unit propagation

all_different filtering infers z= 3
Why?

x y z

3 4

3 4 5

4 5

5
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SMT(all_different) (2)

3-D SAT encoding infers no value here by
unit propagation

all_different filtering infers z= 3
Why? Because {x,y}= {1,2}

x y z

3 4

3 4 5

4 5

5
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SMT(all_different) (2)

3-D SAT encoding infers no value here by
unit propagation

all_different filtering infers z= 3
Why? Because {x,y}= {1,2}

x y z

3 4

3 4 5

4 5

5
Idea:

Use 3-D encoding + SMT where T is all_different

T-solver is incremental CP filtering but with explain:
in our example, the literal p133 (meaning z= 3) is entailed by
{p113, p114, . . . , p135} (meaning x 6= 3, x 6= 4, . . . , z 6= 5)

From time to time invoke T-solver before Decide, but do
always cheap SAT stuff first: Backjump, UnitPropagate, etc.
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Value Graph of all_different

A graph G= (V,E) is bipartite
if V can be partitioned into two disjoint sets U and V such that
all edges have one endpoint in U and the other in V

Given variables X = {x1, . . . ,xn}with domains D1, . . . ,Dn,
(x1 = α1, . . . ,xn = αn) is a solution to all_different(x1, . . . ,xn)
iff αi ∈ Di , and i 6= j implies αi 6= α j

The value graph of all_different(x1, . . . ,xn) is the bipartite
graph G= (X∪

⋃n
i=1Di,E) where (xi ,d) ∈ E iff d ∈ Di

For simplicity, we will assume that |X|= |
⋃n

i=1Di |

all_different(x1,x2,x3)

D1 = {1,2}
D2 = {2,3}
D3 = {2,3}

x2

x1

x3

1

2

3
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Matching Theory

A matching M in a graph G= (V,E) is
a subset of edges in E without common vertices

A maximummatching is a matching of maximum size

A matching M covers a set X
if every vertex in X is an endpoint of an edge in M

Solutions to all_different(X) = matchings covering X

all_different(x1,x2,x3)

D1 = {1,2}
D2 = {2,3}
D3 = {2,3}

x1 = 1
x2 = 2
x3 = 3

x2

x1

x3

1

2

3
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Matching Theory

A matching M in a graph G= (V,E) is
a subset of edges in E without common vertices

A maximummatching is a matching of maximum size

A matching M covers a set X
if every vertex in X is an endpoint of an edge in M

Solutions to all_different(X) = matchings covering X

Algorithm for checking satisfiability of all_different(X):

// Returns true if there is a solution, otherwise false

M = Compute maximum matching(G)

if ( |M| < |X| ) return false

return true
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Matching Theory

A matching M in a graph G= (V,E) is
a subset of edges in E without common vertices

A maximummatching is a matching of maximum size

A matching M covers a set X
if every vertex in X is an endpoint of an edge in M

Solutions to all_different(X) = matchings covering X

Algorithm for checking satisfiability of all_different(X):

Can be extended to filter out arc-inconsistent edges

// Returns true if there is a solution, otherwise false

M = Compute maximum matching(G)

if ( |M| < |X| ) return false

Remove edges from graph(G, M)

return true
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Matching Theory (2)

Theorem. all_different(X) is arc-consistent iff
every edge of the graph belongs to a matching covering X

A matching edge belongs to the matching , else it is free

An alternating cycle is a simple cycle
whose edges are alternately matching and free

A vital edge belongs to any maximum matching

Theorem. A non-vital edge belongs to a maximummatching
iff for an arbitrary maximummatching M
it belongs to an even-length alternating cycle wrt. M

x2

x1

x3

1

2

3
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Matching Theory (2)

Theorem. all_different(X) is arc-consistent iff
every edge of the graph belongs to a matching covering X

A matching edge belongs to the matching , else it is free

An alternating cycle is a simple cycle
whose edges are alternately matching and free

A vital edge belongs to any maximum matching

Theorem. A non-vital edge belongs to a maximummatching
iff for an arbitrary maximummatching M
it belongs to an even-length alternating cycle wrt. M

x2

x1

x3

1

2

3
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Matching Theory (3)

It simplifies things to orient edges:

Matching edges are oriented from left to right

Free edges are oriented from right to left

x2

x1

x3

1

2

3

Theorem. A non-vital edge belongs to a max matching iff
for any max matching M it belongs to a cycle in oriented graph

x2

x1

x3

1

2

3
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Removing Arc-Inconsistent Edges

Remove edges from graph(G)

mark all edges in G as UNUSED

compute SCCs, mark as USED edges with vertexs in same SCC

mark matching UNUSED edges as vital

remove remaining UNUSED edges

Removed edges are free edges whose endpoints belong to
different SCCs

Explanation of removed edge (x,d) requires expressing
x and d do not belong to the same SCC

(x1,2) since {(x2,1),(x3,1)}
since x2, x3 consume 2, 3

x2

x1

x3

1

2

3
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SMT(PB Constraints )

A pseudo-boolean (PB) constraint is of the form
a1x1+ . . .+anxn ≤ k where xi ∈ {0,1} , ai ,k∈ Z

PB constraints appear in many contexts
(e.g. weighted Max-SAT, cumulative: see later)

SAT encodings not appropriate if there are many PB cons:
too big formulas!

Idea:

Use T-solver for each PB constraint:
T-solver enforces arc-consistency of its PB constraint

Alternatively, a single T-solver can take care of all PB cons and
share information for better filtering
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SMT(PB Constraints ) (2)

Example of filtering by arc-consistency:

Assume: a1x1+ . . .+anxn ≤ k with ai ≥ 0

Let I0 = {i | xi = 0}, I1 = {i | xi = 1}, I⊥ = {i | xi = ⊥}

Then a1x1+ . . .+anxn ≤ k becomes

Σi∈I0ai ·0
︸ ︷︷ ︸

0

+ Σi∈I1ai ·1 + Σi∈I⊥aixi ≤ k

Σi∈I1ai + Σi∈I⊥aixi ≤ k
Σi∈I⊥aixi ≤ k−Σi∈I1ai

If j ∈ I⊥ is such that a j > k−Σi∈I1ai , then it must be x j = 0

Explanation?
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SMT(PB Constraints ) (2)

Example of filtering by arc-consistency:

Assume: a1x1+ . . .+anxn ≤ k with ai ≥ 0

Let I0 = {i | xi = 0}, I1 = {i | xi = 1}, I⊥ = {i | xi = ⊥}

Then a1x1+ . . .+anxn ≤ k becomes

Σi∈I0ai ·0
︸ ︷︷ ︸

0

+ Σi∈I1ai ·1 + Σi∈I⊥aixi ≤ k

Σi∈I1ai + Σi∈I⊥aixi ≤ k
Σi∈I⊥aixi ≤ k−Σi∈I1ai

If j ∈ I⊥ is such that a j > k−Σi∈I1ai , then it must be x j = 0

Explanation?

A set {xi = 1 | i ∈ J} where J ⊆ I1 is such that a j > k−Σi∈J ai
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SMT(cumulative)

n tasks share common resource with capacity c. Each task:

has a duration di

consumes r i units of resource per hour

must start not before esti (earliest starting time)

must end not after leti (latest ending time)

once started, cannot be interrupted

horizon hmax= latest time any task can end = maxi∈{1...n}leti

cumulative(s1, . . . ,sn) is satisfied by starting times s1, . . . ,sn if:

at all times used resources do not exceed capacity:

∀h∈ {0,. . . ,hmax−1} : Σ i∈{1...n}:
si≤h≤si+di

r i ≤ c

starting times respect feasible window:

∀i ∈ {1. . .n} : esti ≤ si , si +di ≤ leti
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SMT(cumulative) (2)

Pure SMT approach, modeling with variables si,h:

si,h means si ≤ h ( so si,h−1∧si,h means si = h)

T-solver propagates using CP filtering algs. with explanations

Better “decomposition” approach, adding variables ai,h :

ai,h means task i is active at hour h

Time-resource decomposition:
quadratic no. of clauses like

si,h−di ∧si,h −→ ai,h

ai,h −→ si,h−di

ai,h −→ si,h

T-solver handles, for each hour h and each resource r ,
PB constraints like 3ai,h+4ai′,h+ . . .≤ capacity(r)
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Comparison with Lazy Clause Generation

Lazy Clause Generation (LCG) was the instance of SMT where:

each time the T-solver detects that lit can be propagated,
it generates and adds (forever) the explanation clause
so the SAT-solver can UnitPropagate lit with it.

But as we have seen in this seminar, it is usually better to:

Generate explanations only when needed:
at conflict analysis time

Never add explanations as clauses. Otherwise: die keeping
too many explanations (or the whole SAT encoding).

Remember: Forget of the usual lemmas is already crucial to
keep UnitPropagate fast and memory affordable!

Since recently, with these improvements, LCG = SMT.
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