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Part I

An Overview of Data Stream
Analysis



Introduction

A data stream is a (very long) sequence

S = s1, s2, s3, . . . , sN

of elements drawn from a (very large) domain U (si ∈ U)

The goal: to find y = y(S), but . . .
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Introduction

. . . under rather stringent constraints (data stream model)

a single pass over the data stream

extremely short time spent on each single data item

a limited amount M of auxiliary memory, M� N; ideally
M = Θ(1) or M = Θ(logN)

no statistical hypothesis about the data
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There are a wide range of applications for the data stream
model

Network traffic analysis⇒ DoS/DDoS attacks, worms, . . .

Database query optimization

Information retrieval⇒ similarity index

Data mining

Recommedation systems

and many more . . .
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Introduction

We’ll look at S as a multiset {z1 ◦ f1, . . . , zn ◦ fn}, where

fi = frequency of the i-th distinct element zi

Some problems in data stream analysis:

Number of distinct elements: card(S) = n 6 N

Frequency moments Fp =
∑

16i6n f
P
i

(N.B. n = F0,N = F1)

(Number of) Elements zi such that fi > k (k-elephants)

(Number of) Elements zi such that fi < k (k-mice)

(Number of) Elements zi such that fi > cN, 0 < c < 1
(c-icebergs)

The k most frequent elements (top-k elements)

. . .
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Introduction

Very limited available memory⇒ exact solution too costly or
unfeasible
⇒ Randomized algorithms⇒ estimation ŷ of the quantity of
interest y

ŷ must be an unbiased estimator

E [ŷ] = y

The estimator must have a small standard error

SE [ŷ] :=

√
Var [ŷ]
E [ŷ]

< ε,

e.g., ε = 0.01 (1%)
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Probabilistic Counting

G.N. Martin

In late 70s G. Nigel N. Martin invents probabilistic counting to
optimize database query performance

To correct the bias that he systematically found in his
experiments, he introduced a “fudge” factor in the estimator



Probabilistic Counting

When Flajolet learnt about the algorithm, he put it on a solid
scientific ground, with a detailed mathematical analysis which
delivered the exact value of the correction factor and a tight
upper bound on the standard error



Probabilistic Counting

First idea: every element is hashed to a real value in (0, 1)
⇒ reproductible randomness

The multiset S is mapped by the hash function∗

h : U→ (0, 1) to a multiset

S ′ = h(S) = {x1 ◦ f1, . . . , xn ◦ fn},

with xi = hash(zi), fi = # de zi’s

The set of distinct elements X = {x1, . . . , xn} is a set of n
random numbers, independent and uniformly drawn from
(0, 1)
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Probabilistic Counting

Flajolet & Martin (JCSS, 1985) proposed to find, among the set
of hash values, the length of the largest prefix (in binary)
0.0R−11 . . . such that all shorter prefixes with the same pattern
0.0p−11 . . ., p 6 R, also appear

The value R is an observable which can be easily be computed
using a small auxiliary memory and it is insensitive to
repetitions← the observable is a function of X, not of the fi’s



Probabilistic Counting

For a set of n random numbers in (0, 1)→

E [R] ≈ log2 n

However E
[
2R
]
6∼ n, there is a significant bias
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Probabilistic Counting
procedure PROBABILISTICCOUNTING(S)
bmap← 〈0, 0, . . . , 0〉
for s ∈ S do
y← hash(s)
p← lenght of the largest prefix 0.0p−11 . . . in y
bmap[p]← 1

end for
R← largest p such that bmap[i] = 1 for all 0 6 i 6 p

. φ is the correction factor
return Z := φ · 2R

end procedure

A very precise mathemtical analysis gives:

φ−1 =
eγ
√

2
3

∏
k>1

(
(4k+ 1)(2k+ 1)

2k(4k+ 3)

)(−1)ν(k)

≈ 0.77351 . . .

⇒ E
[
φ · 2R

]
= n



Stochastic averaging

The standard error of Z := φ · 2R, despite constant, is too
large: SE [Z] > 1

Second idea: repeat several times to reduce variance and
improve precision

Problem: using m hash functions to generate m streams is
too costly and it’s very difficult to guarantee independence
between the hash values
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Stochastic averaging

Use the first log2m bits of each hash value to “redirect” it
(the remaining bits) to one of the m substreams→
stochastic averaging

Obtain m observables R1, R2, . . . , Rm, one from each
substream, and compute a mean value R

Each Ri gives an estimation for the cardinality of the i-th
substream, namely, Ri estimates n/m
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Stochastic averaging

There are many different options to compute an estimator from
the m observables

Sum of estimators:

Z1 := φ1(2R1 + . . . + 2Rm)

Arithmetic mean of observables (as proposed by Flajolet &
Martin):

Z2 := m · φ2 · 2
1
m

∑
16i6m Ri



Stochastic averaging

Harmonic mean (keep tuned):

Z3 := φ3 ·
m2

2−R1 + 2−R2 + . . . + 2−Rm

Since 2−Ri ≈ m/n, the second factor gives ≈ m2/(m2/n) = n



Stochastic averaging

All the strategies above yield a standard error of the form

c√
m

+ l.o.t.

Larger memory⇒ improved precision!

In probabilistic counting the authors used the arithmetic
mean of observables

SE [ZProbCount] ≈
0.78√
m
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LogLog & HyperLogLog

M. Durand

Durand & Flajolet (2003) realized that the bitmaps
(Θ(logn) bits) used by Probabilistic Counting can be
avoided and propose as observable the largest R such that
the pattern 0.0R−11 appears
The new observable is similar to that of Probabilistic
Counting but not equal: R(LogLog) > R(ProbCount)

Example
Observed patterns: 0.1101. . . , 0.010. . . , 0.0011 . . . ,
0.00001. . .
R(LogLog) = 5, R(ProbCount) = 3
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LogLog & HyperLogLog

The new observable is simpler to obtain: keep updated the
largest R seen so far: R := max{R,p}⇒ only Θ(log logn)
bits needed, since E [R] = Θ(logn)!

We have E [R] ∼ log2 n, but E
[
2R
]
= +∞, stochastic

averaging comes to rescue!

For LogLog, Durand & Flajolet propose

ZLogLog := αm ·m · 2
1
m

∑
16i6m Ri
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LogLog & HyperLogLog

The mathematical analysis gives for the correcting factor

αm =

(
Γ(−1/m)

1 − 21/m

ln 2

)−m

that guarantees that E [Z] = n+ l.o.t. (asymptotically
unbiased) and the standard error is

SE
[
ZLogLog

]
≈ 1.30√

m

Only m counters of size log2 log2(n/m) bits needed:
Ex.: m = 2048 = 211 counters, 5 bits each (about 1 Kbyte
in total), are enough to give precise cardinality estimations
for n up to 227 ≈ 108, with an standard error less than 4%
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LogLog & HyperLogLog

É. Fusy O. Gandouet F. Meunier

Flajolet, Fusy, Gandouet & Meunier conceived in 2007 the
best algorithm known (cif. PF’s keynote speech in ITC
Paris 2009)

Briefly: HyperLogLog combine the LogLog observables Ri
using the harmonic mean instead of the arithmetic mean

SE
[
ZHyperLogLog

]
≈ 1.03√

m
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LogLog & HyperLogLog

P. Chassaing L. Gérin

The idea of HyperLogLog stems from the analytical study
of Chassaing & Gérin (2006) to show the optimal way to
combine observables, but in their study the observables
were the k-th order statistics of each substream

They proved that the optimal way to combine them is to
use the harmonic mean
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Order Statistics

Bar-Yossef, Kumar & Sivakumar (2002); Bar-Yossef,
Jayram, Kumar, Sivakumar & Trevisan (2002) have
proposed to use the k-th order statistic X(k) to estimate
cardinality (KMV algorithm); for a set of n random
numbers, independent and uniformly distributed in (0, 1)

E [Xk] =
k

n+ 1

Giroire (2005, 2009) also proposes several estimators
combining order statistics via stochastic averaging
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Order Statistics

J. Lumbroso

The minimum of the set (k = 1) does not allow a feasible
estimator, but again stochastic averaging comes to rescue

Lumbroso uses the mean of m minima, one for each
substream

ZMinCount :=
m(m− 1)

M1 + . . . +Mm
,

where Mi is the minimum of the i-th substream



Order Statistics

J. Lumbroso

The minimum of the set (k = 1) does not allow a feasible
estimator, but again stochastic averaging comes to rescue

Lumbroso uses the mean of m minima, one for each
substream

ZMinCount :=
m(m− 1)

M1 + . . . +Mm
,

where Mi is the minimum of the i-th substream



Order Statistics

MinCount is an unbiased estimator with standard error
1/
√
m− 2

Lumbroso also succeeds to compute the probability
distribution of ZMinCount and the small corrections needed
to estimate small cardinalities (to few elements hashing to
one particular substream)
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Recordinality

A. Helmi J. Lumbroso A. Viola

RECORDINALITY (Helmi, Lumbroso, M., Viola, 2012) is a
relatively novel estimator, vaguely related to order
statistics, but based in completely different principles and it
exhibits several unique features

A more detailed study of Recordinality will be the subject of
the second part of this course
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How-to in Twelve Steps

1 Define some observable R that depends only on the set of
distinct elements (hash values) X or the subsequence of
their first occurrences in the data stream

2 The observable must be:
insensitive to repetitions
very fast to compute, using a small amount of memory
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How-to in Twelve Steps

3 Compute the probability distribution Prob {R = k} or the
density f(x)dx = Prob {x 6 R 6 x+ dx}

4 Compute the expected value for a set of |X| = n random
i.i.d. uniform values in (0, 1) or a random permutation of n
such values

E [R] =
∑
k

kProb {R = k} = f(n)

5 Under reasonable conditions, E
[
f(−1)(R)

]
should be

similar to n, but a correcting factor will be necessary to
obtain the estimator Z

Z := φ · f(−1)(R)⇒ E [Z] ∼ n
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How-to in Twelve Steps

6 Sometimes E [Z] = +∞ or Var [Z] = +∞ and stochastic
averaging helps avoid this pitfall; in any case, it can be
useful to use stochastic averaging

Zm := F(R1, . . . ,Rm)

7 Let Ni denote the r.v. number of distinct elements going to
the ith substream. Compute E [Z]:

E [Zm] =
∑

(n1,...,nm):n1+...+nm=n

(
n

n1,...,nm

)
mn

∑
j1,...,jm

F(j1, . . . , jm)

·
∏

16i6m

Prob {Ri = ji |Ni = ni}
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averaging helps avoid this pitfall; in any case, it can be
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∑
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∏
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How-to in Twelve Steps

8 The computation of E [Zm] should yield the correcting
factor φ = φm to compensate the bias; a similar
computation should allow us to compute SE [Zm]

9 Under quite general hypothesis Var [Zm] = Θ(n2/m) and
SE [Zm] ≈ c/

√
m

10 A finer analysis should provide the lower order terms o(1)
of the bias E [Zm] /n = 1 + o(1)
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How-to in Twelve Steps

11 Careful characterization of the probability distribution of
Zm is also important and useful⇒ additional corrections
or alternative ways to estimate the cardinality when it is
small or medium→ very few distinct elements on each
substream

12 Experiment! Without experimentation your results will not
draw attention from the practitioners; show them your
estimator is practical in a real-life setting, support your
theoretical analysis with experiments
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Other problems

To estimate the number of k-elephants or k-mice in the
stream we can draw a random sample of T distinct
elements, together with their frequency counts

Let Tk be the number of k-mice (k-elephants) in the
sample, and nk the number of k-mice in the data stream.
Then

E
[
Tk
T

]
=
nk
n

,

with a decreasing standard error as T grows.
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Other problems

The distinct sampling problem is to draw a random sample
of distinct elements and it has many applications in data
stream analysis

In a random sample from the data stream (e.g., using the
reservoir method) each distinct element zj appears with
relative frequency in the sample equal to its relative
frequency fj/N in the data stream⇒ needle-on-a-haystack
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Adaptive Sampling

M. Wegman G. Louchard

We need samples of distinct elements⇒ distinct sampling

Adaptive sampling (Wegman, 1980; Flajolet, 1990;
Louchard, 1997) is just such an algorithm (which also
gives an estimation of the cardinality, as the size of the
returned sample is itself a random variable)
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Adaptive Sampling

procedure ADAPTIVESAMPLING(S, maxC)
C← ∅; p← 0
for x ∈ S do

if hash(x) = 0p . . . then
C← C ∪ {x}

if |C| > maxC then
p← p+ 1; filter C

end if
end if

end for
return C

end procedure

At the end of the algorithm, |C| is the number of distinct elemnts
with hash value starting .0p1 ≡ the number of strings in the
subtree rooted at 0p in a binary trie for n random binary string.



Adaptive Sampling

There are 2p subtrees rooted at depth p

|C| ≈ n/2p ⇒ E [2p · |C|] ≈ n



Distinct Sampling in Recordinality and
Order Statistics

Recordinality and KMV collect the elements with the k
largest (smallest) hash values (often only the hash values)

Such k elements constitute a random sample of k distinct
elements.

Recordinality can be easily adapted to collect random
samples of expected size Θ(logn) or Θ(nα), with
0 < α < 1 and without prior knowledge of n! ⇒
variable-size distinct sampling⇒ better precision in
inferences about the full data stream
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Part II

Intermezzo: A Crash Course on
Analytic Combinatorics



Two basic counting principles

Let A and B be two finite sets.

The Addition Principle
If A and B are disjoint then

|A ∪B| = |A|+ |B|

The Multiplication Principle

|A×B| = |A|× |B|



Combinatorial classes

Definition
A combinatorial class is a pair (A, | · |), where A is a finite or
denumerable set of values (combinatorial objects, combinatorial
structures), | · | : A→ N is the size function and for all n > 0

An = {x ∈ A | |x| = n} is finite



Combinatorial classes

Example
A = all finite strings from a binary alphabet;
|s| = the length of string s

B = the set of all permutations;
|σ| = the order of the permutation σ

Cn = the partitions of the integer n; |p| = n if p ∈ Cn



Labelled and unlabelled classes

In unlabelled classes, objects are made up of
indistinguisable atoms; an atom is an object of size 1

In labelled classes, objects are made up of distinguishable
atoms; in an object of size n, each of its n atoms bears a
distinct label from {1, . . . ,n}



Counting generating functions

Definition
Let an = #An = the number of objects of size n in A. Then the
formal power series

A(z) =
∑
n>0

anz
n =

∑
α∈A

z|α|

is the (ordinary) generating function of the class A.
The coefficient of zn in A(z) is denoted [zn]A(z):

[zn]A(z) = [zn]
∑
n>0

anz
n = an



Counting generating functions

Ordinary generating functions (OGFs) are mostly used to
enumerate unlabelled classes.

Example

L = {w ∈ (0 + 1)∗ |w does not contain two consecutive 0’s}

= {ε, 0, 1, 01, 10, 11, 010, 011, 101, 110, 111, . . .}

L(z) = z|ε| + z|0| + z|1| + z|01| + z|10| + z|11| + · · ·
= 1 + 2z+ 3z2 + 5z3 + 8z4 + · · ·

Exercise: Can you guess the value of Ln = [zn]L(z)?



Counting generating functions

Definition
Let an = #An = the number of objects of size n in A. Then the
formal power series

Â(z) =
∑
n>0

an
zn

n!
=
∑
α∈A

z|α|

|α|!

is the exponential generating function of the class A.



Counting generating functions

Exponential generating functions (EGFs) are used to
enumerate labelled classes.

Example

C = circular permutations

= {ε, 1, 12, 123, 132, 1234, 1243, 1324, 1342,

1423, 1432, 12345, . . .}

Ĉ(z) =
1
0!

+
z

1!
+
z2

2!
+ 2

z3

3!
+ 6

z4

4!
+ · · ·

cn = n! · [zn]Ĉ(z) = (n− 1)!, n > 0



Disjoint union

Let C = A+B, the disjoint union of the unlabelled classes A

and B (A ∩B = ∅). Then

C(z) = A(z) + B(z)

And

cn = [zn]C(z) = [zn]A(z) + [zn]B(z) = an + bn



Cartesian product
Let C = A×B, the Cartesian product of the unlabelled classes
A and B. The size of (α,β) ∈ C, where a ∈ A and β ∈ B, is the
sum of sizes: |(α,β)| = |α|+ |β|.
Then

C(z) = A(z) · B(z)

Proof.

C(z) =
∑
γ∈C

z|γ| =
∑

(α,β)∈A×B

z|α|+|β| =
∑
α∈A

∑
β∈B

z|α| · z|β|

=

(∑
α∈A

z|α|

)
·

∑
β∈B

z|β|

 = A(z) · B(z)



Cartesian product

The nth coefficient of the OGF for a Cartesian product is the
convolution of the coefficients {an} and {bn}:

cn = [zn]C(z) = [zn]A(z) · B(z)

=

n∑
k=0

ak bn−k



Sequences
Let A be a class without any empty object (A0 = ∅). The class
C = SEQ(A) denotes the class of sequences of A’s.

C = {(α1, . . . ,αk) |k > 0,αi ∈ A}

= {ε}+A+ (A×A) + (A×A×A) + · · · = {ε}+A× C

Then
C(z) =

1
1 −A(z)

Proof.

C(z) = 1 +A(z) +A2(z) +A3(z) + · · · = 1 +A(z) · C(z)



Labelled objects
Disjoint unions of labelled classes are defined as for unlabelled
classes and Ĉ(z) = Â(z) + B̂(z), for C = A+B. Also,
cn = an + bn.

To define labelled products, we must take into account that for
each pair (α,β) where |α| = k and |α|+ |β| = n, we construct(
n
k

)
distinct pairs by consistently relabelling the atoms of α and

β:

α = (2, 1, 4, 3), β = (1, 3, 2)

α× β = {(2, 1, 4, 3, 5, 7, 6), (2, 1, 5, 3, 4, 7, 6), . . . ,

(5, 4, 7, 6, 1, 3, 2)}

#(α× β) =
(

7
4

)
= 35

The size of an element in α× β is |α|+ |β|.



Labelled products

For a class C that is labelled product of two labelled classes A

and B

C = A×B =
⋃
α∈A
β∈B

α× β

the following relation holds for the corresponding EGFs

Ĉ(z) =
∑
γ∈C

z|γ|!

|γ|!
=
∑
α∈A

∑
β∈B

(
|α|+ |β|

|α|

)
z|α|+|β|

(|α|+ |β|)!

=
∑
α∈A

∑
β∈B

1
|α|!|β|!

z|α|+|β| =

(∑
α∈A

z|α|

|α|!

)
·

∑
β∈B

z|β|

|β|!


= Â(z) · B̂(z)



Labelled products

The nth coefficient of Ĉ(z) = Â(z) · B̂(z) is also a convolution

cn = [zn]Ĉ(z) =

n∑
k=0

(
n

k

)
ak bn−k



Sequences
Sequences of labelled object are defined as in the case of
unlabelled objects. The construction C = SEQ(A) is well
defined if A0 = ∅.
If C = SEQ(A) = {ε}+A× C then

Ĉ(z) =
1

1 − Â(z)

Example
Permutations are labelled sequences of atoms, P = SEQ(Z).
Hence,

P̂(z) =
1

1 − z
=
∑
n>0

zn

n! · [zn]P̂(z) = n!



A dictionary of admissible unlabelled
operators

Class OGF Name
ε 1 Epsilon
Z z Atomic
A+B A(z) + B(z) Disjoint union
A×B A(z) · B(z) Product
SEQ(A) 1

1−A(z) Sequence
ΘA ΘA(z) = zA ′(z) Marking
MSET(A) exp

(∑
k>0A(z

k)/k
)

Multiset
PSET(A) exp

(∑
k>0(−1)kA(zk)/k

)
Powerset

CYCLE(A)
∑
k>0

φ(k)
k ln 1

1−A(zk)
Cycle



A dictionary of admissible labelled
operators

Class EGF Name
ε 1 Epsilon
Z z Atomic
A+B Â(z) + B̂(z) Disjoint union
A×B Â(z) · B̂(z) Product
SEQ(A) 1

1−Â(z)
Sequence

ΘA ΘÂ(z) = zÂ ′(z) Marking
SET(A) exp(Â(z)) Set

CYCLE(A) ln
(

1
1−Â(z)

)
Cycle



Bivariate generating functions

We need often to study some characteristic of combinatorial
structures, e. g., the number of left-to-right maxima in a
permutation, the height of a rooted tree, the number of complex
components in a graph, etc.
Suppose X : An → N is a characteristic under study. Let

an,k = #{α ∈ A | |α| = n,X(α) = k}

We can view the restriction Xn : An → N as a random variable.
Then under the usual uniform model

Prob {Xn = k} =
an,k

an



Bivariate generating functions

Define

A(z,u) =
∑
n,k>0

an,kz
nuk

=
∑
α∈A

z|α|uX(α)

Then an,k = [znuk]A(z,u) and

Prob {Xn = k} =
[znuk]A(z,u)
[zn]A(z, 1)



Bivariate generating functions

We can also define

B(z,u) =
∑
n,k>0

Prob {Xn = k} znuk

=
∑
α∈A

Prob {α} z|α|uX(α)

and thus B(z,u) is a generating function whose coefficient of zn

is the probability generating function of the r.v. Xn

B(z,u) =
∑
n>0

Pn(u)z
n

Pn(u) = [zn]B(z,u) = E
[
uXn

]
=
∑
k>0

Prob {Xn = k}uk



Bivariate generating functions

Proposition
If P(u) is the probability generating function of a random
variable X then

P(1) = 1,

P ′(1) = E [X] ,

P ′′(1) = E
[
X2
]
= E [X(X− 1)] ,

Var [X] = P ′′(1) + P ′(1) − (P ′(1))2



Bivariate generating functions

We can study the moments of Xn by successive differentiation
of B(z,u) (or A(z,u)). For instance,

B(z) =
∑
n>0

E [Xn] z
n =

∂B

∂u

∣∣∣∣
u=1

For the rth factorial moments of Xn

B(r)(z) =
∑
n>0

E [Xn
r] zn =

∂rB

∂ur

∣∣∣∣
u=1

Xn
r = Xn(Xn − 1) · · · · · (Xn − r+ 1)



Hwang’s Quasi-Powers Theorem

Let B(z,u) be the BGF for a sequence Xn of random variables
such that

Pn(u) = E
[
uXn

]
= [zn]B(z,u) = a(u) · b(u)λn · (1 + o(1))

in a complex neighborhood of u = 1, with λn →∞, and a(u)
and b(u) analytic functions in a neighborhood of u = 1 with
a(1) = b(1) = 1. Then a proper normalization of Xn satisfies a
CLT:

Xn − E [Xn]√
Var [Xn]

(d)−−→ N(0, 1),

provided that Var [Xn]→∞.



The number of left-to-right maxima in a
permutation

Consider the following specification for permutations

P = {∅}+ P× Z

The BGF for the probability that a random permutation of size n
has k left-to-right maxima is

M(z,u) =
∑
σ∈P

z|σ|

|σ|!
uX(σ),

where X(σ) = # of left-to-right maxima in σ



The number of left-to-right maxima in a
permutation

With the recursive descomposition of permutations and since
the last element of a permutation of size n is a left-to-right
maxima iff its label is n

M(z,u) =
∑
σ∈P

∑
16j6|σ|+1

z|σ|+1

(|σ|+ 1)!
uX(σ)+[[j=|σ|+1]]

[[P]] = 1 if P is true, [[P]] = 0 otherwise.



The number of left-to-right maxima in a
permutation

M(z,u) =
∑
σ∈P

z|σ|+1

(|σ|+ 1)!
uX(σ)

∑
16j6|σ|+1

u[[j=|σ|+1]]

=
∑
σ∈P

z|σ|+1

(|σ|+ 1)!
uXσ)(|σ|+ u)

Taking derivatives w.r.t. z

∂

∂z
M =

∑
σ∈P

z|σ|

|σ|!
uXσ)(|σ|+ u) = z

∂

∂z
M+ uM

Hence,

(1 − z)
∂

∂z
M(z,u) − uM(z,u) = 0



The number of left-to-right maxima in a
permutation

Solving, since M(0,u) = 1

M(z,u) =
(

1
1 − z

)u
=
∑
n,k>0

[
n

k

]
zn

n!
uk

where
[
n
k

]
denote the (signless) Stirling numbers of the first

kind, also called Stirling cycle numbers.
Hence

Prob {Xn = k} =

[
n
k

]
n!



The number of left-to-right maxima in a
permutation

Taking the derivative w.r.t. u and setting u = 1

m(z) =
∂

∂z
M(z,u)

∣∣∣∣
u=1

=
1

1 − z
ln

1
1 − z

Thus the average number of left-to-right maxima in a random
permutation of size n is

[zn]m(z) = E [Xn] = Hn = 1+
1
2
+

1
3
+· · ·+ 1

n
= lnn+γ+O(1/n)

1
1 − z

ln
1

1 − z
=
∑
`

z`
∑
m>0

zm

m
=
∑
n>0

zn
n∑
k=1

1
k



The number of left-to-right maxima in a
permutation

Similarly, taking the second derivative w.r.t. u of M(z,u) and
setting u = 1 we get the GF of the second factorial moment

m2(z) =
∂2

∂z2M(z,u)
∣∣∣∣
u=1

=
1

1 − z
ln2 1

1 − z

Then

[zn]m2(z) = E
[
Xn

2
]
= 2

∑
0<j6n

Hj−1

j
= H2

n −H
(2)
n ,

H
(2)
n =

∑
16j6n

1/j2

Var [Xn] = [zn]m2(z) + [zn]m(z) − ([zn]m(z))2

= H2
n −H

(2)
n +Hn −H2

n = Hn −H
(2)
n = lnn+O(1)



The number of left-to-right maxima in a
permutation

Since M(z,u) = (1 − z)−u we have

[zn]M(z,u) = [zn]

(
1

1 − z

)u
= n!

(
n+ u− 1

n

)
(≡ Γ(n+ u)

Γ(u)

Thus in a neighborhood of u = 1,

E
[
uXn

]
= [zn]M(z,u) = nu−1(1 + o(1))

and applying Hwang’s quasi-powers theorem with a(u) = 1,
b(u) = exp(u− 1) and λn = lnn it follows that

Xn − lnn√
lnn

(d)−−→ N(0, 1)



Part III

Case Study: Analysis of
Recordinality



Introduction

Given the data stream S = s1, . . . , sN, consider the substream

Su = z1, . . . , zn

with zi the i-th distinct element in S in order of appearence

Example

S = 3, 14, 1, 593, 26, 53, 5, 8979, 3, 23, 8, 46, 26, 433, 8, 3, 2, 8

Su = 3, 14, 1, 593, 26, 53, 5, 8979, 23, 8, 46, 433, 2



Introduction
Applying a hash function h on Su allows us to see the data
stream as a permutation Pu:

Example

Su = 3, 14, 1, 593, 26, 53, 5, 8979, 23, 8, 46, 433, 2

Pu = 3, 6, 1, 12, 8, 10, 4, 13, 7, 5, 9, 11, 2

S = 3, 14, 1, 593, 26, 53, 5, 8979, 3, 23, 8, 46, 26, 433, 8, 3, 2, 8

P = 3, 6, 1, 12, 8, 10, 4, 13, 3, 7, 5, 9, 8, 11, 5, 3, 2, 5

To simplify this example take h(x) = x



Recordinality

RECORDINALITY counts the number of records (more
generally, k-records) in the sequence

It depends in the underlying permutation of the first
occurrences of distinct values, very different from the other
estimators

If we assume that the first occurrences of distinct values
form a random permutation then no need for hash values!
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Recordinality

σ(i) is a record of the permutation σ if σ(i) > σ(j) for all
j < i

This notion is generalized to k-records: σ(i) is a k-record if
there are at most k− 1 elements σ(j) larger than σ(i) for
j < i; in other words, σ(i) is among the k largest elements
in σ(1), . . . ,σ(i)



Recordinality

σ(i) is a record of the permutation σ if σ(i) > σ(j) for all
j < i

This notion is generalized to k-records: σ(i) is a k-record if
there are at most k− 1 elements σ(j) larger than σ(i) for
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Recordinality

procedure RECORDINALITY(S)
fill T with the first k distinct elements (hash values)
of the stream S

R← k

for all s ∈ S do
x← h(s)

if x > min(T)∧ x 6∈ T then
R← R+ 1; T ← T ∪ {x} \ min(T)

end if
end for
return Z = ϕ(R)

end procedure

Memory: k hash values (k logn bits) + 1 counter (log logn bits)



Estimating Cardinality from Records

To find the estimator Z, we need to fully understand the
probabilistic behavior of R, the number of k-records in a random
permutation of size n.
The recursive decomposition of permutations

P = ε+ P× Z

is the natural choice for the analysis of k-records, with ×
denoting the labelled product.



Analysis of k-Records

For each σ in P, {σ}× Z is the set of |σ|+ 1 permutations

{σ ? 1,σ ? 2, . . . ,σ ? (n+ 1)}, n = |σ|

σ ? j denotes the permutation one gets after relabelling j,
j+ 1, . . . , n = |σ| in σ to j+ 1, j+ 2, . . . , n+ 1 and
appending j at the end

Example

32451 ? 3 = 425613

32451 ? 2 = 435612
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For each σ in P, {σ}× Z is the set of |σ|+ 1 permutations

{σ ? 1,σ ? 2, . . . ,σ ? (n+ 1)}, n = |σ|

σ ? j denotes the permutation one gets after relabelling j,
j+ 1, . . . , n = |σ| in σ to j+ 1, j+ 2, . . . , n+ 1 and
appending j at the end

Example

32451 ? 3 = 425613

32451 ? 2 = 435612



Analysis of k-Records

R(σ) = the set of k-records in permutation σ

r(σ) = #R(σ)

Let Xj(σ) = 1 if n− k+ 1 < j 6 n+ 1, n = |σ|; Xj(σ) = 0
otherwise.

r(σ ? j) = r(σ) + Xj(σ)
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R(σ) = the set of k-records in permutation σ
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otherwise.

r(σ ? j) = r(σ) + Xj(σ)



Analysis of k-Records

Theorem

Let R(z,u) =
∑
σ∈P:|σ|>k

z|σ|

|σ|!u
r(σ).

Then

∂

∂z
((1 − z)R(z,u)) = k(u− 1)R(z,u) + k

ukzk−1

k!
.



Analysis of k-Records

R(z,u) =
∑

σ∈P:|σ|>k

z|σ|

|σ|!
ur(σ) =

zkuk

k!
+
∑
n>k

∑
σ∈Pn

z|σ|

|σ|!
ur(σ)

=
zkuk

k!
+
∑
n>k

∑
16j6n

∑
σ∈Pn−1

z|σ?j|

|σ ? j|!
ur(σ?j)

=
zkuk

k!
+
∑
n>k

∑
16j6n

∑
σ∈Pn−1

z|σ|+1

(|σ|+ 1)!
ur(σ)+Xj(σ)

=
zkuk

k!
+
∑
n>k

∑
σ∈Pn−1

z|σ|+1

(|σ|+ 1)!
ur(σ)

∑
16j6n

uXj(σ).



Analysis of k-Records

Since Xj(σ) is 1 if and only if j > |σ|+ 1 − k and 0 otherwise∑
16j6n

uXj(σ) = (|σ|+ 1 − k) + ku.

R(z,u) =
zkuk

k!
+
∑
n>k

∑
σ∈Pn−1

z|σ|+1

(|σ|+ 1)!
ur(σ)

(
(|σ|+1−k)+ku

)
.

The theorem follows after differentiation w.r.t. z and a few
additional algebraic manipulations.



Analysis of k-Records

To solve the PDE for R(, zu) we introduce

Φ(z,u) :=
zk

k!
∂kR(z,u)
∂zk

so that

[zn]Φ(z,u) =
(
n

k

)
[zn]R(z,u)

and
(1 − z)

∂Φ

∂z
− (k+ 1)Φ = k(u− 1)Φ



Analysis of k-Records
The explicit solution for Φ(z,u) is easir, once we plug in the
initial conditions, we get

Φ(z,u) =
(zu)k

1 − z

(
1

1 − z

)ku
We can get easily average and variance for the number Rn of
k-records:

E [Rn] =
1(
n
k

) [zn] ∂Φ
∂u

∣∣∣∣
u=1

= k(Hn −Hk + 1) = k ln(n/k) +O(1)

Likewise

Var [Rn] = k(Hn −Hk) − k
2(H

(2)
n −H

(2)
k ) = k ln(n/k) +O(1)



Analysis of k-Records

From the explict form of Φ(z,u)

Theorem (Helmi, M., Panholzer, 2012)

Prob {Rn = j} =

{
[[n = j]], if n < k,[
n−k+1
j−k+1

]
kj−k·k!
n! , if k 6 j 6 n.



The Estimator for Recordinality

Let us assume for the moment that k 6 R 6 n. If R < k then we
are sure that n = R.
Since E [Rn] = k ln(n/k) +O(1) let us take

W = exp(φ · R)

for some correcting factor φ to be determined and such that
E [W] is close (proportional?) to n.



The Estimator for Recordinality

E [expφ · R] =
∑
j>k

exp(φ · j)Prob {R = j}

=
∑
j>k

exp(φ · j)
[
n− k+ 1
j− k+ 1

]
kj−k · k!
n!

=
k!
n!k

exp(φ · (k− 1))
∑
j>1

[
n− k+ 1

j

]
(k exp(φ))j

Since ∑
16j6m

[
m

j

]
zj = z(z+ 1) · · · (z+m− 1) =: zm

E [exp(φ · R)] = k!
n!k

exp(φ · (k− 1))(k exp(φ)n−k+1



The Estimator for Recordinality

If k exp(φ) = k+ 1 then

(k exp(φ))n−k+1 = (k+ 1)n−k+1 =
(n+ 1)!
k!

exp(φ) =
(

1 +
1
k

)
Hence

E [exp(φ · R)] = k!
n!k

exp(φ · (k− 1))(k exp(φ))n−k+1

=
n+ 1
k

(
1 +

1
k

)k−1



The Estimator for Recordinality

Therefore if we set

Z = k

(
1 +

1
k

)−k+1

exp(φ · R) − 1

= k

(
1 +

1
k

)−k+1(
1 +

1
k

)R
− 1

= k

(
1 +

1
k

)R−k+1

− 1,

E [Z] = n, exactly!!



Recordinality in Practice
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Two plots showing the accuracy of 500 estimates of the number of distinct elements
contained in Shakespeare’s A Midsummer Night’s Dream. Left: k = 64. Right:
k = 256. Above the top and below the bottom line: 5% of the estimates. Area within
centermost lines: 70% estimates. Gray rectangle: area within one standard deviation
from the mean.



Recordinality in Practice

k RECORDINALITY Adaptive Sampling k-th Order Statistic HYPERLOGLOG

Avg. Error Avg. Error Avg. Error Avg. Error
4 2737 1.04 3047 0.70 4050 0.89 2926 0.61
8 2811 0.73 3014 0.41 3495 0.44 3147 0.42

16 3040 0.54 3012 0.31 3219 0.28 2981 0.26
32 3010 0.34 3078 0.20 3159 0.18 3001 0.18
64 3020 0.22 3020 0.15 3071 0.12 3011 0.13

128 3042 0.14 3032 0.11 3070 0.10 3031 0.09
256 3044 0.08 3027 0.07 3037 0.06 3025 0.06
512 3043 0.04 3043 0.05 3046 0.04 2975 0.08

Table: Estimating the number of distinct elements in Shakespeare’s A
Midsummer Night’s Dream (n = 3031). Normalized average and the
empirical standard deviation divided by n. 10 000 simulations.



Recordinality in Practice

k RECORDINALITY Adaptive Sampling k-th Order Statistic HYPERLOGLOG

Avg. Error Avg. Error Avg. Error Avg. Error
4 43658 1.19 59474 0.94 81724 1.30 44302 0.42
8 35230 0.52 47432 0.38 57028 0.41 52905 0.39

16 57723 0.98 49889 0.29 52990 0.23 51522 0.27
32 48686 0.45 49480 0.23 50556 0.18 48009 0.16
64 47617 0.34 50524 0.14 51146 0.13 49345 0.14

128 50097 0.17 50452 0.09 50947 0.08 51531 0.10
256 51742 0.11 50857 0.06 50348 0.06 49287 0.06
512 49496 0.09 49920 0.06 50084 0.04 49016 0.04

Table: Experiments for a random stream containg n = 50 000 distinct
elements—here 25 000 simulations were run.
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