Encodings into SAT

Combinatorial Problem Solving (CPS)

Enric Rodriguez-Carbonell

May 19, 2023

What is an encoding?

Language of SAT solvers: CNF propositional formulas

To solve combinatorial problems with SAT solvers,
constraints have to be represented in this language

An encoding of a constraint C' into SAT s
a CNF F' that expresses (', so that there is a bijection

solutions to (' <> models of F

2 /24

Examples: AMO constraints

N

B An AMO constraint is of the form zo + ...+ 7,1 <1
where each z; is 0-1

(At Most One of the variables can be true)

B Quadratic encoding.

€ Variables: the same xq, ..., 7, 1
¢ Clauses: for 0 <@ < j <n, z;VT;
® Requires (1) = O(n?) clauses

B Other encodings try to use fewer clauses,
at the cost of introducing new variables

‘ 3 /24

Examples: AMO constraints

B Logarithmic encoding. Let m = [log, n|. Then:

€ Variables: the x; and new variables vy, y1, ..., ¥m—1
& Clauses: forO0<i:<n,0<7<m

m 7; Vy; if the j-th digit in binary of 7 is 1

m 1; V7, otherwise

¢ Requires O(logn) new variables, O(nlogn) clauses

‘ 4 / 24

Examples: AMO constraints

N

B Heule encoding.

¢ |If n < 3, the encoding is the quadratic encoding.

¢ If n >4, introduce an auxiliary variable 1 and encode
ro+x1+y<land zo+ -+ x, 1+ 7y < 1 (this one recursively).

¢ Requires O(n) new variables, O(n) clauses

B Other encodings exist (see next)

5 /24

N

Consistency and Arc-Consistency

B Let us consider an encoding of a constraint (' such that
there is a correspondence between
assignments of the variables of ' to their domains,
and partial assignments of the boolean variables of the encoding

B The encoding is consistent if
whenever)V is not compatible with any solution to C,
unit propagation on the boolean assignment of // leads to a conflict

B The encoding is arc-consistent if

€ it is consistent, and

€ unit propagation discards arc-inconsistent values
(i.e., values without a support)

B These are good properties for encodings:

SAT solvers are very good at unit propagation!
‘ 6 /24

N

Consistency and Arc-Consistency

B |In the case of an AMO constraint g + ...+ 2,1 < 1:

B Consistency = if there are two true vars x; in M or more,
then unit propagation should give a conflict

B Arc-consistency = Consistency + if there is one true var x; in M,
then unit propagation should set all others x; to false

B [he quadratic, logarithmic and Heule encodings
are all arc-consistent

‘ 7 /24

Cardinality Constraints

B A cardinality constraint is of the form x| + ... +x, <k

where each z; is 0-1 and 1 € {<, <, >, > =}

B AMO are a particular case of card. constraints where & = 1 and < is <

B Without loss of generality we may assume < is <, I.e.,

1+ ...+x, <k

B Naive encoding.

€ Variables: the same x,..., 7,
& Clauses: forall 1 <4y <19 < ... <1 <n,

Tiy VTjy V...V T

& Thisis (Z) clauses!

‘ 8 / 24

Adders

B Again, other encodings try to use fewer clauses,
at the cost of introducing new variables

B Adder encoding.
Build an adder circuit by using bit-adders as building blocks:

y — Full Adder

s <+ XOR(z,y,2)
c < (xAy)VEAz)V(yAz)

where XOR/(x, v, z) is short for

. (xAGAZ)V(@EAYAZ)NV(TAYGA2Z)V(t Ay A z)
9 / 24

Adders

B Encodings of this kind are not arc-consistent.

B Consider v + 1y + 2 < 0.
Then unit propagation should propagate =, 7, Z.

B Let us encode the constraint with a full adder

B The encoding is the Tseitin transformation of s, ¢ and

s <+ XOR(z,y,2)
c & (xAy)V(exAz)V(yAz)

B Note that

s = (@TVyVz)AN(xVyVz)A(xVyVZ)AN(ZTVYVZ)
— (TVY)ANEZVZ)A(GVZ)

B Unit propagation cannot propagate anything!
10 / 24

ol

Sorting Networks

B Sorting Network encoding.
Pass x{,...,x, as inputs to
a circuit that sorts (say, decreasingly) n bits.
Let v1,...,1, be the outputs of this circuit.

Then if the constraint to be encoded is

¢ > ' x;, >k, then add clause y;
¢ > "' x; <k, then add clause 71
¢ > ' x;, =k, then add clauses v, Uit1

‘ 11 / 24

Sorting Networks

N

How to build such a sorting circuit?
A possibility is to implement mergesort

In what follows: so-called odd-even sorting networks

The basic block of odd-even sorting networks are 2-comparators

12 / 24

N

2-comparators

B A 2-comparator is a sorting network of size 2:

¢ it has 2 input variables (x; and x»)
¢ it has 2 output variables (y; and 2)

¢ 1 is true if and only if at least one of the input variables is true
(i.e., it is the maximum or disjunction)

€ 1 is true if and only if both two input variables are true
(i.e., it is the minimum or conjunction)

13 / 24

2-comparators

B Clauses:

Tr1 < Y2, Ty < Y2, 1 VI < Ui,
rr — Y1, Ty — Y1, 1 Nx2 — Y2

B Graphical representation:
L1 Y1
xQIyQ
B Some simplifications are possible:

& For > constraints: top three clauses suffice
€ For < constraints: bottom three clauses suffice

€ For = constraints: all clauses needed

‘ o) 2%

2-comparators

B Clauses:

1 < Y2, T2 < Y2, 1 VI < Y1,
Tr1 < Y, To < Y, T1VITy < Yy

B Graphical representation:
L1 Y1
xQIyQ
B Some simplifications are possible:

& For > constraints: top three clauses suffice
€ For < constraints: bottom three clauses suffice

€ For = constraints: all clauses needed

‘ o) 2%

N

Merge Networks

B From now on we assume that 7 is a power of two
(if not, pad with variables set to false)

B A merge network takes as input two ordered sets of variables of size n and
produces an ordered output of size 2n.

B let (ry,...,7,) and (2),..., 7)) be the inputs.
We recursively define a merge network as follows:

B [f » =1, a merge network is a 2-comparator:

Merge(z1; z}) := 2-Comp(z1, x}).
1 1

‘ .

Merge Networks

B Forn > 1: Let us define

(21,23, .., 2o0n—1) = Merge(x1,x3,...,Tp_1;2],Th, ..., 1),
(22, 24, - - -, 29n) = Merge(xa, Ta, ..., Tn;To, Ty ..., T)),
(y27y3) — 2_Comp(227 23)7
(y4ay5) — 2_Comp(z47 25)7
(Y2n—2,Y2n—1) = 2-Comp(z2n—2, 22n—1)
Then,
Merge(x1, T, ..., Tn;), 2, oo xh) == (21, Y2, Y3, - - -, Y2n—1, 22n)

‘ 16 / 24

Merge Networks

T ¢ *Zl\

Lo——o o — . 29
o K :li—y
LN\——T1@ o —1 . ZA Y3
—— Y4
Merge,,_o Merge,, _»
—Y5
/
:Cl --------------- —@ 25

/
Ty——® @ 7

17 / 24

N

Merge Networks

Sketch of the proof of correctness of Merge:

By IH: {zy, 23, ... o, 2 ah, oo x) b ={21,23,. .., 2001}
By IH: {zo. 24, ... 2y, b al, ... 2} ={z0,24,..., 200}
Hence {1, 2o, ... 2y, 2,25, ... 2l ={z1,20,..., 200}
And

(y2,y3) = 2-Comp(22, z3) implies {y2,y3} = {22, 23}
(y4,y5) = 2-Comp(24, 25) implies {y1,y5} = {24, 25}

(Y2n—2, Yon—1) = 2-Comp(zon—2, 22n—1) implies {y2n—2, Yon—1} = {22n—2, 22n—1}

/ / /
So{x1,x2, ..., T, T, 25, .., =421,Y2,YU3, - s Y2n—2, Y2n—1, 22n |

‘ 18 / 24

N

Let us prove outputs are sorted decreasingly. For 1 <1 < n — 1 let us see:

Merge Networks

B 22 > Z9G41)41¢
Let us see zy(;. 1)1 = | implies z5; =1
If 250 1)41 = 22143 = 293i42)-1 = | thereare > i +2 1'sin odd =, 2
Let p be the number of 1's in odd »
Let ¢ the number of 1's in odd 2’
Thenp+qg>i+2
As x, 2’ is ordered decreasingly,
there are > p— 1 1'sineven 2z, > ¢ — 1 1's in even 2/
Sothereare > (p—1)+(¢g—1)=p+qg—2=>1i1l'sineven z, 12’

Hence 29, = 1

‘ 19 / 24

N

Let us prove outputs are sorted decreasingly. For 1 <1 < n — 1 let us see:

Merge Networks

H 2 > ZQ(i—I—l)—i—l: proved

19 / 24

N

Let us prove outputs are sorted decreasingly. For 1 <1 < n — 1 let us see:

Merge Networks

H 2 > ZQ(i—I—l)—i—l: proved
B 2y > 241y by IH

19 / 24

N

Let us prove outputs are sorted decreasingly. For 1 <1 < n — 1 let us see:

Merge Networks

H 2 > 22(i+1)+1: proved
B 2y > 241y by IH

B 291 > Zo(41)41: by IH

19 / 24

Merge Networks

N

Let us prove outputs are sorted decreasingly. For 1 <1 < n — 1 let us see:

Z2i = Z9(i41)41- proved

Z2i = Zo(i+1): by IH

22i4+1 = Zo(iy1)+1- by IH

Z2i+1 = Zo(i+1): similar to above

So min(22;, 22i4+1) > maX(ZQ(z'—I—l)a 22(¢+1)+1)
But 2,11 = min(zs;, 22,41) and Y2(i+1) = maX(Zz(m)a 22(z'+1)+1)

S0 Y2i+1 = Yagit1)
And 15, > 19,11 for being outputs of 2-Comp

Altogether z1, 12, y3, ..., Y259, Y2n_1, 22, 1S sorted decreasingly

‘ 19 / 24

N

B \We can build a sorting network by successively applying merge networks
(as in mergesort).

Sorting Networks

B A sorting network of size n takes an input of size n and sorts it
(decreasingly).

B letz,....x, be the inputs.
We recursively define a sorting network as follows:

B [f » =2, asorting network is a 2-comparator:

Sorting(x1, x2) := 2-Comp(x1, x2)

20 / 24

N

Sorting Networks

B Forn > 2: Let us define

(21,22, -+, 2p/2) = Sorting(x1,T2,...,%,/2),
(Zn/2+17 /2421 3 Zn) = SOTtiﬂg(xn/zﬂa Ln/2425 - - - , Tn),
(Y1,Y2, - yn) = Merge(21,22,. .., 2n/2) Zn/24+1 -+ > 2n)

Then,
Sorting(z1,z2,...,Tn) := (Y1,Y2, -, Yn)

21 / 24

Sorting Networks

N

0p)

e
i
A

N

N

N

0p)

e
i
A

|
) G A W W i v

N

EFARAY

Merge,,_4

VWSS

22 / 24

N

Sorting Networks

B This encoding of cardinality constraints is arc-consistent
B It uses O(nlog” n) new variables and O(nlog”n) clauses

B Several improvements are possible:

¢ Only the first &k outputs suffice:
cardinality networks use O(n log” k) vars and clauses

¢ No need to assume that n is a power of two:
merges can be defined for inputs of different sizes

23 / 24

N

B N. Eén, N. Sorensson: Translating Pseudo-Boolean Constraints into SAT.
JSAT 2(1-4): 1-26 (2006)

Bibliography

B R. Asin, R. Nieuwenhuis, A. Oliveras, E. Rodriguez-Carbonell: Cardinality
Networks: a theoretical and empirical study. Constraints 16(2): 195-221
(2011)

B | Abio, R. Nieuwenhuis, A. Oliveras, E. Rodriguez-Carbonell: A
Parametric Approach for Smaller and Better Encodings of Cardinality
Constraints. Principles and Practice of Constraint Programming, 2013

B |. Abio: Solving hard industrial combinatorial problems with SAT. PhD
Thesis (2013)

‘ 2) 2

	What is an encoding?
	Examples: AMO constraints
	Examples: AMO constraints
	Examples: AMO constraints
	Consistency and Arc-Consistency
	Consistency and Arc-Consistency
	Cardinality Constraints
	Adders
	Adders
	Sorting Networks
	Sorting Networks
	2-comparators
	2-comparators
	Merge Networks
	Merge Networks
	Merge Networks
	Merge Networks
	Merge Networks
	Sorting Networks
	Sorting Networks
	Sorting Networks
	Sorting Networks
	Bibliography

