
Encodings into SAT

Combinatorial Problem Solving (CPS)

Enric Rodŕıguez-Carbonell

May 19, 2023



What is an encoding?

2 / 24

■ Language of SAT solvers: CNF propositional formulas

■ To solve combinatorial problems with SAT solvers,
constraints have to be represented in this language

■ An encoding of a constraint C into SAT is
a CNF F that expresses C, so that there is a bijection

solutions to C ⇐⇒ models of F



Examples: AMO constraints

3 / 24

■ An AMO constraint is of the form x0 + . . .+ xn−1 ≤ 1
where each xi is 0-1

(At Most One of the variables can be true)

■ Quadratic encoding.

◆ Variables: the same x0, . . . , xn−1

◆ Clauses: for 0 ≤ i < j < n, xi ∨ xj

◆ Requires
(

n
2

)

= O(n2) clauses

■ Other encodings try to use fewer clauses,
at the cost of introducing new variables



Examples: AMO constraints

4 / 24

■ Logarithmic encoding. Let m = ⌈log2 n⌉. Then:

◆ Variables: the xi and new variables y0, y1, . . . , ym−1

◆ Clauses: for 0 ≤ i < n, 0 ≤ j < m

■ xi ∨ yj if the j-th digit in binary of i is 1

■ xi ∨ yj otherwise

◆ Requires O(logn) new variables, O(n logn) clauses



Examples: AMO constraints

5 / 24

■ Heule encoding.

◆ If n ≤ 3, the encoding is the quadratic encoding.

◆ If n ≥ 4, introduce an auxiliary variable y and encode
x0 + x1 + y ≤ 1 and x2 + · · ·+ xn−1 + y ≤ 1 (this one recursively).

◆ Requires O(n) new variables, O(n) clauses

■ Other encodings exist (see next)



Consistency and Arc-Consistency

6 / 24

■ Let us consider an encoding of a constraint C such that
there is a correspondence between
assignments of the variables of C to their domains,
and partial assignments of the boolean variables of the encoding

■ The encoding is consistent if
whenever M is not compatible with any solution to C,
unit propagation on the boolean assignment of M leads to a conflict

■ The encoding is arc-consistent if

◆ it is consistent, and

◆ unit propagation discards arc-inconsistent values
(i.e., values without a support)

■ These are good properties for encodings:
SAT solvers are very good at unit propagation!



Consistency and Arc-Consistency

7 / 24

■ In the case of an AMO constraint x0 + . . .+ xn−1 ≤ 1:

■ Consistency ≡ if there are two true vars xi in M or more,
then unit propagation should give a conflict

■ Arc-consistency ≡ Consistency + if there is one true var xi in M ,
then unit propagation should set all others xj to false

■ The quadratic, logarithmic and Heule encodings
are all arc-consistent



Cardinality Constraints

8 / 24

■ A cardinality constraint is of the form x1 + . . .+ xn ⊲⊳ k

where each xi is 0-1 and ⊲⊳ ∈ {≤, <,≥, >,=}

■ AMO are a particular case of card. constraints where k = 1 and ⊲⊳ is ≤

■ Without loss of generality we may assume ⊲⊳ is <, i.e.,

x1 + . . .+ xn < k

■ Naive encoding.

◆ Variables: the same x1, . . . , xn

◆ Clauses: for all 1 ≤ i1 < i2 < . . . < ik ≤ n,

xi1 ∨ xi2 ∨ . . . ∨ xik

◆ This is
(

n
k

)

clauses!



Adders

9 / 24

■ Again, other encodings try to use fewer clauses,
at the cost of introducing new variables

■ Adder encoding.
Build an adder circuit by using bit-adders as building blocks:

Full Adder

x

y

z

s

c

s ↔ XOR(x, y, z)
c ↔ (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)

where XOR(x, y, z) is short for

(x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z)



Adders

10 / 24

■ Encodings of this kind are not arc-consistent.

■ Consider x+ y + z ≤ 0.
Then unit propagation should propagate x, y, z.

■ Let us encode the constraint with a full adder

■ The encoding is the Tseitin transformation of s, c and

s ↔ XOR(x, y, z)
c ↔ (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)

■ Note that

s → (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z) ∧ (x ∨ y ∨ z)

c → (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z)

■ Unit propagation cannot propagate anything!



Sorting Networks

11 / 24

■ Sorting Network encoding.

Pass x1, . . . , xn as inputs to
a circuit that sorts (say, decreasingly) n bits.

Let y1, . . . , yn be the outputs of this circuit.

Then if the constraint to be encoded is

◆
∑n

i=1 xi ≥ k, then add clause yk

◆
∑n

i=1 xi ≤ k, then add clause yk+1

◆
∑n

i=1 xi = k, then add clauses yk, yk+1



Sorting Networks

12 / 24

■ How to build such a sorting circuit?

■ A possibility is to implement mergesort

■ In what follows: so-called odd-even sorting networks

■ The basic block of odd-even sorting networks are 2-comparators



2-comparators

13 / 24

■ A 2-comparator is a sorting network of size 2:

◆ it has 2 input variables (x1 and x2)

◆ it has 2 output variables (y1 and y2)

◆ y1 is true if and only if at least one of the input variables is true
(i.e., it is the maximum or disjunction)

◆ y2 is true if and only if both two input variables are true
(i.e., it is the minimum or conjunction)



2-comparators

14 / 24

■ Clauses:

x1 ← y2, x2 ← y2, x1 ∨ x2 ← y1,

x1 → y1, x2 → y1, x1 ∧ x2 → y2

■ Graphical representation:

x1

x2

y1

y2

■ Some simplifications are possible:

◆ For ≥ constraints: top three clauses suffice

◆ For ≤ constraints: bottom three clauses suffice

◆ For = constraints: all clauses needed



2-comparators

14 / 24

■ Clauses:

x1 ← y2, x2 ← y2, x1 ∨ x2 ← y1,

x1 ← y1, x2 ← y1, x1 ∨ x2 ← y2

■ Graphical representation:

x1

x2

y1

y2

■ Some simplifications are possible:

◆ For ≥ constraints: top three clauses suffice

◆ For ≤ constraints: bottom three clauses suffice

◆ For = constraints: all clauses needed



Merge Networks

15 / 24

■ From now on we assume that n is a power of two
(if not, pad with variables set to false)

■ A merge network takes as input two ordered sets of variables of size n and
produces an ordered output of size 2n.

■ Let (x1, . . . , xn) and (x′1, . . . , x
′

n) be the inputs.
We recursively define a merge network as follows:

■ If n = 1, a merge network is a 2-comparator:

Merge(x1;x
′

1) := 2-Comp(x1, x
′

1).



Merge Networks

16 / 24

■ For n > 1: Let us define

(z1, z3, . . . , z2n−1) = Merge(x1, x3, . . . , xn−1;x
′

1, x
′

3, . . . x
′

n−1),

(z2, z4, . . . , z2n) = Merge(x2, x4, . . . , xn;x
′

2, x
′

4, . . . , x
′

n),

(y2, y3) = 2-Comp(z2, z3),

(y4, y5) = 2-Comp(z4, z5),

. . .

(y2n−2, y2n−1) = 2-Comp(z2n−2, z2n−1)

Then,

Merge(x1, x2, . . . , xn;x
′

1, x
′

2, . . . , x
′

n) := (z1, y2, y3, . . . , y2n−1, z2n)



Merge Networks

17 / 24

x′4

x′3

x′2

x′1

x4

x3

x2

x1

z8

z8

z7

z6

z5

z4

z3

z2
z1

z1

y7

y6

y5

y4

y3

y2

Mergen=2Mergen=2



Merge Networks

18 / 24

Sketch of the proof of correctness of Merge:

By IH: {x1, x3, . . . , xn−1, x
′

1, x
′

3, . . . , x
′

n−1} = {z1, z3, . . . , z2n−1}

By IH: {x2, x4, . . . , xn, x′2, x
′

4, . . . , x
′

n} = {z2, z4, . . . , z2n}

Hence {x1, x2, . . . , xn, x′1, x
′

2, . . . , x
′

n} = {z1, z2, . . . , z2n}

And

(y2, y3) = 2-Comp(z2, z3) implies {y2, y3} = {z2, z3}

(y4, y5) = 2-Comp(z4, z5) implies {y4, y5} = {z4, z5}

. . .

(y2n−2, y2n−1) = 2-Comp(z2n−2, z2n−1) implies {y2n−2, y2n−1} = {z2n−2, z2n−1}

So {x1, x2, . . . , xn, x
′

1, x
′

2, . . . , x
′

n} = {z1, y2, y3, . . . , y2n−2, y2n−1, z2n}



Merge Networks

19 / 24

Let us prove outputs are sorted decreasingly. For 1 ≤ i < n− 1 let us see:

■ z2i ≥ z2(i+1)+1:

Let us see z2(i+1)+1 = 1 implies z2i = 1

If z2(i+1)+1 = z2i+3 = z2(i+2)−1 = 1 there are ≥ i+ 2 1’s in odd x, x′

Let p be the number of 1’s in odd x

Let q the number of 1’s in odd x′

Then p+ q ≥ i+ 2

As x, x′ is ordered decreasingly,

there are ≥ p− 1 1’s in even x, ≥ q − 1 1’s in even x′

So there are ≥ (p− 1) + (q − 1) = p+ q − 2 ≥ i 1’s in even x, x′

Hence z2i = 1



Merge Networks

19 / 24

Let us prove outputs are sorted decreasingly. For 1 ≤ i < n− 1 let us see:

■ z2i ≥ z2(i+1)+1: proved



Merge Networks

19 / 24

Let us prove outputs are sorted decreasingly. For 1 ≤ i < n− 1 let us see:

■ z2i ≥ z2(i+1)+1: proved

■ z2i ≥ z2(i+1): by IH



Merge Networks

19 / 24

Let us prove outputs are sorted decreasingly. For 1 ≤ i < n− 1 let us see:

■ z2i ≥ z2(i+1)+1: proved

■ z2i ≥ z2(i+1): by IH

■ z2i+1 ≥ z2(i+1)+1: by IH



Merge Networks

19 / 24

Let us prove outputs are sorted decreasingly. For 1 ≤ i < n− 1 let us see:

■ z2i ≥ z2(i+1)+1: proved

■ z2i ≥ z2(i+1): by IH

■ z2i+1 ≥ z2(i+1)+1: by IH

■ z2i+1 ≥ z2(i+1): similar to above

So min(z2i, z2i+1) ≥ max(z2(i+1), z2(i+1)+1)

But y2i+1 = min(z2i, z2i+1) and y2(i+1) = max(z2(i+1), z2(i+1)+1)

So y2i+1 ≥ y2(i+1)

And y2i ≥ y2i+1 for being outputs of 2-Comp

Altogether z1, y2, y3, . . . , y2n−2, y2n−1, z2n is sorted decreasingly



Sorting Networks

20 / 24

■ A sorting network of size n takes an input of size n and sorts it
(decreasingly).

■ We can build a sorting network by successively applying merge networks
(as in mergesort).

■ Let x1, . . . , xn be the inputs.
We recursively define a sorting network as follows:

■ If n = 2, a sorting network is a 2-comparator:

Sorting(x1, x2) := 2-Comp(x1, x2)



Sorting Networks

21 / 24

■ For n > 2: Let us define

(z1, z2, . . . , zn/2) = Sorting(x1, x2, . . . , xn/2),

(zn/2+1, zn/2+2, . . . , zn) = Sorting(xn/2+1, xn/2+2, . . . , xn),

(y1, y2, . . . , yn) = Merge(z1, z2, . . . , zn/2; zn/2+1 . . . , zn)

Then,
Sorting(x1, x2, . . . , xn) := (y1, y2, . . . , yn)



Sorting Networks

22 / 24

x8

x7

x6

x5

x4

x3

x2

x1

z8

z7

z6

z5

z4

z3

z2

z1

y7

y6

y5

y4

y3

y2

y8

y1

SNn=4

SNn=4

Mergen=4



Sorting Networks

23 / 24

■ This encoding of cardinality constraints is arc-consistent

■ It uses O(n log2 n) new variables and O(n log2 n) clauses

■ Several improvements are possible:

◆ Only the first k outputs suffice:
cardinality networks use O(n log2 k) vars and clauses

◆ No need to assume that n is a power of two:
merges can be defined for inputs of different sizes



Bibliography

24 / 24

■ N. Eén, N. Sörensson: Translating Pseudo-Boolean Constraints into SAT.
JSAT 2(1-4): 1-26 (2006)

■ R. Aśın, R. Nieuwenhuis, A. Oliveras, E. Rodŕıguez-Carbonell: Cardinality
Networks: a theoretical and empirical study. Constraints 16(2): 195-221
(2011)

■ I. Ab́ıo, R. Nieuwenhuis, A. Oliveras, E. Rodŕıguez-Carbonell: A
Parametric Approach for Smaller and Better Encodings of Cardinality
Constraints. Principles and Practice of Constraint Programming, 2013

■ I. Ab́ıo: Solving hard industrial combinatorial problems with SAT. PhD
Thesis (2013)


	What is an encoding?
	Examples: AMO constraints 
	Examples: AMO constraints 
	Examples: AMO constraints 
	Consistency and Arc-Consistency 
	Consistency and Arc-Consistency 
	Cardinality Constraints 
	Adders 
	Adders 
	Sorting Networks 
	Sorting Networks 
	2-comparators 
	2-comparators 
	Merge Networks 
	Merge Networks 
	Merge Networks 
	Merge Networks 
	Merge Networks 
	Sorting Networks 
	Sorting Networks 
	Sorting Networks 
	Sorting Networks 
	Bibliography

