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ResumenEl presente trabajo est�a dedicado al an�alisis de algoritmos asumiendo que sus en-tradas est�an distribu��das seg�un el modelo probabil��stico BST (as�� denominado por su vincu-laci�on con los �arboles binarios de b�usqueda, Binary Search Trees en ingl�es) o seg�un el modeloequilibrado, que generaliza al anterior. El conjunto de entradas de tales algoritmos es siemprealguna familia de �arboles simplemente generados.En ambos modelos, dos objetos (�arboles, k-tuplas de �arboles) del mismo tama~no noson necesariamente equiprobables, contrariamente a lo que se asume en la mayor��a de an�alisisprobabil��sticos relativos a sistemas de manipulaci�on simb�olica, demostraci�on autom�atica deteoremas o compilaci�on, donde la hip�otesis de uniformidad es v�alida en gran n�umero desituaciones.Algunos ejemplos de familias de �arboles que no est�an uniformemente distribu��dosson los citados �arboles binarios de b�usqueda, los �arboles k-d, los �arboles m-arios de b�usqueda,los tries, los Patricia trees, los quadtrees, etc.El an�alisis probabil��stico de algoritmos mediante el modelo BST y el modelo equili-brado conduce, por lo general, a ecuaciones diferenciales ordinarias y en derivadas parciales,en el camino hacia la soluci�on; en cambio, en el an�alisis de algoritmos para �arboles uni-formemente distribu��dos, hay que resolver problemas algebraicos y problemas de enumeraci�oncombinatoria.La tesis se divide en cuatro partes. Las dos primeras contienen el material introduc-torio, conceptos b�asicos y de�niciones, as�� como una breve descripci�on de las herramientasmatem�aticas empleadas: el m�etodo del operador simb�olico y t�ecnicas procedentes del an�alisisde variable compleja. En la parte II presentamos una colecci�on de modelos de probabilidadpara familias de �arboles, describiendo sus contextos de aplicaci�on natural, algunos resultadosprevios y la metodolog��a a seguir en los correspondientes an�alisis de caso medio.La parte III constituye la principal contribuci�on de este trabajo. Comienza conun cap��tulo en el que se introduce la ocupaci�on, una sencilla caracter��stica relacionada conel grado de completitud o equilibrado de los �arboles. Analizamos dicha caracter��stica bajodiferentes hip�otesis concernientes al modelo de probabilidad, con el �n de poder compararlos principales elementos distintivos de cada modelo y el tipo de problemas matem�aticosasociados a cada uno de ellos.En el cap��tulo 5 abordamos la de�nici�on de un conjunto de reglas que permitir�an



obtener directamente las ecuaciones matem�aticas que describen el comportamiento de unalgoritmo a partir de la propia estructura del algoritmo, para una cierta clase de algoritmos.El cap��tulo 6 se dedica al examen de una colecci�on de algoritmos elementales y depredicados sobre pares de �arboles, interesantes y sencillos, y que denominamos propiedadeshereditarias. Dichos predicados admiten caracterizaciones recursivas muy similares. La for-mulaci�on matem�atica del problema de evaluaci�on de la probabilidad que una propiedad hered-itaria se cumpla para un par de �arboles de talla n, es estructuralmente id�entica para todaslas propiedades hereditarias. Por otra parte, el comportamiento medio de los algoritmos queveri�can si un par de �arboles dado cumple una propiedad hereditaria, se puede describir me-diante ecuaciones muy parecidas. El test de igualdad entre dos �arboles dados es uno de talesalgoritmos y recibe una atenci�on mayor en un cap��tulo posterior.Los dos siguientes cap��tulos contienen los an�alisis del tama~nomedio de la intersecci�onde un par de �arboles y de la complejidad media del test de igualdad para pares de �arbolesbinarios. En ambos an�alisis, el problema original se transforma en uno de resoluci�on de unaecuaci�on diferencial en derivadas parciales. El uso del m�etodo de Riemann, y la aplicaci�onde t�ecnicas de an�alisis asint�otico proporciona los resultados deseados. As��, el tama~no mediode la intersecci�on de un par de �arboles binarios de tama~no n es O(n2p2�2=plogn) y el testde igualdad para pares de �arboles binarios consume O(logn) pasos en promedio. Hacemostambi�en un detallado an�alisis de la probabilidad que dos �arboles, de tama~no n cada uno, seaniguales. Todos los an�alisis mencionados requieren el uso de resultados matem�aticos espec���cos,de los cuales se hace un repaso en los preliminares.



ResumEl present treball est�a dedicat a l'an�alisi d'algorismes quan s'assumeix que les en-trades est�an distribu��des segons el model de probabilitat BST (aix�� anomenat per la sevavinculaci�o amb els arbres binaris de cerca, Binary Search Trees en angl�es) o segons el modelequilibrat que generalitza l'anterior. El conjunt d'entrades d'aquests algorismes sempre ser�auna fam��lia d'arbres simplement generats.En ambd�os models, dos objectes (arbres, k-tuples d'arbres) de la mateixa grand�ariano s�on necess�ariament equiprobables, contr�ariament al que s'assumeix a la major part d'an�a-lisis probabil��stiques relatives a sistemes de manipulaci�o simb�olica, demostraci�o autom�aticade teoremes o compilaci�o, on la hip�otesi d'uniformitat �es v�alida en gran nombre de situacions.Alguns examples de fam��lies d'arbres que no s�on uniformement distribu��ts inclouenels ja esmentats arbres binaris de cerca, el arbres k-d, els arbres m-aris de cerca, els tries, elsPatricia trees, els quadtrees, etc.L'an�alisi probabil��stica d'algorismes mitjan�cant el model BST i el model equilibratcondueix gaireb�e sempre a equacions diferencials ordin�aries i en derivades parcials, en el cam�icap a la soluci�o; mentre que en l'an�alisi d'algorismes per arbres uniformement distribu��ts,s'han de resoldre problemes algebraics i d'enumeraci�o combinat�oria.La tesi es divideix en quatre parts. Les dues primeres contenen el material introduc-tori, conceptes b�asics i de�nicions, aix�� com una breu descripci�o de les eines matem�atiquesque hem emprat: el m�etode de l'operador simb�olic i t�ecniques provinents de l'an�alisi de vari-able complexa. A la part II tamb�e es presenta una col.lecci�o de models de probabilitat per afam��lies d'arbres, i hi descrivim els seus contextos d'aplicaci�o natural, alguns resultats previsi la metodologia a seguir en els corresponents an�alisis de cas mitj�a.La part III constitueix la principal contribuci�o d'aquest treball. Comen�ca amb uncap��tol en el qual s'introdueix l'ocupaci�o, una caracter��stica relacionada amb el grau de com-pletitut o balancejat dels arbres. Analitzem aquesta caracter��stica sota diferents hip�otesisconcernets al model de probabilitat, per tal de poder comparar els principals elements distin-tius de cada model i el tipus de problemes matem�atics associats a cada un dels models.Al cap��tol 5 abordem la de�nici�o d'un conjunt de regles que permetran obtenirdirectament les equacions matem�atiques que descriuen el comportament mitj�a d'un algorismea partir de la pr�opia estructura de l'algorisme, per a una certa classe d'algorismes.El cap��tol 6 es dedica a l'examen d'una fam��lia d'algorismes i una fam��lia de predicats



sobre parells d'arbres, interesants i senzills, que anomenem propietats heredit�aries. Aquestespropietats admeten caracteritzacions recursives molt similars. La formulaci�o matem�atica delproblema d'avaluar la probabilitat que una propietat heredit�aria es cumpleixi per un parelld'arbres de talla n, �es estructuralment id�entica per totes les propietats heredit�aries. D'altrabanda, el comportament mitj�a dels algorismes que veri�quen si un parell d'arbres donatsatisf�a una propietat heredit�aria, es pot descriure mitjan�cant equacions molt semblants. Eltest d'igualtat entre dos arbres donats �es un d'aquests algorismes i rep una atenci�o m�es granen un cap��tol posterior.Els dos seg�uents cap��tols contenen les an�alisis de la talla mitjana de la intersecci�od'un parell d'arbres i de la complexitat mitjana del test d'igualtat per a parells d'arbresbinaris. En totes dues an�alisis, el problema original es transforma en el de resoldre unaequaci�o diferencial en derivades parcials. L'�us del m�etode de Riemann, aix�� com l'aplicaci�ode t�ecniques d'an�alisi asimpt�otica proporciona els resultats desitjats. Per exemple, la tallamitjana de la intersecci�o d'un parell d'arbres binaris de talla n �es O(n2p2�2=plogn) i el testd'igualtat per a parells d'arbres binaris consumeix O(logn) pasos en mitjana. Fem tamb�e unaan�alisi detallada de la probabilitat que dos arbres, tots dos de talla n, siguin iguals. Totes lesan�alisis mencionades demanen l'�us de resultats matem�atics molt espec���cs, dels quals fem unrep�as als preliminars.



AbstractThis thesis is devoted to the analysis of algorithms assuming that the input is dis-tributed according to the BST probability model (thus named after the binary search trees)or to the balanced model that generalizes the former. The input set of such algorithms issome family of simply generated trees.In those models, two objects of the same size are not equiprobable, contrary towhat happens in most average-case analyses of algorithms for symbolic manipulation sys-tems, automatic theorem proving or compiling, for which the assumption that all inputs areequiprobable is valid under most circumstances.Some examples of families of trees that are not uniformly distributed are binarysearch trees, k-d-trees, m-ary search trees, digital tries, Patricia trees, quadtrees, etc.The average-case analysis of algorithms under the BST and the balanced probabil-ity model almost always encounters ordinary and partial di�erential equations in the waytowards the solution; while in the average-case analysis of algorithms dealing with uniformlydistributed trees we have to solve algebraic and combinatorial enumeration problems.The thesis is divided in four parts. The �rst two ones contain the introductorymaterial, basic concepts and de�nitions, as well as a brief description of the mathematicaltools that have been used: the symbolic operator method and complex analysis techniques.In Part II we also present a collection of probability models for families of trees, describingtheir natural contexts of application, known results and the methodology to be used in thecorresponding average-case analyses.Part III covers the main contributions of this work. It begins with a chapter intro-ducing the occupancy, a characteristic that is closely related to the degree of balancing oftrees. We analyze this characteristic under di�erent assumptions concerning the probabilitymodel, in order to compare the main di�erences between the probability models and the kindof mathematical problems associated to each of them.In Chapter 5 we de�ne a set of translation rules that can be applied systematicallyto obtain the mathematical equations that describe the average behavior of an algorithm,directly from the structure of the algorithm, for a certain class of algorithms.Chapter 6 is dedicated to examine a class of elementary algorithms and of simplepredicates over pairs of trees, called hereditary properties, that are recursively characterizedin similar terms. The mathematical formulation of the problem of evaluating the probability



that the property holds for pairs of size n, is structurally identical for all hereditary properties.On the other hand, the average behavior of the algorithms that check if a given pair of treessatis�es an hereditary property, are described by quite similar equations. The equality testis one of such algorithms and receives a more complete treatement in one of the followingchapters.The next two chapters are devoted to the analysis of the average of the intersectionof a pair of trees and of the average-case complexity of the equality test for pairs of binarytrees. In both analyses, the original problem translates into that of solving a partial di�er-ential equation. The use of Riemann's method as well the application of asymptotic analysistechniques provide the desired results. Thus, the average size of the intersection of two binarytrees with total size n is O(n2p2�2=plog n) and the time spent by the equality test for a pairof binary trees is O(logn) on the average. There is also a detailed analysis of the probabilityof two binary trees being equal, if both have n nodes. All these analyses require the use ofvery speci�c mathematical results, that we overview in the preliminaries.
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1
Part IIntroduction





3The ultimate goal of the analysis of algorithms is to obtain useful information aboutthe computational resources required by algorithms. In general, such information is given ina concise way, as a function of the size of the input to the algorithm.The same techniques used to analyze algorithms are useful to analyze the behavior ofcharacteristics of data structures. The forthcoming argument about the analysis of algorithmsapplies also to the analysis of characteristics of data structures. After all, the computationalresources used by an algorithm can be viewed as a characteristic of its inputs. Hence, we willspeak most of the times of either analysis of algorithms or analysis of characteristics of datastructures, when we actually refer to both.There are many reasons for doing the analysis of an algorithm; the most straightfor-ward of them is to evaluate the suitability of the algorithm for applications and to comparethe algorithm with others; another important reason is that the analysis helps to understandthe algorithm better and may suggest improvements to it.In order to analyze an algorithm we begin by de�ning the complexity measure weare interested in. Common complexity measures are time, storage, number of comparisons,number of records moved, number of disk accesses (in algorithms using external memory),etc. The most interesting ones are time and storage, but since these quantities are machine-dependent it is very usual to compute them for some abstract machine model. After that, asize function must be de�ned over the set of inputs of the algorithm. Most data structurescarry a natural notion of size. For example, the size of an array is its dimension, the size ofa string of symbols is its length, the size of a binary tree is the number of internal nodes ithas, the size of a general tree is the total number of nodes (internal and external) in the tree,and so on.Let us consider an algorithm A that operates on inputs in the set E. The size ofan element e 2 E is denoted by jej, and En = f e 2 E j jej = n g is the set of elements in Ethat have size n. Let �A be the complexity measure under study1 (for instance, �A(e) canbe the number of elementary steps that algorithm A makes to process the input e). Noticethat a given algorithm can behave in quite di�erent ways even for inputs of the same size.For instance, the total running time of insertion sort is linear with respect to the number ofitems to be sorted, if these items are already sorted; but it is quadratic if the items are inreverse order (in fact, we expect this running time to be quadratic for random inputs) [Sed88].1Subscript A in �A will be dropped from now on, if there is no ambiguity.



4Related to each complexity measure we can de�ne the following quantities:1. The worst-case complexity of algorithm A over En is�WORST (n) = maxf�(e) j e 2 En g:2. The best-case complexity of algorithm A over En is similarly de�ned by�BEST (n) = minf�(e) j e 2 En g:Both complexities give indications concerning the extremal behavior of A whenapplied to instances of size n. Their determination usually requires the \construction" of theparticular objects for which the algorithm achieves these extremal behaviors.In many cases, the most valuable information is provided by average-case analysis.As an example of this, it is known that the quicksort algorithm requires O(n logn) operationsto sort n items on the average, but it takes O(n2) operations in the worst case [Sed88].In the average-case analysis of algorithms, there is a last step which concludes themodelization; it consists in the de�nition of a probability distribution over each subset of in-puts of the same size. We call such family of probability distributions a probability model . Wecan consider the complexity measure as a random variable, and the average-case complexitycan be de�ned as a mathematical expectation in the standard way. We have the followingde�nition:3. The average-case complexity of algorithm A over En is�A(n) = Ef�A(e) j e 2 En g;where EfX g denotes the expectation of the random variable X .The de�nition of the average-case complexity can be reexpressed as�(n) = Xk kPrf�(e) = k j e 2 En g == Xe2En Pr(e)�(e);where Pr(�) is the probability distribution over En.



5Frequently, the average-case analysis is performed assuming that all elements ofa given size are equally likely to happen. This probabilistic model is also known as theuniform model , and has proved useful in a wide variety of applications. Moreover, for manyof these applications, the uniformity hypothesis leads to predictions that agree with the actualobserved performances. For the uniform model the average-case complexity is reexpressed asfollows: �(n) = 1jEnj Xe2En �(e); (I:1)where jEnj denotes the cardinality2 of En. In this case, average-case analysis reduces to aproblem of combinatorial enumeration (see Section 1.1).It is worth to point out that many algorithms operate on sets of inputs E such thatevery En could be in�nite. In general, this kind of algorithms can be analyzed without anyadditional di�culty, since each En can be partitioned into a �nite number of disjoint classes,where each of these classes contains objects for which the algorithm behaves in the sameway. For instance, in the comparison-based sorting algorithms what matters is not the actualvalue of the items to be sorted, but the relative order in which they are given. Once thispartition has been established the analysis concentrates on the sets Ern of the representantsof the classes. Worst-case, best-case and average-case complexities are de�ned accordingly,once we have de�ned the probability distributions over the Ern, in the last case.There are several drawbacks in the computation of the average-case complexity ofalgorithms. The �rst objection to this kind of analysis is that most times the actual proba-bility model is unknown or changes with time and/or from one application of the algorithmto another. When the analysis is carried on assuming a particular probability model, thesigni�cance of the obtained results arises as a natural question [Sed83, Fra85, Kar86].On the other hand, and this is probably the most serious drawback, analyzing theaverage-case complexity of an algorithm is, in general, intrinsically more di�cult than ana-lyzing its worst-case complexity. This is the case even if the probability model is simple.The study of the average behavior of algorithms under di�erent hypotheses concern-ing the input distribution provides new information about the analyzed algorithms, since theaverage behavior of the algorithms depends on the assumed probability model. On the other2We use the same notation to denote the size of an item and the cardinality of a set. Since it will be clearfrom the context whether x is an item or a set, the meaning of jxj should also be clear.



6hand, the study would enlight our knowledge of the probability models themselves and giveus useful hints on the dependence of the analysis with respect to the probability model, sinceeach probability model requires its own set of algebraic and analytic techniques to performits corresponding analysis.The recursive nature of programming schemes and of data structures is, wheneverpossible, exploited to describe the average behavior of algorithms, by means of recurrences orby means of functional equations over generating functions. Not surprisingly, many modelsof probability are recursively de�ned as well, and hence, the average-case analysis is reducedto the investigation of recursion models.A possible approach consists in deriving the recurrences that describe the behaviorof the algorithm and solving them. The recurrences are obtained from the recursive decompo-sition of the inputs into smaller components and the recursive nature of the algorithms. Onethen tries to solve the recurrences relying on classical techniques such as the calculus of �nitedi�erences or standard asymptotic analysis. Quite often, the recurrences are translated tofunctional equations over generating functions in order to solve the recurrences or to extractasymptotical information.The application of the symbolic operator method is a more direct approach. In thesymbolic operator method, the set-theoretic de�nitions of the data structures, and that of thecomplexity measure of a given instance in terms of smaller instances, are used to systematicallyderive functional equations over generating functions . The derivation of such equations ismade by the application of translation rules that establish a \one-to-one" correspondencebetween algorithmic constructions and operators over generating functions. The coe�cientsof the generating functions represent the quantities that we need to perform the analysis.Therefore, both approaches often reduce the original problem (analyzing an algo-rithm) to the same mathematical problem (extracting information from some given functionalrelations between generating functions).If we are lucky enough, it will be easy to explicitly solve the recurrences or thefunctional equations over generating functions. The solution will provide us with explicitexpressions for the average-case complexity as a function of the input size n. When thisexplicit expression is not in a closed form or cannot be easily interpreted and compared,standard asymptotic analysis can be applied to obtain the average-case complexity in termsof ordinary functions such as powers of n, logarithms, iterated logarithms, etc.



7On the other hand, certain number of complex analysis techniques and, in particular,singularity analysis, have been developed in order to extract the asymptotic behavior ofthe coe�cients of generating functions, even when the generating functions satisfy implicitfunctional equations that are not explicitly solvable. Complex analysis techniques have playedan important rôle in the area, greatly simplifying analysis that are rather intricate.The combination of the symbolic operator method and the complex analysis tech-niques has proved very successful for the analysis of algorithms where only some algorithmicconstructions are allowed, and the inputs are some kind of combinatorial structures of recur-sive nature, such as trees and strings of symbols. An spectacular witness of the success of thiscombination is the construction of the computer system ��
 [FSZ91], that can automaticallyperform the average-case analysis of a non-trivial collection of algorithms.These approaches are depicted in Figure I.1 [VF90].SYMBOLIC OPERATOR METHODSET UP TRANSLATESOLVE SOLVEAsymptotic Costs
RecurrencesExplicitCosts FunctionalEquations (GFs)AlgorithmsData Structures

ASYMPTOTIC ANALYSIS COMPLEX ANALYSIS
SET UP TRANSLATESOLVE SOLVE
SET UP TRANSLATESOLVE SOLVEFigure I.1: Average-case analysis.In this work we will concentrate on algorithms dealing with trees and on characteris-tics of trees. We have followed the methodological approach based on the use of the symbolicoperator method and the use of complex analysis techniques. We are interested in doing theaverage-case analysis of algorithms, when the input trees are distributed according to theBST probability model . The name of this model comes from the fact that it corresponds to



8binary search trees built up from random permutations. It turns out that in this model, treesof the same size may not have the same probability; moreover, high probability is assignedto well balanced trees, whereas poorly balanced trees are quite unlikely. The BST model canbe recursively de�ned and the characteristic type of functional equations associated to it aredi�erential equations.The BST probability model has been successfully applied to analyze the algorithmsthat dynamically maintain a dictionary implemented with a binary search tree. The modelalso arises in the study of heap ordered trees, used to implement priority queues, and in thestudy of multidimensional search algorithms that use k-d-trees [Knu73, Nie74, Rob82, Dev86,FP86, Fla88b].Moreover, the BST model is a particular case of the probabilistic model for ran-domly built m-ary search trees. These trees are used for similar purposes as the BSTs, butwith external storage devices. The average performance of the algorithms that dynamicallymaintain m-ary search trees and other average characteristics of these trees have receivedattention in the last years [Mah86, MP89, Mah92].We have de�ned a generalization of the BST model, that we have called balancedprobability model. The balanced probability model is de�ned over simple families of treesenjoys many of the attributes of the BST model. For trees in any simple family of trees, theintrinsic di�culty of doing the analysis using the balanced model is not greater than that ofdoing the same analysis using the BST model for binary trees.The objective of this work is to investigate what kind of mathematical problemsappear and what techniques should be used when we carry on the average-case analysis ofalgorithms, when the probability model is the BST model or the balanced model. The use ofthe BST probability model demands the development of speci�c mathematical tools for ap-propriately performing the average-case analysis. Consequently, most of the contributions ofour work concern the techniques for obtaining the asymptotic average behavior of algorithmsfrom the di�erential equations that characterize the BST model.On the other hand, comparisons between the way the analysis is done for the BSTmodel and for other models, and between the results of such analyses turns out to be relevant.For instance, the idea of \discriminative power" of a probability model arised as a consequenceof our studies. We have observed that some algorithms that have the same qualitative aver-age behavior for the uniform model have quite di�erent average behavior if the BST model



9is assumed. Hence, we say that the BST model discriminates the average behavior of thesealgorithms while the uniform model does not. In other cases, two di�erent algorithms exhibitthe same behavior for both models: neither the uniform model nor the BST model discrimi-nates the average behavior of the two algorithms. These phenomena help understanding themain distinctive characteristics of the algorithms and the probability models considered.The �rst tool that we present for the average-case analysis under the BST andbalanced models is a set of translation rules that map algorithmic constructions into func-tional equations over generating functions, in the same way it has been done for the uniformmodel [FS87]. This kind of complexity calculus is theoretically feasible, as long as we restrictourselves analyzing algorithms using only certain algorithmic constructions. The set of trans-lation rules, that we have proposed, provides a systematic procedure to directly obtain theequations that describe the average behavior of an algorithm from the structure of algorithm.The algorithmic constructions that we have considered are powerful enough to write manyinteresting algorithms. Hence, the limits on what can be analyzed and what cannot, sub-stantially depend on our ability to extract information from the equations that describe theaverage behavior of algorithms. As an example of the application of the translation rules forthe balanced model, we analyze a formal di�erentiation algorithm. The de�nition of a set oftranslation rules for the balanced model, useful for the analysis of recursive tree algorithms,constitutes an interesting application of the symbolic operator method.To attain our goals we have chosen to study simple algorithms over pairs of trees,progressively going into more complex problems and trying to enlarge the collection of avail-able techniques and results.In this sense, we have found a collection of simple problems that are quite similarin many aspects. The unifying concept for those problems is that of hereditary property . Anhereditary property is a predicate over pairs of trees that is true if and only if the propertyholds for the pair of left subtrees and the pair of right subtrees. The di�erences betweenhereditary properties are given by the way the property is de�ned for pairs containing atleast an empty tree. Examples of such properties are the equality of trees, root occurrence(in the context of tree matching) and consistency (in the context of uni�cation of �rst-orderterms). The most basic question about hereditary properties is that of evaluating the prob-ability that a given pair of trees of size n veri�es a given hereditary property. The similarities



10in the de�nition of hereditary properties lead to an essentially identical mathematical formu-lation of the problem of evaluating probabilities, for all the hereditary properties. Anotherinteresting question is the relation between hereditary properties and algorithms. Even if wehave only partial information on the probability of an hereditary property, we can use it tostudy algorithms whose average behavior ultimately depends on that probability. This is thecase for the algorithm that tests equality between a pair of trees, for the one that checkswhether a pair contains a direct ocurrence or for that determining if a tree (pattern) occursinside another (text), etc. The equality test algorithm and the probability of two binarytrees being equal have been studied more extensively and, in fact, initiated our interest abouthereditary properties.Besides the recursive scheme associated to hereditary properties, other recursiveschemes have received our attention. Our �rst complete case of study is the size of theintersection of two binary trees. This characteristic exempli�es one of the simplest non-trivialrecursion schemes over pairs of trees. Roughly speaking, the intersection of a pair of trees isthe tree that results if one of the trees in the pair is superimposed to the other and then thenodes that do not belong to both are deleted. The complexity of the algorithm that computesthe intersection of a given pair is proportional to the size of the intersection.Our analysis of the intersection leads to a partial di�erential equation. As we havealready said, this kind of functional relation relies on the nature of the probability modelrather than on the characteristic we are analyzing. We solve the partial di�erential equationby means of Riemann's method. The next step in our analysis yields an asymptotic expansionof the solution around its singularity. The application of standard complex analysis techniquesallows us to obtain an asymptotic estimation of the average size of the intersection of a pairof binary trees of size n: �(n2p2�2=plog n).As we said before, we have investigated the average-case complexity of the equalitytest between a pair of trees, as a function of the size of the pair. The equality test algorithm isstill simple but di�ers substantially from our previous case of study. The equality test is basedon the recursive application of the procedure to pairs of non-empty subtrees, but subsequentrecursive calls are conditioned to the result of previous calls, while the computation of theintersection requires the unconditional recursive application of the procedure to all pairs ofnon-empty subtrees.Once again, we have assumed that the input for the equality test is distributed



11according to the BST probability model. Like in the analysis of the intersection, the generatingfunction associated to the average costs veri�es a partial di�erential equation; but it is moredi�cult to solve. We carry on the analysis studying a simpler algorithm. The average-casecomplexity of this simple algorithm has an associated generating function that is proved tobe asymptotically equivalent to the generating function of the equality test. Therefore, theaverage-case complexities of both algorithms are equivalent and turn out to be �(logn).One of the problems arising during the average-case analysis of the equality is thequestion of evaluating the probability that both members of the pair are equal, when eachof the trees has size n. In order to prove that the equality test has logarithmic average-casecomplexity, we only need to show that this probability decreases exponentially as n gets large.A deeper study of the behavior of this probability has deserved a chapter in this thesis. Itappears to be O(��n n) where � = 3:1408577 : : : . The analysis involves the study of theanalyticity of the solution of a second-order non-linear ordinary di�erential equation and ofan asymptotic expansion of that solution around its dominant singularity.The thesis is organized as follows: in Part II we present the basic concepts to beused in the remainder of thesis; the symbolic operator method and the related topic of com-binatorial enumeration, and some common complex analysis techniques of wide applicationin combinatorics and analysis of algorithms. The last section exposes some basic conceptsand identities of Bessel functions of the �rst kind that are needed in the next chapters.Chapter 3 of Part II covers the de�nition of the BST and the balanced probabilitymodels. It also introduces the principle of extension of the models to pairs of trees and tok-tuples. It presents other common probability models for trees as well.The main contributions of the thesis are contained in Part III. In Chapter 4 wepresent the occupancy, a characteristic over trees, related to the balancing of trees. Theanalysis of this characteristic under di�erent probability models exempli�es the di�erencesbetween the probability models as well as the steps to be followed and some of the availabletechniques, for each of the probability models. Part of this material appeared in Average-caseAnalysis on Simple Families of Trees Using a Balanced Probability Model by Casas, D��az, andMart��nez [CDM91a].In Chapter 5 we establish a set of translation rules, whose systematic applicationyields an equation describing the average behavior of any algorithm when the inputs aredistributed according to the balanced model, and as long as the algorithm only uses the



12considered operations over trees.Chapter 6 introduces hereditary properties. In this chapter, we examine the problemof evaluating the probability that a given pair of trees satis�es an hereditary property. Wealso examine the relation between these properties, their probability and the algorithms thatare closely related to them.The rest of the chapters of Part III describes the concrete analyses that we havebrie
y mentioned before. Chapter 7 presents the analysis of the average size of intersection.Most of the material of this chapter was published in On the Average Size of Intersectionof Binary Trees by Baeza-Yates, Casas, D��az, and Mart��nez [BCDM92] and in [CDM91a].Chapter 8 is on the average-case complexity of the equality test. The main results of thischapter were presented in Average-case Analysis of Equality of Binary Trees under the BSTProbability Model by Mart��nez [Mar91]. Chapter 9 deals with the probability that two binarysearch trees are equal.In the last part, we brie
y sketch the main conclusions of this work and explore someideas for future research. Moreover, this part contains a concise description of the commonsubexpression problem and the �rst steps of its average-case analysis for the BST probabilitymodel. This is an open research problem.Background sources on the analysis of algorithms are The Art of Computer Pro-gramming [Knu68, Knu73] and the surveys of Sedgewick [Sed83], Flajolet [Fla88a] and Vitterand Flajolet [VF90].Information about data structures and algorithms can be found in the books ofKnuth [Knu68, Knu73], Aho, Hopcroft and Ullman [AHU76, AHU83], Sedgewick [Sed88],Cormen, Leiserson and Rivest [CLR90] and Gonnet and Baeza-Yates [GB91], among others.Additional coverage of the topic of analysis of algorithms can be found in thebooks of Kemp [Kem84], Purdom and Brown [PB85] and the survey by Casas, D��az andMart��nez [CDM91b]. A recent book on the topic of average-case analysis of random treestructures, and therefore closely related to the topic of this thesis, is Evolution of RandomSearch Trees by Mahmoud [Mah92].Combinatorial enumerations and the use of generating functions, which will be pre-sented in the sequel, appear in the books of Comtet [Com74], Goulden and Jackson [GJ83],Stanley [Sta86], and Wilf [Wil90]. For the mathematical foundations of generating func-tions we refer the reader to the article The idea of generating function by Rota [Rot75]. For



13the general foundations on asymptotic methods we suggest the work of De Bruijn [DB58].The survey of Bender [Ben74] illustrates many uses of asymptotic methods in enumerationproblems.
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16Chapter 1Mathematical Preliminaries1.1 Combinatorial Enumeration.1.1.1 Generating Functions.As we shall see, the basic tool in the analysis of data structures and algorithms usedin this work is the generating function . Quoting Herbert Wilf [Wil90],\A generating function is a clothesline on which we hang up a sequence of numbersfor display."Following the analogy, the clothes we will hang up in this work when doing average-caseanalysis are almost always expected values of the complexity measure for inputs of a givensize.De�nition 1.1. Let f ak gk�0 be any sequence of complex numbers. The generating function(g.f., for short) of the sequence f ak gk�0 isA(z) = Xk�0 ak zk : (1:1)The generating function of a sequence is often called ordinary generating function, to distin-guish it from the exponential generating function, the Dirichlet generating function, etc.Equation (1.1) associates a formal power series to a sequence of numbers. Thus,generating functions are elements of a Cauchy algebra, therefore the classical algebraic meth-ods can be applied. On the other hand, the de�ned series are in most cases convergent and



1.1. COMBINATORIAL ENUMERATION. 17Sequences Generating functions1: cn = an � bn C(z) = A(z)�B(z)2: cn =Pnk=0 akbn�k C(z) = A(z) �B(z)3: cn = an�1 C(z) = zA(z)4: cn = an+1 C(z) = (A(z)� A(0))=z5: cn = nan C(z) = z ddzA(z)6: cn = ann C(z) = R z0 (A(t)� A(0))dttTable 1.1: Translation of operations over sequences to operations over g.f.'s.hence they can be treated by analytical methods. This duality makes the generating functiona powerful tool. To apply analytical methods, the variable z of a generating function F (z)is considered as a complex variable and the generating function as a complex function of z.Moreover, as we will see in next subsection, there is a natural way to associate generatingfunctions to denumerable sets. This fact converts generating functions in helpful tools forcounting applications.The n-th coe�cient of a formal power series F (z) will be denoted by [zn]F (z) (also,[zn]F (z) denotes the n-th coe�cient of the Taylor expansion of an analytic function F (z)around z = 0). Thus, F (z) =Pn�0 fn zn implies that [zn]F (z) = fn.In Table 1.1 we present how elementary operations over sequences translate to op-erations over the corresponding generating functions.Operations (1), (3) and (4) are known as sum, backward shift and forward shift ; (2)is called convolution of sequences. Di�erentiation and integration are speci�ed by (5) and(6).1.1.2 Admissible Combinatorial Constructions.Many set-theoretic operators of interest in combinatorial enumeration, such as Carte-sian product , powerset or Kleene closure, translate into operators over the generating func-tions associated to the operands (see, for instance,[Fla88a]). We start de�ning a class ofcombinatorial structures .



18 CHAPTER 1. MATHEMATICAL PRELIMINARIESDe�nition 1.2. Given a �nite or denumerable set C and a size function1 j � j : C 7! IN,the pair < C; j � j > is a class of combinatorial structures if and only if for each n, the setCn = f c 2 C j jcj = n g is �nite.From now on, any given class of combinatorial structures will be denoted as the setin the pair, with some abuse of the notation.Let cn be the cardinality of Cn. Then the counting generating function of C isC(z) = Xn�0 cn zn: (1:2)An alternative interesting way to express (1.2) isC(z) =Xc2C zjcj: (1:3)Notice that we adhere to the notational convention that uses the same letter for theclass, its generating function, and the elements of the induced sequence f cn gn�0 in di�erentcases and fonts. We will also use lowercase roman letters to denote elements of the set in aclass of combinatorial structures.Any operation over k classes of combinatorial structures C1; C2; : : : ; Ck producing anew class of combinatorial structures A is called combinatorial construction. The speci�cationof a combinatorial construction describes how the elements in the set A relate to the elementsof the sets C1; : : : ; Ck and how the size function of the resulting class relates to the sizefunctions of the operands. For instance, the Cartesian product over classes A and B isde�ned as the class where the set is the usual Cartesian product of the corresponding sets,and the size of a pair (a; b) in A� B is the sum of the sizes of a and b. The most interestingcombinatorial construction are the admissible combinatorial constructions:De�nition 1.3. A combinatorial construction � is admissible if there exists an operator 	over generating functions such thatA = �(C1; C2; : : : ; Ck))A(z) = 	(C1(z); C2(z); : : : ; Ck(z));where A(z); C1(z); : : : ; Ck(z) are the counting g.f.'s corresponding to the classes A; C1; : : : ; Ck.A large collection of admissible combinatorial constructions has been investigatedin the context of combinatorial enumeration. In Table 1.2, we summarize a set of admissiblecombinatorial constructions and their corresponding operators over generating functions.1We shall use the usual in�x notation for the size function with subscripts when necessary, like in j � jC



1.1. COMBINATORIAL ENUMERATION. 19Construction OperatorDisjoint union C = A+ B C(z) = A(z) + B(z)Cartesian product C = A� B C(z) = A(z) �B(z)Diagonal C = �(A�A) C(z) = A(z2)Kleene closure C = A� C(z) = 11�A(z)Marking C = �A C(z) = z ddzA(z)Substitution C = A[B] C(z) = A(B(z))Table 1.2: Admissible combinatorial constructions.Some of the constructions, such as disjoint unions , Cartesian products and diagonalsare the standard ones in set theory; others like composition or marking arise when dealingwith objects like trees, graphs and words, that are made up of atomic units or elements . Wecharacterize formally some combinatorial constructions in the following de�nitions.De�nition 1.4. A class C is the disjoint union of A and B, denoted C = A + B if1. C = A [ B and A \ B = ;.2. jxjC = jxjA if x 2 A and jxjC = jxjB if x 2 B.De�nition 1.5. A class C is the Cartesian product of A and B, denoted C = A� B if1. C = A� B (in the set-theoretical sense).2. j(a; b)jC = jajA + jbjB; a 2 A; b 2 B.De�nition 1.6. A class C is the Kleene closure of A, denoted C = A� ifC = f� g+ A+A �A +A� A� A+ � � � ;where � is the empty structure (by de�nition j�j = 0), and the size is de�ned consistentlywith the disjoint union and cartesian product de�nitions.De�nition 1.7. A class C is the diagonal of another class A, denoted C = �(A�A) if



20 CHAPTER 1. MATHEMATICAL PRELIMINARIES1. C = f (a; a) j a2 Ag.2. j(a; a)jC = 2jajA; a 2 A.De�nition 1.8. A class C is the composition or substitution of two given classes A and B,denoted C = A[B] if1. c 2 C if and only if there exists some n � 0, a 2 An and b1; : : : ; bn 2 B such thatc = (a; b1; : : : ; bn).2. j(a; b1; b2; : : : ; bn)jC = jb1jB + � � �+ jbnjB.Similar rules to those in Table 1.2 exist for generating functions of the formF (z) =Xc2C f(c) zjcj;when the class C is constructed from some other classes, and the function f is de�ned interms of functions over the components of the elements in C. For instance, if C = A� B andif f(c) = g(a)h(b) for c = (a; b), thenF (z) = X(a;b)2A�B g(a)h(b) zjaj+jbj =  Xa2A g(a) zjaj! �0@Xb2B h(b) zjbj1A = G(z)H(z):More details and full proofs for the lemmas given in Table 1.2 can be found inthe book of Goulden and Jackson [GJ83] and the surveys of Flajolet [Fla88a] and Vitterand Flajolet [VF90]. The last two references describe how these methods can be applied inaverage-case analysis of algorithms and data structures.1.1.3 Two Expansion Theorems.There are two interesting theorems about generating functions, that allow to recoverexactly the n-th coe�cient of a generating function under particular circumstances, and whoseproof is purely algebraic, valid in the ring of formal power series.The �rst one is the so-called general expansion theorem for rational generating func-tions.



1.1. COMBINATORIAL ENUMERATION. 21Theorem 1.1. If R(z) = P (z)=Q(z), for some polynomials P (z) and Q(z), and Q(z) has ldistinct roots �1, �2,: : : , �l of multiplicities d1, d2,: : : , dl, and the degree of P (z) is less thanthat of Q(z) then [zn]R(z) = f1(n)�n1 + f2(n)�n2 + � � �+ fl(n)�nl ; n � 0;where each fk(n) is a polynomial of degree dk � 1 and its leading coe�cient ak isak = dk P (1=�k)(��)dkQ(dk)(1=�k) :A short proof of the theorem can be found in the book of Graham, Knuth and Patash-nik [GKP89].As we shall see in next section, there are other methods to get asymptotic estimatesof the n-th coe�cient of rational generating functions that are usually useful enough andeasier to apply than this theorem.The other theorems we consider are the Lagrange inversion formula and its vari-ant, the Lagrange-B�urmann inversion formula (see, for example,[Com74, Wil90]). They canbe applied when the generating functions under study satisfy a particular kind of implicitequation.Theorem 1.2. (Lagrange Inversion Formula) Let �(u) =Pn�0 �n zn be a formal powerseries such that �(0) = �0 6= 0. Then the equationy(z) = z �(y(z))has a unique formal power series solution that veri�esy(z) = Xn>0 znn [yn�1]�n(y):The Lagrange-B�urmann inversion formula is a generalization of the Lagrange inver-sion formula. Although we give here an statement of the theorem that includes an analyticityhypothesis about the series g, the inversion formula can be stated without making such hy-pothesis, and proved in purely algebraic terms.Theorem 1.3. (Lagrange-B�urmann Inversion Formula) Let �(u) be a power series asin Theorem 1.2 and g(u) an analytic function around u = 0. Let y(z) = 
 + z �(y(z)), forsome arbitrary constant 
. Then,g(y(z)) = g(
) +Xn�0 znn! " dn�1dyn�1 �g0(y)�n(y)�#y=
 :



22 CHAPTER 1. MATHEMATICAL PRELIMINARIES1.2 Complex Analysis Techniques.1.2.1 Generalities.The power of generating functions as a mathematical tool relies on its duality. Theycan be considered as formal power series, and most times they can also be considered asfunctions of complex variable in the complex plane, analytic in a disk around the origin.Suppose we have the generating function F (z) of a certain sequence. Since thepower series of the function is analytic in the largest disk centered at the origin containingno singularities , our �rst step will be looking for the singularities of the function that arenearest to the origin. The distance from the origin to the nearest singularity is called radiusof convergence of the power series and such singularity is called dominant .The radius of convergence provides useful information about the behavior of thecoe�cients fn = [zn]F (z), (see, for example [Tit39]):Theorem 1.4. Let � be the radius of convergence of the power series F (z) = Pn�0 fn zn.Then, for all � > 0, (1� �)n��n <i:o: fn <a:e: (1 + �)n��n;where <i:o: means that the inequality holds for an in�nite number of values of n, whereas<a:e: means that the inequality holds for all values of n, except for a �nite number of them.But this information about the exponential growth of the fn's is usually insu�cientfor our purposes and we look for information on the subexponential growth or, even better,an asymptotic equivalent of fn. Next subsection brie
y exposes some of the techniques, thatusing information about the nature of the dominant singularity of the function F (z) and thebehavior of the function near it2, gather information about the asymptotic behavior of thecoe�cients. The basis of most of these techniques is Cauchy's integral formula (see [Tit39]):Theorem 1.5. (Cauchy's Integral Formula) Let F (z) be an analytic function in an opendomain D enclosing the origin, and let � be a simple closed curve entirely lying on D thatalso encloses the origin. Then the n-th coe�cient of the Taylor series development of F (z)around z = 0 is given by [zn]F (z) = 12�i Z� F (z)zn+1 dz:2These techniques can be easily generalized to the case where there is more than one dominant singularity.



1.2. COMPLEX ANALYSIS TECHNIQUES. 23As an immediate corollary of Theorem 1.5 we have:Corollary 1.1. Let F (z) be an analytic function and let � be the radius of convergence ofits Taylor series development around the origin. Moreover, let fn = [zn]F (z). Then, for any0 < r < � jfnj � M(r)rn ;where M(r) = maxjzj=r jF (z)j. Furthermore, if fn � 0 for all n, then M(r) = jF (r)j.Finally, we state Cauchy's residue formula, which is at the core of some importanttechniques used in the analysis of algorithms and data structures.Theorem 1.6. (Cauchy's Residue Formula) Let z0 be an isolated singularity of F (z)and let C be a circle centered at z0 such that F (z) is analytic in C and its interior, exceptpossibly at z0. Then, ZC F (z) dz = 2�iRes[F (z); z = z0];where Res[F (z); z = z0] denotes the residue of F (z) at z0.In this subsection, as well as in the forthcoming, we have assumed that the reader isalready familiar with concepts such as analyticity, convergence of a power series, singularity,residue, Laurent and Taylor series developments, etc. Some background references for theseconcepts and many more are the books by Titchmarsh [Tit39], Cartan [Car61], Henrici [Hen77]and Lang [Lan85]. The surveys of Flajolet [Fla88a], Flajolet and Odlyzko [FO90], and Vitterand Flajolet [VF90] cover most of the methods of complex analysis used in average-caseanalysis.1.2.2 Singularity Analysis.The �rst theorem that we will consider is Darboux's theorem (a proof of this theoremcan be found in Henrici's Applied and Computational Complex Analysis [Hen77]). It can beapplied in many situations where the dominant singularity is either a pole or is an algebraicsingularity (branching point).Theorem 1.7. (Darboux) Let F (z) be an analytic function in the open disk jzj < � andassume that there is a unique singularity in the convergence circle at z = �. Furthermore, ina neighbourhood of z = �, F (z) satis�esF (z) = �1� z���� G(z) +H(z);



24 CHAPTER 1. MATHEMATICAL PRELIMINARIESfor some analytic functions G(z) and H(z) at z = �, with G(�) 6= 0, and for some real� =2 f 0;�1;�2;�3; : : :g. Then,[zn]F (z) = fn � ��n n��1 G(�)�(�) �1 +O�1n�� ;where �(z) denotes Euler's gamma function and � denotes asymptotic equivalance.An informal interpretation of this theorem is that it establishes the conditions thatmust be ful�lled to properly use a series development of F (z) around z = � and estimate thebehavior of fn from the �rst term of the series, using Newton's binomial theorem.Another interesting collection of results are the so-called transfer lemmas, whosepurpose is also to translate asymptotic information about a function around its dominantsingularity to asymptotic information about the coe�cients of the function. The applicationof a transfer lemma does not require conditions on the smoothness of the lower order termsin the asymptotic expansion, as Darboux's theorem does, but some other conditions shouldbe satis�ed.In general, a transfer lemma states that if certain suitable conditions are satis�ed,then asymptotic expansions valid for z ! 1, likeF (z) � G(z); F (z) = O(G(z)); F (z) = o(G(z));can be \transferred" to coe�cients for n! 1fn � gn; fn = O(gn); fn = o(gn):If the dominant singularity of F (z) is not at z = 1 an appropriate normalizationcan be performed. The suitable conditions that we have mentioned, are that G(z) belongsto a restricted class of functions (that includes most common ones) and that the asymptoticexpansion holds in a region that partially lies outside the convergence disk. This last conditionusually requires analytic continuation of F (z) to a region enclosing the convergence disk.The asymptotic scale to which G(z) must belong contains functions of the form:G(z) = (1� z)��log 11� z�
 �log log 11� z�� ;for some constants �, 
 and �.The proof of a transfer lemma is generally based on contour integration usingCauchy's formula (Theorem 1.5). Applications of transfer lemmas appear in the papers of



1.2. COMPLEX ANALYSIS TECHNIQUES. 25Odlyzko [Odl82] and Flajolet and Odlyzko [FO82, FO90]. Transfer lemmas are quite similarto Tauberian theorems for the kind of information that they provide, but there are importantdi�erences on the conditions that one should establish to apply them (see next subsection).We �nish giving a transfer lemma that we shall use in next chapters:Theorem 1.8. Assume that F (z) is an analytic function in the domain � = f z j jzj �1 + �; j arg(z � 1)j � � g, with � > 0 and 0 < � < �=2. Moreover, as z ! 1 in �,F (z) = (1� z)� �log 11� z�
 24m�1Xj=0 cj �log 11� z��j +O �log 11� z��m!35for some �; 
 =2 f 0; 1; 2; : : :g. Then as n!1fn = n���1�(��) log
 n24m�1Xj=0 c0j log�j n+ O(log�m n)35 :In particular, c0 = c00 and the other c0j can also be explicitly computed from the cj .The theorem remains valid if any of � or 
 is a positive integer, introducing the conventionthat 1=�(��) is null for nonnegative �. For a full proof of this theorem we refer the readerto the survey of Flajolet and Odlyzko [FO90].1.2.3 Other Methods.In this subsection, we make a brief review of other interesting complex analysistechniques.Tauberian theorems infer estimates of the coe�cients of a generating function pro-vided we have an asymptotic expansion of the function valid when z tends to the dominantsingularity along the real axis. This is a weaker requirement than that of transfer lemmas, forwhich an asymptotic expansion valid on a region partially lying outside the disk of convergenceis needed. Nevertheless, side conditions on the coe�cients, like positivity and monotonicity,have to be established a priori . For instance, Hardy-Littlewood-Karamata's theorem givesan estimation similar to the one in Theorem 1.8, if the coe�cients fn of F (z) are positiveand form a monotonic sequence [VF90]. For further inside on Tauberian theory and someof its combinatorial applications we refer the reader to the works of Titchmarsh [Tit39],Hardy [Har49], Feller [Fel68], Bender [Ben74] and Green and Knuth [GK82].



26 CHAPTER 1. MATHEMATICAL PRELIMINARIESWhen the function we are studying is entire (has no singularities) or is exponentiallygrowing near its singularity, we can use saddle-point methods [Hay56, HS68, OR85].A somewhat di�erent technique from those we have considered till now is based inMellin transform. Given a real function F (x) de�ned for all positive x, its Mellin transform,denoted by F �(s), is the complex-valued function given by:F �(s) = Z 10 F (x)xs�1 dx:The fundamental strip of the Mellin transform, denoted < �; � >, is the strip �� < <(s) <�� such that F �(s) is de�ned. A very elementary property of the Mellin transform confersit most of its usefulness:  Xk �kF (akx)!� =  Xk �ka�sk !F �(s):If F �(s) is meromorphic, Cauchy's residue formula can be applied to evaluate the inversionformula of the Mellin transform and getF (x) = 12�i Z c+i1c�i1 F �(s)x�s ds� X� Res[F �(s)x�s; s = �];where c is in the fundamental strip and the sum below extends to all poles of F �(s) in thesemiplane <(s) > c. Mellin transform techniques are useful to analyze problems involvingsums of arithmetic functions such as the ones appearing in analytic number theory. Theyare a primary tool in the analysis of tries, digital search trees, radix exchange sort, hashing,etc. [FRS85, VF90].Standard real analysis techniques constitute another large family of methods to doasymptotics. Among these techniques, we shall mention Euler-Maclaurin summation formula,Laplace's method for sums and integrals and the bootstrapping techniques [DB58, Ben74,GK82].1.3 Bessel Functions.The aim of this section is to summarize some well known facts about Bessel functionsof the �rst kind.



1.3. BESSEL FUNCTIONS. 27An extensive treatment of Bessel functions is A Treatise on the Theory of BesselFunctions of G.N. Watson [Wat44]. Another good source of summarized information aboutBessel functions is Abramowitz and Stegun's Handbook of Mathematical Functions [AS64].Besides the classical trigonometric, exponential, logarithmic and hyperbolic func-tions, Bessel functions are among the most important transcendental functions. The �-thorder Bessel function of the �rst kind, denoted by J�(z) is a solution of the following second-order linear di�erential equation:z2d2wdz2 + z dwdz + (z2 � �2)w = 0:Each Bessel function of the �rst kind is an entire function when � = 0;�1;�2; : : : . Anothersolution to the di�erential equation above is Y�(z), the �-th order Bessel function of thesecond kind. The linear combination of J� and Y� gives a fundamental system of solutions ofthe di�erential equation. Such a linear combination is called a cylinder function.In our applications we shall deal mainly with J0, and therefore we will particularizethe few identities we need to the case � = 0. First of all, J0(z) admits the following Taylorseries development around z = 0, which is valid in the whole complex plane:J0(z) = Xn�0(�1)n (z=2)2nn!2 : (1:4)Also, we have the following asymptotic expansion of J0(z) for large z. If jzj ! 1and j arg zj � � then J0(z) = r 2�z �cos(z � �4 ) + exp(j=zj)O(jzj�1)� : (1:5)Another useful identity is the following integral representation of J0(z):J0(z) = 1� Z �0 exp(iz cos �) d�:



28Chapter 2Simple Families of TreesThis chapter covers the de�nition of simple families of trees , also known as simplygenerated families of trees . A formal de�nition and the introduction of some notation andconcepts is inavoidable, as we concentrate on characteristics of trees and probabilistic modelsfor trees.The second section of the chapter gives a short introduction to the topic of enumer-ation of simple families of trees.2.1 The De�nition of Simple Families of Trees.Let us recall that a rooted tree is a �nite set of one or more elements, called nodes,such that there is a distinguished element, called the root of the tree, and the other elementscan be partitioned in a �nite number of disjoint subsets (the number of subsets can be 0),each one being a tree and called subtrees of the root node. A rooted tree is said to be anordered tree if the relative order of the subtrees of each node counts [Knu68].Trees are a very important data structure in computer science. They also appear im-plicitly in recursive schemes such as backtracking and in general, in procedures with multiplerecursive calls.The trees considered in computer science are almost always ordered trees; if the treesare explicitly built for representation of expressions, to store records, etc. the implementationimposes some order among the subtrees of each node; if they correspond to a sequence ofrecursive calls, these come, in some predictable way, one after another. Moreover, whentrees are used as data structures their nodes store information. That information could be



2.1. THE DEFINITION OF SIMPLE FAMILIES OF TREES. 29represented as labels on the nodes. For this reason, we shall consider both labelled andunlabelled trees.For sources of information on the implementations and applications of tree struc-tures, we address the reader to the books of Knuth [Knu68, Knu73], Aho, Hopcroft andUllmann [AHU76], and Gonnet and Baeza-Yates [GB91], among others.Given an ordered tree1 T we will denote by root(T ) the root of T , and by T1,: : : ,Tkeach of its subtrees. Alternatively, we will use the Pascalish notation T [1],: : : ,T [k] for thesame purpose. A node with k subtrees is said to be of degree or arity k; nodes of degree 0 arecalled leaves or external nodes , whereas nodes of degree > 0 are called internal nodes . Givena tree T , deg(T ) will denote the degree of its root.Extended binary trees are non-empty �nite sets of nodes where one of the nodes isthe root and either there are no more nodes or they can be partitioned in two non-emptysets of nodes, each set of nodes being an extended binary tree. This de�nition is just aparticularization of the general de�nition of trees to the case where each node has eitherexactly two subtrees or none. Extended m-ary search trees are analogously de�ned. Since animmediate isomorphism between binary trees and extended binary trees can be de�ned, wewill omit the adjective extended , from now on.The de�nition of simple families of trees implies that the size of any tree in thosefamilies is the number of nodes it contains. However, we will de�ne the size of binary andm-ary trees to be the number of internal nodes in the tree, considering that leaves have nullsize. This is a very common convention, since for these families the total number of nodes ina tree and the number of internal nodes are mutually dependent. We will use the symbols Band Tm to denote the families of binary and m-ary trees, respectively.Given a binary tree T that is not a leaf we call the subtrees of its root, the left andright subtree, and denote them by T l and T r, respectively.The notion of simply generated family of trees or simple family of trees was intro-duced by Meir and Moon [MM78]. We shall adhere to the slight modi�cation of the conceptand notational conventions used in Steyaert's Ph.D. Thesis [Ste84].Let S be a set of symbols and � : S �! IN an arity application de�ned on S.1From now on, tree will mean ordered tree, unless otherwise stated.



30 CHAPTER 2. SIMPLE FAMILIES OF TREESLet s(T1; : : : ; T�(s)) be the tree whose root is labelled s and its subtrees are denoted left-to-right : T1; : : : ; T�(s). The size of a tree T = s(T1; T2; : : : ; Tk) isjT j = 1 + jT1j+ jT2j+ � � �+ jTkj:De�nition 2.1. The set of trees F de�ned recursively by8<: s 2 F if �(s) = 0,s(T1; : : : ; T�(s)) 2 F if T1; : : : ; T�(s) 2 F .is said to be a simple family of trees, generated by S, if9M 2 IN s.t. 8n j��1(n)j �M; (2:1)where ��1(n) denotes the set of symbols of arity n.If we denote the set fs(T1; : : : ; Tk) j s 2 ��1(k)^T1; : : : ; Tk 2 Fg by Sk(F ;F ; : : : ;F)then we can express the family F of trees, generated by S, in the following handy way:F = S0 + S1(F) + S2(F ;F) + � � �+ Sj (F; : : : ;F)| {z }j + � � �This representation of simple families of trees is called formal series of trees .2.2 Enumeration of Simple Families of Trees.The classical characterization of simple families of trees is given in the next propo-sition.Proposition 2.1. The counting generating function F (z) =PT2F zjT j of any simple familyof trees F satis�es a functional relation of the typeF (z) = z�(F (z));where �(u) is a power series in u.Condition (2.1) guarantees that the number of trees of size n in any simple family oftrees is �nite. Let �n = j��1(n)j be the number of symbols in S of arity n. The characteristicseries of the family of trees generated by S is de�ned by�(u) = Xn�0�n un:



2.2. ENUMERATION OF SIMPLE FAMILIES OF TREES. 31Using De�nition 2.1, it is straightforward to check that the counting generatingfunction of the set F , F (z), satis�es F (z) = z�(F (z)).Since we are now interested in the enumeration of simple families of trees, Lagrangeinversion formula can prove to be useful. Fpr example, consider the family B of binary trees,generated by S = f �;2g, with �(�) = 2 and �(2) = 0. The characteristic series of binarytrees is �(u) = 1 + u2 and if we call B(z) the counting generating function of B we haveB(z) = z(1 + B2(z)):Notice that in this derivation, we de�ne the size of a tree as the total number of nodes in thetree. Using Lagrange inversion formula yields[zn]B(z) = 1n [un�1](1 + u2)n;and from Newton's binomial theorem[zn]B(z) = 8<: 12k+1�2k+1k �; if n = 2k + 1;0; otherwise.The number of nodes n in a binary tree is always odd and, if n = 2k+1 then k is thenumber of internal nodes of the tree. Therefore, the number of binary trees with n internalnodes, bn, is given by: bn =  2nn !n + 1 :The numbers bn are called Catalan numbers after the French mathematician Eug�ene Catalan,who wrote an in
uential paper about them in 1838.It was easy to solve the enumeration problem for the family of binary trees from itsstatement to the �nal answer, but for many other simple families of trees the way is not soeasy or the answer is not in a convenient \closed form". However, we are still able to computean asymptotic estimation of the number fn of trees of size n for any simple family F .The following theorem, due to Meir and Moon, gives the answer [MM78].Theorem 2.1. (Meir, Moon) Let �(u) be an analytic function in the disk juj < � � 1and let F (z) denote the solution of F (z) = z�(F (z)) in a vicinity of z = 0. For simplicity,assume that gcdfn j�n 6= 0 g = 1. Then, [zn]F (z) is asymptotically equivalent tofn = [zn]F (z) � ���nn�3=2�1 + O� 1n�� ;



32 CHAPTER 2. SIMPLE FAMILIES OF TREESwhere � = s �(�)2��00(�) ; � = ��(�)and � is the root of smallest modulus of the equation �(u)� u�0(u) = 0.The proof of this theorem combines the implicit function theorem and Darboux's theo-rem [MM78]. Similar enumerating results have been obtained by other authors (see, forexample, the survey of Bender [Ben74], where a collection of such results appears).



33Chapter 3The BST and the BalancedProbability ModelsThis chapter deals with the probability models that we will assume for the average-case analysis of algorithms over trees.The �rst probability model we discuss is the Binary Search Tree probability model ,BST probability model for short. Later in this chapter, we present the balanced probabilitymodel , a generalization of the BST model to arbitrary simple families of trees.We shall see that the BST probability model tends to assign high probability to wellbalanced trees, while it assigns low probability to poorly balanced trees of the same size. Thisis a characteristic that is preserved in the extension of the model. An important characteristicof the model is the fact that the corresponding average-case analysis yield �rst-order ordinarydi�erential equations. This fact contrasts with the algebraic equations obtained when theanalysis is done over a uniform distribution of the inputs.When the BST and the balanced models are extended to pairs of trees, the char-acteristic equations change from ordinary to partial di�erential equations in two variables.This change implies a modi�cation of the mathematical techniques needed to complete theaverage-case analysis.The last section of this chapter presents other two probability models, the mSTmodel and the digital search tree model .We expect to give in this chapter a brief overview of several recursion models thatappear around tree data structures, and to illustrate our point on the interest that can have



34 CHAPTER 3. THE BST AND THE BALANCED PROBABILITY MODELSthe study of the relationships between probability models, their mathematical analysis andthe dependences between algorithmic schemes and probability models.3.1 The BST Probability Model.The BST probability model is the one corresponding to randomly built binary searchtrees . Binary search trees and their balanced variants are mainly used to implement dictionaryoperations, i.e. insertions, deletions and queries of items in a set of items [Knu73, AHU76,Sed88, CLR90, GB91]. A great amount of work has been done on statistics for binary searchtrees; most of this work relates to the average-case analysis of algorithms associated withthe manipulation of this particular data structure. Some other works use the BST modelfor computing characteristics of binary trees. Devroye proved that the average height ofbinary trees under the BST model is asymptotically O(log n) [Dev86]. In his proof, he usedtechniques rather di�erent from the ones we use in this work. This expected value of theheight di�ers from the average height of binary trees under the uniform model, which isO(pn) [FO82]. Other known result is about the internal path length of trees. The averageinternal path length for binary search trees of size n is O(n logn) and for uniformly distributedtrees is O(npn). The di�erences lie on the fact that the BST model assigns high probabilityto the more balanced binary trees, and relatively low probability to the skewer trees of thesame size.There are other data structures for which the BST probability model applies aswell : heap-ordered trees [Fla88b], used for the implementation of priority queues, and k-d-trees [Ben75, BF79, FP86], for range multidimensional search.Recall that a binary search tree is a data structure that consists in a binary treewhose nodes are labeled in increasing order from left to right. Binary search trees have thefollowing recursive de�nition [VF90]:De�nition 3.1. Given a sequence of n keys S = (k1; k2; : : : ; kn) where the keys belong to atotally ordered set, we de�ne recursively the binary search tree of S as,BST (S) = 8<: k1(BST (Sl); BST (Sg)); if jSj � 1;2; otherwise,where jSj denotes the number of keys in S, Sl and Sg denote the subsequences of S formedrespectively by the elements of S which are less than k1 and greater than k1, and 2 denotes



3.1. THE BST PROBABILITY MODEL. 35the empty binary tree.In the model of probability associated with binary search trees, each sequence S isobtained by consecutively sampling at random n elements from a real interval, or equivalently,as far as only relative ordering concerns, the elements form a random permutation of size n.In other words, we consider that the sequences are permutations of the set f1; : : : ; ng andthat all sequences of size n have the same probability 1=n!.Let N(T ) denote the number of sequences S of size n that generate the same binarysearch tree T = BST (S). It has been shown by Knuth [Knu73, exercise 5 of 6.2.2] that wecan compute N(T ) from the following recursive equation:N(T ) = 8><>: 1; if T = 2N(T l) �N(T r) � (jT j � 1)!jT lj! � jT rj! ; otherwise.If we denote by Pr(T ) the probability of tree T , then Pr(T ) = N(T )=jT j! and wehave the following recursive de�nition of the BST probability model:De�nition 3.2. The probability Pr(T ) of a binary tree T in the BST probability model isPr(T ) = 8><>: 1; if T = 2Pr(T l) � Pr(T r)1 + jT lj+ jT rj ; otherwise.The recursive manner in which we express this probability model is very handy tosimplify some proofs about average behaviour of binary search trees.For example, consider the internal path lenght of binary trees. The internal pathlenght (IPL, for short) of a tree is the sum of the lenghts of the paths from the root to eachinternal node. This quantity is directly related to the performance of insertions, successfuland unsuccessful queries, etc. If we denote ipl(T ) the internal path lenght of the tree T wehave ipl(T ) = 8<: ipl(T l) + ipl(T r) + jT j � 1; if T 6= 2,0; otherwise.In order to analyze the average value of the IPL for trees of size n, say ipl(n), we introducethe generating function Ipl(z) = XT2B ipl(T ) Pr(T ) zjT j;



36 CHAPTER 3. THE BST AND THE BALANCED PROBABILITY MODELSso [zn]Ipl(z) = ipl(n).Using the recursive decomposition of the characteristic, of the probability model andof the binary trees we getIpl(z) = XT2B�2 �ipl(T l) + ipl(T r) + jT lj+ jT rj� Pr(T ) zjT j == XT2B�2 �ipl(T l) + ipl(T r) + jT lj+ jT rj� Pr(T l) Pr(T r)jT lj+ jT rj+ 1 zjT lj+jT rj+1:By symmetry, Ipl(z) = 2 XT2B�2�ipl(T l) + jT lj� Pr(T l) Pr(T r)jT lj+ jT rj+ 1 zjT lj+jT r j+1:Di�erentiating with respect to z,ddz Ipl(z) = 2 XT2B�2�ipl(T l) + jT lj� Pr(T l) Pr(T r) zjT lj+jT rj == 2 XT2B�2 ipl(T l) Pr(T l) Pr(T r) zjT lj+jT r j + 2 XT2B�2 jT lj Pr(T l) Pr(T r) zjT lj+jT r j == 2 XT1;T22B ipl(T1) Pr(T1) Pr(T2) zjT1j+jT2j + 2 XT1;T22B jT1j Pr(T1) Pr(T2) zjT1j+jT2j:Since T1 and T2 are independent in the summations above, and PT2B Pr(T ) zjT j = (1� z)�1,one has XT1;T22B ipl(T1) Pr(T1) Pr(T2) zjT1j+jT2j = Ipl(z) � 11� z :The generating function PT2B jT j Pr(T ) zjT j�1 is the formal derivative of PT2B Pr(T ) zjT j.Hence, XT1;T22B jT1j Pr(T1) Pr(T2) zjT1j+jT2j = z ddz � 11� z� � 11� z = z(1� z)3 :Finally, we have ddz Ipl(z) = 2Ipl(z)1� z + 2z(1� z)3 ; Ipl(0) = 0:Solving this di�erential equation and extracting the n-th coe�cient of Ipl(z) yields the knownresult [Knu73] ipl(n) = 2(nHn � 2n+Hn);where Hn denotes the n-th harmonic number.A useful way to view the BST model is as an \urn" model: Suppose we have de�nedthe BST distribution for binary trees of sizes 0 to n � 1. In order to construct a binary



3.2. EXTENSION OF THE BST MODEL TO PAIRS OF TREES. 37tree T with n internal nodes, select the size of its left subtree, say i, from 0; : : : ; n � 1, atrandom. Then pick a tree T1 of size i with probability Pr(T1), pick another tree T2 of sizen � 1 � i with probability Pr(T2) and set T1 and T2 as the left and right subtrees of thetree T . This protocol , also gives a recursive de�nition of the BST distribution equivalent toDe�nition 3.2, and it is equivalent to the classical characterization of random binary searchtrees, which states that the size of the left subtree (or of the right subtree) of a tree of sizen is a random discrete variable X taking values in the range [0; : : : ; n � 1] and such thatPr(X = i) = 1=n; i = 0; : : : ; n� 1.More details on the average-case analysis for this model will be given in Sections 3.3and 3.4 of this chapter. In Chapter 4 we analyze the average behavior of the occupancy forthe balanced probability model; the analysis is a just generalization of what we would do forthe BST model.3.2 Extension of the BST Model to Pairs of Trees.There are many algorithms that operate over pairs of trees (for example, equality,uni�cation, tree matching, etc.) and therefore, we need to extend the BST probability modelto pairs of binary trees, in order to analyze such algorithms.This could be done in several reasonable ways, but we have tried to do such extensionin the simplest fashion and to keep most of the BST model attributes.One important attribute of the BST probability model (and of other models) isthat the probability of a tree can be recursively de�ned in terms of the probabilities of itssubtrees and some factor involving their sizes. Our extensions should mantain this property;for instance, the probability of a pair should be de�ned in terms of the probabilities of itscomponents.In order to de�ne the extension of the BST probability model to pairs, we confronttwo situations:� If each of the trees is drawn independently one of the other, the probability of the pairis just Prindp(T1; T2) = Pr(T1) � Pr(T2):



38 CHAPTER 3. THE BST AND THE BALANCED PROBABILITY MODELSNotice that in this case for all n and m,XjT1j=n;jT2j=mPrindp(T1; T2) = 1:� If we consider pairs of binary trees (T1; T2) such that jT1j + jT2j = n, where n is thesize of the input and assume that all the n + 1 possible partitions of n into n = i + j(being jT1j = i and jT2j = j) are equally likely, we come up with a de�nition of aprobability distribution over each of the subsets of pairs of binary trees of total size n.This probability model will be called extended BST model1.De�nition 3.3. The probability Pr(T1; T2) of the pair of binary trees (T1; T2) in the extendedBST probability model isPr(T1; T2) = Pr(T1) � Pr(T2)1 + jT1j+ jT2j = Pr(�(T1; T2));where Pr(T ) denotes the probability of the single tree T in the BST model.Notice that the probability of a pair coincides with the probability of the tree formed by a rootand whose subtrees are the components of the pair; a similar principle is used in the extensionof the balanced model to Cartesian products of simple families of trees (see Section 3.3).Also, the extended BST model is well de�ned sinceXjT1j+jT2j=nPr(T1; T2) = 1:An inherent characteristic of the average-case analysis under the extended BSTmodel is that the functional relations that appear are partial di�erential equations. Given acharacteristic f(T1; T2), we introduce the generating function F (z)F (z) = X(T1;T2)2B2Pr(T1; T2) f(T1; T2) zjT1j+jT2j (3:1)to have that [zn]F (z) is [zn]F (z) = Xj(T1;T2)j=nPr(T1; T2) f(T1; T2):1If there is no confusion, we speak also of BST model when is actually meant extended BST model.



3.3. THE BALANCED PROBABILITY MODEL. 39Since the summation in (3.1) is to be splitted to obtain some functional relationsatis�ed by F (z), we must introduce the bivariate generating function corresponding to theprobability model for pairs whose members are independently drawnF (x; y) = X(T1;T2)2B2Pr(T1) Pr(T2) f(T1; T2) xjT1j yjT2j (3:2)and then relate F (z) and F (x; y). Using the de�nition of the extended BST model, one hasF (z) = 1z Z z0 F (t; t) dt:The extension of the BST model to pairs of trees is the realm of partial di�erentialequations in two variables. Since the \splitting" of the summation in (3.2) is done for bothT1 and T2, di�erentiation with respect to x and y should be done and the resulting partialdi�erential equations are of second order. Deriving asymptotic estimations of the coe�cientsof [zn]F (z) is a main subject of this thesis (see Chapters 7 and 8). The �rst stage of theanalysis under the BST model, where the recursive decomposition of algorithms and datastructures is exploited to derive equations describing the average behavior of the algorithms,is discussed in the next section, and in Chapters 5 and 6.3.3 The Balanced Probability Model.The balanced probability model was de�ned in an attempt to generalize the BSTprobability model to other families of trees (with nodes of arbitrary degree, labels, etc.). Atthe same time, we wished that the model kept most of the properties of the BST model. Forinstance, the balanced probability model admits a recursive splitting, i.e., the probability ofa given non-empty tree can be expressed in terms of the probabilities of its subtrees. As inthe BST model, well balanced trees are common in the balanced probability model, whereaspoorly balanced trees and linear lists are rare.In fact, the balanced model is not a concrete model, but a set of rules or principlesthat allow the systematic de�nition of a probability model over any given simple family oftrees. Thus, it would we more appropriate to talk about \: : :the balanced model for the familyF : : :" or \: : :average-case analysis under a balanced probability model: : : ". Nevertheless, wewill use the name in a more informal way, just as we do with the term \uniform model".Other models for families of trees with internal nodes of degree > 2 and that gener-alize binary search trees are the quadtree model and the m-ary search tree model . Quadtrees



40 CHAPTER 3. THE BST AND THE BALANCED PROBABILITY MODELSare specially useful for geometric data storage and range search, but the degree of internalnodes in quadtrees must be some power of 2. The m-ary search trees were de�ned as e�cientdata structures for the dictionary problem using external storage and to improve balancing,by putting m� 1 keys per node (see Subsection 3.5.1). The probability models for these twogeneralizations do not coincide with the balanced probability model for the correspondingfamilies. It should be emphasized that average-case analysis under the balanced probabilitymodel is easier to do than under any of the former models; and there is not an increase ofthe di�culty with respect to the analysis with the BST probability model. The same set oftechniques that are used to carry out the analysis under the BST model can be used for theanalysis under the balanced model.The balanced probability model is also closely related to the so-called increasingtrees [BFS92]; increasing trees are the generalization of the idea of heap ordered trees to treeswith nodes of arbitrary degree.A rather curious phenomenon is that the balanced model does not depend neitheron the labels of the nodes nor on the number of distinct labels given to nodes of the samedegree. In order to de�ne the balanced probability model over a simple family of trees F ,generated by the symbol set S, we assume that we are given probability distributions overeach subset of symbols of the same arity. Let p(s) be the probability of the symbol s 2 S.We impose that 8k � 0 Xs2��1(k) p(s) = 1; if ��1(k) 6= ;:We are now ready to de�ne the balanced probability model over F , by �rstly intro-ducing a weight measure w over F .De�nition 3.4. The weight measure w(T ) of a tree T 2 F is recursively de�ned byw(T ) = 8<: p(s); if T = s and �(s) = 0,p(s) �w(T1) � � �w(Tk) � 1jT j ; if T = s(T1; : : : ; Tk) and �(s) = k.And in order to obtain a probability model over F , we de�ne the probability of atree T as follows:



3.3. THE BALANCED PROBABILITY MODEL. 41De�nition 3.5. The probability Pr(T ) of a tree T in the balanced model isPr(T ) = w(T )Pjtj=jT jw(t) :It can be readily veri�ed that Pr(�) satis�es Kolmogorov's axioms. Notice thatPr(T ) varies depending on how balanced the tree is, being maximum for complete trees andminimum for linear list-like trees (see Figure 3.1).
w(T ) = 1352w(T ) = 13991680Figure 3.1: Two particular examples of the weight measure for ternary trees of the same size(leaves have been omitted).The de�nitions above can be extended to k-tuples of trees from a simple family F .De�nition 3.6. The weight w(T1; T2; : : : ; Tk) of a k-tuple of trees T1,: : : ,Tk in F isw(T1; : : : ; Tk) = w(T1) � � �w(Tk):The probability measure over k-tuples (T1; : : : ; Tk) of size jT1j + � � � + jTkj = n isde�ned in the same way it has been done before:De�nition 3.7. The probability Pr(T1; T2; : : : ; Tk) of a k-tuple of trees T1; T2; : : : ; Tk in F isPr(T1; : : : ; Tk) = w(T1; : : : ; Tk)Pjt1j+���+jtkj=n w(t1; : : : ; tk) :



42 CHAPTER 3. THE BST AND THE BALANCED PROBABILITY MODELSAlso, we can de�ne a probability model over the Cartesian product F1 � � � � � Fk,for F1; : : : ;Fk simple families of trees, in the same way.Given a family F let its weight characteristic series be�(u) =Xs2S p(s) � u�(s) = Xn2Im� un:A given degree n belongs to the set Im� if there is a least a symbol s in S such that �(s) = n.Let W (z) = PT2F w(T ) zjT j. Then the n-th coe�cient of W (z) is the normalizingconstant needed to get the probability distribution for trees of size n (see De�nition 3.5). Wewill call W (z) the weight generating function of the family F .Using De�nitions 2.1 and 3.4 and depending on the convention for the size of a leaf,we get the following functional relations for W (z).If we impose jsj = 0 for all 0-ary symbols s, we get,dWdz = �(W )� 1; W (0) = 1;whereas if jsj = 1 for s 2 ��1(0) , then W (z) satis�es,dWdz = �(W ); W (0) = 0:Note that the weight characteristic series �(u) does not depend on the symbols of S.Moreover, it does not depend on the number of symbols of a given arity, but on the existenceor not of symbols of the given arity, and consequently, W (z) has the same properties.Some interesting characteristic series and weight generating functions are given inTable 3.1, where in the three �rst families we have assumed that the size of a tree is thenumber of internal nodes (leaves have null size) and in the last two families each node, ofwhatever arity, contributes to the total size.In the particular case of binary trees, we have that Pr(T ) = w(T ), since [zn]W (z) = 1for all n � 0. Therefore, the de�nitions of Pr(T ) in the BST model and the balanced modelcoincide, as claimed.Notice also that for pairs of binary trees, De�nition 3.7 impliesPr(T1; T2) = Pr(T1) � Pr(T2)jT1j+ jT2j+ 1 = Pr(�(T1; T2));so the extension of the BST model to pairs of binary trees is also a particular case of thebalanced model.



3.4. AVERAGE-CASE ANALYSIS UNDER THE BALANCED MODEL. 43Family �(u) W (z)Linear lists (unary trees) 1 + u ezBinary trees (B) 1 + u2 11�zm-ary trees, m > 1 (Tm) 1 + um (1� (m� 1)z)�1=(m�1)Motzkin trees (unary-binary trees) 1 + u+ u2 p32 tan �p32 z + �6�� 12General trees 11�u 1� p1� 2zTable 3.1: Weight characteristic series and generating functions.3.4 Average-case Analysis under the Balanced Model.When the characteristic under study is an inductive valuation and we want to carryout the analysis of that characteristic for the balanced model, the functional relations overgenerating functions are ordinary linear di�erential equation, as for the BST model.Any inductive valuation f(T ) can be recursively expressed asf(T ) = Xt�T f(t) +m(jT j);where t � T denotes that t is a subtree of the root of T , and m(n) is any numerical functionwhose domain are the positive integers.The steps to be followed are the same as for the BST model. We introduce agenerating function for the sequence of expected values of the characteristic, and translatethe relationships between the expected values to a functional equation for this generatingfunction. Di�erentiation must be done because we ought to get rid of the jT j�1 factor in therecursive de�nition of w(T ) so as to relate the generating function with itself.Let F (z) = XT2F w(T ) f(T ) zjT j:Then, the expected value of f(T ) over trees of size n isf(n) = [zn]F (z)[zn]W (z) :If the size measure over the family F is de�ned assigning null size to 0-ary nodes,



44 CHAPTER 3. THE BST AND THE BALANCED PROBABILITY MODELSthenF (z) = Xs2��1(0)m(0) p(s) + Xk>0k2Im� Xs2��1(k) XT1;:::;Tk2F (m(jT1j+ � � �+ 1) + f(T1) + � � �++ f(Tk)) p(s)w(T1) � � �w(Tk) z1+jT1j+���+jTk j1 + jT1j+ � � �+ jTkj :Di�erentiating the formula above with respect to z, some additional manipulationsyield dFdz = Xk>0k2Im� 24 XT1;:::;Tk2F w(T1) � � �w(Tk)m(� � �) zjT1j+���+jTk j + k F (z)W k�1(z)35 == 0B@Xn�0m(n+ 1) zn Xk>0k2Im� XjT1j+���+jTkj=nw(T1) � � �w(Tk)1CA+ F (z)�0(W (z)) == 0@Xn�0m(n+ 1) zn [zn](�(W (z))� 1)1A+ F (z)�0(W (z)) == 0@Xn�0m(n+ 1) zn [zn]W 0(z)1A+ F (z)�0(W (z)) == dMdz + F (z)�0(W (z)) (3.3)if we de�ne M(z) = Pn�0m(n)wn zn and wn = [zn]W (z). The initial condition for thedi�erential equation is L(0) =M(0).If the balanced model is de�ned over a family where the size of a tree is the totalnumber of nodes (leaves and internal nodes), the di�erential equation relating the generatingfunction F (z) with itself and M(z) and W (z), is again the same and, with the same initialcondition.Finally, the average-case analysis over pairs of trees in the balanced model is con-ducted in the same way as for the BST model. For statistics over m-tuples of trees withm > 2, a generating function on m variables ought to be de�ned and the functional relationover generating functions is, in general, a partial di�erential equation of the m-th order in mvariables (see Chapter 5).



3.5. OTHER PROBABILITY MODELS. 453.5 Other Probability Models.In this section we consider other two interesting models: the mST probability modeland the digital search tree probability model (DST model, for short).The mST probability model is a generalization of the BST probability model to m-ary trees. Like the BST and the balanced model, it assigns high probability to well balancedtrees. This model corresponds tom-ary search trees and as we will see has many peculiarities,since the size of such trees should be de�ned as the number of keys that a tree holds, not thenumber of nodes it has.The DST probability model corresponds to randomly built digital search trees . Whilebinary search trees and m-ary search trees are built by comparison of the keys on a givensequence, the construction of a DST relies on the decomposition of keys into their smallerunits (for instance, the bit representation of the keys, if the keys are integers).3.5.1 The mST Probability Model.The m-ary search tree is a natural generalization of the binary search tree, whereeach node holds up to m� 1 keys, and internal nodes have degree m � 2. The m-ary searchtrees were �rst introduced by Muntz and Uzgalis [MU71], and balanced variants of them weresuggested thereafter.The insertion on an m-ary search tree goes as follows: if the root node is not yetcompletely �lled with m � 1 keys, put the new key in the root, maintaining the increasingorder between the keys already there. If the root has been completely �lled the new key isinserted in the i-th subtree if it is greater than the key stored at the root at position i � 1and less than the key at position i. A new node is created if the subtree was empty. Theprocedure is applied recursively in this way until the new key gets inserted.As for binary search trees, we can de�ne m-ary search trees as follows :De�nition 3.8. Let S be a sequence of n keys S = (k1; k2; : : : ; kn) where the ki belong toa totally ordered set. Furthermore, if n � m � 1, let S 0 = (k01; k02; : : : ; k0m�1) be the orderedsequence of the �rst m� 1 keys in S (k01 < k02 < � � � < k0m�1). Then the m-ary search tree of



46 CHAPTER 3. THE BST AND THE BALANCED PROBABILITY MODELSS is mST (S) = 8>>>>>>>>><>>>>>>>>>: 0 ; if n = 01 ; if n = 12 ; if n = 2� � �m-1 (mST (S1); mST (S2); : : : ; mST (Sm)); if n � m� 1.where the symbol i represents a node holding the �rst 0 � i � m� 1 keys of S in increasingorder, and Sj is the sequence of keys in S such that are greater than k0j�1 and less than k0j(if j = 1 then S1 contains the keys that are less than k01 and if j = m then Sm contains thekeys that are greater than k0m�1).This de�nition of the m-ary search trees is rather intricate but shows clearly thefollowing fact : the m-ary search trees are isomorphic (in shape) to the simple family oftrees generated by S = f 0 ; 1 ; : : : ; m-1 g (S denotes now the set of symbols generating thefamily), and where the arity function is �( m-1 ) = m and � = 0 for all other symbols inS. Now, the symbols i have no relation with keys. Also, the size measure over this familyshould be de�ned as the sum of the sizes of all the nodes, with ��� 0 ��� = 0, ��� 1 ��� = 1,: : : ,��� m-1 ��� = m� 1.The common assumption for the de�nition of a probability model for m-ary searchtrees is that the n! distinct relative orderings of the n keys stored at the tree are equally likely.Notice that the size of an m-ary search tree ought to be the number of keys in the tree, andnot the number of nodes. Under the previous assumption it turns out that the probability ofa tree of size 0 � i � m� 1 is 1 (there is only one m-ary tree of size i if 0 � i � m� 1), andif the tree has size n � m� 1 then the probability that its i-th subtree has size ni isPr(jTij = ni j jT j = n) =  nm � 1!�1; 1 � i � m; 0 � ni � n �m+ 1; m � 2So the mST probability model can be de�ned in an analogous way to our de�nitionof the BST probability model:De�nition 3.9. The probability Pr(T ) of a m-ary search tree in the mST probability modelis Pr(T ) = 8>><>>: 1; if 0 � jT j � m� 1,Pr(T1) � � �Pr(Tm), jT jm� 1! ; if T = m-1 (T1; : : : ; Tm).



3.5. OTHER PROBABILITY MODELS. 47The average-case analysis of algorithms over m-ary search trees introduces, in gen-eral, (m � 1)-th order ordinary di�erential equations. Many interesting characteristics leadto linear di�erential equations and the corresponding homogeneous di�erential equation is anEuler equation whose solutions can be explicitly computed.The methodology to follow in the �rst steps is the familiar one. A generating functionof the characteristic f(T ) is introducedF (z) = XT2Tm f(T ) Pr(T ) zjT jand then recurrences for f(T ) and De�nition 3.9 are exploited to get a functional relationsatis�ed by F (z).One of the characteristics of importance inm-ary search trees is the number of nodesneeded to host the n keys. Its expected value is12(Hm � 1)n� 1m� 1 + O(n��1)where � = �(m) is a rather complicated function that never exceeds 2, and is less than 1.5 form � 26; and Hm is the m-th harmonic number [Knu73, Bae87, MP89]. The average internalpath length is � 1=(Hm � 1)n lnn [Mah86], and the average height tends in probability to
 lnn, where 
 = 
(m) is a decreasing function that for large m approaches 1= lnm [Dev90].3.5.2 The DST Probability Model.Digital search trees (DSTs for short) are built based on the decomposition of thekeys in symbols and not on the relative order between them. For simplicity, assume thatthe keys consist in bit strings. Therefore, it makes sense to refer to the j-th bit of a keynumbering the bits from left-to-right. Each node holds a key, and the keys stored at the leftsubtree of any node share a common pre�x with that node followed by 0, whereas the keysat the right subtree share the same common pre�x followed by 1. The length of this pre�x isthe level at which the node appears (see Figure 3.2).When a key is to be retrieved or the spot to insert a new key is needed, the corre-sponding algorithm follows a path, branching to left or to right when at level j� 1, accordingas whether the j-th bit is 0 or 1. In many implementations, it is convenient to require all keysto be of the same length; but the method also works for varying length keys, if none of thekeys is a proper pre�x of another. DSTs were �rstly introduced by Co�man and Eve [CE70].



48 CHAPTER 3. THE BST AND THE BALANCED PROBABILITY MODELS000100111000011 01101 1000110010S = f 00010; 01110; 01101; 10001; 00011; 10010 gFigure 3.2: A digital search tree.Additional references for both the implementation and performance analysis are the books ofKnuth [Knu73], Gonnet and Baeza-Yates [GB91] and Mahmoud [Mah92], and the survey byFlajolet and Sedgewick [FS86].Before discussing the appropriate random model for DSTs, it should be emphasizedthat the order of insertion of the keys is relevant.The simplest model for analyzing these data structures is the Bernoulli model (fromnow on, called DST model). That model assumes that keys are in�nite random strings ofbits, independently generated. This is equivalent to consider that the keys are real numbersindependently sampled from the unit interval. Therefore, the probability that the left subtreeof a tree with n nodes has size n1 (and the right subtree n� 1� n1 nodes) is12n�1 n � 1n1 !;the probability that n1 of the n� 1 keys to be inserted start with a 0 and thus get insertedat the left subtree [FS86].De�nition 3.10. The probability Pr(T ) of a binary tree T in the DST probability model isPr(T ) = 8>><>>: 1; if T = 2Pr(T l) � Pr(T r)2jT j�1  jT lj+ jT rjjT lj !; otherwise.Some signi�cative results for this model concern the average number of comparisons



3.5. OTHER PROBABILITY MODELS. 49in successful and unsuccessful search in a DST of size n (both are � log2n + O(1) [KN73,Knu73, FS86]); and the average height of a DST (� log2n [Pit85]).A data structure that is closely related to DSTs, is the trie or radix search trie. Thisdata structure has two types of nodes; the internal nodes contain pointers to other nodes,while the external nodes do actually store the keys. In contrast to DSTs, the shape of a triedoes not depend on the order of insertion of the keys, but a trie storing n keys can have morethan n internal nodes. There is a variant of the trie, called Patricia tree, where exactly n� 1internal nodes (and n external ones) are needed to store n keys. Although we will not de�netheir corresponding probability models, we remark that there are many resemblances withthe DSTs. The average-case analysis is performed for these data structures in a similar way.The average-case analysis in the DST model has some signi�cative di�erences withrespect to the previously considered models, and leads to di�erence-di�erential equations.In the average-case analysis under the DST model, we use generating functions, butthey are exponential g.f.'s instead of ordinary ones. For instance,V (z) = XT2B v(T ) Pr(T )zjT jjT j!where v(T ) is the measure we are interested in.If v(T ) is an inductive valuation, the functional relation for V (z) isV 0(z) = 2V (z=2) + U(z);using the model given by De�nition 3.10 and the de�nition of inductive valuation, and whereU(z) is a generating function corresponding to the term that depends only on the size inthe de�nition of the inductive valuation. The next step considers Y (z) = e�zV (z) andX(z) = e�zU(z); translating the equation above, one getsY 0(z) + Y (z) = 2Y (z=2) +X 0(z) +X(z);that corresponds to a non-linear recurrence for the Yn. The relation between the coe�cientsvn = [zn=n!]V (z) and yn = [zn=n!]Y (z) is given byvn =Xk  nk!yk (3:4)There are many instances were yn is explicitly known or there is a good estimation,and relates to the quantities Qn = Y1�i�n(1� 2�i);



50 CHAPTER 3. THE BST AND THE BALANCED PROBABILITY MODELSthat arise in the theory of partitions. Classical identities (for instance, Euler's formul�) fromthis theory, Rice's method and the Mellin transform techniques are then used to evaluateasymptotically (3.4).
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Part IIISome Elementary Statistics overTrees Using the BST ProbabilityModel





53Part III includes most of the contributions and results of this work. Chapter 4introduces occupancy , a very simple characteristic over m-ary trees. The occupancy of a treeis closely related with its degree of balancing. We analyze its average behavior under theuniform model and the probability models described in Chapter 3. This yields a basis forthe comparison of these probability models and allows us to point out some of the distinctivefeatures of each model. Moreover, the analyses provide an example of the application of someof the techniques discussed in Part II, and show the nature of the problems and the availabletools associated to the analysis under the di�erent probability models. In this way, we �xsome of the ideas already given in Chapter 3.Our approach to the study of the BST model begins with the application of thesymbolic operator method to derive a set of algebraic techniques for the average-case analysisunder the BST model. Following similar developments for the analysis under the uniformmodel, in Chapter 5 we propose a set of rules that allow the systematic translation of thealgorithmic constructions used in recursive tree algorithms to equations over generating func-tions. These equations over generating functions describe the average behavior of the analyzedalgorithm, when the input trees are distributed according to the balanced model.The development of such a set of translation rules permits a better comprehension ofthe type of problems that arise in the second stage of the analysis, and the relationships withsome interesting recursion schemes. For instance, the simultaneous descent construction overpairs of trees is one of the simplest non-trivial recursion schemes. Another basic recursionscheme that we have studied is based on the conditional iteration construction in combinationwith a recursion scheme satis�ed by certain binary predicates that we call hereditary proper-ties . The resulting recursion scheme is the one appearing in the algorithms that check if agiven pair veri�es a given hereditary property. Examples of these algorithms are the equalitytest, the direct occurrences check and the sequential pattern-matching algorithm. The prob-ability that a given pair of trees of size n satis�es an hereditary property is a question thatarises in the average-case analysis of all these algorithms. We cope with the problems asso-ciated to hereditary properties in a general setting and enumerate some particular instancesof these problems in Chapter 6.The �rst complete analysis of this work corresponds to the average size of the in-tersection, in Chapter 7. The intersection of a pair of trees stems from the application ofthe simultaneous descent scheme. The average-case analysis of the size of the intersectionbegins with the derivation of a partial di�erential equation that describes the expected size



54of the intersection. We �nd an explicit solution of the partial di�erential equation by meansof Riemann's method. The solution is expressed in terms of Bessel functions. A subsequentasymptotic analysis and the use of standard complex analysis techniques renders an asymp-totic estimate of the average size of the intersection under the balanced model. The chapterexamines also the application of the translation rules of Chapter 5 to the analysis of theintersection algorithm.Turning back to hereditary properties, we analyze in Chapter 8 the equality testalgorithm and the probability that two binary trees are equal. The analysis of the performanceof the equality test algorithm follows the general framework given in Chapter 6. The partialdi�erential equation associated to the equality test is more complex than the one of theintersection. We use an argument of asymptotical equivalence to compute the average-casecomplexity of the equality test. Our previous analysis of the intersection proves to be helpfulfor the analysis of the equality test, since the same techniques used in the analysis of theintersection are used to study an algorithm closely related to the equality test. It turnsout that the average-case complexities of the equality test and of the other algorithm areequivalent. This asymptotical equivalence follows from the asymptotical equivalence of thecorresponding Riemann-Green functions.Finally, we address the other basic question arising in the context of the equalitybetween binary trees in Chapter 9. This basic question is that of evaluating the probabilitythat two trees of size n each are equal. One of the facts that we establish in the chapter isthe exponentially decreasing behavior of this probability for large n.



55Chapter 4Average Occupancy of TreesWe begin this part on elementary statistics analyzing a simple characteristic overtrees, called occupancy . The occupancy of a tree is closely related to the degree of balancingof the tree. We analyze the average behavior of the occupancy under di�erent probabilitymodels. This gives us the opportunity to compare these probability models and discuss theirmain distinctive features. Furthermore, the analyses exemplify the techniques involved inthe average-case analysis when each of the probability models is assumed. We will analyzeaverage behavior of occupancy under the uniform model, the mST model and DST modeland the balanced model.As far as the author knows, occupancy has never been de�ned before, although itsde�nition is quite easy and natural. This is not an strange circumstance since occupancy haslittle algorithmic signi�cance.By occupancy of a tree we mean the sum of the ratios between the number of internalnodes and the maximum number of nodes at a given level. This characteristic can be de�nedfor any simple family of trees with bounded arity, but it is not straightforward to do it, unlesswe restrict to the case where internal nodes have some �xed arity m. It is not a seriousrestriction since all the probabilistic models that we have considered, except the balancedmodel, are only de�ned over m-ary trees.The occupancy of an m-ary tree T is de�ned asocc(T ) = Xk�0 Wk(T )mk ;where Wk(T ) is the number of internal nodes of T at level k, also known as width of T at



56 CHAPTER 4. AVERAGE OCCUPANCY OF TREESlevel k. The de�nition can be transformed to the recursive expression:occ(T ) = 8<: 1 + 1m(occ(T1) + � � �+ occ(Tm)); if T 6= 2,0; otherwise.Let occMIN(n) and occMAX(n) denote the minimum occupancy and maximum oc-cupancy achieved by m-ary trees of size n. These extremal values correspond to linear treesand complete trees, respectively. No much e�ort is needed to get,occMIN(n) = mm� 1 �1� 1mn� � mm� 1 ;occMAX(n) = blogm nc + 1 + `md+1 ; n = md+1�1m�1 + `; 0 � ` < md+1;d = blogm nc:4.1 Average Occupancy under the Uniform Model.We start computing the average occupancy occ(n), form-ary trees of size n supposingthat all of them are equiprobable. LetOcc(z) = XT2Tm occ(T ) zjT j:The average occupancy is therefore,occ(n) = [zn]Occ(z)tn;m ;where tn;m stands for the number of m-ary trees of n internal nodes. From the de�nition ofocc(T ) is not di�cult to verify that,Occ(z) = zFm(z)1� zFm�1(z) = F 2(z)� F (z);with F (z) =Pn�0 tn;m zn = 1 + zFm(z).Applying Lagrange-B�urmann inversion formula (see Subsection 1.1.3), we have[zn]Occ(z) = [zn]Xn�1 znn! " dn�1dyn�1 ((2y � 1)ymn)y=1# ==  mnn ! ��2 mn + 1(mn� n+ 2)(mn� n+ 1) � 1mn � n + 1� :And using the same inversion formula, it turns out that,[zn]F (z) = tn;m =  mnn ! � 1mn� n+ 1 :Hence, we have the following theorem.



4.2. AVERAGE OCCUPANCY UNDER THE BALANCED MODEL. 57Theorem 4.1. The average occupancy for uniformly distributed m-ary trees of size n isocc(n) = 2 mn + 1(m� 1)n+ 2 � 1 � m + 1m � 1 +O� 1n� :The theorem above shows that the average value of the occupancy for trees of sizen is of the same order of magnitude as the minimal value, that corresponds to linear trees,occ(n) � m+ 1m � occMIN(n):4.2 Average Occupancy under the Balanced Model.If we use the balanced probability model de�ned in Section 3.3 for m-ary trees, theaverage occupancy is now given byocc(n) = XjT j=n occ(T ) Pr(T ) = [zn]PT2Tm occ(T )w(T ) zjT j[zn]W (z) ;where W (z) is the weighting generating function of the family Tm.Denoting by Occ(z) the generating function associated to the occupancy, the rela-tionships for the occupancy translate into a �rst-order ordinary di�erential equation,ddzOcc� 11� (m� 1)zOcc = 1(1� (m� 1)z)m=(m�1) ; Occ(0) = 0;whose solution is, Occ(z) = 1m� 1W (z) ln� 11� (m� 1)z� :Using the transfer lemma given in Theorem 1.8 (Subsection 1.2.2), [zn]Occ(z) isasymptotically,[zn]Occ(z) � 1(m� 1)n+1 � n�m�2m�1 � lnn � 1�(1=(m� 1)) �1 + O� 1n�� :The n-th coe�cient of W (z) is easily computed by means of Darboux's theorem.The asymptotic behavior of occ(n) is thus derived and we conclude the followingtheorem.Theorem 4.2. The average occupancy form-ary trees, under the balanced probability modelis occ(n) � 1m � 1 ln n:



58 CHAPTER 4. AVERAGE OCCUPANCY OF TREESThe average value of the occupancy under the balanced model behaves now as themaximum value, achieved by complete trees,occ(n) � 1m� 1 lnm � occMAX(n):4.3 Average Occupancy under the mST Model.Remember that in the mST model the size of a tree is the number of keys it contains,not its number of nodes. Recall also that in a mST each node holds up to m� 1 keys and nonode has a non-empty subtree unless it holds m� 1 keys.To properly de�ne occupancy over the family of mSTs, we introduce the followingde�nition of the width at level k:Wk(T ) = 8<: 0; if jT j < m� 1,Wk�1(T1) + � � �+Wk�1(Tm) if T = m-1 (T1; : : : ; Tm),when k > 0, and W0(T ) = 8<: 0; if jT j < m� 1,1; otherwise.The minimum occupancy is achieved by a tree with d nm�1e nodes linearly arranged:occMIN(n) = X0�k�bn=(m�1)c 1mk = m� � 1m�bn=(m�1)cm� 1 � mm� 1and the maximum by a perfectly balanced tree:occMAX(n) � dlogm(n+ 1)e;where the bound is tight if n = mk � 1 for some k.As expected, the generating functionOcc(z) = XT2Tm occ(T ) Pr(T )zjT jsatis�es an m-th order ordinary di�erential equation (see Subsection 3.5.1):dm�1dzm�1Occ(z) = (m� 1)!(1� z)m + (m� 1)!(1� z)�(m�1)Occ(z); (4:1)with Occ(i)(0) = 0 for i = 0; : : : ; m� 2 and Occ(m�1)(0) = (m� 1)!.



4.4. AVERAGE OCCUPANCY UNDER THE DST MODEL. 59The homogeneous equation corresponding to (4.1) is an Euler equation, so its solu-tion is of the type: Occh(z) = X1�i�m�1Ai(1� z)�si ;where the si's are the solutions of (s + m � 2)m�1 = (m � 1)! and the Ai's are constantsdepending only on m and the initial conditions. Here, xn denotes the n-th falling power ofx, xn = x(x� 1)(x� 2) � � �(x� n+ 1) [GKP89]. Except for s = 1, the other m� 2 solutionsare negative or complex.To obtain a particular solution we assume thatOccp(z) = A u(z)1� zfor some function u(z) and a constant A. Application of Liebniz's rule for the m-th derivativeof a product and the initial conditions of the problem show that such a particular solution isOccp(z) = 1Hm�1 ln � 11�z�1� z ;where Hn denotes the n-th harmonic number. Therefore, the following theorem is satis�ed:Theorem 4.3. The average occupancy for m-ary trees, under the mST probability model isocc(n) � lnmHm�1 logm n+ O(1):As for the balanced model, the average occupancy for m-ary search trees of size nis proportional to the occupancy of the complete trees of size n,occ(n) � lnmHm�1 occMAX(n):4.4 Average Occupancy under the DST Model.The digital search tree model was only de�ned for binary trees in Subsection 3.5.2.We perform therefore the analysis only for this family of trees and takem = 2 in our de�nitionof the occupancy. The generalization of the model to m-ary trees and of the forthcomingresults are immediate. A di�erence with the previous sections will be the use of an exponentialgenerating function for the sequence of expected values f occ(n)gn�0:Occ(z) = XT2BPr(T )occ(T )zjT jT ! :



60 CHAPTER 4. AVERAGE OCCUPANCY OF TREESFrom the de�nition of occ(T ) and the de�nition of Pr(T ) in the DST probabilitymodel, we get that Occ(z) veri�es a di�erence-di�erential equation:ddzOcc = ez + ez=2Occ(z=2):Let �(z) =Pn�0 �n zn=n! = e�zOcc(z). Thenocc(n) = X0�k�n nk!�k;and d�dz +� = 1+ �(z=2):Since �(z) is an exponential generating function, we have�n+1 = ��n �1� 12n� = (�1)n Y1�j�n�1� 12j� :Some standard manipulations, including the use of Euler formul� [Knu68] yieldocc(n) = �Xj�00@Xl�0 al+1 2�j�l1A�exp(n=2j)� 1� ;where ai = (�1)i+1 2�(i2)Qi�1 ;the quantities Qn are Qn = Y1�i�n(1� 2�i);and Xl�1 al+11� 2�l = �Xl�1 12l � 1 = �� = 1:6066 : : :The last step involves the approximation of occ(n) by means of a continuous functionand the application of the Mellin transform techniques (see Subsection 1.2.3). Let�(x) = �Xj�00@Xl�0 al+1 2�j�l1A�exp(x=2j)� 1� :Hence, occ(n) = �(n). And from Cauchy's residue formula (1.6)�(x) = � X���<��dRes[��(s)x�s; s = �] + O(x�d); x!1; (4:2)



4.4. AVERAGE OCCUPANCY UNDER THE DST MODEL. 61where ��(s) denotes the Mellin transform of the function �(x). Here,��(s) = �Xl�0 al+1 �(s)1� 2s�land the fundamental strip is < �1; 0 >.Then (4.2) yields�(x) = Res "�(s)x�s1� 2s ; s = 0#+Xk 6=0Res "�(s)x�s1� 2s ; s = 2�iln 2k# ++ Xl�1 al+1Res "�(s)x�s1� 2s�l ; s = 0# :Since Res "�(s)x�s1� 2s ; s = 0# = log2 x+ 
ln 2 ;Res "�(s)x�s1� 2s ; s = 2�iln 2# = � 1ln 2�� 2�iln 2k� e�2�ik log2 x;Res "�(s)x�s1� 2s�l ; s = 0# = 11� 2�l ;we obtain:Theorem 4.4. The average occupancy for binary trees, under the DST probability model isocc(n) = log2 n+ 
ln 2 � �� �0(log2 n)where 
 = 0:57721 : : : is Euler's constant, � =Pi>0(2i � 1)�1 = 1:6066 : : : and�0(x) = 1ln 2Xk 6=0�� 2�iln 2k� e�2k�ixis a periodic function of mean value 0 and small amplitude (� 10�5).The properties of the function �0(x) have been considered in the analysis of approximatecounting [Fla85] and are quite similar to the properties of another function that appears inthe analysis of radix exchange sort [Knu73].As in the last two analysis, the average occupancy is of the same order of magnitudeas the maximum occupancy. This is because the DST model also assigns high probability towell balanced trees and low probability to poorly balanced trees.



62 CHAPTER 4. AVERAGE OCCUPANCY OF TREES4.5 Conclusions.Even this simple example captures some of the particularities of the average-caseanalysis for each of the considered models; and re
ects the di�erences that should be expectedbetween the corresponding results.First of all, the average-case analysis under the balanced model involves �rst-orderdi�erential equations over generating functions. The average-case analysis under the uni-form model leads to combinatorial problems and the functional relations for the generatingfunctions are of algebraic nature.The results summarized in the theorems at the end of each section allow us toconclude that the expectation of occupancy is determined by the high probability of completeand nearly complete trees for the balanced model, whereas corresponds to the occupancy ofthe linear trees if the uniform model is assumed. Similarly, the mST and the DST probabilitymodels assign high probability to well balanced trees, and the average occupancy for thesemodels behaves like the upper bound for the occupancy, a bound that is achieved by completetrees.



63
Chapter 5Recursive Tree Algorithms and theBalanced ModelA lot of work has been done on the mechanization of the analysis of algorithms anddata structures and there have been several approaches to the subject. One of the approachesto the mechanization of the analysis is that of Flajolet and Steyaert. Their approach consistsin the translation of the structure of programs to equations over generating functions thatdescribe the average-case complexity of the programs. To do so, they provide a system ofrules that map each elementary algorithmic construction and each data type constructioninto an operation over the generating functions. The generating functions are associatedto the sequences of the cumulated complexities (complexity descriptors) and the countinggenerating functions, since the analysis is done under the uniform model. The next stageof their approach is to recover asymptotic estimates of the average-case complexity of thealgorithm from the equations over generating functions, using complex analysis techniques.We have already described this methodology in Part I. These ideas have been applied inthe design and implementation of the automatic algorithm analyzer ��
 [FSZ89, FSZ91].��
 consists in the conjunction of: 1) an algebraic analyzer that automatically computes theequations over generating functions from the algorithm and data structures speci�cation; 2)an analytic analyzer, that tries to solve the equations and then applies some techniques ofcomplex analysis to extract asymptotic information from the explicit form of the generatingfunctions.The system of rules mapping programs to a set of relations satis�ed by complexity



64 CHAPTER 5. RECURSIVE TREE ALGORITHMS AND THE BALANCED MODELdescriptors constitutes the algebraic part of a complexity calculus. The programs that can beanalyzed in this way are, a priori , all those that can be expressed using the algorithmic anddata type constructions considered, since the system of rules is complete with respect to the\programming language". As long as the algorithmic constructions guarantee the terminationof the algorithms that they express, the question of undecidability does not arise, at leastin principle, and there is no theoretical limit on the possibility of analyzing the algorithmbehavior. However, there are practical limitations to what can be analyzed: the \size" andcomplexity of the programs to be analyzed, the complexity of the functional equations, etc.A basic reference on the subject of automatic analysis is the paper A ComplexityCalculus for Recursive Tree Algorithms [FS87]. Flajolet and Steyaert concentrate on the anal-ysis of algorithms dealing with trees and give a set of rules to translate the operations of alanguage called PL-tree into equations over generating functions. PL-tree is a restricted pro-gramming language over tree structures that has conditionals, iteration and recursive descentconstructions. The language has enough expressiveness to include formal di�erentiation, treematching, reduction/simpli�cation algorithms, etc.Once we restrict our interest to algorithms dealing with trees, the development of acomplexity calculus for the balanced model is an immediate objective. Our purpose in thischapter is to devise a system of rules for the systematic translation of programs to functionalrelations over complexity descriptors. We will point out the similarities with the uniform caseand the particular characteristics of the system of translation rules for the balanced modelthat we propose.5.1 Translation Rules.We shall use the programming language PL-tree as described in the paper of Flajoletand Steyaert [FS87]. We will introduce each construction and the corresponding translationrule at the same time.A generating function whose n-th coe�cient is the expected value of the complexitymeasure of an algorithm for inputs of size n is often called complexity descriptor .The complexity descriptors that we use are of the type (see Sections 3.3 and 3.4)A(x1; x2; : : : ; xm) = XT1;:::;Tmw1(T1) � � �wm(Tm) a(T1; : : : ; Tm) xjT1j1 xjT2j2 � � �xjTmjm ;



5.1. TRANSLATION RULES. 65in order to analyze the average behavior of an algorithm A whose input is an m-tuple(T1; : : : ; Tm) in F1� � � �� Fm and whose time complexity is denoted by a(T1; : : : ; Tm). EachF i is a simple family of trees with weight measure wi(�), characteristic series �i(u), weightgenerating function Wi(z), etc.1 Then, the coe�cient[xn11 xn22 � � �xnmm ]A(x1; : : : ; xm)divided by [zn1 ]W1(z)[zn2 ]W2(z) � � � [znm ]Wm(z) is the expected value of the complexity ofthe algorithm for inputs (T1; : : : ; Tm) such that jTij = ni; 1 � i � m. We will often useA(z) instead of A(z; z; : : : ; z) to denote the complexity descriptor needed for the average-caseanalysis over the set of inputs of total size n = jT1j+ � � �+ jTmj.Also, by A(x1; : : : ; xm jQ) we mean the complexity descriptor associated to the al-gorithm A but over the set of inputs that satisfy the m-ary predicate Q. We shall refer tothis type of descriptor as a conditional complexity descriptor.There is a full correspondence between some rules in the complexity calculus for theuniform model and that for the balanced model. The rules are syntactically identical if thecorresponding construction does not access the subtrees (recursive descent) of the input trees:1. If Q = Q1 _ Q2 and Q1 ^Q2 = false thenA(x1; : : : ; xm jQ) = A(x1; : : : ; xm jQ1) + A(x1; : : : ; xm jQ2):2. If the algorithm A actually operates on p < m trees, say A(T1; : : : ; Tm) � B(T1; : : : ; Tp)then A(x1; : : : ; xm) = B(x1; : : : ; xp) Yp<i�mWi(xi):3. Composition: If A(T1; : : : ; Tm) � B(T1; : : : ; Tm); C(T1; : : : ; Tm), where the semicolondenotes the usual sequential composition of procedures, then, for any predicate Q, wehave A(x1; : : : ; xm jQ) = B(x1; : : : ; xm jQ) + C(x1; : : : ; xm jQ):4. Conditional: For the conditional constructionA(T1; : : : ; Tm) � if Q(T1; : : : ; Tm) then B(T1; : : : ; Tm)else C(T1; : : : ; Tm)endif;1We will omit subscripts in the arity function �i(s) and the probabilities pi(s) associated to Si, to simplifythe notation.



66 CHAPTER 5. RECURSIVE TREE ALGORITHMS AND THE BALANCED MODELthe translation rule states thatA(x1; : : : ; xm) = QT (x1; : : : ; xm) + B(x1; : : : ; xm jQ) + C(x1; : : : ; xm j :Q);where QT (x1; : : : ; xm) is the complexity descriptor associated to the algorithm testingif Q(T1; : : : ; Tm) holds or does not.The di�erences between the system of translation rules for the balanced model andthe system of rules for the uniform model lie on the translation rules for the constructionsinvolving subtree descent. Interestingly enough, there are clear relations between the \shapes"adopted by functional equations for each one of the systems of rules. We give some clarifyingexamples in the form of proposition.Proposition 5.1.1. Subtree Descent: Let A(T ) � B(T [i1]; T [i2]; : : : ; T [ip]), for some distinct i1; : : : ; ip andwhere T [i] denotes the i-th subtree of T . ThendAdz = B(z) (W (z)); (u) = Xn2Im�n�p un�p:2. Iteration: LetA(T1; : : : ; Tm) � for (i1; : : : ; im) with Q(i1; : : : ; im; root(T1); : : : ; root(Tm)) doB(T1[i1]; : : : ; Tm[im])endfor;where each ij takes successively the values in f1; : : : ; deg(Tj)g. The procedure B isapplied to each m-tuple (T1[i1]; : : : ; Tm[im]) if the predicate Q, depending on i1; : : : ; imand the roots of the m input trees, is true. We assume that the test of the predicate Qtakes constant time. The relation between the complexity descriptors is then@m@x1 � � �@xmA(x1; : : : ; xm) = B(x1; : : : ; xm)�FQ(W1(x1); : : : ;Wm(xm))+ Y1�i�m�0i(Wi(xi)):where FQ(z1; : : : ; zm) = XQ(i1;:::;im;s1;:::;sm)sj2Sj;1�ij��(sj) p(s1) � � �p(sm) z�(s1)�11 � � �z�(sm)�1m ;



5.1. TRANSLATION RULES. 673. Distributive Descent: LetA(T1; : : : ; Tm) � for (i1; : : : ; im) doB(T1[i1]; : : : ; Tm[im])endfor;This construction is a particularization of the previous, when no condition is imposedneither on the roots of the input trees nor on the indexes ij . Then,@mA@x1 � � �@xm = B(x1; : : : ; xm) Y1�i�m �0i(Wi(xi)):4. Simultaneous Descent: LetA(T1; : : : ; Tm) � for i := 1 to deg(T1) do B(T1[i]; : : : ; Tm[i]) endfor;where T1; : : : ; Tm belong to the family F and all of them have the same root symbol.This construction consecutively applies the procedure B to the m-tuple of �rst subtreesof the m input trees, then to the m-tuple of second subtrees, etc. Then@m@x1 � � �@xmA(x1; : : : ; xm jEqroot) = B(x1; : : : ; xm) 00@ Y1�i�mW (xi)1A :where the m-ary predicate Eqroot is true if and only if its m arguments have the sameroot, and  (u) = Xs2S���1(0) pm(s) � u�(s)Notice that if S has only one kind of symbol for each possible arity or m=1 then (u) = �(u)� 1.5. Partial Descent: LetA(T1; T2) � for i := 1 to deg(T1) do B(T1; T2[i]) endfor;The construction applies the procedure B to each of the pairs consisting of the �rstinput tree and each of the subtrees of the root of the second input tree. If T2 belongsto the family F then we have @A@y = B(x; y)�0(W (y)):



68 CHAPTER 5. RECURSIVE TREE ALGORITHMS AND THE BALANCED MODEL6. Conditional Iteration: LetA(T1; : : : ; Tm) � for i := 1 to deg(T1) while Q(T1[i]; : : : ; Tm[i]) doB(T1[i]; : : : ; Tm[i])endfor;The construction applies consecutively the procedure B to m-tuples of subtrees of them input trees, like in simultaneous descent, but this process halts before visiting them-tuple of i-th subtrees if that tuple does not satisfy the m-ary predicate Q. Then, thecomplexity descriptor associated to A satis�es@m@x1 � � �@xmA(x1; : : : ; xm jEqroot) =�B(x1; : : : ; xm jQ) + QT (x1; : : : ; xm)�  �Q1�i�mW (xi)��  (W (x1; : : : ; xm jQ))Q1�i�mW (xi)�W (x1; : : : ; xm jQ) :where B(x1; : : : ; xm jQ) is the conditional complexity descriptor of the procedure B overinputs satisfying the predicate Q, QT (x1; : : : ; xm) is the complexity descriptor of theprocedure that tests if predicate Q holds and (u) = Xs2S���1(0) pm(s) � u�(s);W (x1; : : : ; xm jQ) = XQ(T1;:::;Tm)w1(T1) � � �wm(Tm) xjT1j1 � � �xjTmjm :The proofs of the formulas in the proposition above are similar to our derivation ofequation (3.3) in Section 3.4, but the complexity measures, complexity descriptors, etc. havem arguments instead of only one, and the manipulation gets m times more cumbersome.For example, for the simultaneous descent construction one has:a(T1; : : : ; Tm) = b(T1[1]; : : : ; Tm[1]) + b(T1[2]; : : : ; Tm[2]) + � � �+ b(T1[k]; : : : ; Tm[k])with k = deg(T1) = � � � = deg(Tm), and a(�) and b(�) denoting the complexity of algorithmsA and B on input (T1; : : : ; Tm), respectively.The complexity descriptor A(x1; : : : ; xm jEqroot) is, by de�nition,A(x1; : : : ; xm jEqroot) = XT1;:::;Tm2Froot(T1)=���=root(Tm)a(T1; : : : ; Tm)w(T1) � � �w(Tm) xjT1j1 � � �xjTmjm : (5:1)



5.1. TRANSLATION RULES. 69Let S> = S � ��1(0) be the set of symbols of non-null arity. Moreover, to simplifynotation in the following derivation, we will use k for �(s) and the convention that the indexi runs from 1 to m and the index j runs from 1 to k = �(s). For instance, the summationindex Ti[j] 2 F indicates that the sum extends forT1[1]; T1[2]; : : : ; T1[k]; : : : ; Tm[1]; : : : ; Tm[k] 2 F :The decomposition of F , the de�nition of w(�) and the condition that all the rootsmust be equal allow us to rewrite equation (5.1) asA(x1; : : : ; xm jEqroot) == Xs2S> pm(s) XTi=s(Ti[1];:::;Ti [k])Ti[j]2F a(T1; : : : ; Tm)w(T1[1]) � � �w(Tm[k]) xjT1[1]j+���+jT1[k]j+11jT1[1]j+ � � �+ jT1[k]j+ 1 � � � :Di�erentiating w.r.t. x1; x2; : : : ; xm yields@m@x1 � � �@xmA(x1; : : : ; xm jEqroot) == Xs2S> pm(s) XTi=s(Ti[1];:::;Ti [k])Ti [j]2F a(T1; : : : ; Tm)w(T1[1]) � � �w(Tm[k]) xjT1[1]j+���+jT1[k]j1 � � � :And using the recursive de�nition of a(�) in terms of b(�)@m@x1 � � �@xmA(x1; : : : ; xm jEqroot) == Xs2S> pm(s) XTi[j]2Fh� � �+ b(T1[j]; : : : ; Tm[j]) + � � �iw(T1[1]) � � �w(Tm[k]) xjT1[1]j+���+jT1[k]j1 � � � :By symmetry,@m@x1 � � �@xmA(x1; : : : ; xm jEqroot) == Xs2S> k � pm(s) XTi[j]2F b(T1[1]; : : : ; Tm[1])w(T1[1]) � � �w(Tm[k]) xjT1[1]j+���+jT1[k]j1 � � � :Hence, @m@x1 � � �@xmA(x1; : : : ; xm jEqroot) == Xs2S> k � pm(s) �B(x1; : : : ; xm) � Y1�i�mW k�1(xi):And introducing  (u) =Ps2S���1(0) pm(s) � u�(s),@m@x1 � � �@xmA(x1; : : : ; xm jEqroot) = B(x1; : : : ; xm) �  00@ Y1�i�mW (xi)1A :



70 CHAPTER 5. RECURSIVE TREE ALGORITHMS AND THE BALANCED MODELWe remark that the PL-tree language only allows boolean functions and procedures,and does not allow assignment of variables. Programs written in PL-tree can output symbolsin a write-only �le. We use return to return boolean values and strings of symbols (trees),for convenience, but the reader must be aware that \returned" trees cannot be used to guidethe subsequent behavior of the program that makes the call.5.2 Formal Di�erentiation.This section illustrates our point on the usefulness and limitations of the translationrules for the balanced model, analyzing a formal di�erentiation algorithm. Given a termcontaining constants, variables and operators and represented by a labelled tree, the algorithmoutputs the tree that represents the derivative of the input term.Since formal di�erentiation algorithms operate over single trees, the algorithmicconstructions lead to ordinary di�erential equations over the complexity descriptors.We will follow the presentation of the paper of Flajolet and Steyaert [FS87], wherethey analyzed formal di�erentiation algorithms for the uniform model. The same conceptsthat appeared in that paper are relevant in the average-case analysis with the balanced model.In particular, one should introduce the concept of header , the additional symbols neededto express the derivative of an expression. The derivative is built using the header, thesubexpressions of the original expression and the derivatives of these subexpressions. Wemust also take into account how many copies of the subexpressions need to be done whendi�erentiating. For any given symbol s 2 S, where S is the symbol set generating the familyF , we denote by h(s) the size of the header corresponding to s and by �i(s) the number ofcopies of Ti that have to be done when di�erentiating a tree T with s at the root. Furthermore,let �(s) = �1(s) + � � �+ �k(s), for a symbol s of arity k.For instance, let S = f x; cnst;p ; "�1; sin; cos; log;+;�; �; = g, each symbol havingthe obvious meaning. Each node with a label cnst has an additional �eld with the value ofthe constant. Let d(T ) or dT denote the derivative of the expression represented by T . Thend(log(T )) = =(dT; T ); h(log) = 1; �1(log) = 1;d(cos(T )) = �(dT;�(sin(T ))); h(cos) = 3; �1(cos) = 1;� � �d(=(T1; T2)) = =(�(�(dT1; T2); �(T1; dT2)); �(T2; T2)); h(=) = 5; �1(=) = 1; �2(=) = 3:



5.2. FORMAL DIFFERENTIATION. 71function Diff(T : Expr) returns Expr is1 case root(T) of3 x : return 1 /* returns a 'cnst' with value '1' */4 cnst : return 05 p : return /(Diff(T[1]),*(2,p (Copy(T[1])))): : :6 * : return +(*(Diff(T[1]),Copy(T[2])),*(Copy(T[1]),Diff(T[2]))): : :7 endcaseendfunction; Algorithm 5.1: Formal di�erentiation.The di�erentiation algorithm consists in a conditional structure that checks whichdi�erentiation rule should be applied, examining the symbol at the root, and then generatesthe derivative of the input expression recursively applying the formal di�erentiation proce-dure, generating the header and making as many copies of the subexpressions as needed (seeAlgorithm 5.1).If we denote di�(T ) the complexity of the di�erentiation algorithm for the input treeT and by Di�(z) its complexity descriptor we haveDi�(z) = XT2F w(T ) di�(T ) zjT j == Test(z) + Gen(z j root = s1) + � � �+ Gen(z j root = sl);where Test(z) = W (z) is the complexity descriptor associated with the conditional structurechecking which of the symbols in S is the root of the expression; and Gen(z j root = si) isthe complexity descriptor of the procedure that actually generates the derivative of a tree Twhen the root symbol is si. To generate such derivative one must generate a header withh(si) symbols (Gen header), make �j(si) copies of the j-th subtree of T , for j = 1; : : : ; �(si)(Copy subexpr) and �nally di�erentiate each of the �(si) subtrees of T (Di� subexpr). Hence,Gen(z j root = s) = Gen header(z j root = s) + Copy subexpr(z j root = s) ++ Di� subexpr(z j root = s):



72 CHAPTER 5. RECURSIVE TREE ALGORITHMS AND THE BALANCED MODELThe generation of the header does not actually depend on T except for its root, and thegeneration of each symbol of the header requires constant (unit) time, soddzGen header(z j root = s) = h(s) p(s)W �(s)(z):For the copies of the subtrees, we have a simultaneous descent, but the cost of the body isdi�erent in each iteration, since �i(s) copies are made when visiting the i-th subtree, andfurthermore we impose that the root of the input tree T is the symbol s. Therefore,ddzCopy subexpr(z j root = s) = �(s) p(s)W �(s)�1(z)Copy(z);where Copy(z) is the complexity descriptor associated with the procedure 'copy'. The di�er-entiation of the subexpressions is also a simultaneous descent construction, but the root isagain s, so ddzDi� subexpr(z j root = s) = p(s) �(s)W �(s)�1(z) Di�(z):The procedure 'copy' makes a simultaneous descent to copy each subtree and putsa root above the copies, or simply returns a leaf if a leaf must be copied. To simplify, weassume that the cost of testing if the input tree is a leaf, returning a leaf if it is the case andputting a root above the copies of subtrees is unitary. The translation rules yieldddzCopy(z) = ddzConst ops(z) + Copy(z)�0(W (z));and Const ops(z) = W (z):Therefore, Copy(z) = zW 0(z):Putting everything together,ddzDi�(z) = W 0(z) +H(W (z)) + zW 0(z)A(W (z)) + Di�(z)�0(W (z)); (5:2)where �(�) is the characteristic series of the family, and H(u) and A(u) are polynomials de�nedas follows: H(u) = Xs2S p(s) h(s) u�(s);A(u) = Xs2S p(s)�(s) u�(s)�1:



5.3. CONCLUSIONS. 73Furthermore, since the size of an expression is the total number of symbols, the initial condi-tion for equation (5.2) is Di�(0) = 0.Hence, we can express Di�(z) asDi�(z) = W 0(z) Z z0 W 0(t) +H(W (t)) + tW 0(t)A(W (t))W 0(t) dt:For our particular example, the only allowed degrees for nodes are 0, 1 and 2. Thatimplies that H and A are polynomials of second and �rst degree respectively, and that theweighting generating function for the family isW (z) = p32 tan p32 z + �6!� 12 :The asymptotic expansion of Di�(z) around the dominant singularity z = 2�p3=9 and theapplication of standard complex analysis techniques yields[zn]Di�(z)[zn]W (z) = 2
Ap33 n lnn�1 + O� 1lnn�� ;where 
A is the coe�cient of u in A(u). The other coe�cient of A(u) and the coe�cientsof H(u) appear in the lower order terms of the formula above. As in the uniform model,the average-case complexity of the formal di�erentiation algorithm is strongly in
uenced bythe task of producing the copies of subexpressions, and it is between the worst case (O(n2))and the best case (O(n)) complexities; however, the average-case complexity of this kind ofalgorithms for the uniform model is O(npn).5.3 Conclusions.The translation rules that we have proposed allow the systematic description ofthe average behavior of algorithms by means of functional equations, for a large class ofalgorithms dealing with trees and under the balanced probability model. The �rst stage ofthe average-case analysis of such algorithms can be done by mechanical application of therules (see Section 5.1) and it is attainable by automatic symbolic computation methods.For the second stage of the analysis, that of extracting asymptotic estimates of theaverage behavior of the algorithm from the functional equations that describe it, we con-clude that it is necessary to develop techniques to cope with ordinary and partial di�erentialequations, since this is the type of equations that characterize the balanced model.



74 CHAPTER 5. RECURSIVE TREE ALGORITHMS AND THE BALANCED MODELAn interesting question that arises in the analysis of algorithms for the balancedmodel is the evaluation of the probability (or weight) of subsets of pairs of trees satisfying apredicate Q and the evaluation of the conditional complexity descriptors A(x1; : : : ; xm jQ),when the predicate Q is itself recursively de�ned.In next chapter, we examine a family of recursively characterized binary predicates,the common mathematical problems that appear because of the common characterization ofthe predicates, the evaluation of complexity descriptors conditional to one of these predicatesand some of the contexts where these problems appear: equality testing, uni�cation andpattern-matching.



75Chapter 6Hereditary Properties.The purpose of the previous chapter was to establish some algebraic techniques thatreduced the average-case analysis of algorithms under the BST and balanced models to thestudy of generating functions that satisfy di�erential equations.From now on, our objective is the application of these techniques to the analysisof concrete algorithms. We begin analyzing very simple algorithms, with the purpose ofprogressively going into more complex algorithms.This simplicity criterion has leaded us to consider algorithms that perform a simul-taneous traversal of a pair of trees. Such algorithms compare at each step, and according tosome given criterion, a pair of nodes that appear at the same place in both trees.As we will soon see, this type of elementary algorithms appear as integral componentsof more complex procedures of substantial relevance.We begin with the study of a family of algorithms whose main characteristic is toverify that given pairs of trees satisfy a property, that belongs to a class that we call hereditaryproperties . Hereditary properties are predicates over pairs of trees that are recursively charac-terized by the fact that the property holds for a given pair of non-empty trees if and only thepairs of left subtrees and the pair of right subtrees also verify the property (see Section 6.1).The rest of the chapter is devoted to study the hereditary properties. The similarities of therecursive formulation of hereditary properties re
ect in a uni�ed mathematical formulationof the problems where these predicates get involved.We choose to study hereditary properties, because its simplicity and because theyarise in di�erent contexts of tree manipulation: equality (see Chapter 8), uni�cation, tree



76 CHAPTER 6. HEREDITARY PROPERTIES.matching. The problem of evaluating the probability that a pair of a given size satis�es oneof this properties is a challenging mathematical problem and is a quantity of main importanceto understand the average performance of the algorithms that are related in some way to thatproperty (see Chapters 8 and 9).On the other hand, the algorithms that check if given pairs verify an hereditary prop-erty have the same structure, and therefore their average behavior is described by structurallyidentical equations over generating functions. The probability of the property, as a functionof the size, gets involved in the equations for the average behavior of these algorithms.The equations for algorithms that are based upon conditional and conditional iter-ation constructions also have some similarities with the equations of the algorithms checkinghereditary properties. On the contrary, the equation for the average-case complexity of theintersection algorithm is structurally di�erent from the equations of the former type (seeChapter 7). One of the reasons for such di�erence is that the intersection algorithm is anapplication of simultaneous (unconditional) descent, whilst the hereditary property checkersare representative of the algorithms based in conditional iteration.6.1 The Recursive Characterization of Hereditary Proper-ties.Consider the balanced probability model restricted to families of labelled binarytrees, that is, S = L +M, where L is the set of 0-ary symbols and M the set of binarysymbols (see Section 3.3). We shall use B to denote the family of trees generated by Salthough we used this symbol only for the family with S = f2; � g (unlabelled binary trees).Trees in L will be said to be empty or to be leaves, and the size of a tree is de�ned as thenumber of its internal nodes.The probability model for these families of binary trees is recursively de�ned byPr(T ) = 8><>: p(s); if T = s 2 L,p(s)Pr(T1) � Pr(T2)jT j ; if T = s(T1; T2); s 2 M.Recall that for any family such that �(u) = 1 + u2 and the size of trees is the number ofinternal nodes, the weight measure coincides with the probability.A binary predicate h over pairs of trees is said to be an hereditary property when apair satis�es the property if and only if the pair of left subtrees satis�es the property and the



6.1. THE RECURSIVE CHARACTERIZATION OF HEREDITARY PROPERTIES. 77pair of right subtrees also satis�es the property. Therefore, the additional de�nition of thepredicate for pairs where at least one of the trees is a leaf fully characterizes the predicate.More formally, we have the following de�nition.De�nition 6.1. A binary predicate h : B�B ! ftrue; falseg is an hereditary property if forany pair of non-empty trees (T1; T2) veri�esh(T1; T2)() h(T l1; T l2) ^ h(T r1 ; T r2 ) ^ r(root(T1); root(T2)); (6:1)for some binary predicate r :M�M! ftrue; falseg not identically false.Most times, our ultimate goal will be to evaluate the probability that a pair (T1; T2)of sizes m and n satis�es h, when the trees are distributed according to the BST model. Thisevaluation is analogous to the problem of counting how many pairs of trees of sizes m and ndo satisfy the predicate h. Notice that the predicate r must not be identically false for thede�nition to have any interest.The di�erences between hereditary properties rely on the de�nition of the propertywhen at least one of the trees is a leaf, and on the de�nition of the predicate r correspondingto each property.The algorithms that check if a given pair belongs to the subset satisfying an heredi-tary property h follow the scheme given in Algorithm 6.1. We call such algorithms hereditaryproperty checkers . A direct consequence is that their average-case complexity depends on theprobability that a pair of trees veri�es the property.The evaluation of the predicate r(s1; s2), made by function R, requires constant timefor any binary symbols s1 and s2. Since W (z) = (1 � z)�1 for binary trees, the complexitydescriptor of an hereditary property checker can be expressed as@2H@x@y = 1(1� x)2(1� y)2++ @2@x@ybasis H(x; y jT1 2 L _ T2 2 L _ :r(root(T1); root(T2))) ++ H(x; y)� 1(1� x)(1� y) +W (x; y j h)� ; (6.2)where W (x; y j h) = Xh(T1;T2) is truePr(T1) Pr(T2) xjT1jyjT2j;



78 CHAPTER 6. HEREDITARY PROPERTIES.function H(T1; T2 : BinTree) returns Boolean is1 if T1 or T2 is a leaf or :R(root(T1),root(T2)) then2 : : :3 else4 if H(T l1; T r2) then5 return H(T r1 ; T r2)6 else return false7 endif8 endifendfunction;Algorithm 6.1: Algorithmic scheme for hereditary property checkers.basis H is the complexity descriptor of the procedure that is performed if the test of line 1 issatis�ed, we have considered negligible the cost of line 6 and we have considered the test inline 1 to have unit cost.Notice that the coe�cient [xmyn]W (x; y j h) is the probability that a pair of trees ofsizes m and n, respectively, satis�es property h, when the trees are independently chosen anddistributed according to the balanced model.Renaming Q(x; y) = W (x; y j h) and using the de�nition of hereditary properties, itturns out that Q(x; y) satis�es the non-linear second-order partial di�erential equation:@2Q@x@y = �Q2(x; y); (6:3)where � = Xs1;s22Mr(s1;s2) p(s1)p(s2):We call Equation (6.3) the characteristic equation of the hereditary properties. The initialconditions depend on the way that h is de�ned for the induction basis, that is, for pairs inL � L + (B � L) � L + L � (B � L). In particular, the initial conditions may depend on thethe probability assigned to each leaf.



6.2. A SHORT CATALOGUE OF HEREDITARY PROPERTIES. 79If S = f2; � g then � = 1 and equation (6.3) reduces to@2Q@x@y = Q2(x; y):6.2 A Short Catalogue of Hereditary Properties.6.2.1 Equality of Binary Trees.The �rst hereditary property we consider is the equality of a pair of binary trees.Clearly, the equality predicate veri�es (6.1) and for the basis, when one of the members ofthe pair is empty, h(t; t0) is true only if both t and t0 belong to L and t = t0. The predicater is true if and only if both binary symbols are the same. The algorithm that checks theequality between binary trees receives a more complete treatment in Chapter 8, whereas theevaluation of the probability that two binary trees are equal is the subject of Chapter 9.6.2.2 Uni�cation of First-Order Terms.In the context of uni�cation two interesting hereditary properties appear. The prob-lem of uni�cation of two �rst-order terms consists in producing the most general substitutionof the variables in the input terms that makes them equal, or detecting that no such a substi-tution exists. For example, the terms f(x; g(z; x)) and f(h(w); g(t; h(w))) can be uni�ed bymeans of the general substitution fx h(w); z tg1. On the other hand, f(y) and g(x) arenot uni�able, since f and g are not variables and hence, no substitution of variables wouldmake the terms equal. Neither are f(g(x)) and f(x), since the substitution x  g(x) wouldintroduce an in�nite recursion.Uni�cation is a very important operation in symbolic computation, arising in areassuch as automatic theorem proving, the design of logic programming languages and naturallanguage parsers, machine learning systems, etc. [KB70, CL73, Mil78, Col82]. For addi-tional information on the uni�cation problem and its basic terminology, the interested readercould refer to the survey of Knight [Kni89]. A lot of uni�cation algorithms have been pro-posed: Herbrand-Robinson [Rob71], Paterson-Wegman [PW78], Martelli-Montanari [MM82],etc. The average-case analysis of these algorithms is quite di�cult, even when the terms areassumed to be equally likely [CDS89, ACF+91]. For the average-case analysis of uni�cationalgorithms is common to modellize terms as trees with the appropriate labels at the nodes.1We use the �rst lower case letters a; : : : ; h to denote operators, while s; t; : : : ; z will denote variables.



80 CHAPTER 6. HEREDITARY PROPERTIES.From now on, we will talk about trees and not about terms. The properties (and the familiescharacterized by these properties), that we have mentioned earlier, are relevant to understandthe causes of failure in uni�cation and to analyze the average behavior of di�erent uni�cationalgorithms.One of the causes of failure is the apparition of a direct occurrence. Two trees aresaid to have a direct occurrence if and only if there is a leaf with variable x at some place ofone of the trees, while the same place in the other tree is the root of a subtree that containsa leaf x. An example of failure because of a direct occurrence was already given: f(g(x)) andf(x) are not uni�able since x appears in the tree f(x) and at the corresponding place of theother tree there is the subtree g(x) that contains x. Figure 6.1 also exempli�es the directoccurrence problem.A pair of trees is consistent if it does not contain any direct occurrence. The familyof consistent pairs of trees properly contains the family of uni�able trees [ACF+91], sincethere are other causes of failure in the uni�cation process. And it turns out that a pair ofnon-empty trees is consistent if and only if the pair of left subtrees and the pair of rightsubtrees are both consistent. To isolate the phenomenon of consistency from other causes offailure, we de�ne the predicate r to be true for any two binary symbols. The basis of therelation is that a pair (T; x) (conversely, (x; T )) with x 2 L is consistent if and only if T alsobelongs to L or it is a binary tree generated by S =M+ (L � x), i.e., does not contain x.Obviously, the probability of the set of consistent pairs of trees of a given size is alsorelevant in the average-case analysis of the direct occurrences check.The other interesting property appearing in the context of uni�cation is also relatedto a cause of failure: clashes . A pair of trees is said to clash if and only if there is someinternal node f in one of the trees and at the corresponding place of the other tree there isanother internal node g, such that f 6= g. A pair of trees that clashes cannot be uni�ed. Forinstance, b(f(u; v); g(z; y)) and b(g(u; v); g(z; y)) are not uni�able since these trees clash: theoperator f appears at the �rst tree and g appears in the second tree at the same place.A pair of non-empty trees does not clash if the pair of left subtrees does not clash,the pair of right subtrees does not clash and the roots are equal. By the de�nition, any pairwhere one of the members is a leaf does not clash. Therefore, non-clash is an hereditaryproperty and we have fully characterized it: the predicate r is the equality between symbolsand h(T; x) = h(x; T ) is true for any tree T if x 2 L.



6.2. A SHORT CATALOGUE OF HEREDITARY PROPERTIES. 81
xA leaf x xA tree containg a leaf xFigure 6.1: A pair of trees containing a direct occurrence.6.2.3 Pattern Matching in Trees.This subsection covers the problem of tree matching [KMR72, HO82, SF83]. Treematching occurs as an important element in the design of intepreters for functional languages,automatic implementation of abstract data types, code optimization, symbolic computation,structured program editors, etc.The input to a tree matching algorithm consists of two trees T and P called textand pattern, respectively. The pattern P is a tree with an additional type of leaves; the newtype of leaf is denoted by � and called wildcard . More precisely, the texts are trees in asimple family generated by a symbol set S, whereas the patterns belong to the simple familygenerated by S0 = f�g+ S, for some � =2 S and with �(�) = 0.A pattern P is said to occur at a place of the text T if the subtree rooted at thatplace and P match node by node, except for the wildcards of P that can \match" a wholesubtree (see Figure 6.2). The output of the algorithm should be one or all the places wherethe pattern P occurs in the text T , if P occurs at all. On the other hand, an occurrence iscalled root occurrence of P in T if the place where P occurs is precisely the root of T . Forthe sake of simplicity, we shall consider that texts contain only one type of binary node.The predicate \P occurs at the root of T" satis�es (6.1), provided we take into



82 CHAPTER 6. HEREDITARY PROPERTIES.ROTree (text) T Pattern P* * * * *abab ca a daea e b c d c gb e a
d a cf ab b cg a df e b fFigure 6.2: The pattern P occurs at some places of T (dashed lines). The ocurrence that ismarked with RO is a root occurrence.account the slight modi�cation introduced by the fact that T and P do not belong to the samefamily of trees. A distinctive characteristic of root occurrence is that it is not symmetricallyde�ned for pairs where one of the members is a leaf. If the text is a leaf and the pattern isnot, then the pattern cannot occur at the root of the text. If the pattern is any 0-ary symbol6= �, that is, belongs to S, then the text must be the same symbol to match the pattern. Butif the pattern is � then the text will always match the pattern.Several tree matching algorithms have been proposed, the sequential tree matchingalgorithm being the simplest. The sequential tree-matching algorithm makes a preordertraversal of the tree, checking if the pattern occurs at the root of each subtree of the text.To determine if the pattern occurs at a given tree (root occurrence) a procedure followingthe scheme in Algorithm 6.1 is used. Therefore, the probability that a pattern P occurs atthe root of the text T appears as part of the analysis and directly in
uences the average-casecomplexity of the sequential tree-matching algorithm; eventually, the average-case complexityof other tree matching algorithms may also depend on the probability of root occurrence of apattern in a text.



6.3. THE CHARACTERISTIC EQUATION FOR HEREDITARY PROPERTIES. 836.3 The Characteristic Equation for Hereditary Properties.In this section, we examine the particularization of equation (6.3) for each of thehereditary properties that we have considered in the previous section. Recall that (6.3) statesthat the generating function Q(x; y) veri�es@2Q@x@y = �Q2(x; y);where the coe�cient [xmyn]Q(x; y) is the probability that a pair of trees of sizes m and nsatis�es a certain hereditary property and � =Pm(s1;s2) p(s1) p(s2).Equality: In the case of equality, the roots of non-empty trees must be equal; therefore,� = Ps2M p2(s). A pair containing a leaf is equal if and only if both members of thepair are the same leaf, yielding as initial conditions Q(z; 0) = Q(0; z) = � =Ps2L p2(s).The partial di�erential equation corresponding to equality is then@2Q@x@y = �Q2(x; y);Q(z; 0) = Q(0; z) = �:The case of S = f2; � g, � = � = 1 was the �rst one we have studied. It is not di�cultto see that [xiyj ]Q(x; y) = 0 if i 6= j, so Q(x; y) = R(x � y). The generating functionR(z) is studied in Chapter 9.Direct Occurrences (in Uni�cation): Since the predicate r is identically true for all pairsof binary operators we have � = 1. On the other hand, the problem is meaningless ifk = jLj < 2. Moreover, assume that p(s) = 1=k for all leaves s 2 L. Then, making� = 1� 1=k, @2Q@x@y = Q2(x; y);Q(z; 0) = Q(0; z) = 1 + �2 z1� �z :Clash (in Uni�cation): This phenomenon directly depends onM, the set of binary symbols,since a pair of non-empty trees does not clash if the roots are identical. The phenomenonis trivial unless jMj � 2. Hence, � = Ps2M p2(s) < 1. For pairs containing at least aleaf, a clash cannot occur: consequently, the initial conditions are Q(z; 0) = Q(0; z) =



84 CHAPTER 6. HEREDITARY PROPERTIES.(1� z)�1. The partial di�erential equation for the probability of non-clash is then@2Q@x@y = �Q2(x; y);Q(z; 0) = Q(0; z) = 11� z :Root Occurrence (in Tree Matching): We have assumed already that there is only onepossible binary operator, giving � = 1. Due to the asymmetry on the de�nition of rootoccurrence, we take the pattern as the �rst argument of the predicate and the text asthe second one, by convention.The probability of the 0-ary symbols will di�er in the family of texts and the family ofpatterns, so we will use p(�) and p0(�) to denote these probabilities. Recall that the setof leaves in the family of patterns is the same as the set of leaves in the family of texttrees, L, plus the additional wildcard �. Letting � =Ps2L p(s)p0(s) and p� = p0(�) onehas @2Q@x@y = Q2(x; y);Q(x; 0) = �+ p�;Q(0; y) = �+ p�1� y :The concept of hereditary property can easily be extended to m-ary predicates; thegeneralization would yield non-linear partial di�erential equations of the type@mQ@x1 : : :@xm = �Qm:For our purposes of presentation of the phenomenon of hereditary properties and its mathe-matical characterization, binary predicates are simpler, aesthetically more pleasant, and whatis more important, fully capture the essence of the problem.The simplest equations (presumably) are those of the equality and the non-clash, ifwe consider their initial conditions. It is likely that we cannot draw any information about thesingularities of the function Q(x; y) from the initial conditions alone, although there are somesuggestive observations. For instance, there is some empirical evidence that for non-clash,Q(x; y) is analytic in the domain jxj < 1; jyj < 1. On the other hand, for the consistencyrelation, empirical evidence indicates that Q(x; y) is analytic on jxj < C; jyj < C for some



6.3. THE CHARACTERISTIC EQUATION FOR HEREDITARY PROPERTIES. 85C > 1 (C = ��1?), and thus the probability that a pair of binary trees of size n is consistent(does not have a direct occurrence) would exponentially decrease with n. On the other hand,in the case of equality (with � = � = 1), Q(x; y) is analytic in the region jx�yj < � = 3:1408 : : :(see Chapter 9), but it is di�cult to �gure out the relation between the initial conditions andthe domain of convergence.In connection with the complexity calculus, information on the order of growth (ordecrease) of the probability of an hereditary property can be of much value, as in the analysisof the equality test algorithm (see Chapter 8). Thus, a result similar to Theorem 8.2 holds forthe direct occurrences check algorithm. Theorem 8.2 states that the average-case complexityof the equality test is �(logn) and that would also be the average-case complexity of thedirect occurrences check, provided that we were able to show that the probability that a pairof trees of size n is consistent is exponentially small.



86Chapter 7Average Size of IntersectionThis chapter investigates a simple characteristic over pairs of binary trees, the size ofthe intersection of the pair, when the pairs are distributed according to the BST probabilitymodel. We will see that the functional equation that arises in this analysis is a partialdi�erential equation.The intersection of pair of binary trees is the tree that remains if we stack one abovethe other and put a leaf whenever two leaves or a leaf and an internal node are on top one ofthe other; and an internal node if both trees have an internal node at the corresponding place.When each pair of trees with total size n is equiprobable, the average size of the intersectionis O(1). But if we assume the BST probability model the average size of the intersection isO(n2p2�2=plog n).We chose to study the average size of the intersection of two binary trees becauseof its simplicity. Although this is a very elementary problem, it re
ects the structure of theproblems dealing with a pair of trees and the extended version of the BST probability model.The computation of the intersection appears in a natural way in the analysis of anumber of algorithms; for example in processes involving tree matching [SF83] or uni�ca-tion [CDS89]. For instance, the intersection of binary trees is exactly the kernel of the treeshu�e algorithm described in Choppy, Kaplan and Soria [CKS89]. The time complexity ofcomputing the intersection of any pair of binary trees is twice the size of the intersection ofthe two trees plus one.The rest of this chapter is structured as follows. In Section 7.1 we obtain and solvea partial di�erential equation which de�nes the probabilistic generating function associatedwith the size of the intersection of binary trees. In Section 7.2 we derive exact expressions for



7.1. AVERAGE SIZE OF THE INTERSECTION OF TWO BINARY TREES. 87function Inters(T1; T2 : BinTree) returns BinTree is1 if T1 or T2 is 2 then2 return 23 else4 return �(Inters(T l1; T l2),Inters(T r1 ; T r2))5 endifendfunction; Algorithm 7.1: The intersection algorithm.the n-th coe�cient of the function obtained in the previous section. In the following Sectionwe deduce the main result of the chapter, which is the asymptotic behaviour of this coe�cient.Section 7.4 discusses the generalization of the previous results to m-ary trees, if the balancedprobability model is assumed.An appendix on Riemann's method for the solution of partial di�erential equationends the chapter.7.1 Average Size of the Intersection of Two Binary Trees.Let B be the set of all binary trees, and let � denote any internal node, as usual.Given trees T1; T2 2 B we wish to compute the average size of the intersection of the twotrees, where the intersection of T1 and T2, denoted (T1 \ T2), is given by:(T1 \ T2) = 8<: 2; if T1 or T2 is 2,�((T l1 \ T l2); (T r1 \ T r2 )); otherwise.The intersection is computed by the intersection algorithm in the obvious way (seeAlgorithm 7.1 and Figure 7.1).We shall de�ne the size of the intersection of trees T1 and T2 bys(T1; T2) = 8<: 0; if T1 or T2 is 2,1 + s(T l1; T l2) + s(T r1 ; T r2 ); otherwise. (7:1)



88 CHAPTER 7. AVERAGE SIZE OF INTERSECTION\ =
Figure 7.1: An example of the intersection of two trees.We wish to compute the average value of s(T1; T2) over all the pairs (T1; T2) withjT1j+ jT2j = n. Let s(n) denote this average value, then we gets(n) = XjT1j+jT2j=n s(T1; T2) � Pr(T1; T2):Following the standard technique (see Section 3.1 and Chapter 5) let us de�ne thegenerating function: S(z) = X(T1;T2)2B2 s(T1; T2) �Pr(T1; T2) � zjT1j+jT2j;and the bivariate generating function for the random independence modelS(x; y) = X(T1;T2)2B2 s(T1; T2) Pr(T1) Pr(T2)xjT1jyjT2j: (7:2)Therefore, we have to evaluate s(n) = [zn]S(z);and the relation between S(x; y) and S(z) is given byS(z) = 1z Z z0 S(t; t) dt: (7:3)



7.1. AVERAGE SIZE OF THE INTERSECTION OF TWO BINARY TREES. 89We use the following decomposition of the Cartesian product of binary treesB2 = (2;2) + 2� (B � 2) + (B �2)�2 + (B �2)2: (7:4)From equation (7.2) and using (7.4), (7.1) and De�nition 3.2, we get the following partialdi�erential equation @2S(x; y)@x@y = 1(1� x)2(1� y)2 + 2S(x; y)(1� x)(1� y) ; (7:5)subject to the boundary conditions: for all x and y, S(x; 0) = 0 and S(0; y) = 0. Theseboundary conditions are given by the consideration of the intersection of an arbitrary treeand a leaf and the intersection of a leaf and an arbitrary tree, respectively.The generating function S(x; y) can be reexpressed asS(x; y) = Sh(x; y)� 1(1� x)(1� y) ; (7:6)where �(1� x)�1 � (1� y)�1 is a particular solution of (7.5) and Sh(x; y) satis�es the homo-geneous equation @2Sh@x@y = 2Sh(1� x)(1� y) ; (7:7)with boundary conditions Sh(x; 0) = 1=(1� x) and Sh(0; y) = 1=(1� y).Making the change of variables8<: X = �p2 ln(1� x)Y = �p2 ln(1� y)and setting G(X; Y ) = Sh(1� e�X=p2; 1� e�Y=p2); (7:8)we �nally obtain the hyperbolic di�erential equation@2G@X@Y = G; (7:9)subject to boundary conditions G(X; 0) = eX=p2, G(0; Y ) = eY=p2.This partial di�erential equation can be solved by the method of Riemann (see theappendix at the end of this chapter) to yieldG(X; Y ) = 1p2 Z X0 et=p2J0�2iq(X � t)Y �dt+1p2 Z Y0 et=p2J0 �2iq(Y � t)X�dt + J0(2ipXY ); (7.10)where J0(�) denotes the Bessel function of the �rst kind of order 0.



90 CHAPTER 7. AVERAGE SIZE OF INTERSECTION7.2 Exact Developments.In this section, we state two theorems concerning the exact average size of the inter-section of a pair of trees of size n. The exact values are not in a closed form and involve sumsof binomial and Stirling numbers of the �rst kind. A �rst application of standard asymptoticmethods shows that s(n) = O(n2p2�2). Nevertheless, we will get better asymptotic estimatesfrom the solution (7.10) of the partial di�erential equation in next section, and hence wewill not give further details about the way this asymptotic estimation can be computed fromthe exact value of s(n). The exact developments were obtained by more classical methods,setting up recurrences and solving them.The coe�cients of the generating functionS(x; y) = Xn;m�0 sn;mxnymsatisfy the following recurrence(m+ 1)(n+ 1)sn+1;m+1 = (n+ 1)(m+ 1) + 2 X0�i�n0�j�m si;j ; sk;0 = s0;k = 0; k � 0;which can be obtained from the di�erential equation (7.5). The recurrence can be simpli�edand transformed intosn;m = 1n �m [(1� nm+ n +m)sn�1;m�1 + n(m� 1)sn;m�1 + (n� 1)msn�1;m] ; n;m > 0R. Baeza-Yates worked out this recurrence and was able to prove the followingresult [BCDM92]:Theorem 7.1. The expected size of the intersection of two independently chosen randombinary trees of sizes n and m, under the BST model, is given by the formula[xnym]S(x; y) = 1n!m! min(n;m)Xj=0 2j "nj# mXk=j "mk # + "mj # nXk=j "nk#� "mj #"nj#!� 1;where, as usual, the notation �nk� denotes the Stirling numbers of �rst kind [Knu68].On the other hand, we know by (7.3) that[zn]S(z) = 1n + 1 � [zn]S(z; z) (7:11)and using the previous Theorem 7.1 one also gets the following result



7.3. ASYMPTOTIC RESULTS. 91Theorem 7.2. Under the BST model, the average size of the intersection of two trees T1and T2 such that jT1j+ jT2j = n, is given by the formulas(n) = 1(n+ 1)! 2 nXk=0 "nk# bk=2cXj=0  kj!2j � dn=2eXj=0 "n2j# 2jj !2j!� 1:7.3 Asymptotic Results.We are interested in obtaining asymptotics to the [zn]S(z). Using (7.11) togetherwith (7.6) we obtain an expression for the average value of s(T1; T2)s(n) = 1n+ 1[zn]Sh(z; z)� 1: (7:12)To obtain an asymptotic value for [zn]Sh(z; z) we need �rst the following technicallemma,Lemma 7.1. The asymptotic behavior of G(Z; Z) is given byG(Z; Z) � 3J0(2iZ) +p2 � ddZ J0(2iZ):Proof. Let G(Z; Z) = A(Z) + J0(2iZ) withA(Z) = p2 Z Z0 et=p2J0�2iq(Z � t)Z�dt: (7:13)Let us recall the series expansion of J0(x) (1.4)J0(x) = Xk�0 (�1)k(k!)2 �x2�2k :Then, substituting in (7.13)A(Z) = p2 Z Z0 et=p20@Xk�0 (�1)k(k!)2 � (�(Z � t)Z)k1A dtIf we de�ne �k(Z) = Z Z0 et=p2(Z � t)kdt = (p2)k+1 � k! �Xj>k 1j! � Zp2�j ; (7:14)



92 CHAPTER 7. AVERAGE SIZE OF INTERSECTIONwe get A(Z) = p2 �Xk�0 Zk(k!)2 ��k(Z) = 2Xk�0 (Zp2)kk! 0B@Xj>k � Zp2�jj! 1CA ;where (7.14) can be proved by induction on k.Let us consider the coe�cient an = [Zn]A(Z). In order to evaluate the asymptoticbehaviour of an, we shall distinguish three di�erent cases:if n = 0 then a0 = 0;if n = 2p+ 1, thena2p+1 = 2(p2)2p+1(2p+ 1)! � pXk=0 2p+ 1k !2k;if n = 2p, then a2p = 22p(2p)! � p�1Xk=0 2pk !2k:The value of each one of the summations involved in these expressions tends toconcentrate in its last term; therefore, we write them in the following form,a2p+1 = c0p � 2p2(p!)2(p+ 1)a2p = c00p � 2(p!)2 :with c0p = p+1Xj=1 (p+ 1)!p!(p+ 1� j)!(p+ j)!2�jc00p = pXj=1 (p!)2(p� j)!(p+ j)!2�jLet us consider c00p �rst. Since8j; 1� j2p < (p!)2(p� j)!(p+ j)! < 1;we have pXj=1 1� j2p ! 2�j < c00p < pXj=1 2�j :



7.3. ASYMPTOTIC RESULTS. 93Therefore as p! 1, c00p ! 1. The same argument holds for c0p. So we conclude that A(Z) isasymptotically equivalent toA(Z) = Xp>0a2pZ2p +Xp�0a2p+1Z2p+1 == 2Xp>0 c00p Z2p(p!)2 + 2p2Xp�0 c0p Z2p+1p!(p+ 1)! =� 2J0(2iZ) +p2 ddZ J0(2iZ)Hence, G(Z; Z) � 3J0(2iZ) +p2 � ddZ J0(2iZ):Now, we are in position to state the asymptotic behavior of [zn]Sh(z; z).Lemma 7.2. The asymptotic behavior of [zn]Sh(z; z) is given by[zn]Sh(z; z) � c1 � [zn]J0(�2p2 � i � ln(1� z));where c1 = 3 + 2p2.Proof. The statement of the lemma is obtained from Lemma 7.1 by making the change ofvariable Z = �p2 ln(1� z) and taking into account that [zn]J 00(2iZ)jZ=�a ln(1�bz) is asymp-totically twice [zn]J0(2iZ)jZ=�a ln(1�bz) for any constants a > 0, b > 0. Let fn and gn be[zn]F (z) = [zn]J0(2iZ)jZ=�a ln(1�bz) and [zn]G(z) = [zn]J 00(2iZ)jZ=�a ln(1�bz), respectively.Since dFdz = G(z)dZdz ;we have G(z) = 1� bzab Xn�0(n+ 1)fn+1 zn == 1ab Xn�0[(n+ 1)fn+1 � bnfn] zn:Using Lemma 7.3, one obtains the asymptotic behavior of fnfn � An2a�1bnpln n ;



94 CHAPTER 7. AVERAGE SIZE OF INTERSECTIONfor some constant A depending on a and b.Now, (n+ 1)fn+1 � bnfn � Abn+1n2apln n 24(1 + 1=n)2aq ln(n+1)lnn � 135 == 2aAbn+1n2a�1pln n (1 +O� 1ln n� == 2abfn:Finally, combining this last result with the relation between fn and gn yieldsgn = 1ab [(n+ 1)fn+1 � bnfn] � 2fn;as claimed.An asymptotic estimation of the n-th coe�cient of J0(�2ip2 ln(1� z)) is given inthe following lemma.Lemma 7.3. The n-th coe�cient of J0(�i� ln(1� �z)) for any positive real numbers � and�, is asymptotically given by[zn]J0(�i� ln(1� �z)) = �n p22�(�)p�� n��1pln n �1 +O� 1ln n�� : (7:15)Proof. The asymptotic expansion of J0(z) (see Section 1.3, equation (1.5)) can be used toestimate the asymptotic behavior of the n-th coe�cient of J0(�i� ln(1 � �z)) for any realpositive numbers � and �. If z ! ��1 then j ln(1��z)j tends to in�nity and j arg(�i� ln(1��z)j < � provided that we are su�ciently close to ��1 and j arg(1� �z)j > 0. Therefore,J0 (�i� ln(1� �z)) = 12 � 2�� ln(1=(1� �z))�1=2 "(1��z)���i(1��z)�+O j1� �zj��j ln(1=(1� �z))j!#;where we have used the exponential form of cos andj=(�i� ln(1� �z))j = � ����<�ln� 11� �z������ == � ����ln����� 11� �z ��������� = � ln����� 11� �z ����� ;since � > 0 and we may assume that j1� �zj < 1.



7.3. ASYMPTOTIC RESULTS. 95Finally, using the transfer lemma given in Theorem 1.8 gives1 the stated asymptoticestimate for the n-th coe�cient of J0(�i� ln(1� �z)).The asymptotic behavior of the n-th coe�cient of J0(�i� ln(1 � z)) can be alter-natively derived using Laplace's method and the integral representation of J0(z) (see Sec-tion 1.3).Applying the previous lemma with � = 2p2 and � = 1, we obtain:[zn]J0 ��2ip2 ln(1� z)� = c2 � n2p2�1pln n �1 + O� 1lnn�� ; (7:16)where the value of the constant c2 is given byc2 = 125=4p��(2p2) = 0:1381288 : : :Combining Lemma 7.2 together with (7.12) and (7.16) yields the following theorem:Theorem 7.3. Under the extended BST model, the average size of the intersection of twotrees behaves asymptotically ass(n) = c � n2p2�2plnn � �1 + O� 1lnn�� ;with c = c1c2 = 0:8050738 : : :Again, it should be emphasized, that under the uniform model, the average size ofthe intersection of two trees is 1:5 � �1 + O � 1n��, which is quite a di�erent result from theone we just obtained. This constant average behavior for the size of the intersection can beexplained in rather intuitive terms. The probability that a pair of trees of size n consistsin a leaf and a tree of size n is about 0.5 for uniformly distributed pairs. The size of theintersection of such pairs is null. Analogously, the probability that a pair of size n is of thetype (2/�n2; T ) or (T;2/�n2) is approximately 0.125, and the size of the intersection of suchpairs is 1, etc.As said in the introduction, it also follows from Theorem 7.3 that under the BSTmodel the average-case complexity of the intersection algorithm is2c � n2p2�2pln n � �1 + O� 1lnn�� ;while under the uniform distribution the average-case complexity of the intersection algorithmis 4 � (1 +O � 1n�) [CKS89].1If � is a positive integer a slight modi�cation of the transfer lemma must be used instead.



96 CHAPTER 7. AVERAGE SIZE OF INTERSECTION7.4 Average Size of Intersection under the Balanced Model.The analysis of the average size of the intersection of two m-ary trees distributedaccordingly to the balanced probability model is done in a similar way to that of the case ofbinary trees.Given two m-ary trees T 0; T 00 its intersection is the m-ary tree de�ned by:T 0 \ T 00 = 8<: 2; if T 0 = 2 or T 00 = 2,�((T 01 \ T 001 ); : : : ; (T 0m \ T 00m)); if T 0 = �(T 01; : : : ; T 0m) and T 00 = �(T 001 ; : : : ; T 00m).Let s(T 0; T 00) denote the size of the intersection of T 0 and T 00. Then s(T 0; T 00) is nullif any of the trees is a leaf; otherwise, it is the sum of the sizes of the intersections of thesubtrees.The average value of s(T 0; T 00) over all the pairs (T 0; T 00) 2 T 2m with jT 0j+ jT 00j = nis given by the quotient of the n-th coe�cients of two generating functions (see for example,Section 3.4): s(n) = XjT 0j+jT 00j=n s(T 0; T 00) � Pr(T 0; T 00) == PjT 0j+jT 00j=n s(T 0; T 00) � w(T 0; T 00)PjT 0j+jT 00j=n w(T 0) � w(T 00) = [zn]S(z; z)[zn]W 2(z) ;where S(x; y) = X(T 0;T 00)2T 2m s(T 0; T 00)w(T 0)w(T 00)xjT 0jyjT 00j (7:17)and W (z) = XT2Tm w(T )zjT j = (1� (m� 1)z)�1=(m�1) : (7:18)Recall that w(�) denotes the weight measure of the object considered, and thatW (z)is the weighting generating function of the family of trees (in this case, the family of m-arytrees). The asymptotic behavior of the n-th coe�cient (n ! 1) of W 2(z) can be derivedby means of Darboux's theorem (see Subsection 1.2.2) that yields the following value:[zn]W 2(z) � (m� 1)n � n�(m�3)=(m�1) � 1�(2=(m� 1)) � (1 + O(1=n)) : (7:19)



7.4. AVERAGE SIZE OF INTERSECTION UNDER THE BALANCED MODEL. 97Di�erentiating (7.17) and using the de�nitions of w(T ) (Section 3.3) and s(T 0; T 00),together with (7.18), we get the following hyperbolic partial di�erential equation@2S(x; y)@x@y = [W (x) �W (y)]m + [W (x) �W (y)]m�1 �m � S(x; y); (7:20)subject to the boundary conditions: for all x and y, S(x; 0) = 0 and S(0; y) = 0.This partial di�erential equation admits a particular solution and the general solu-tion for the corresponding homogeneous equation can be obtained by means of the Riemann'smethod. The asymptotic behavior of the solution of the homogeneous equation can be derivedin much the same way as in Lemma 7.2 and turns out to be asymptotically equivalent toc � [zn]J0 �2 pmm� 1i ln(1� (m� 1)z)! ;with c = ((pm + 1)=(m� 1))2. Finally, the asymptotic behavior of s(n) is gathered usingLemma 7.3. These steps lead us to the following theorem:Theorem 7.4. Under the balanced probability model, the average size of the intersection oftwo m-ary trees behaves asymptotically ass(n) � c � n(2pm�2)=(m�1)plnn � �1 + O� 1lnn�� ;where the constant c has valuec = m+ 2pm+ 12p�m1=4(m� 1)3=2 � �( 2m�1)�(2pmm�1 ) :Notice that Theorem 7.3 is just a particular case of Theorem 7.4, setting m = 2.Before �nishing, let us see how the translation rules of Chapter 5 can be applied tothe intersection algorithm for pairs of m-ary trees. We de�ne the size of a tree as the numberof internal nodes that it contains, and the size of a pair as the sum of the sizes, as usual. Thealgorithm consists in a simple test followed by a simultaneous descent construction that isperformed when none of the members of the pair is a leaf, like in Algorithm 7.1, but repeatedlyfor the �rst, second, third, : : :pair. The simultaneous descent loop computes the intersectionof each of the m pairs of subtrees and the results are attached to a root. The resulting treeis the intersection of the pair. This part, the simultaneous descent and the construction of



98 CHAPTER 7. AVERAGE SIZE OF INTERSECTIONthe result form a procedure that we will call Int loop. Therefore, the complexity descriptorIntsc(x; y) of the intersection algorithm is given byIntsc(x; y) = Test(x; y) + Return(x; y jT1 = 2 _ T2 = 2) + Int loop(x; y jT1 6= 2 ^ T2 6= 2):The test and the instruction returning a leaf have constant complexity, and hence,Test(x; y) = W (x)W (y);Return(x; y jT1 = 2 _ T2 = 2) = 1 +W (x) +W (y);taking into account in the last equation that j2j = 0.Since the input is a pair of m-ary trees, we know that the simultaneous descent isperformed only if both trees in the pair have the same root and have subtrees. Within theloop, we attach each newly computed intersection of the corresponding pairs of subtrees toa root. As each edge between the root and a subtree can be added in constant time, we canwrite Int loop(x; y jT1 6= 2 ^ T2 6= 2) = m(W (x)� 1)(W (y)� 1) + Desc(x; y);where Desc(x; y) is the complexity descriptor associated to the simultaneous descent. Apply-ing rule 4 of Proposition 5.1 and as non-empty trees have the same root (there is only onetype of internal node, of degree m)@2@x@yDesc(x; y jEqroot) = Intsc(x; y) 0(W (x)W (y)):For the family of m-ary trees,  (u) = �(u) � 1 = um, so we have the followingfunctional equation for Intsc(x; y)@2Intsc@x@y = W 0(x)W 0(y)(1 +m) +m � Intsc(x; y) �Wm�1(x)Wm�1(y):The initial conditions of the partial di�erential equation above as well as W (z)depend on the de�nition of size. As we take j2j = 0, W (z) = (1� (m� 1)z)�1=(m�1) and theequation reads@2Intsc@x@y = (1 +m)(W (x)W (y))m +m � Intsc(x; y) � (W (x)W (y))m�1;Intsc(z; 0) = Intsc(0; z) = W (z):This partial di�erential equation is almost identical to (7.20), except for the factthat (7.20) corresponds to the size of intersection and the last one corresponds to the com-plexity of the algorithm computing the intersection. The same methods used to obtain the



APPENDIX A. RIEMANN'S METHOD. 99average behavior of the size of the intersection could be applied to get the average-case com-plexity of the intersection algorithm.Appendix A Riemann's Method.Riemann's method was devised in 1860 to obtain solutions of second-order linearpartial di�erential equations (see for instance [Rie53],[CH62, ch. 5],[Cop75, ch. 5]). Themethod is applied for the analysis of the average size of the intersection (in this chapter) andfor the analysis of the average-case complexity of the equality test (Chapter 8).Riemann's method can be applied to equations of the formauxx + 2huxy + buyy + 2gux + 2fuy + cu = F (x; y);where u = u(x; y), subscripts denote partial di�erentiation with respect to the indicatedvariable(s) as usual and a,b,h,g,f and c are functions of x and y alone.We will begin introducing the notion of adjoint linear operator and of Riemann-Green function. Let the linear operator L beL[u] = auxx + 2huxy + buyy + 2gux + 2fuy + cu:Then, there exists a unique linear operator L� called the adjoint of L, and a function v, calledRiemann-Green function of L, such that vL[u]� uL�[v] is a divergence, i.e.,vL[u]� uL�[v] = @H@x + @K@y :The adjoint operator L� of L can be calculated using Green's theorem.Theorem 7.5. (Green) Let D be some domain closed by a regular closed curve C. If u andv are continuous in the closure of D, both ux and vy exist and are bounded in D, and thedouble integrals of ux and vy over D exist, thenZ ZD(ux + vy) dx dy = ZC(lu+mv) dswhere (l;m) are the direction cosines of the outward normal to C.Since L� does not depend on any particular domain, we can use a domain D con-sisting of a rectangle to apply Green's theorem, and one obtainsL�[v] = (av)xx + 2(hv)xy + (bv)yy � 2(gv)x� 2(fv)y + cv (7.21)



100 CHAPTER 7. AVERAGE SIZE OF INTERSECTION
A = (x1; y1)CD R = (x0; y1)P = (x0; y0)Q = (x1; y0)C D R = (x0; y1)P = (x0; y0)Q = (x1; y0) (b)(a)Figure 7.2: The domain of dependence for the solution of an hyperbolic partial di�erentialequation. (a) C is non-degenerate; (b) C is degenerate.H = avux � u(av)x + hvuy � u(hv)y + 2guv; (7.22)K = hvux � u(hv)x + bvuy � u(bv)y + 2fuv: (7.23)in order that L� is unique, and vL[u]� uL�[v] is a divergence.Riemann's method can be applied to solve the so-called Cauchy problem for linearequations of hyperbolic type. A linear second-order partial di�erential equation is said to behyperbolic in a domain D if and only if ab�h2 < 0 in D. There is a canonical form into whichany hyperbolic partial di�erential equation can be transformed using characteristic variables:2uxy + 2gux + 2fuy + cu = F (x; y);so L�[v] = 2vxy � 2(gv)x � 2(fv)y + cv, H = vuy � uvy + 2gv and K = vux � uvx + 2fuv.As we shall deal with partial di�erential equations where a = b = 0 and h is some constant,all of them are of hyperbolic type. The equations we will �nd are already in canonical form,except that we have to multiply by 2 both sides of these equations.Let C be some regular duly-inclined arc for which u,ux and uy are known, i.e.,Cauchy data is given for C. The arc can degenerate to a pair of characteristics; this is thecase in our applications of the method. Let the characteristics x = x0 and y = y0 throughP = (x0; y0) cut C at Q = (x1; y0) and R = (x0; y1), and let D be the domain bounded byPQ,PR and C (see Figure 7.2(a)).



APPENDIX A. RIEMANN'S METHOD. 101Using Green's theorem and equations (7.21) to (7.23) it can be shown that, if L�[v] =0 then u(x0; y0) = 12u(x1; y0)v(x1; y0; x0; y0) + 12u(x0; y1)v(x0; y1; x0; y0) ++12 ZQR(K dx�H dy) + 12 Z ZD v(x; y; x0; y0)F (x; y) dxdy; (7.24)where the Riemann-Green function v(x; y; x0; y0) also veri�esvx = fv on y = y0;vy = gv on x = x0and v(x0; y0; x0; y0) = 1:In our application of the method, the arc C is degenerated and consists in theparallel segments to x and y-axis, cutting at A = (x1; y1), so Q = (x1; y0) and R = (x0; y1)(see Figure 7.2(b)).Using the identityvzu� uzv � 2euv = (uv)z � 2v(uz + eu);where z is any of x and y, and e = e(x; y) is any function, and integrating the �rst termof (7.24), we haveu(x0; y0) = u(x1; y1)v(x1; y1; x0; y0) ++ Z y0y1 v(uy + fu) dy ++ Z x0x1 v(ux + gu) dx+ 12 Z ZD v(x; y; x0; y0)F (x; y) dxdy: (7.25)The partial di�erential equation (7.9) arising in the analysis of the average size ofthe intersection is L[G] � 2Gxy � 2G = 0;provided we multiply both sides by 2.Then F = f = g = 0 and c = �2, yielding L� = L. On the other hand, Cauchydata is known along the x-axis and y-axis, i.e. x1 = y1 = 0. Therefore, the functions giveninitially are G(x; 0), G(0; y), and @G@x ����y=0 ; @G@y ����x=0 :



102 CHAPTER 7. AVERAGE SIZE OF INTERSECTIONThe last two functions can be computed from the �rst two, if G(x; y) is analytic at (x; y) =(0; 0), since @G@x ����y=0 = 0@Xi;j�0 i gi;j xi�1yj1Ay=0 == Xi�0(i+ 1) gi+1;0 xi == ddxXi�0 gi;0 xi = ddxG(x; 0);and analogously Gy(0; y) = d=dy G(0; y).In order to obtain the Riemann-Green function, we try a Hadamard series develop-ment for it, v(x; y; x0; y0) =Xj�0 vj�jj!2 ;where vj are functions to be determined and � = (x� x0)(y � y0).Imposing the conditions that v should satisfy, we obtain that vj = 1, for all j � 0.Hence, v(x; y; x0; y0) = J0�2iq(x� x0)(y � y0)� :Changing dummy variables under integration signs by t, and x0,y0 by x,y, equa-tion (7.25) becomes,G(x; y) = Z y0 J0 �2iqx(y � t)� @G@y ����x=0;y=t dt++ Z x0 J0�2iq(x� t)y� @G@x ����y=0;x=t dt++ G(0; 0)J0 (2ipxy) :Substituting Gy(0; t) and Gx(t; 0) by the particular values corresponding to theintersection, we obtain the explicit solution of the homogeneous equation (7.9), given in (7.10).



103
Chapter 8Average-case Complexity of theEquality TestThe equality test of trees is an important algorithm in its own, but it is also thecore of many other algorithms for trees, for example simpli�cation [CFS90]; and it is closelyrelated to other algorithms such as tree matching [SF83] and uni�cation [CDS89].It is well known that it takes O(1) steps on average to decide if the trees in thegiven pair of total size n are equal or not, when the uniform probability model for the inputis assumed. In other words, it takes a constant number of steps on the average to decide ifthey are equal or not, no matter what is the size of the given trees.In this chapter we present the analysis of the average-case complexity of the canonicalalgorithm performing the equality test, under the BST probability model.As in the previous chapter, this analysis includes the solution of a partial di�erentialequation. The partial di�erential equation describing the average behavior of this algorithmfollows from the set of rules of Chapter 5 and more speci�cally from the considerations wehave made in Chapter 6. This equation is but a member of a broader class of equations:algorithms that check hereditary properties have average behaviors that are described bymeans of similar equations.An interesting way to see the di�erence between the intersection algorithm andthe equality test is that equality test checks an hereditary property, while the intersectionalgorithm is closely related to the class of algorithms that check \disjunctive hereditary prop-erties": by disjunctive hereditary property we mean a binary predicate that holds for a given



104 CHAPTER 8. AVERAGE-CASE COMPLEXITY OF THE EQUALITY TESTpair if it holds for the pair of left subtrees or it holds for the pair of right subtrees, but notfor both. In spite to solve the partial di�erential equation that describes the average behaviorof the equality test, we solve a simpler equation and show the asymptotic equivalence be-tween the solutions of the simpler equation and of the original equation. Using that indirectmechanism, we prove that the average-case complexity of testing equality of a pair of binarytrees with total size n is �(logn) under the BST distribution. This result and that of Chap-ter 7 clearly contrast with those obtained using the uniform model, that predicts qualitativelyidentical average behaviors for equality test and the intersection algorithm (constant). Theyare of di�erent orders of magnitude if the BST probability model is assumed instead.Section 8.1 is devoted to the formulation of the problem. The application of thetranslation rules given in Section 5.1 reduces the analysis to the study of a partial di�erentialequation. The di�culty to solve it leads us to seek lower and upper bounds for the average-case complexity of the algorithm. In the same section, we provide a non-trivial upper bound.In Section 8.2 our e�orts are directed towards �nding a lower bound. We introduceand analyze a related algorithm that yields a logarithmic lower bound.In Section 8.3 we deal again with the initial problem and we show that the average-case complexity of the equality test is of the same order of magnitude as the lower bound al-ready known. We get this last result in a rather subtle way: we show that the Riemann-Greenfunction of the partial di�erential equation associated to the equality test is asymptoticallyequivalent to the Riemman-Green function of the partial di�erential equation associated to theproblem that provides the lower bound. Hence, their solutions are asymptotically equivalentand the result is proved.8.1 Testing Equality of Binary Trees.In order to test the equality of two binary trees, one proceeds as follows : if one ofthe given trees is a leaf determine with a unique comparison if the other is also a leaf; if bothare not leaves, recursively test if their left subtrees are equal; if so, continue testing equalityof the right subtrees and then return true or false depending on the last test. Otherwise,return false (see Algorithm 8.1). The result is that a simultaneous preorder traversal of thepair of trees is carried on until a di�erence is found or the traversal is �nished.



8.1. TESTING EQUALITY OF BINARY TREES. 105function Equal?(T1; T2 : BinTree) returns Boolean is1 if T1 or T2 is 2 then2 return true if both are 2, false otherwise3 else4 if Equal?(T l1; T l2) then5 return Equal?(T r1 ; T r2)6 else7 return false8 endif9 endifendfunction; Algorithm 8.1: Equality test.This proccess follows the algorithmic scheme given in Algorithm 6.1 and thereforethe average-case complexity of the equality test is can be described by means of (6.2).We will denote by e(T1; T2) the number of steps that Algorithm 8.1 performs oninput (T1; T2), and the average of e(T1; T2) over all pairs (T1; T2) of joint size jT1j+ jT2j = nwill be denoted e(n). Hence,e(n) = XjT1j+jT2j=nPr(T1; T2) � e(T1; T2): (8:1)The complexity descriptor E(z) will be used for the average complexity of the equality testover pairs of size n E(z) = XT1;T22BPr(T1; T2) e(T1; T2) zjT1j+jT2j (8:2)while E(x; y) is the complexity descriptor corresponding to the average of e(T1; T2) over pairsof sizes m and n E(x; y) = XT1;T22BPr(T1) Pr(T2) e(T1; T2) xjT1j yjT2j: (8:3)Therefore, e(n) = [zn]E(z) and the two generating functions are related byE(z) = 1z Z z0 E(t; t) dt: (8:4)



106 CHAPTER 8. AVERAGE-CASE COMPLEXITY OF THE EQUALITY TESTNotice that we can use Pr(�) in the complexity descriptors instead of the weight w(�), sinceboth measures coincide for binary trees.Particularizing Equation (6.2) for the case of the equality test and renamingW (x; y jEquality) = Q(x; y);we have @2E@x@y = 1(1� x)2(1� y)2 +E(x; y)� 1(1� x)(1� y) + Q(x; y)� : (8:5)Since we are considering binary trees, the size of leaves is null and then the initial conditionsof E(x; y) are, 8x E(x; 0) = 11� x; (8.6)8y E(0; y) = 11� y : (8.7)We have already discussed about the generating function Q(x; y) in Chapter 6. Forbinary trees, we have � = � = 1, and Q(x; y) satis�es Qxy = Q2. Also, and this was alreadymentioned, Q(x � y) depends, in fact, on the product x � y. De�ningR(z) = XT2BPr2(T ) zjT j (8:8)we have that Q(x; y) = R(x �y). R(z) satis�es the second order ordinary di�erential equation:z d2Rdz2 + dRdz � R2(z) = 0; (8:9)with R(0) = R0(0) = 1.Equation (8.9) seems very di�cult to be solved explicitly, mainly because its non-linearity. Moreover, R(z) has a �nite movable singularity that depends on the initial condi-tions (see Chapter 9).In order to obtain the answer for the average-case complexity of the equality, wewill devise an upper and a lower bound for it. Our purpose is to squeeze the average-casecomplexity of the equality test between two non-trivial bounds (i.e., neither its worst-case norits best-case complexity are of help), giving some approximate idea of its order of magnitude.This approach has been very sucessful since we have been able to prove that the average-casecomplexity of the equality test actually reaches the lower bound.A �rst non-trivial upper bound can be obtained in the following way; we replace inthe previous algorithm the conditional execution of the equality test over right subtrees (lines4{8) by



8.2. A LOWER BOUND FOR EQUALITY. 107function BackboneEqual?(T1; T2 : BinTree) returns Boolean isif T1 or T2 is 2 thenreturn true if both are 2, false otherwiseelsereturn BackboneEqual?(T l1; T l2)endifendfunction; Algorithm 8.2: Backbones equality test.return Equal?(T l1; T l2) and Equal?(T r1 ; T r2 )This version works correctly but in an ine�cient way, since it tests the equalityof the right subtrees even when left subtrees are not equal, just as an algorithm testing a\disjunctive hereditary property" ought to do.The average-case complexity of this dully version coincides with the average-casecomplexity of the algorithm of intersection of binary trees (since symmetrically tests equalityin both pairs of subtrees, when the trees in the original pair are not empty) and thene(n) = O(n2p2�2=plogn);under the assumption that input is distributed according to the BST probability model (seeTheorem 7.3).Recall that both tests (that de�ned in Algorithm 8.1 and the dully proposed ver-sion) have the same worst-case complexity and constant average-case complexity when theprobability model is the uniform one. On the contrary, these algorithms have qualitativelydi�erent average behavior for the BST model, as we shall see.8.2 A Lower Bound for Equality.In the previous section, we found an upper bound to e(n). In this section we aregoing to develop a lower bound, and in this way get a �rst estimation for e(n).



108 CHAPTER 8. AVERAGE-CASE COMPLEXITY OF THE EQUALITY TESTAlgorithm 8.2 tests if the leftmost branches, also called backbones [Cul85], of twogiven trees are equal or not. For any given pair of binary trees, Algorithm 8.2 never makesmore steps than the equality test algorithm with the same pair of trees as input.Let l(T1; T2) denote the number of steps it takes to decide if T1 and T2 have the samebackbone. Then l(T1; T2) � e(T1; T2), for all pairs (T1; T2), and similarly, the average numberof steps done by algorithm BackboneEqual? on input of size n, say l(n), veri�es l(n) � e(n).Straighforward application of the translation rules of Section 5.1 yield@2L@x@y = 1(1� x)2(1� y)2 + L(x; y)(1� x)(1� y) ; (8:10)subjected to the initial conditions,8x L(x; 0) = 11� x; (8.11)8y L(0; y) = 11� y : (8.12)where L(x; y) is the complexity descriptor associated to l(T1; T2). As usual,l(n) = [zn]L(z; z)n+ 1 :To solve this equation we proceed as in the analysis of intersection looking for aparticular solution. It turns out that12 ln � 11�x�+ ln � 11�x�(1� x)(1� y)is such a particular solution. Therefore, if we denote Lh(x; y) the solution of the homogeneousequation we have l(n) = 1n + 1[zn]Lh(z; z) +Hn+1 � 1 (8:13)where Hn � ln n+ 
 +O(1=n) denotes the n-th harmonic number.The homogeneous partial di�erential equation can be solved by means of Riemann'smethod. To do so, we use a change of variables to get the homogeneous partial di�erentialequation 2Gxy�2G = 0 and then apply the method in the \standard" way (see the appendix Aat the end of Chapter 7). Finally we obtain the following technical lemma:Lemma 8.1. Let Lh(x; y) be the solution of the homogeneous equation corresponding to (8.10).Then [zn]Lh(z; z) � 3 � [zn]J0 (�2i ln(1� z)) ;



8.3. THE AVERAGE-CASE COMPLEXITY OF EQUALITY TESTING. 109The proof of this lemma is analogous to that of Lemma 7.2.Using Lemma 7.3 and Lemma 8.1 we get the asymptotic behavior of the coe�cientsof Lh(z; z). Combining this asymptotic behavior with equation (8.13) we get Theorem 8.1.Theorem 8.1. The average-case complexity of the algorithm that tests if the leftmost branchesof a pair of binary trees of size n are equal is asymptoticallyl(n) � Hn+1 � 1 + 32p� ln n +O(ln�3=2 n)� ln n+O(1):8.3 The Average-case Complexity of Equality Testing.The question that now arises is how far is e(n) from the bounds we have obtainedin previous sections: ln n+ O(1) � e(n) � c n2p2�2=plnn:Is it of the same order of magnitude as any of them?Let us consider the length of the backbone of binary trees distributed accordinglyto the BST probability model. Its expectation is O(logn), whereas its standard deviation isO(plog n). We conclude that the probability of two trees of size n having the same backboneis small, namely of order O(1=plogn). This fact strongly suggests that e(n) = O(l(n)).A closer look at equations (8.5) and (8.10) reveals that they are very similar, wherethe unique di�erence is the term Q(x; y) in the factor multiplying the unknown function.Moreover, E(x; y) and L(x; y) have Taylor series development only in the region f (x; y) j jxj<1; jyj < 1 g, while the domain of convergence of Q(x; y) is larger (see Chapter 9). Therefore,if the behavior of e(n) is determined by the singularities of E(x; y), then Q(x; y) can beconsidered just as a \perturbation" that can be neglected.This observation leaded us to consider whether there is a relationship between thesolutions of both equations, and more precisely how their respective Riemann-Green functionsare related.The Riemann-Green functions are, respectively, the solutions of the homogeneousequations, @2v̂@x@y = v̂� 1(1� x)(1� y) +R(x � y)� (8:14)



110 CHAPTER 8. AVERAGE-CASE COMPLEXITY OF THE EQUALITY TEST
? After O(logn) steps a di�erence is likely to be foundFigure 8.1: Testing equality of leftmost branches.and @2v@x@y = v(1� x)(1� y) ; (8:15)where both functions share the same initial conditions:@v@x ����y=0 = @v̂@x����y=0 = @v@y ����x=0 = @v̂@y ����x=0 = 0;v(0; 0; 0; 0) = v̂(0; 0; 0; 0) = 1: (8.16)Therefore, using equation (7.25) we can express E(x; y) in the following wayE(x; y) = E(0; 0) v̂(0; 0; x; y)++ Z y0 v̂(0; t; x; y) @E@y ����x=0y=t dt+ Z x0 v̂(t; 0; x; y) @E@x ���� x=ty=0 dt++ Z x0 Z y0 v̂(s; t; x; y) 1(1� s)2(1� t)2 ds dt; (8.17)and in the same way we can express L(x; y) asL(x; y) = L(0; 0) v(0; 0;x; y)++ Z y0 v(0; t; x; y) @L@y ����x=0y=t dt+ Z x0 v(t; 0; x; y) @L@x ���� x=ty=0 dt++ Z x0 Z y0 v(s; t; x; y) 1(1� s)2(1� t)2 ds dt: (8.18)



8.3. THE AVERAGE-CASE COMPLEXITY OF EQUALITY TESTING. 111It should be pointed out that both E and L satisfy hyperbolic partial di�erentialequations and that those equations are self-adjoint. In particular, their respective Riemann-Green functions have the following \symmetry" property:v(x; y; x0; y0) = v(x0; y0; x; y);v̂(x; y; x0; y0) = v̂(x0; y0; x; y):If we make a change of variables8<: X = ln � 11�x�Y = ln � 11�y� ;the partial di�erential equations satis�ed by E and L are correspondingly transformed, andthe new Riemann-Green functions are characterized by simpler equations. The followingresult establishes the relation between V (X; Y ;X0; Y0) = v(x; y; x0; y0) and V̂ (X; Y ;X0; Y0) =v̂(x; y; x0; y0).Lemma 8.2. Let V (X; Y ;X0; Y0) = v(x; y; x0; y0) and V̂ (X; Y ;X0; Y0) = v̂(x; y; x0; y0).Then as X !1; Y !1 along the real axis and if X0 and Y0 are real valued, we have,V̂ (X; Y ;X0; Y0) � V (X; Y ;X0; Y0)The lemma holds also if we interchange X with X0 and Y with Y0, by the symmetry of V andV̂ w.r.t. the pairs (X; Y ); (X0; Y0).Proof. In order to obtain the Riemann-Green functions V and V̂ we assume that both haveHadamard series expansions.Making the change of variables described above8<: X = ln � 11�x�Y = ln � 11�y� ;equations (8.14,8.15) are transformed into@2V̂@X@Y = V̂ h1 +R((1� e�X) � (1� e�Y ))e�(X+Y )i ; (8.19)@2V@X@Y = V: (8.20)



112 CHAPTER 8. AVERAGE-CASE COMPLEXITY OF THE EQUALITY TESTImposing conditions (8.16) we �nd that the coe�cients of the Hadamard series de-velopment of V are Vn = 1, for every n � 0, and we obtainV (X; Y ;X0; Y0) = J0�2iq(X �X0)(Y � Y0)�We shall use the following formula to relate Vn and V̂n [Cop75]:vn = �n v0rn Z r0 sn�1v0 L[vn�1] ds; n > 0; (8:21)where vn are the coe�cients in the Hadamard series expansion of the Riemann-Green functionv of an arbitrary linear di�erential operator L, x = x0 + r sin �; y = y0 + r cos �, and L isgiven as a function of � = x0 + s sin � and � = y0 + s cos � instead of x and y.Using (8.21) to determine the coe�cients V̂n in the Hadamard series development ofV̂ we get V̂0 = 1V̂n = � nrn hZ r0 sn�1  @2V̂n�1@�@� � V̂n�1! ds�� Z r0 sn�1 V̂n�1 h(�; �) dsi; (8.22)where h(X; Y ) = R((1� e�X)(1� e�Y ))e�(X+Y ) and the we have expressed (X; Y ) in polarcoordinates: X = X0+ r sin �; Y = Y0+ r cos �. The variables � and � are also transformedto polar coordinates: � = X0 + s sin � and � = Y0 + s cos �.Now, we will sketch the induction proof for Lemma 8.2.For n = 0, we have V̂0 = V0 = 1. Assume that, for all j < n, if X !1 and Y !1,we have V̂j � Vj . Then, from (8.22) we obtainV̂n � Vn + nrn Z r0 sn�1 h(�; �) ds: (8:23)In Chapter 9 we examine in depth the behavior of R(z); it is not di�cult to provethat R(jzj) is a monotonic increasing function and that it is analytic in a disk of radius largerthan 1. These two facts are crucial to �nish the proof; since the modulus of h is bounded, wecan use the Mean Value Theorem to evaluate the integral in (8.23).By hypothesis, both X0 and Y0 are real and both X and Y tend to1 along the realaxis. Hence, r and � are also real. Then, from (8.23) one getsV̂n � Vn + nKanrn e�(X0+Y0) Z r0 tn�1e�t dt; (8:24)



8.3. THE AVERAGE-CASE COMPLEXITY OF EQUALITY TESTING. 113where K is a constant and a = sin � + cos �. Since X ! 1 and Y ! 1, it follows thatr!1 and the equation above isV̂n � Vn + n!Kanrn e�(X0+Y0) � Vn: (8:25)Hence, Lemma 8.2 follows.Undoing the change of variables, and applying Lemma 8.2 to the partial di�erentialequations (8.17,8.18) we have E(x; y)� L(x; y);when x ! 1 and y ! 1 along the real axis. To translate this asymptotic equivalence offunctions to asymptotic equivalence of coe�cients one must show that suitable Tauberianconditions hold since we have only proved that the asymptotic equivalence is valid when bothx and y tend to 1 along the real axis. In particular, we can show that the Hardy-Littlewood-Karamata theorem can be applied because we haveE(z; z)� 3J0(�2i ln(1� z)) + ln � 11�z�(1� z)2 ; z ! 1�:using once again the asymptotic expansion of J0(z) for large z, and the fact that all [zn]E(z; z)are positive and form a monotonic sequence.It is now immediate to state our main theorem,Theorem 8.2. Under the BST probability model, the average-case complexity time of theequality test for pairs of binary trees of size n behaves ase(n) = �(logn): (8:26)We point out that if we assume that the input is uniformly distributed the average-case complexity of the equality test algorithm is O(1) as for the intersection algorithm; thisfact shows that the BST probability model predicts qualitative di�erences between the com-plexity of algorithms where the former does not. On the other hand, the uniform and the BSTprobability models do not discriminate between the average-case complexities of the equalitytest and of the backbones equality test, since both algorithms have the same average-casecomplexity for each one of these models. In particular, the average-case complexities are



114 CHAPTER 8. AVERAGE-CASE COMPLEXITY OF THE EQUALITY TESTlogarithmic for the BST model and constant for the uniform model. This is because theprobability of two binary trees being equal is exponentially decreasing with the size of thetrees in both models, although at di�erent rates.



115Chapter 9On the Probability of Two BSTsBeing EqualIn Chapter 8 we have analyzed the average-case complexity of the canonical algo-rithm for the equality test between binary trees. The analysis is carried on without explicitlysolving the equation associated to the binary predicate of equality, that is one of the so-calledhereditary properties (see Chapter 6). In this chapter we address the problem of evaluat-ing the probability that two binary search trees are equal, when the trees are independentlydrawn and have n internal nodes each.9.1 The Problem.Recall that the problem of evaluating the probability that two trees of size n each areequal, reduces to the evaluation of the following bivariate generating function (see Chapter 6):Q(x; y) = XT2BPr 2(T ) xjT j yjT j:Since Q(x; y) = R(x � y) we can alternatively evaluateR(z) = XT2BPr 2(T ) zjT j = Xn�0 rn zn:Here, rn denotes the probability that two BSTs, of size n each, are equal.It turns out that this problem is by no means easy to solve, since the power seriesR(z) is the solution of the non-linear second-order di�erential equationzy00 + y0 � y2 = 0; (9:1)



116 CHAPTER 9. ON THE PROBABILITY OF TWO BSTS BEING EQUALwith initial conditions y(0) = y0(0) = 1: (9:2)The singularities of the solution of (9.1) are not �xed (if it has any at all), as they depend onthe initial conditions and on the di�erential equation itself [Inc56]. This di�erential equationis a particular case of the Emden-Fowler equation (see [Bel53, Zwi89]), but neither the singu-larities nor asymptotic expansions of the solution have been studied for (9.1). From now on,we will denote by R̂(z) the unique analytic solution of (9.1),(9.2); so, R(z) is a valid powerseries expansion for R̂ inside the convergence disk of R(z).Although the problem of evaluating R(z) seems very di�cult, recall that the analysisof equality test made in Chapter 8 was still possible, because we only needed to show thatthe function R(z) is analytic in a disk of radius � > 1.The proof of the the last fact and other elementary facts about R(z) is based uponthe recurrence obeyed by the coe�cients rn of the power series R(z):rn+1 = X0�k�n rkrn�k(n+ 1)2 ; r0 = 1:Our aim is to derive the asymptotic behavior of rn = [zn]R(z) for large n. To obtainthis objective, we will use the technique of subtracted singularities and try to apply one of thetransfer lemmas (see Subsection 1.2.2). In particular, the two conditions for the applicationof a transfer lemma are that we have an asymptotic expansion of the solution of (9.1),(9.2)around the singularity with smallest modulus; and that such an expansion involves functionsbelonging to a certain restricted class including algebraic and logarithmic functions. Moreover,the asymptotic expansion should hold for some domain of the complex plane enclosing thedisk of convergence, and therefore, requires the analytic continuation of R(z) outside this disk(see Subsection 1.2.2).9.2 The Domain of Analyticity of R(z).We begin enumerating three easy-to-prove propositions about the power series R(z).Proposition 9.1.1. R(z) is analytic in a disk of �nite radius 1 < � <1.



9.2. THE DOMAIN OF ANALYTICITY OF R(Z). 117
z = ���+ ��

Figure 9.1: The domain of analyticity of R̂(z) encloses the disk jzj < �.2. R(jzj) is a monotonic increasing function and for every z in the convergence disk,jR(z)j � R(jzj); R(z) has a singularity at the real positive axis at z = �.3. R(z) and all its derivatives become in�nite at the singularity at �.Proof. In order to prove (1) it su�ces to show by induction that8n � 1; c1n(3p3)�n � rn � c2n(p6)�nfor some constants c1 and c2. Fact (2) follows from the positivity of the rn. Finally, (3) isproved by reductio ad absurdum, showing that R(z) would not be singular otherwise.The following lemma establishes that the domain of analyticity of R̂ properly enclosesthe disk jzj < � (see Figure 9.1).Lemma 9.1. Assume that z = �� ei� is a singularity of R̂(z), for some �� > 0 and � 6= 0.Then, �� > �.Proof. The proof of this lemma is based upon a continuity argument due to Mich�ele Loday-Richaud. Suppose that z = �� ei� is a singularity of R̂(z) in the direction given by � 6= 0. For



118 CHAPTER 9. ON THE PROBABILITY OF TWO BSTS BEING EQUALany x � 0, let v(x) = xR̂0(x). Therefore,R̂(z) = 1 + Z z0 v( ) d :Furthermore, let w(x) = jv(x ei�)j and let u(x) = jR̂(x ei�)j. Neither w(x) nor u(x) arebounded in a neighbourhood of �� , by reductio ad absurdum. By Proposition 9.1 (2), ifx is close enough to the origin, then w(x) < v(x) and u(x) < R̂(x). Fix x1, such that0 < x1 < �; w(x1) < v(x1) and u(x1) < R̂(x1). Since v, w, u and R̂ are continuousfunctions, there must be x2 such that 0 < x2 < x1 < � and w(x1) < v(x2) and u(x1) < R̂(x2).Let t 2 [0; � � x2) \ [0; �� � x1), where x1 and x2 are as before. We prove thatw(x1 + t) < v(x2 + t) for any such t. Assume that t1 is the minimum value such thatw(x1 + t1) = v(x2 + t1). Since w(x1 + t) � v(x2 + t), we have w0(x1 + t1) � v0(x2 + t1). Weget then, R̂2(x2 + t1) = v0(x2 + t1) � w0(x1 + t1) � u2(x1 + t1);where the last inequality is given by the fact that jw0j � jv0j, whenever w is di�erentiable.Hence,0 � u(x1 + t1) � u(x1) + Z t10 w(x1 +  )x1 +  d < R̂(x2) + Z t10 v(x2 +  )x2 +  d = R̂(x2 + t1);yielding the contradiction. Therefore, w(x1+ t) < v(x2+ t) for any t 2 [0; ��x2)\ [0; ���x1).The last argument and the fact that w(x) is not bounded in a neighbourhood of �� ,yield that �� � �+ x1 � x2;and the lemma follows.9.3 A Family of Solutions around the Singularity.The asymptotic expansion for R̂(z) can be obtained solving the di�erential equa-tion (9.1) in a neighborhood of z = � (see example 5 in Section 4.3 of the book of Bender andOrszag [BO78], for instance). Making the change of variables Z = �� z, we obtain(�� Z)y00 � y0 � y2 = 0: (9:3)Local analysis shows that the leading singular behavior of y(Z) that becomes in�niteat Z = 0 is R̂(z) � AZ2 ; Z ! 0;



9.3. A FAMILY OF SOLUTIONS AROUND THE SINGULARITY. 119for A = 6�. However, this leading behavior does not mean that R̂(z) has a pole at z = �.If there is a pole at z = � then R̂(z) = y(Z) = Z�2F (Z) where F (Z) is analytic in aneighborhood of Z = 0. But F (Z) is not analytic in a neighborhood of Z = 0 and thesingularity is not a pole, because the assumption thaty(Z) = Z�2 �a0 + a1Z + a2Z2 + a3Z3 + � � ��leads to a contradiction.Trying instead a series including terms of the type Zm lnn Z [BO78] no contradictionarises and we can conclude thatY (Z) = d�2;0Z�2 + d�1;0Z�1 + Xm;n�0 dm;n Zm logn Z (9:4)is a family of solutions of (9.3), depending on two arbitrary constants � and h, since dm;n =dm;n(h; �) for all m � �2; n � 0. We shall consider only those functions such that � is actuallythe radius of convergence of R(z) and use Yh(Z) to denote the dependence on h.Substituting (9.4) into (9.3) and equating terms in Zm logn Z, for m � �2; n � 0we can set up the following recurrences for the coe�cients dm;n (we omit some of them):d�2;0 = 6�;d�1;0 = �12=5;: : :d4;0 = h;: : :�(n+ 2)(n+ 1)dm+2;n+2 = ��(m+ 1)(m+ 2)dm+2;n + (2m+ 3)(n+ 1)dm+2;n+1�++ (m+ 1)2dm+1;n � (2m+ 2)(n+ 1)dm+1;n+1+ (n+ 2)(n+ 1)dm+1;n+2+ 2d�1;0dm+1;n + 2d�2;0dm+2;n + X0�i�m0�j�n di;j dm�i;n�j :From the recurrences above is straightforward to prove the following lemma, byinduction on m:Lemma 9.2. For all m � �2; n � 0; dm;n = 0; if n > jm+26 k.



120 CHAPTER 9. ON THE PROBABILITY OF TWO BSTS BEING EQUALFrom now on, we shall denote '(m) := jm+26 k, since this integer function will appearquite often in the rest of the chapter.A second inductive proof shows that the following lemma holds.Lemma 9.3. Foa all m � �2; n � 0,dm;n = (�1)n�m+1 Km;n �h�5� ; m � �2; n � 0where Km;n(x) are polynomials of degree '(m)� n and their coe�cients are constants thatdo not depend on h nor on �. Moreover, K4;0(x) = x and d4;0 = h.Our recurrences for dm;n translate to recurrences for the coe�cients of the polyno-mials Km;n(x), and Lemma 9.2 implies that Km;n(x) = 0 whenever n > '(m).To �nish our collection of lemmas about the polynomials Km;n, we state:Lemma 9.4. For all m > 0; n � 0 and for any � � e1=6 � 1:18136 : : :,jKm;n(0)j � �mmn n! :Proof. We shall only give an sketch of the proof of the lemma. It can be proved by inductionon m and n. In fact, the right way to carry on the proof is to use the following ordering forthe pairs (m;n): (m;n) < (m0; n0) if m < m0 or, m = m0 and n > n0. Then induction is doneover whole \columns", i.e. from n = '(m) to n = 0, and then over m. To simplify notation,let us denote Km;n = Km;n(0).Assume that the lemma is true for all m such that 0 < m � m0 and m0 > 3, andfor all n � '(m0). Let m = m0 � 1. Since Km+2;n(0) = 0 if n > '(m+ 2), we need only toprove that the lemma is also true for n � '(m+ 2). We start with the following recurrence(valid for all m+ 2 > 4),Km+2;n = 1m2 � 3m� 10h(2m+ 3)(n+ 1)Km+2;n+1 + (n+ 2)(n+ 1)Km+2;n+2 ++ ((m+ 2� 1)2 + 2K�1;0)Km+1;n � (2m+ 2)(n+ 1)Km+1;n+1 ++ (n + 2)(n+ 1)Km+1;n+2 + X0�i�m0�j�n Ki;jKm�i;n�ji:Applying the induction hypothesis and substituting K0;0 and K�1;0 by their knownvalues, we havejKm+2;nj � �m+2(m+ 2)n n! " 2m+ 3(m2 + 3m� 10)(m+ 2) + 1(m2 + 3m� 10)(m+ 2)2+



9.3. A FAMILY OF SOLUTIONS AROUND THE SINGULARITY. 121+ 1� �m+ 2m+ 1�n  m2 + 2m� 19=5m2 + 3m� 10 + 2m+ 2(m2 + 3m� 10)(m+ 1) + 1(m2 + 3m� 10)(m+ 1)2!++ 1�2 (m2 + 2m)nm2 + 3m� 10 X0<i<m i�n(m� i)�n + 1425(m2+ 3m� 10)�2 �m+ 2m �n#:Additional manipulations show that the expression inside the square brackets is � 1for any m > 0 and any n such that 0 � n � '(m+ 2), if � � e1=6.We remark that the bound provided by this lemma is not tight.Once we are equipped with the last three lemmas we are ready to prove that Y0(Z)is analytic in a punctured disk around Z = 0 of radius � = e�1=6� < � and cut along the realaxis for Z > 0. Recall that we already know from Proposition 9.1 that � � p6 and hence� > 2:0.Lemma 9.5. The functionY0(Z) = d�2;0Z�2 + d�1;0Z�1 + Xm;n�0 dm;n Zm logn Zis analytic in the domain D = fZ j 0 < jZj < e�1=6�; 0 < j arg(Z)j � � g.Proof. By de�nition, the functionsd�2;0Z2 ; d�1;0Z ; and dm;nZm logn Zare analytic in D. Hence, we ought to prove thatXm;n�0 dm;n Zm logn Zis uniformly convergent for any Z inD. Lemmas 9.3 and 9.4 provide the adequate majorizationfor jdm;nj; for � = exp(1=6), we havejdm;nj � ��(m+1) �mmn n! :Let Z0 be any complex number inside D. By Lemma 9.2, dm;n = 0 whenever n > '(m). IfjZ0j < 1 then jZ0 logZ0j � jZ0j1=2(1+ �) and we can bound the absolute value of each of thesummands by jdm;nZm0 logn Z0j � ��(m+1) �mmn n! jZ0jm�n=2(1 + �)n=2:



122 CHAPTER 9. ON THE PROBABILITY OF TWO BSTS BEING EQUALBut as m� n=2 � m=2, we getjdm;nZm0 logn Z0j � ��(m+1) �mmn n! jZ0jm=2(1 + �)n=2;from where it follows that Xm�0 n='(m)Xn=0 ��m �mmn n! jZ0jm=2(1 + �)n=2is convergent. Analogously, if 1 � jZ0j < e�1=6�, jZ0 logZ0j � jZ0j(log� + �) and a similarbound whose sum is convergent can be found.This proves that Pm;n�0 dm;nZm logn Z uniformly converges and hence that Y0(Z)is analytic in D.9.4 Asymptotic Behavior of the n-th Coe�cient of R(z).Up to this point we have already shown that R̂(z) is analytic in a domain properlyenclosing the disk of convergence of R(z). Also, that there is a family Y (Z) of solutions ofthe di�erential equation around the singularity at � and that Y0(Z) is analytic in a regionof radius e�1=6� centered at �. The next step would be proving that there is some domainwhere one of the Yh(Z)'s is a valid asymptotic expansion of R̂(z). Nevertheless, we have beennot able to do so and therefore we introduce the following conjectureConjecture 9.1. For some z such that both R(z) and Y0(�� z) are analyticY0(�� z) = R(z);�Y 00(�� z) = R0(z):There is overwhelming empirical evidence that the conjecture actually holds. Forinstance, numerical computations of � using Hadamard's expression of the convergence ra-dius (��1 = limn!1 r(1=n)n ) and the ones done assuming the conjecture are coincident in allsigni�cative digits, giving � = 3:140857701 : : :. On the other hand, approximations of R(z)by Y0(z), along the real axis, are good. Finally, it can be shown that for any h such thatjh �5j < 1, then Yh(z) is analytic on a domain Dh = fZ j 0 < jZj < �; 0 < j arg(Z) � � g,with � � 0:35. If we require that Yh(Z0) = R(� � Z0) and �Y 0h(Z0) = R0(� � Z0) for someZ0 2 Dh, and solve these equations for an unknown h, our numerical calculations show that
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Figure 9.2: Domains of analyticity of R̂(z) and Y0(Z).jhj ! 0 as we increase the accuracy of the approximations of Yh(Z0); Y 0h(Z0); R(�� Z0) andR0(�� Z0).If the conjecture is true, the rest of the argumentation is simple. By the existenceand uniqueness theorem for analytic solutions of ordinary di�erential equations, R̂(z) andY0(Z) must coincide in a neighbourhood of the point where we conjecture the functions areequal. By the analytic continuation principle, it can be stated that both functions are equalin �0 = D \�, where � is the domain of analyticity of R̂(z) (see Figure 9.2).Therefore, all conditions for the application of a transfer lemma are ful�lled sinceR̂(z) is analytic in the domain �0 and as z ! � inside �0 we haveR̂(z) = d�2;0(�� z)2 + d�1;0(�� z) ++ Xm�0 X0�n�m dm;n(�� z)m logn(�� z):We summarize our results in the following claim.Claim 9.1. The probability that two binary search trees are equal, if they are independentlydrawn and have size n each is, provided that Conjecture 9.1 holds,rn � 6n��n�1 � 12=5��n�1 + ��n�1 Xj�00�k�'(j) d0j;kn�j�1 logk�1 n;



124 CHAPTER 9. ON THE PROBABILITY OF TWO BSTS BEING EQUALwhere � = 3:140857701 : : :, and the constants d0j;k ared0j;k � Kj;k(0)(�1)k+1 logk �Notice that the leading behavior of the asymptotic estimate of rn does not dependon h.
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Part IVConclusions and Open Problems





IV.1. ANALYSIS OF THE COMMON SUBEXPRESSION PROBLEM. 127This part contains the description and the �rst steps of the analysis of the commonsubexpression problem.We obtain an explicit expression for the generating function associatedto the size of the compacted tree, and leave open the estimation of asymptotic behavior ofthe coe�cients of that generating function.We also summarize the main conclusions of the thesis, discussing the results obtainedand its signi�cance.IV.1 Analysis of the Common Subexpression Problem.This section presents a problem that is quite di�erent from those problems thatwe have examined in thesis. The problem of common subexpression, also known as treecompaction problem, is an interesting representant of a di�erent family of problems. Thecanonical algorithm that performs the tree compaction is one of the so-called bottom-upalgorithms [CFS90]. We are particularly interested in the evaluation of the average size ofthe compacted tree, as a function of the size of the original tree.Any tree can be represented in a one-to-one correspondence by a direct acyclicgraph (DAG, for short), where common subtrees are factored and represented only once. Inthe implementation, several pointers will point to the root of any common subtree, and theresulting structure is a DAG (see Figure IV.3). The compaction process can be done in lineartime, and is routinely used in Lisp systems, computer algebra and symbolic manipulationsystems and compilers (mainly in the register allocation, code generation and optimizationsteps). As the size of the DAG will be most of the times less than the size the originaltree, the expected savings in storage is the quantity that we are interested in analyzing. Theanalysis of the size of the DAG corresponding to a tree of size n was done for the uniformmodel and related variants by Flajolet, Sippala, and Steyaert [FSS90].A similar approach to that followed in the mentioned paper, works for the BSTmodel, but algebraic equations are replaced by di�erential ones, and the \classi�cation" onsizes that works for the uniform model seems no longer possible for the BST model.Let K(T ) be the size of the DAG obtained when tree T is compacted. Then theaverage size of a DAG coming from a tree of size n isK(n) = XjT j=nPr(T )K(T );
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*bba +� dc� /baba a b 3+ "+ * /a := � * *� dc/ba 3"�+ /:= +Figure IV.3: Compacted representation (DAG) of a labelled binary tree.where Pr(T ) denotes the probability of the tree T in the BST model.The characteristic K(T ) turns out to beK(T ) = Xu�Tu6= 1;where u � T means that u is a subtree of T and 2 denotes the empty tree; therefore, everysubtree u of T contributes by 1 to K(T ) no matter the number of times it appears.Hence, if we de�ne the generating function K(z) for the sequence fK(n)gn�0 asusual, then we have K(z) = Xn�0K(n) zn = XT2BPr(T )K(T ) zjT j == XT2BPr(T ) 0@ X26=u�T 11A zjT j= X(u;T )2FPr(T ) zjT j;with F = f(u; T ) jT 2 B;2 6= u � Tg.The set F can be expressed asF = [u2B�2fug � Au;



IV.1. ANALYSIS OF THE COMMON SUBEXPRESSION PROBLEM. 129Au = fT 2 B j u � Tg = u+ �(Au;B �Au) + �(B �Au;Au) + �(Au;Au):And hence K(z) = Xu2B�2Au(z);Au(z) = XT2AuPr(T ) zjT j:Notice that the last equations are valid for any probability model.Using the recursive decomposition of Au as well as the de�nition of Pr(T ) we caneasily derive the following di�erential equation for Au(z)dAudz = jujPr(u) zjuj�1 + 2Au(z)1� z �A2u(z); (IV:1)subject to initial conditions Au(0) = 0, A0u(0) = 0 if juj > 1 and A0u(0) = 1 if juj = 1.Let y(z) � Au(z), n = juj � 1 and � = (n+ 1)Pr(u). Then (IV.1) isy0 = 2y1� z � y2 + �zn;which is a Ricatti di�erential equation [Inc56]. If we takey(z) = w0(z)w(z) + 11� z ;the original di�erential equation is transformed intow00 � � znw = 0;whose solution is (see, for eample [AS64, (9.1.51)])w(z) = pz C�  2ip� zn=2+1n+ 2 !where � = 1n+2 and C� is a linear combination of the Bessel functions J� and Y� (a cylinderfunction).Hence, K(z) can be expressed asK(z) = ddz Xu2B�2 ln z1=21� z C�  2ip� zn=2+1n + 2 !! :Notice that the order of the cylinder functions in K(z) depends only on the size ofu, but their arguments depend also on Pr(u).



130IV.2 Conclusions.The recursive nature of the BST model allows the average-case analysis of algorithmsunder this model, by means of the symbolic operator method. The resulting equations overgenerating functions for the BST model are di�erential equations. For the case of algorithmsdealing with pairs of trees the equations are partial di�erential. Speci�c mathematical tools,such as the Riemann's method, are needed in order to obtain the asymptotic estimates of thecoe�cients of the generating functions that satisfy those partial di�erential equations.We have explored some simple recursion schemes over pairs of trees. We have beenable to perform the complete analysis of the average size of the intersection of trees, and of theaverage-case complexity of the equality test algorithm. The average size of the intersectionof a pair of trees of size n turns out to be �(n2p2�2=plogn). The average-case complexityof the equality test is �(logn). These results contrast with the results corresponding to theuniform model, that are in both casesO(1). We say that the BST model is able to discriminatebetween the equality test algorithm and the intersection algorithm, because their average-casecomplexities are qualitatively di�erent. This is not the case for the uniform model.Closely related to the problem of equality is the problem of evaluating the probabilitythat two binary trees of the size n are equal. It appears to be O(��n n). We have also examinedother problems associated to hereditary properties, that are characterized by the same kindof di�erential equations.A lot of work has still to be done for a better comprehension of the BST modeland the average-case analysis under the BST model. However, much of the mathematicalproblems that arise in these studies are rather di�cult, as this thesis shows.A possible line of research is the development of complex analysis techniques to copewith multivariate complex functions. Almost all of the complex analysis techniques in use inthe area of average-case analysis deal with functions of a single variable. For instance, muchis known about the nature of the singularities and the asymptotic behavior of the Taylorcoe�cients of functions satisfying linear ordinary di�erential equations. A lot of informationcan be extracted without even solving the di�erential equations. Similar results for partialdi�erential equations would be of great interest for the average-case analysis under the BSTmodel, where this type of equations arise naturally.Besides the BST model, it would be interesting to study other probability models,such as the mST, DST or quadtree model. Furthermore, these models could be generalized



IV.2. CONCLUSIONS. 131to arbitrary families of trees and to pairs of trees. Just to give an example, the extension ofthe DST model to pairs of trees is quite similar to the extension of the BST model to pairs,and the type of equations that appear in the average-case analysis under the extended DSTmodel are, in general, partial di�erence-di�erential equations.
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