Encodings into SAT

Combinatorial Problem Solving (CPS)

Enric Rodríguez-Carbonell

May 19, 2023

What is an encoding?

- Language of SAT solvers: CNF propositional formulas
- To solve combinatorial problems with SAT solvers, constraints have to be represented in this language
- An encoding of a constraint C into SAT is a CNF F that expresses C, so that there is a bijection

solutions to $C \iff$ models of F

Examples: AMO constraints

- An AMO constraint is of the form x₀ + ... + x_{n-1} ≤ 1 where each x_i is 0-1 (At Most One of the variables can be true)
 - Quadratic encoding.
 - Variables: the same x_0, \ldots, x_{n-1}
 - Clauses: for $0 \leq i < j < n$, $\overline{x_i} \lor \overline{x_j}$
 - Requires $\binom{n}{2} = O(n^2)$ clauses
- Other encodings try to use fewer clauses, at the cost of introducing new variables

Examples: AMO constraints

Logarithmic encoding. Let $m = \lceil \log_2 n \rceil$. Then:

• Variables: the x_i and new variables $y_0, y_1, \ldots, y_{m-1}$

• Clauses: for $0 \le i < n$, $0 \le j < m$

- $\overline{x_i} \lor y_j$ if the *j*-th digit in binary of *i* is 1
- $\overline{x_i} \lor \overline{y_j}$ otherwise

• Requires $O(\log n)$ new variables, $O(n \log n)$ clauses

Examples: AMO constraints

Heule encoding.

- If $n \leq 3$, the encoding is the quadratic encoding.
- If $n \ge 4$, introduce an auxiliary variable y and encode $x_0 + x_1 + y \le 1$ and $x_2 + \cdots + x_{n-1} + \overline{y} \le 1$ (this one recursively).
- Requires O(n) new variables, O(n) clauses
- Other encodings exist (see next)

Consistency and Arc-Consistency

- Let us consider an encoding of a constraint C such that there is a correspondence between assignments of the variables of C to their domains, and partial assignments of the boolean variables of the encoding
- The encoding is consistent if whenever M is not compatible with any solution to C, unit propagation on the boolean assignment of M leads to a conflict
 - The encoding is arc-consistent if
 - it is consistent, and
 - unit propagation discards arc-inconsistent values (i.e., values without a support)
 - These are good properties for encodings: SAT solvers are very good at unit propagation!

Consistency and Arc-Consistency

- In the case of an AMO constraint $x_0 + \ldots + x_{n-1} \leq 1$:
- Consistency \equiv if there are two true vars x_i in M or more, then unit propagation should give a conflict
- Arc-consistency \equiv Consistency + if there is one true var x_i in M, then unit propagation should set all others x_j to false
- The quadratic, logarithmic and Heule encodings are all arc-consistent

Cardinality Constraints

- A cardinality constraint is of the form $x_1 + \ldots + x_n \bowtie k$ where each x_i is 0-1 and $\bowtie \in \{\leq, <, \geq, >, =\}$
- AMO are a particular case of card. constraints where k = 1 and \bowtie is \leq
- Without loss of generality we may assume \bowtie is <, i.e.,

 $x_1 + \ldots + x_n < k$

Naive encoding.

• Variables: the same x_1, \ldots, x_n

• Clauses: for all $1 \le i_1 < i_2 < \ldots < i_k \le n$,

 $\overline{x_{i_1}} \vee \overline{x_{i_2}} \vee \ldots \vee \overline{x_{i_k}}$

• This is $\binom{n}{k}$ clauses!

Adders

 Again, other encodings try to use fewer clauses, at the cost of introducing new variables

Adder encoding.

Build an adder circuit by using bit-adders as building blocks:

$$\begin{array}{rccc} s & \leftrightarrow & \mathrm{XOR}(x,y,z) \\ c & \leftrightarrow & (x \wedge y) \lor (x \wedge z) \lor (y \wedge z) \end{array}$$

where XOR(x, y, z) is short for

 $(x \wedge \overline{y} \wedge \overline{z}) \vee (\overline{x} \wedge y \wedge \overline{z}) \vee (\overline{x} \wedge \overline{y} \wedge z) \vee (x \wedge y \wedge z)$

Adders

- Encodings of this kind are not arc-consistent.
- Consider $x + y + z \le 0$. Then unit propagation should propagate $\overline{x}, \overline{y}, \overline{z}$.
 - Let us encode the constraint with a full adder
 - The encoding is the Tseitin transformation of $\overline{s}, \overline{c}$ and
 - $\begin{array}{rccc} s & \leftrightarrow & \operatorname{XOR}(x,y,z) \\ c & \leftrightarrow & (x \wedge y) \lor (x \wedge z) \lor (y \wedge z) \end{array}$
 - Note that
 - $\overline{s} \to (\overline{x} \lor y \lor z) \land (x \lor \overline{y} \lor z) \land (x \lor y \lor \overline{z}) \land (\overline{x} \lor \overline{y} \lor \overline{z})$ $\overline{c} \to (\overline{x} \lor \overline{y}) \land (\overline{x} \lor \overline{z}) \land (\overline{y} \lor \overline{z})$
 - Unit propagation cannot propagate anything!

Sorting Network encoding.

Pass x_1, \ldots, x_n as inputs to a circuit that sorts (say, decreasingly) n bits. Let y_1, \ldots, y_n be the outputs of this circuit.

Then if the constraint to be encoded is

- $\sum_{i=1}^{n} x_i \geq k$, then add clause y_k
- $\sum_{i=1}^{n} x_i \leq k$, then add clause $\overline{y_{k+1}}$
- $\sum_{i=1}^{n} x_i = k$, then add clauses y_k , $\overline{y_{k+1}}$

- How to build such a sorting circuit?
- A possibility is to implement mergesort
- In what follows: so-called odd-even sorting networks
- The basic block of odd-even sorting networks are 2-comparators

2-comparators

- A 2-comparator is a sorting network of size 2:
 - it has 2 input variables $(x_1 \text{ and } x_2)$
 - it has 2 output variables $(y_1 \text{ and } y_2)$
 - y₁ is true if and only if at least one of the input variables is true (i.e., it is the maximum or disjunction)
 - y₂ is true if and only if both two input variables are true (i.e., it is the minimum or conjunction)

2-comparators

Clauses:

Graphical representation:

Some simplifications are possible:

- For \geq constraints: top three clauses suffice
- ◆ For ≤ constraints: bottom three clauses suffice
- For = constraints: all clauses needed

2-comparators

Clauses:

Graphical representation:

Some simplifications are possible:

- For \geq constraints: top three clauses suffice
- ◆ For ≤ constraints: bottom three clauses suffice
- For = constraints: all clauses needed

- From now on we assume that *n* is a power of two (if not, pad with variables set to false)
- A merge network takes as input two ordered sets of variables of size n and produces an ordered output of size 2n.
- Let (x_1, \ldots, x_n) and (x'_1, \ldots, x'_n) be the inputs. We recursively define a merge network as follows:
- If n = 1, a merge network is a 2-comparator:

 $Merge(x_1; x'_1) := 2-Comp(x_1, x'_1).$

For n > 1: Let us define

$$\begin{aligned} (z_1, z_3, \dots, z_{2n-1}) &= \operatorname{Merge}(x_1, x_3, \dots, x_{n-1}; x'_1, x'_3, \dots, x'_{n-1}), \\ (z_2, z_4, \dots, z_{2n}) &= \operatorname{Merge}(x_2, x_4, \dots, x_n; x'_2, x'_4, \dots, x'_n), \\ (y_2, y_3) &= 2\operatorname{-Comp}(z_2, z_3), \\ (y_4, y_5) &= 2\operatorname{-Comp}(z_4, z_5), \end{aligned}$$

$$(y_{2n-2}, y_{2n-1}) = 2$$
-Comp (z_{2n-2}, z_{2n-1})

. . .

Then,

Merge $(x_1, x_2, \dots, x_n; x'_1, x'_2, \dots, x'_n) := (z_1, y_2, y_3, \dots, y_{2n-1}, z_{2n})$

Sketch of the proof of correctness of Merge:

By IH: $\{x_1, x_3, \dots, x_{n-1}, x'_1, x'_3, \dots, x'_{n-1}\} = \{z_1, z_3, \dots, z_{2n-1}\}$ By IH: $\{x_2, x_4, \dots, x_n, x'_2, x'_4, \dots, x'_n\} = \{z_2, z_4, \dots, z_{2n}\}$ Hence $\{x_1, x_2, \dots, x_n, x'_1, x'_2, \dots, x'_n\} = \{z_1, z_2, \dots, z_{2n}\}$

And

. . .

$$(y_2, y_3) = 2$$
-Comp (z_2, z_3) implies $\{y_2, y_3\} = \{z_2, z_3\}$
 $(y_4, y_5) = 2$ -Comp (z_4, z_5) implies $\{y_4, y_5\} = \{z_4, z_5\}$

 $(y_{2n-2}, y_{2n-1}) = 2$ -Comp (z_{2n-2}, z_{2n-1}) implies $\{y_{2n-2}, y_{2n-1}\} = \{z_{2n-2}, z_{2n-1}\}$

So $\{x_1, x_2, \dots, x_n, x'_1, x'_2, \dots, x'_n\} = \{z_1, y_2, y_3, \dots, y_{2n-2}, y_{2n-1}, z_{2n}\}$

Let us prove outputs are sorted decreasingly. For $1 \le i < n - 1$ let us see:

 $z_{2i} \ge z_{2(i+1)+1}$ Let us see $z_{2(i+1)+1} = 1$ implies $z_{2i} = 1$ If $z_{2(i+1)+1} = z_{2i+3} = z_{2(i+2)-1} = 1$ there are $\geq i+2$ 1's in odd x, x'Let p be the number of 1's in odd xLet q the number of 1's in odd x'Then $p+q \ge i+2$ As x, x' is ordered decreasingly, there are $\geq p-1$ 1's in even x, $\geq q-1$ 1's in even x'So there are $\geq (p-1) + (q-1) = p + q - 2 \geq i$ 1's in even x, x'Hence $z_{2i} = 1$

Let us prove outputs are sorted decreasingly. For $1 \le i < n-1$ let us see:

 $z_{2i} \ge z_{2(i+1)+1}$: proved

Let us prove outputs are sorted decreasingly. For $1 \le i < n-1$ let us see:

- $z_{2i} \ge z_{2(i+1)+1}: \text{ proved}$
- $z_{2i} \ge z_{2(i+1)}$: by IH

Let us prove outputs are sorted decreasingly. For $1 \le i < n-1$ let us see:

- $z_{2i} \ge z_{2(i+1)+1}: \text{ proved}$
- $z_{2i} \ge z_{2(i+1)}$: by IH
- $z_{2i+1} \ge z_{2(i+1)+1}$: by IH

Let us prove outputs are sorted decreasingly. For $1 \le i < n - 1$ let us see:

- $z_{2i} \ge z_{2(i+1)+1}: \text{ proved}$
- $z_{2i} \ge z_{2(i+1)}$: by IH
- $z_{2i+1} \ge z_{2(i+1)+1}$: by IH
 - I $z_{2i+1} \ge z_{2(i+1)}$: similar to above

So $\min(z_{2i}, z_{2i+1}) \ge \max(z_{2(i+1)}, z_{2(i+1)+1})$ But $y_{2i+1} = \min(z_{2i}, z_{2i+1})$ and $y_{2(i+1)} = \max(z_{2(i+1)}, z_{2(i+1)+1})$ So $y_{2i+1} \ge y_{2(i+1)}$ And $y_{2i} \ge y_{2i+1}$ for being outputs of 2-Comp Altogether $z_1, y_2, y_3, \dots, y_{2n-2}, y_{2n-1}, z_{2n}$ is sorted decreasingly

- A sorting network of size n takes an input of size n and sorts it (decreasingly).
- We can build a sorting network by successively applying merge networks (as in mergesort).
- Let x₁,..., x_n be the inputs.
 We recursively define a sorting network as follows:
- If n = 2, a sorting network is a 2-comparator:

 $Sorting(x_1, x_2) := 2\text{-}Comp(x_1, x_2)$

For n > 2: Let us define

$$\begin{array}{lll} (z_1, z_2, \dots, z_{n/2}) &= & \operatorname{Sorting}(x_1, x_2, \dots, x_{n/2}), \\ (z_{n/2+1}, z_{n/2+2}, \dots, z_n) &= & \operatorname{Sorting}(x_{n/2+1}, x_{n/2+2}, \dots, x_n), \\ & (y_1, y_2, \dots, y_n) &= & \operatorname{Merge}(z_1, z_2, \dots, z_{n/2}; z_{n/2+1}, \dots, z_n) \end{array}$$

Then,

Sorting
$$(x_1, x_2, ..., x_n) := (y_1, y_2, ..., y_n)$$

- This encoding of cardinality constraints is arc-consistent
- It uses $O(n \log^2 n)$ new variables and $O(n \log^2 n)$ clauses
- Several improvements are possible:
 - Only the first k outputs suffice:
 cardinality networks use O(n log² k) vars and clauses
 - No need to assume that n is a power of two:
 merges can be defined for inputs of different sizes

Bibliography

- N. Eén, N. Sörensson: Translating Pseudo-Boolean Constraints into SAT. JSAT 2(1-4): 1-26 (2006)
- R. Asín, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell: Cardinality Networks: a theoretical and empirical study. Constraints 16(2): 195-221 (2011)
- I. Abío, R. Nieuwenhuis, A. Oliveras, E. Rodríguez-Carbonell: A Parametric Approach for Smaller and Better Encodings of Cardinality Constraints. Principles and Practice of Constraint Programming, 2013
- I. Abío: Solving hard industrial combinatorial problems with SAT. PhD Thesis (2013)