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Resumen

El presente trabajo estd dedicado al andlisis de algoritmos asumiendo que sus en-
tradas estan distribuidas segin el modelo probabilistico BST (asi denominado por su vincu-
lacién con los arboles binarios de bisqueda, Binary Search Trees en inglés) o segin el modelo
equilibrado, que generaliza al anterior. El conjunto de entradas de tales algoritmos es siempre
alguna familia de arboles simplemente generados.

En ambos modelos, dos objetos (arboles, k-tuplas de drboles) del mismo tamafo no
son necesariamente equiprobables, contrariamente a lo que se asume en la mayoria de andlisis
probabilisticos relativos a sistemas de manipulaciéon simbdlica, demostraciéon automdtica de
teoremas o compilacién, donde la hipdtesis de uniformidad es valida en gran nimero de
situaciones.

Algunos ejemplos de familias de arboles que no estin uniformemente distribuidos
son los citados arboles binarios de bisqueda, los arboles k-d, los arboles m-arios de bisqueda,
los tries, los Patricia trees, los quadtrees, etc.

El andlisis probabilistico de algoritmos mediante el modelo BST y el modelo equili-
brado conduce, por lo general, a ecuaciones diferenciales ordinarias y en derivadas parciales,
en el camino hacia la solucién; en cambio, en el andlisis de algoritmos para drboles uni-
formemente distribuidos, hay que resolver problemas algebraicos y problemas de enumeracién
combinatoria.

La tesis se divide en cuatro partes. Las dos primeras contienen el material introduc-
torio, conceptos bdsicos y definiciones, asi como una breve descripcion de las herramientas
matematicas empleadas: el método del operador simbdlico y técnicas procedentes del andlisis
de variable compleja. En la parte II presentamos una coleccién de modelos de probabilidad
para familias de drboles, describiendo sus contextos de aplicacién natural, algunos resultados
previos y la metodologia a seguir en los correspondientes andlisis de caso medio.

La parte III constituye la principal contribucién de este trabajo. Comienza con
un capitulo en el que se introduce la ocupacién, una sencilla caracteristica relacionada con
el grado de completitud o equilibrado de los arboles. Analizamos dicha caracteristica bajo
diferentes hipotesis concernientes al modelo de probabilidad, con el fin de poder comparar
los principales elementos distintivos de cada modelo y el tipo de problemas matematicos
asociados a cada uno de ellos.

En el capitulo 5 abordamos la definicién de un conjunto de reglas que permitirdan



obtener directamente las ecuaciones matematicas que describen el comportamiento de un
algoritmo a partir de la propia estructura del algoritmo, para una cierta clase de algoritmos.

El capitulo 6 se dedica al examen de una colecciéon de algoritmos elementales y de
predicados sobre pares de arboles, interesantes y sencillos, y que denominamos propiedades
hereditarias. Dichos predicados admiten caracterizaciones recursivas muy similares. La for-
mulacién matemédtica del problema de evaluacién de la probabilidad que una propiedad hered-
itaria se cumpla para un par de arboles de talla n, es estructuralmente idéntica para todas
las propiedades hereditarias. Por otra parte, el comportamiento medio de los algoritmos que
verifican si un par de arboles dado cumple una propiedad hereditaria, se puede describir me-
diante ecuaciones muy parecidas. Fl test de igualdad entre dos arboles dados es uno de tales
algoritmos y recibe una atencién mayor en un capitulo posterior.

Los dos siguientes capitulos contienen los andlisis del tamafio medio de la interseccién
de un par de arboles y de la complejidad media del test de igualdad para pares de arboles
binarios. En ambos andlisis, el problema original se transforma en uno de resoluciéon de una
ecuacién diferencial en derivadas parciales. El uso del método de Riemann, y la aplicaciéon
de técnicas de andlisis asintotico proporciona los resultados deseados. Asi, el tamafio medio
de la interseccién de un par de arboles binarios de tamafio n es O(nzﬁ_z/\/@) y el test
de igualdad para pares de drboles binarios consume O(logn) pasos en promedio. Hacemos
también un detallado andlisis de la probabilidad que dos arboles, de tamafio n cada uno, sean
iguales. Todos los andlisis mencionados requieren el uso de resultados matematicos especificos,

de los cuales se hace un repaso en los preliminares.



Resum

El present treball esta dedicat a ’analisi d’algorismes quan s’assumeix que les en-
trades estan distribuides segons el model de probabilitat BST (aixi anomenat per la seva
vinculacié amb els arbres binaris de cerca, Binary Search Trees en angles) o segons el model
equilibrat que generalitza ’anterior. El conjunt d’entrades d’aquests algorismes sempre sera
una familia d’arbres simplement generats.

En ambdds models, dos objectes (arbres, k-tuples d’arbres) de la mateixa grandaria
no sén necessariament equiprobables, contrariament al que s’assumeix a la major part d’ana-
lisis probabilistiques relatives a sistemes de manipulacié simbolica, demostracié automatica
de teoremes o compilacié, on la hipotesi d’uniformitat és valida en gran nombre de situacions.

Alguns examples de families d’arbres que no sén uniformement distribuits inclouen
els ja esmentats arbres binaris de cerca, el arbres k-d, els arbres m-aris de cerca, els tries, els
Patricia trees, els quadtrees, etc.

L’analisi probabilistica d’algorismes mitjancant el model BST i el model equilibrat
condueix gairebé sempre a equacions diferencials ordinaries i en derivades parcials, en el cami
cap a la solucié; mentre que en ’analisi d’algorismes per arbres uniformement distribuits,
s’han de resoldre problemes algebraics i d’enumeracié combinatoria.

La tesi es divideix en quatre parts. Les dues primeres contenen el material introduc-
tori, conceptes basics i definicions, aixi com una breu descripcié de les eines matematiques
que hem emprat: el metode de 'operador simbolic i tecniques provinents de ’analisi de vari-
able complexa. A la part II també es presenta una colleccié de models de probabilitat per a
families d’arbres, i hi descrivim els seus contextos d’aplicacié natural, alguns resultats previs
i la metodologia a seguir en els corresponents analisis de cas mitja.

La part IIT constitueix la principal contribucié d’aquest treball. Comenca amb un
capitol en el qual s’introdueix "ocupacid, una caracteristica relacionada amb el grau de com-
pletitut o balancejat dels arbres. Analitzem aquesta caracteristica sota diferents hipotesis
concernets al model de probabilitat, per tal de poder comparar els principals elements distin-
tius de cada model i el tipus de problemes matematics associats a cada un dels models.

Al capitol 5 abordem la definicié d’un conjunt de regles que permetran obtenir
directament les equacions matematiques que descriuen el comportament mitja d'un algorisme
a partir de la propia estructura de 'algorisme, per a una certa classe d’algorismes.

El capitol 6 es dedica a ’examen d’una familia d’algorismes i una familia de predicats



sobre parells d’arbres, interesants i senzills, que anomenem propietats hereditaries. Aquestes
propietats admeten caracteritzacions recursives molt similars. La formulacié matematica del
problema d’avaluar la probabilitat que una propietat hereditaria es cumpleixi per un parell
d’arbres de talla n, és estructuralment identica per totes les propietats hereditaries. D’altra
banda, el comportament mitja dels algorismes que verifiquen si un parell d’arbres donat
satisfa una propietat hereditaria, es pot descriure mitjancant equacions molt semblants. El
test d’igualtat entre dos arbres donats és un d’aquests algorismes i rep una atencié més gran
en un capitol posterior.

Els dos segiients capitols contenen les andlisis de la talla mitjana de la interseccié
d’un parell d’arbres i de la complexitat mitjana del test d’igualtat per a parells d’arbres
binaris. En totes dues analisis, el problema original es transforma en el de resoldre una
equacié diferencial en derivades parcials. L’is del metode de Riemann, aixi com 1’aplicacié
de tecniques d’analisi asimptotica proporciona els resultats desitjats. Per exemple, la talla
mitjana de la interseccié d’un parell d’arbres binaris de talla n és O(nzﬁ_z/\/@) iel test
d’igualtat per a parells d’arbres binaris consumeix O(logn) pasos en mitjana. Fem també una
analisi detallada de la probabilitat que dos arbres, tots dos de talla n, siguin iguals. Totes les
analisis mencionades demanen 1’is de resultats matematics molt especifics, dels quals fem un

repas als preliminars.



Abstract

This thesis is devoted to the analysis of algorithms assuming that the input is dis-
tributed according to the BST probability model (thus named after the binary search trees)
or to the balanced model that generalizes the former. The input set of such algorithms is
some family of simply generated trees.

In those models, two objects of the same size are not equiprobable, contrary to
what happens in most average-case analyses of algorithms for symbolic manipulation sys-
tems, automatic theorem proving or compiling, for which the assumption that all inputs are
equiprobable is valid under most circumstances.

Some examples of families of trees that are not uniformly distributed are binary
search trees, k-d-trees, m-ary search trees, digital tries, Patricia trees, quadtrees, etc.

The average-case analysis of algorithms under the BST and the balanced probabil-
ity model almost always encounters ordinary and partial differential equations in the way
towards the solution; while in the average-case analysis of algorithms dealing with uniformly
distributed trees we have to solve algebraic and combinatorial enumeration problems.

The thesis is divided in four parts. The first two ones contain the introductory
material, basic concepts and definitions, as well as a brief description of the mathematical
tools that have been used: the symbolic operator method and complex analysis techniques.
In Part II we also present a collection of probability models for families of trees, describing
their natural contexts of application, known results and the methodology to be used in the
corresponding average-case analyses.

Part III covers the main contributions of this work. It begins with a chapter intro-
ducing the occupancy, a characteristic that is closely related to the degree of balancing of
trees. We analyze this characteristic under different assumptions concerning the probability
model, in order to compare the main differences between the probability models and the kind
of mathematical problems associated to each of them.

In Chapter 5 we define a set of translation rules that can be applied systematically
to obtain the mathematical equations that describe the average behavior of an algorithm,
directly from the structure of the algorithm, for a certain class of algorithms.

Chapter 6 is dedicated to examine a class of elementary algorithms and of simple
predicates over pairs of trees, called hereditary properties, that are recursively characterized

in similar terms. The mathematical formulation of the problem of evaluating the probability



that the property holds for pairs of size n, is structurally identical for all hereditary properties.
On the other hand, the average behavior of the algorithms that check if a given pair of trees
satisfies an hereditary property, are described by quite similar equations. The equality test
is one of such algorithms and receives a more complete treatement in one of the following
chapters.

The next two chapters are devoted to the analysis of the average of the intersection
of a pair of trees and of the average-case complexity of the equality test for pairs of binary
trees. In both analyses, the original problem translates into that of solving a partial differ-
ential equation. The use of Riemann’s method as well the application of asymptotic analysis
techniques provide the desired results. Thus, the average size of the intersection of two binary
trees with total size n is O(nzﬁ_z/@) and the time spent by the equality test for a pair
of binary trees is O(logn) on the average. There is also a detailed analysis of the probability
of two binary trees being equal, if both have n nodes. All these analyses require the use of

very specific mathematical results, that we overview in the preliminaries.
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Part 1

Introduction






The ultimate goal of the analysis of algorithms is to obtain useful information about
the computational resources required by algorithms. In general, such information is given in
a concise way, as a function of the size of the input to the algorithm.

The same techniques used to analyze algorithms are useful to analyze the behavior of
characteristics of data structures. The forthcoming argument about the analysis of algorithms
applies also to the analysis of characteristics of data structures. After all, the computational
resources used by an algorithm can be viewed as a characteristic of its inputs. Hence, we will
speak most of the times of either analysis of algorithms or analysis of characteristics of data

structures, when we actually refer to both.

There are many reasons for doing the analysis of an algorithm; the most straightfor-
ward of them is to evaluate the suitability of the algorithm for applications and to compare
the algorithm with others; another important reason is that the analysis helps to understand
the algorithm better and may suggest improvements to it.

In order to analyze an algorithm we begin by defining the complexity measure we
are interested in. Common complexity measures are time, storage, number of comparisons,
number of records moved, number of disk accesses (in algorithms using external memory),
etc. The most interesting ones are time and storage, but since these quantities are machine-
dependent it is very usual to compute them for some abstract machine model. After that, a
size function must be defined over the set of inputs of the algorithm. Most data structures
carry a natural notion of size. For example, the size of an array is its dimension, the size of
a string of symbols is its length, the size of a binary tree is the number of internal nodes it
has, the size of a general tree is the total number of nodes (internal and external) in the tree,

and so on.

Let us consider an algorithm .4 that operates on inputs in the set F. The size of
an element e € F is denoted by |e|, and £, = {e € F||e] = n} is the set of elements in F
that have size n. Let 4 be the complexity measure under study! (for instance, p4(e) can
be the number of elementary steps that algorithm A makes to process the input e). Notice
that a given algorithm can behave in quite different ways even for inputs of the same size.
For instance, the total running time of insertion sort is linear with respect to the number of
items to be sorted, if these items are already sorted; but it is quadratic if the items are in

reverse order (in fact, we expect this running time to be quadratic for random inputs) [Sed88].

'Subscript A in g4 will be dropped from now on, if there is no ambiguity.



Related to each complexity measure we can define the following quantities:

1. The worst-case complexity of algorithm A over F, is

VOIS () = max{ u(e) | e € E, ).

2. The best-case complexity of algorithm A over F,, is similarly defined by

BEST(n) = min{ Iu(e) le€ E,}.

I
Both complexities give indications concerning the extremal behavior of A when
applied to instances of size n. Their determination usually requires the “construction” of the

particular objects for which the algorithm achieves these extremal behaviors.

In many cases, the most valuable information is provided by average-case analysis.
As an example of this, it is known that the quicksort algorithm requires O(nlogn) operations
to sort n items on the average, but it takes O(n?) operations in the worst case [Sed88].

In the average-case analysis of algorithms, there is a last step which concludes the
modelization; it consists in the definition of a probability distribution over each subset of in-
puts of the same size. We call such family of probability distributions a probability model. We
can consider the complexity measure as a random variable, and the average-case complexity
can be defined as a mathematical expectation in the standard way. We have the following

definition:

3. The average-case complexity of algorithm A over F, is

pa(n) =E{pale)e€ E,},

where E{ X } denotes the expectation of the random variable X.

The definition of the average-case complexity can be reexpressed as

w(in) = ZkPr{,u(e):MeEEn}:
k

> Pr(e)ule),

ecly

where Pr(+) is the probability distribution over £,,.



Frequently, the average-case analysis is performed assuming that all elements of
a given size are equally likely to happen. This probabilistic model is also known as the
uniform model, and has proved useful in a wide variety of applications. Moreover, for many
of these applications, the uniformity hypothesis leads to predictions that agree with the actual
observed performances. For the uniform model the average-case complexity is reexpressed as

follows:
1

Z 1(e), (L.1)

p(n) =
where |FE,| denotes the cardinality? of E,. In this case, average-case analysis reduces to a

problem of combinatorial enumeration (see Section 1.1).

It is worth to point out that many algorithms operate on sets of inputs ¥ such that
every F, could be infinite. In general, this kind of algorithms can be analyzed without any
additional difficulty, since each F,, can be partitioned into a finite number of disjoint classes,
where each of these classes contains objects for which the algorithm behaves in the same
way. For instance, in the comparison-based sorting algorithms what matters is not the actual
value of the items to be sorted, but the relative order in which they are given. Once this
partition has been established the analysis concentrates on the sets IV of the representants
of the classes. Worst-case, best-case and average-case complexities are defined accordingly,

once we have defined the probability distributions over the £V, in the last case.

There are several drawbacks in the computation of the average-case complexity of
algorithms. The first objection to this kind of analysis is that most times the actual proba-
bility model is unknown or changes with time and/or from one application of the algorithm
to another. When the analysis is carried on assuming a particular probability model, the
significance of the obtained results arises as a natural question [Sed83, Fra85, Kar86].

On the other hand, and this is probably the most serious drawback, analyzing the
average-case complexity of an algorithm is, in general, intrinsically more difficult than ana-

lyzing its worst-case complexity. This is the case even if the probability model is simple.

The study of the average behavior of algorithms under different hypotheses concern-
ing the input distribution provides new information about the analyzed algorithms, since the

average behavior of the algorithms depends on the assumed probability model. On the other

2We use the same notation to denote the size of an item and the cardinality of a set. Since it will be clear
from the context whether z is an item or a set, the meaning of |z| should also be clear.



hand, the study would enlight our knowledge of the probability models themselves and give
us useful hints on the dependence of the analysis with respect to the probability model, since
each probability model requires its own set of algebraic and analytic techniques to perform

its corresponding analysis.

The recursive nature of programming schemes and of data structures is, whenever
possible, exploited to describe the average behavior of algorithms, by means of recurrences or
by means of functional equations over generating functions. Not surprisingly, many models
of probability are recursively defined as well, and hence, the average-case analysis is reduced
to the investigation of recursion models.

A possible approach consists in deriving the recurrences that describe the behavior
of the algorithm and solving them. The recurrences are obtained from the recursive decompo-
sition of the inputs into smaller components and the recursive nature of the algorithms. One
then tries to solve the recurrences relying on classical techniques such as the calculus of finite
differences or standard asymptotic analysis. Quite often, the recurrences are translated to
functional equations over generating functions in order to solve the recurrences or to extract
asymptotical information.

The application of the symbolic operator method is a more direct approach. In the
symbolic operator method, the set-theoretic definitions of the data structures, and that of the
complexity measure of a given instance in terms of smaller instances, are used to systematically
derive functional equations over generating functions. The derivation of such equations is
made by the application of translation rules that establish a “one-to-one” correspondence
between algorithmic constructions and operators over generating functions. The coeflicients
of the generating functions represent the quantities that we need to perform the analysis.

Therefore, both approaches often reduce the original problem (analyzing an algo-
rithm) to the same mathematical problem (extracting information from some given functional
relations between generating functions).

If we are lucky enough, it will be easy to explicitly solve the recurrences or the
functional equations over generating functions. The solution will provide us with explicit
expressions for the average-case complexity as a function of the input size n. When this
explicit expression is not in a closed form or cannot be easily interpreted and compared,
standard asymptotic analysis can be applied to obtain the average-case complexity in terms

of ordinary functions such as powers of n, logarithms, iterated logarithms, etc.



On the other hand, certain number of complex analysis techniques and, in particular,
singularity analysis, have been developed in order to extract the asymptotic behavior of
the coefficients of generating functions, even when the generating functions satisfy implicit
functional equations that are not explicitly solvable. Complex analysis techniques have played
an important réle in the area, greatly simplifying analysis that are rather intricate.

The combination of the symbolic operator method and the complex analysis tech-
niques has proved very successful for the analysis of algorithms where only some algorithmic
constructions are allowed, and the inputs are some kind of combinatorial structures of recur-
sive nature, such as trees and strings of symbols. An spectacular witness of the success of this
combination is the construction of the computer system AYQ [F'SZ91], that can automatically
perform the average-case analysis of a non-trivial collection of algorithms.

These approaches are depicted in Figure 1.1 [VF90].

SET UP Algorithms
Data Structures
Recurrences SYMBOLIC OPERATOR METHOD
TRANSLATE i/
SOLVE
FPunctional
Explicit Equations (GFs)
Costs SOLVE |
| COMPLEX ANALYSIS
ASYMPTOTIC ANALYSIS |

‘ Asymptotic Costs

Figure 1.1: Average-case analysis.

In this work we will concentrate on algorithms dealing with trees and on characteris-
tics of trees. We have followed the methodological approach based on the use of the symbolic
operator method and the use of complex analysis techniques. We are interested in doing the
average-case analysis of algorithms, when the input trees are distributed according to the

BST probability model. The name of this model comes from the fact that it corresponds to



binary search trees built up from random permutations. It turns out that in this model, trees
of the same size may not have the same probability; moreover, high probability is assigned
to well balanced trees, whereas poorly balanced trees are quite unlikely. The BST model can
be recursively defined and the characteristic type of functional equations associated to it are
differential equations.

The BST probability model has been successfully applied to analyze the algorithms
that dynamically maintain a dictionary implemented with a binary search tree. The model
also arises in the study of heap ordered trees, used to implement priority queues, and in the
study of multidimensional search algorithms that use k-d-trees [Knu73, Nie74, Rob82, Dev86,
FP86, Fla88b].

Moreover, the BST model is a particular case of the probabilistic model for ran-
domly built m-ary search trees. These trees are used for similar purposes as the BSTs, but
with external storage devices. The average performance of the algorithms that dynamically
maintain m-ary search trees and other average characteristics of these trees have received

attention in the last years [Mah86, MP89, Mah92].

We have defined a generalization of the BST model, that we have called balanced
probability model. The balanced probability model is defined over simple families of trees
enjoys many of the attributes of the BST model. For trees in any simple family of trees, the
intrinsic difficulty of doing the analysis using the balanced model is not greater than that of

doing the same analysis using the BST model for binary trees.

The objective of this work is to investigate what kind of mathematical problems
appear and what techniques should be used when we carry on the average-case analysis of
algorithms, when the probability model is the BST model or the balanced model. The use of
the BST probability model demands the development of specific mathematical tools for ap-
propriately performing the average-case analysis. Consequently, most of the contributions of
our work concern the techniques for obtaining the asymptotic average behavior of algorithms

from the differential equations that characterize the BST model.

On the other hand, comparisons between the way the analysis is done for the BST
model and for other models, and between the results of such analyses turns out to be relevant.
For instance, the idea of “discriminative power” of a probability model arised as a consequence
of our studies. We have observed that some algorithms that have the same qualitative aver-

age behavior for the uniform model have quite different average behavior if the BST model



is assumed. Hence, we say that the BST model discriminates the average behavior of these
algorithms while the uniform model does not. In other cases, two different algorithms exhibit
the same behavior for both models: neither the uniform model nor the BST model discrimi-
nates the average behavior of the two algorithms. These phenomena help understanding the

main distinctive characteristics of the algorithms and the probability models considered.

The first tool that we present for the average-case analysis under the BST and
balanced models is a set of translation rules that map algorithmic constructions into func-
tional equations over generating functions, in the same way it has been done for the uniform
model [FS87]. This kind of complexity calculus is theoretically feasible, as long as we restrict
ourselves analyzing algorithms using only certain algorithmic constructions. The set of trans-
lation rules, that we have proposed, provides a systematic procedure to directly obtain the
equations that describe the average behavior of an algorithm from the structure of algorithm.
The algorithmic constructions that we have considered are powerful enough to write many
interesting algorithms. Hence, the limits on what can be analyzed and what cannot, sub-
stantially depend on our ability to extract information from the equations that describe the
average behavior of algorithms. As an example of the application of the translation rules for
the balanced model, we analyze a formal differentiation algorithm. The definition of a set of
translation rules for the balanced model, useful for the analysis of recursive tree algorithms,

constitutes an interesting application of the symbolic operator method.

To attain our goals we have chosen to study simple algorithms over pairs of trees,
progressively going into more complex problems and trying to enlarge the collection of avail-
able techniques and results.

In this sense, we have found a collection of simple problems that are quite similar
in many aspects. The unifying concept for those problems is that of hereditary property. An
hereditary property is a predicate over pairs of trees that is true if and only if the property
holds for the pair of left subtrees and the pair of right subtrees. The differences between
hereditary properties are given by the way the property is defined for pairs containing at
least an empty tree. Examples of such properties are the equality of trees, root occurrence
(in the context of tree matching) and consistency (in the context of unification of first-order
terms).

The most basic question about hereditary properties is that of evaluating the prob-

ability that a given pair of trees of size n verifies a given hereditary property. The similarities



10

in the definition of hereditary properties lead to an essentially identical mathematical formu-
lation of the problem of evaluating probabilities, for all the hereditary properties. Another
interesting question is the relation between hereditary properties and algorithms. Even if we
have only partial information on the probability of an hereditary property, we can use it to
study algorithms whose average behavior ultimately depends on that probability. This is the
case for the algorithm that tests equality between a pair of trees, for the one that checks
whether a pair contains a direct ocurrence or for that determining if a tree (pattern) occurs
inside another (text), etc. The equality test algorithm and the probability of two binary
trees being equal have been studied more extensively and, in fact, initiated our interest about

hereditary properties.

Besides the recursive scheme associated to hereditary properties, other recursive
schemes have received our attention. Our first complete case of study is the size of the
intersection of two binary trees. This characteristic exemplifies one of the simplest non-trivial
recursion schemes over pairs of trees. Roughly speaking, the intersection of a pair of trees is
the tree that results if one of the trees in the pair is superimposed to the other and then the
nodes that do not belong to both are deleted. The complexity of the algorithm that computes
the intersection of a given pair is proportional to the size of the intersection.

Our analysis of the intersection leads to a partial differential equation. As we have
already said, this kind of functional relation relies on the nature of the probability model
rather than on the characteristic we are analyzing. We solve the partial differential equation
by means of Riemann’s method. The next step in our analysis yields an asymptotic expansion
of the solution around its singularity. The application of standard complex analysis techniques

allows us to obtain an asymptotic estimation of the average size of the intersection of a pair

of binary trees of size n: @(nzﬁ_Q/\/ ogn).

As we said before, we have investigated the average-case complexity of the equality
test between a pair of trees, as a function of the size of the pair. The equality test algorithm is
still simple but differs substantially from our previous case of study. The equality test is based
on the recursive application of the procedure to pairs of non-empty subtrees, but subsequent
recursive calls are conditioned to the result of previous calls, while the computation of the
intersection requires the unconditional recursive application of the procedure to all pairs of
non-empty subtrees.

Once again, we have assumed that the input for the equality test is distributed
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according to the BST probability model. Like in the analysis of the intersection, the generating
function associated to the average costs verifies a partial differential equation; but it is more
difficult to solve. We carry on the analysis studying a simpler algorithm. The average-case
complexity of this simple algorithm has an associated generating function that is proved to
be asymptotically equivalent to the generating function of the equality test. Therefore, the

average-case complexities of both algorithms are equivalent and turn out to be O(logn).

One of the problems arising during the average-case analysis of the equality is the
question of evaluating the probability that both members of the pair are equal, when each
of the trees has size n. In order to prove that the equality test has logarithmic average-case
complexity, we only need to show that this probability decreases exponentially as n gets large.
A deeper study of the behavior of this probability has deserved a chapter in this thesis. It
appears to be O(p~™n) where p = 3.1408577... . The analysis involves the study of the
analyticity of the solution of a second-order non-linear ordinary differential equation and of

an asymptotic expansion of that solution around its dominant singularity.

The thesis is organized as follows: in Part II we present the basic concepts to be
used in the remainder of thesis; the symbolic operator method and the related topic of com-
binatorial enumeration, and some common complex analysis techniques of wide application
in combinatorics and analysis of algorithms. The last section exposes some basic concepts
and identities of Bessel functions of the first kind that are needed in the next chapters.

Chapter 3 of Part II covers the definition of the BST and the balanced probability
models. It also introduces the principle of extension of the models to pairs of trees and to
k-tuples. It presents other common probability models for trees as well.

The main contributions of the thesis are contained in Part III. In Chapter 4 we
present the occupancy, a characteristic over trees, related to the balancing of trees. The
analysis of this characteristic under different probability models exemplifies the differences
between the probability models as well as the steps to be followed and some of the available
techniques, for each of the probability models. Part of this material appeared in Average-case
Analysis on Simple Families of Trees Using a Balanced Probability Model by Casas, Diaz, and
Martinez [CDM91a].

In Chapter 5 we establish a set of translation rules, whose systematic application
yields an equation describing the average behavior of any algorithm when the inputs are

distributed according to the balanced model, and as long as the algorithm only uses the
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considered operations over trees.

Chapter 6 introduces hereditary properties. In this chapter, we examine the problem
of evaluating the probability that a given pair of trees satisfies an hereditary property. We
also examine the relation between these properties, their probability and the algorithms that
are closely related to them.

The rest of the chapters of Part III describes the concrete analyses that we have
briefly mentioned before. Chapter 7 presents the analysis of the average size of intersection.
Most of the material of this chapter was published in On the Average Size of Intersection
of Binary Trees by Baeza-Yates, Casas, Diaz, and Martinez [BCDM92] and in [CDM91a].
Chapter 8 is on the average-case complexity of the equality test. The main results of this
chapter were presented in Average-case Analysis of Fquality of Binary Trees under the BST
Probability Model by Martinez [Mar91]. Chapter 9 deals with the probability that two binary
search trees are equal.

In the last part, we briefly sketch the main conclusions of this work and explore some
ideas for future research. Moreover, this part contains a concise description of the common
subexpression problem and the first steps of its average-case analysis for the BST probability

model. This is an open research problem.

Background sources on the analysis of algorithms are The Art of Computer Pro-
gramming [Knu68, Knu73] and the surveys of Sedgewick [Sed83], Flajolet [Fla88a] and Vitter
and Flajolet [VI'90].

Information about data structures and algorithms can be found in the books of
Knuth [Knu68, Knu73], Aho, Hopcroft and Ullman [AHU76, AHUS83], Sedgewick [Sed88],
Cormen, Leiserson and Rivest [CLR90] and Gonnet and Baeza-Yates [GB91], among others.

Additional coverage of the topic of analysis of algorithms can be found in the
books of Kemp [Kem84], Purdom and Brown [PB85] and the survey by Casas, Diaz and
Martinez [CDM91b]. A recent book on the topic of average-case analysis of random tree
structures, and therefore closely related to the topic of this thesis, is Fvolution of Random
Search Trees by Mahmoud [Mah92].

Combinatorial enumerations and the use of generating functions, which will be pre-
sented in the sequel, appear in the books of Comtet [Com74], Goulden and Jackson [GJ83],
Stanley [Sta86], and Wilf [Wil90]. For the mathematical foundations of generating func-
tions we refer the reader to the article The idea of generating function by Rota [Rot75]. For
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the general foundations on asymptotic methods we suggest the work of De Bruijn [DB5S].
The survey of Bender [Ben74] illustrates many uses of asymptotic methods in enumeration

problems.
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Part 11

Preliminaries
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Chapter 1

Mathematical Preliminaries

1.1 Combinatorial Enumeration.

1.1.1 Generating Functions.

As we shall see, the basic tool in the analysis of data structures and algorithms used

in this work is the generating function . Quoting Herbert Wilf [Wil90],

“A generating function is a clothesline on which we hang up a sequence of numbers
for display.”

Following the analogy, the clothes we will hang up in this work when doing average-case
analysis are almost always expected values of the complexity measure for inputs of a given

size.

Definition 1.1. Let { a;, }x>0 be any sequence of complex numbers. The generating function

(g.1., for short) of the sequence { aj, }1>q is
Az) = Zak 2~ (1.1)
k>0

The generating function of a sequence is often called ordinary generating function, to distin-

guish it from the exponential generating function, the Dirichlet generating function, etc.

Equation (1.1) associates a formal power series to a sequence of numbers. Thus,
generating functions are elements of a Cauchy algebra, therefore the classical algebraic meth-

ods can be applied. On the other hand, the defined series are in most cases convergent and
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Sequences Generating functions
1. ¢, =a,+b, C(z) = A(2) £ B(z)

2. =Yg arbn_t C(z) = A(2)- B(2)

3. Cn=dpy C(z) = 2A(2)

4. €n = Gpg C(z) = (A(2) — A(0))/=2
5. ¢, = na, C(z) = 2L A(2)

6. ¢, = 4n C(z) = [F(A(t) — A(0))4L

Table 1.1: Translation of operations over sequences to operations over g.1.’s.

hence they can be treated by analytical methods. This duality makes the generating function
a powerful tool. To apply analytical methods, the variable z of a generating function F(z)
is considered as a complex variable and the generating function as a complex function of z.
Moreover, as we will see in next subsection, there is a natural way to associate generating
functions to denumerable sets. This fact converts generating functions in helpful tools for
counting applications.

The n-th coefficient of a formal power series F'(z) will be denoted by [2"]F(z) (also,
[2"]F(z) denotes the n-th coefficient of the Taylor expansion of an analytic function F(z)
around z = 0). Thus, F(z) = 3,50 f 2" implies that [2"]F(z) = f,.

In Table 1.1 we present how elementary operations over sequences translate to op-
erations over the corresponding generating functions.

Operations (1), (3) and (4) are known as sum, backward shift and forward shift; (2)

is called convolution of sequences. Differentiation and integration are specified by (5) and

(6).

1.1.2 Admissible Combinatorial Constructions.

Many set-theoretic operators of interest in combinatorial enumeration, such as Carte-
stan product, powerset or Kleene closure, translate into operators over the generating func-
tions associated to the operands (see, for instance,[Fla88a]). We start defining a class of

combinatorial structures .
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Definition 1.2. Given a finite or denumerable set C and a size function® |-| : C — IN,
the pair < C,|-| > is a class of combinatorial structures if and only if for each n, the set

Co={ce€ClC]|lc|=n} is finite.
From now on, any given class of combinatorial structures will be denoted as the set
in the pair, with some abuse of the notation.
Let ¢, be the cardinality of C,,. Then the counting generating function of C is
C(z)= chzn. (1.2)
n>0
An alternative interesting way to express (1.2) is

Clz) =3 2. (1.3)

ceC
Notice that we adhere to the notational convention that uses the same letter for the
class, its generating function, and the elements of the induced sequence { ¢, }, >0 in different
cases and fonts. We will also use lowercase roman letters to denote elements of the set in a

class of combinatorial structures.

Any operation over k classes of combinatorial structures Cy,Cs,...,C; producing a
new class of combinatorial structures A is called combinatorial construction. The specification
of a combinatorial construction describes how the elements in the set A relate to the elements
of the sets C1,...,Cx and how the size function of the resulting class relates to the size
functions of the operands. For instance, the Cartesian product over classes A and B is
defined as the class where the set is the usual Cartesian product of the corresponding sets,
and the size of a pair (a,b) in A x B is the sum of the sizes of ¢ and b. The most interesting

combinatorial construction are the admissible combinatorial constructions:

Definition 1.3. A combinatorial construction ® is admissible if there exists an operator ¥

over generating functions such that
A= (I)(Clvc% .. 7Ck):>A(Z) = \IJ(CI(Z)v 02(2)7 SRR Ck(Z))v
where A(z),C1(z),...,Cy(z) are the counting g.f.’s corresponding to the classes A,Cq,...,Ck.

A large collection of admissible combinatorial constructions has been investigated
in the context of combinatorial enumeration. In Table 1.2, we summarize a set of admissible

combinatorial constructions and their corresponding operators over generating functions.

!We shall use the usual infix notation for the size function with subscripts when necessary, like in | - I
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Construction Operator
Disjoint union C=A+B C(z)= A(z) + B(z)
Cartesian product [C = A X B C(z)= A(z)- B(z)
Diagonal C=A(AXA) C(z) = A(z?)
Kleene closure C=A" C(z)= 1_1}1(2)
Marking C=pA C(z) = 2L A(2)
Substitution C = AlB] C(z)= A(B(2))

Table 1.2: Admissible combinatorial constructions.

Some of the constructions, such as disjoint unions, Cartesian products and diagonals
are the standard ones in set theory; others like composition or marking arise when dealing
with objects like trees, graphs and words, that are made up of atomic units or elements. We

characterize formally some combinatorial constructions in the following definitions.

Definition 1.4. A class C is the disjoint union of A and B, denoted C = A+ B if
1.C=AUBand ANnB =10.
2. |zle = |z|a ifx € A and |z|¢ = |z|p if © € B.

Definition 1.5. A class C is the Cartesian product of A and B, denoted C = A x B if
1. C = A x B (in the set-theoretical sense).
2. |(a,b)le = lala + |b]3, ac A beB.

Definition 1.6. A class C is the Kleene closure of A, denoted C = A™ if

C={A}+ A+ AXA+AXAXAF -,

where A is the empty structure (by definition |A\| = 0), and the size is defined consistently

with the disjoint union and cartesian product definitions.

Definition 1.7. A class C is the diagonal of another class A, denoted C = A(A x A) if
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1. C={(a,a)|ac A}.
2. [(a,a)le = 2|a 4, ac A.

Definition 1.8. A class C is the composition or substitution of two given classes A and B,

denoted C = A[B] if

1. ¢ € C if and only if there exists some n > 0, a € A, and by,...,b, € B such that
c=(a,by,....,b,).

2. |(a7b17b27- . -vbn)|C = |b1|B + - |bn|B

Similar rules to those in Table 1.2 exist for generating functions of the form

F(z) =3 f(e) 2,

ceC

when the class C is constructed from some other classes, and the function f is defined in
terms of functions over the components of the elements in C. For instance, if C = A x B and

if f(c) = g(a)h(b) for ¢ = (a,b), then

F(z)= > gla)h(b) 2" = (Z g(a)z'“') : (Z h(b)zlbl) = G(2)H(2).

(a,b)eAxB a€A beB

More details and full proofs for the lemmas given in Table 1.2 can be found in
the book of Goulden and Jackson [GJ83] and the surveys of Flajolet [Fla88a] and Vitter
and Flajolet [VF90]. The last two references describe how these methods can be applied in

average-case analysis of algorithms and data structures.

1.1.3 Two Expansion Theorems.

There are two interesting theorems about generating functions, that allow to recover
exactly the n-th coefficient of a generating function under particular circumstances, and whose
proof is purely algebraic, valid in the ring of formal power series.

The first one is the so-called general expansion theorem for rational generating func-

tions.
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Theorem 1.1. If R(z) = P(z)/Q(z), for some polynomials P(z) and Q(z), and Q(z) has
distinct roots p1, pa,..., pi of multiplicities dy, dg,. .., d;, and the degree of P(z) is less than
that of (=) then

[2"]R(2) = fi(n)p] + fa(n)py + -+ filn)p!,  n >0,

where each fr(n) is a polynomial of degree dj, — 1 and its leading coefficient ay, is

ap = dy P(1/pi)(—p)®
QUW(1/py)
A short proof of the theorem can be found in the book of Graham, Knuth and Patash-

nik [GKP89].

As we shall see in next section, there are other methods to get asymptotic estimates
of the n-th coeflicient of rational generating functions that are usually useful enough and
easier to apply than this theorem.

The other theorems we consider are the Lagrange inversion formula and its vari-
ant, the Lagrange-Biirmann inversion formula (see, for example,[Com74, Wil90]). They can
be applied when the generating functions under study satisfy a particular kind of implicit

equation.

Theorem 1.2. (Lagrange Inversion Formula) Let ¢(u) = 3,5 ¢n 2" be a formal power

series such that ¢(0) = ¢g # 0. Then the equation

y(z) = zd(y(2))

has a unique formal power series solution that verifies

W= Y e ).

n>0

The Lagrange-Biirmann inversion formula is a generalization of the Lagrange inver-
sion formula. Although we give here an statement of the theorem that includes an analyticity
hypothesis about the series g, the inversion formula can be stated without making such hy-

pothesis, and proved in purely algebraic terms.

Theorem 1.3. (Lagrange-Burmann Inversion Formula) Let ¢(u) be a power series as
in Theorem 1.2 and g(u) an analytic function around w = 0. Let y(z) = v+ 2z ¢(y(z)), for

some arbitrary constant 7. Then,
n dn—l
! '
ol | ayT (9'(y)e"™(y))

n>0 Y=y

z
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1.2 Complex Analysis Techniques.

1.2.1 Generalities.

The power of generating functions as a mathematical tool relies on its duality. They
can be considered as formal power series, and most times they can also be considered as
functions of complex variable in the complex plane, analytic in a disk around the origin.

Suppose we have the generating function F(z) of a certain sequence. Since the
power series of the function is analytic in the largest disk centered at the origin containing
no singularities, our first step will be looking for the singularities of the function that are
nearest to the origin. The distance from the origin to the nearest singularity is called radius
of convergence of the power series and such singularity is called dominant.

The radius of convergence provides useful information about the behavior of the

coefficients f,, = [2"]F(%2), (see, for example [Tit39]):

Theorem 1.4. Let p be the radius of convergence of the power series F(z) = 3., 5o fn 2".

Then, for all € > 0,
(1=6)"p™" <io. fr <ae. (1+€)"p7",

where <, means that the inequality holds for an infinite number of values of n, whereas

<ae. means that the inequality holds for all values of n, except for a finite number of them.

But this information about the exponential growth of the f,’s is usually insufficient
for our purposes and we look for information on the subexponential growth or, even better,
an asymptotic equivalent of f,,. Next subsection briefly exposes some of the techniques, that
using information about the nature of the dominant singularity of the function F'(z) and the
behavior of the function near it?, gather information about the asymptotic behavior of the

coefficients. The basis of most of these techniques is Cauchy’s integral formula (see [Tit39]):

Theorem 1.5. (Cauchy’s Integral Formula) Let F'(z) be an analytic function in an open
domain D enclosing the origin, and let I' be a simple closed curve entirely lying on D that

also encloses the origin. Then the n-th coefficient of the Taylor series development of F(z)

"] F () = i/ e,

© 2wi Jp et

around z = 0 is given by

2These techniques can be easily generalized to the case where there is more than one dominant singularity.
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As an immediate corollary of Theorem 1.5 we have:

Corollary 1.1. Let F(z) be an analytic function and let p be the radius of convergence of
its Taylor series development around the origin. Moreover, let f, = [2"]F(z). Then, for any
O<r<p

|ful € ——

n

M(r)
r ?
where M(r) = maz|. .=, |F(2)|. Furthermore, if f, > 0 for all n, then M(r) = |F(r)|.

Finally, we state Cauchy’s residue formula, which is at the core of some important

techniques used in the analysis of algorithms and data structures.

Theorem 1.6. (Cauchy’s Residue Formula) Let zy be an isolated singularity of F(z)
and let C' be a circle centered at zy such that F'(z) is analytic in C' and its interior, except
possibly at zg. Then,
/ F(z)dz = 2miRes[F(2); 2 = 2],
c
where Res[F(z); 2 = zo] denotes the residue of F(z) at z.

In this subsection, as well as in the forthcoming, we have assumed that the reader is
already familiar with concepts such as analyticity, convergence of a power series, singularity,
residue, Laurent and Taylor series developments, etc. Some background references for these
concepts and many more are the books by Titchmarsh [Tit39], Cartan [Car61], Henrici [Hen77]
and Lang [Lan85]. The surveys of Flajolet [Fla88a], Flajolet and Odlyzko [FO90], and Vitter
and Flajolet [VF90] cover most of the methods of complex analysis used in average-case

analysis.

1.2.2 Singularity Analysis.

The first theorem that we will consider is Darboux’s theorem (a proof of this theorem
can be found in Henrici’s Applied and Computational Complex Analysis [Hen77]). It can be
applied in many situations where the dominant singularity is either a pole or is an algebraic

singularity (branching point).

Theorem 1.7. (Darboux) Let F(z) be an analytic function in the open disk |z| < p and
assume that there is a unique singularity in the convergence circle at z = p. Furthermore, in
a neighbourhood of z = p, F(z) satisfies

F(z) = (1 - %) " G+ 1),
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for some analytic functions G(z) and H(z) at z = p, with G(p) # 0, and for some real
g¢{0,—1,-2,-3,...}. Then,
—n -1 G(p) 1
N (2) = fo ~ n”ﬁl—<1+0<_))’
IFE) = fo gt SO !

where I'(z) denotes Fuler’s gamma function and ~ denotes asymptotic equivalance.

An informal interpretation of this theorem is that it establishes the conditions that
must be fulfilled to properly use a series development of F'(z) around z = p and estimate the

behavior of f, from the first term of the series, using Newton’s binomial theorem.

Another interesting collection of results are the so-called transfer lemmas, whose
purpose is also to translate asymptotic information about a function around its dominant
singularity to asymptotic information about the coefficients of the function. The application
of a transfer lemma does not require conditions on the smoothness of the lower order terms
in the asymptotic expansion, as Darboux’s theorem does, but some other conditions should
be satisfied.

In general, a transfer lemma states that if certain suitable conditions are satisfied,

then asymptotic expansions valid for z — 1, like

can be “transferred” to coeflicients for n — oc

o ™~ Gns fn = O(gn)v fn = O(Qn)-

If the dominant singularity of F(z) is not at = = 1 an appropriate normalization
can be performed. The suitable conditions that we have mentioned, are that G/(z) belongs
to a restricted class of functions (that includes most common ones) and that the asymptotic
expansion holds in a region that partially lies outside the convergence disk. This last condition
usually requires analytic continuation of F(z) to a region enclosing the convergence disk.

The asymptotic scale to which G/(z) must belong contains functions of the form:

1\ 1
G(z)=(1—-2)" (log :) (log log :) )
for some constants a, v and 6.
The proof of a transfer lemma is generally based on contour integration using

Cauchy’s formula (Theorem 1.5). Applications of transfer lemmas appear in the papers of
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Odlyzko [0dI82] and Flajolet and Odlyzko [FO82, FO90]. Transfer lemmas are quite similar
to Tauberian theorems for the kind of information that they provide, but there are important

differences on the conditions that one should establish to apply them (see next subsection).

We finish giving a transfer lemma that we shall use in next chapters:

Theorem 1.8. Assume that F(z) is an analytic function in the domain A = {z||z| <

1+, |arg(z—1)| > ¢}, withn >0 and 0 < ¢ < 7/2. Moreover, as z — 1 in A,

)= (=2 (log ) rZ e (low = ) to ((m = )m)]

0

for some o,y ¢ {0,1,2,...}. Then as n — o

—a—1

m—1
fo = " log” n [Z < log™ n + O(log™™ n)] .

I'(—a)

=0
In particular, ¢ = ¢, and the other c; can also be explicitly computed from the c;.

The theorem remains valid if any of a or 7 is a positive integer, introducing the convention
that 1/I'(—«) is null for nonnegative a. For a full proof of this theorem we refer the reader

to the survey of Flajolet and Odlyzko [FO90].

1.2.3 Other Methods.

In this subsection, we make a brief review of other interesting complex analysis
techniques.

Tauberian theorems infer estimates of the coeflicients of a generating function pro-
vided we have an asymptotic expansion of the function valid when z tends to the dominant
singularity along the real axis. This is a weaker requirement than that of transfer lemmas, for
which an asymptotic expansion valid on a region partially lying outside the disk of convergence
is needed. Nevertheless, side conditions on the coefficients, like positivity and monotonicity,
have to be established a priori. For instance, Hardy-Littlewood-Karamata’s theorem gives
an estimation similar to the one in Theorem 1.8, if the coefficients f, of F(z) are positive
and form a monotonic sequence [VF90]. For further inside on Tauberian theory and some

of its combinatorial applications we refer the reader to the works of Titchmarsh [Tit39],

Hardy [Har49], Feller [Fel68], Bender [Ben74] and Green and Knuth [GK82].
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When the function we are studying is entire (has no singularities) or is exponentially

growing near its singularity, we can use saddle-point methods [Hay56, HS68, OR85].

A somewhat different technique from those we have considered till now is based in
Mellin transform. Given a real function F(z) defined for all positive z, its Mellin transform,

denoted by F™(s), is the complex-valued function given by:

F*(s) = /OOO F(z)z* ! dz.

The fundamental strip of the Mellin transform, denoted < a; 5 >, is the strip —a < R(s) <
—0 such that F*(s) is defined. A very elementary property of the Mellin transform confers

it most of its usefulness:

(Z \eF(ar ) (Z Aeap ) P

If F*(s) is meromorphic, Cauchy’s residue formula can be applied to evaluate the inversion

formula of the Mellin transform and get

c—I—ioo

1 * —s
Flz) = %/1 F*(s)a™*ds
ZResF* %: 8 = o],

where ¢ is in the fundamental strip and the sum below extends to all poles of F*(s) in the
semiplane R(s) > ¢. Mellin transform techniques are useful to analyze problems involving
sums of arithmetic functions such as the ones appearing in analytic number theory. They

are a primary tool in the analysis of tries, digital search trees, radix exchange sort, hashing,

ete. [FRS85, VF90].

Standard real analysis techniques constitute another large family of methods to do
asymptotics. Among these techniques, we shall mention Euler-Maclaurin summation formula,
Laplace’s method for sums and integrals and the bootstrapping techniques [DB58, Ben74,
GK82].

1.3 Bessel Functions.

The aim of this section is to summarize some well known facts about Bessel functions

of the first kind.
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An extensive treatment of Bessel functions is A Treatise on the Theory of Bessel
Functions of G.N. Watson [Wat44]. Another good source of summarized information about
Bessel functions is Abramowitz and Stegun’s Handbook of Mathematical Functions [AS64].

Besides the classical trigonometric, exponential, logarithmic and hyperbolic func-
tions, Bessel functions are among the most important transcendental functions. The v-th
order Bessel function of the first kind, denoted by J,(z) is a solution of the following second-

order linear differential equation:

d*w dw
2 2 2y, —
z e +Zdz + (2 =v*)w = 0.
Each Bessel function of the first kind is an entire function when v = 0,+1,4+2,.... Another

solution to the differential equation above is Y,(z), the v-th order Bessel function of the
second kind. The linear combination of J, and Y, gives a fundamental system of solutions of
the differential equation. Such a linear combination is called a cylinder function.

In our applications we shall deal mainly with Jy, and therefore we will particularize
the few identities we need to the case v = 0. First of all, Jy(z) admits the following Taylor
series development around z = 0, which is valid in the whole complex plane:

e

n!?

(1.4)

Jo(z) = _(=1)

n>0

Also, we have the following asymptotic expansion of Jo(z) for large z. If |2| — oo

and |argz| < « then

Jo(z) = 2 [cos(z — %) +exp(|S2)0(]2]™H] - (1.5)

Tz

Another useful identity is the following integral representation of Jy(2):

1 ™
Jo(z) = —/0 exp(iz cos #) db.

s
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Chapter 2

Simple Families of Trees

This chapter covers the definition of simple families of trees, also known as simply
generated families of trees. A formal definition and the introduction of some notation and
concepts is inavoidable, as we concentrate on characteristics of trees and probabilistic models
for trees.

The second section of the chapter gives a short introduction to the topic of enumer-

ation of simple families of trees.

2.1 The Definition of Simple Families of Trees.

Let us recall that a rooted tree is a finite set of one or more elements, called nodes,
such that there is a distinguished element, called the root of the tree, and the other elements
can be partitioned in a finite number of disjoint subsets (the number of subsets can be 0),
each one being a tree and called subtrees of the root node. A rooted tree is said to be an
ordered tree if the relative order of the subtrees of each node counts [Knu68].

Trees are a very important data structure in computer science. They also appear im-
plicitly in recursive schemes such as backtracking and in general, in procedures with multiple
recursive calls.

The trees considered in computer science are almost always ordered trees; if the trees
are explicitly built for representation of expressions, to store records, etc. the implementation
imposes some order among the subtrees of each node; if they correspond to a sequence of
recursive calls, these come, in some predictable way, one after another. Moreover, when

trees are used as data structures their nodes store information. That information could be
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represented as labels on the nodes. For this reason, we shall consider both labelled and
unlabelled trees.

For sources of information on the implementations and applications of tree struc-
tures, we address the reader to the books of Knuth [Knu68, Knu73], Aho, Hopcroft and
Ullmann [AHU76], and Gonnet and Baeza-Yates [GB91], among others.

Given an ordered tree! T we will denote by root(T) the root of T, and by Ti,. .., T}
each of its subtrees. Alternatively, we will use the Pascalish notation T[1],...,T[k] for the
same purpose. A node with k subtrees is said to be of degree or arity k; nodes of degree 0 are
called leaves or external nodes, whereas nodes of degree > 0 are called internal nodes. Given

a tree T, deg(T") will denote the degree of its root.

Extended binary trees are non-empty finite sets of nodes where one of the nodes is
the root and either there are no more nodes or they can be partitioned in two non-empty
sets of nodes, each set of nodes being an extended binary tree. This definition is just a
particularization of the general definition of trees to the case where each node has either
exactly two subtrees or none. Fztended m-ary search trees are analogously defined. Since an
immediate isomorphism between binary trees and extended binary trees can be defined, we
will omit the adjective extended, from now on.

The definition of simple families of trees implies that the size of any tree in those
families is the number of nodes it contains. However, we will define the size of binary and
m-ary trees to be the number of internal nodes in the tree, considering that leaves have null
size. This is a very common convention, since for these families the total number of nodes in
a tree and the number of internal nodes are mutually dependent. We will use the symbols B
and 7, to denote the families of binary and m-ary trees, respectively.

Given a binary tree T that is not a leaf we call the subtrees of its root, the left and

right subtree, and denote them by T and 77, respectively.

The notion of simply generated family of trees or simple family of trees was intro-
duced by Meir and Moon [MM78]. We shall adhere to the slight modification of the concept
and notational conventions used in Steyaert’s Ph.D. Thesis [Ste84].

Let 5 be a set of symbols and v : § — IN an arity application defined on 5.

'From now on, tree will mean ordered tree, unless otherwise stated.
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Let s(T1,.. .,Ty(s)) be the tree whose root is labelled s and its subtrees are denoted left-to-
right : T1,...,T,(5). The size of a tree T’ = s(T1,Ty,...,Ty) is

T] = 1 [Til + (T3] 4+ [T,

Definition 2.1. The set of trees F defined recursively by

scF ifv(s) =0,
s(Tl,...,Tl,(s)) eF ile,...,Tl,(s) e F.

is said to be a simple family of trees, generated by 5, if
AM € N s.t. Vo [v™ 1 (n)| < M, (2.1)
where v™1(n) denotes the set of symbols of arity n.

If we denote the set {s(T1,...,Tx)|s € v Y (k)AT1,..., Tk € F} by Si(F,F,...,F)
then we can express the family F of trees, generated by S, in the following handy way:

—_—
J

This representation of simple families of trees is called formal series of trees.

2.2 Enumeration of Simple Families of Trees.

The classical characterization of simple families of trees is given in the next propo-

sition.

Proposition 2.1. The counting generating function F(z) =Y rcr ATV of any simple family

of trees F satisfies a functional relation of the type

where ¢(u) is a power series in u.

Condition (2.1) guarantees that the number of trees of size n in any simple family of
trees is finite. Let ¢, = [v~!(n)| be the number of symbols in S of arity n. The characteristic
series of the family of trees generated by 5 is defined by

$u) =) dnu”.

n>0
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Using Definition 2.1, it is straightforward to check that the counting generating
function of the set F, F(2), satisfies F'(2) = z¢(F(z)).

Since we are now interested in the enumeration of simple families of trees, Lagrange
inversion formula can prove to be useful. Fpr example, consider the family B of binary trees,
generated by S = { 0,0}, with v(o) = 2 and v(O) = 0. The characteristic series of binary

trees is ¢(u) = 1 4+ u? and if we call B(z) the counting generating function of B we have
B(z) = 2(1 4+ B*(2)).

Notice that in this derivation, we define the size of a tree as the total number of nodes in the

tree. Using Lagrange inversion formula yields

and from Newton’s binomial theorem

[+"]B(2) = { ot (), ifn =2k 41,

0, otherwise.

The number of nodes n in a binary tree is always odd and, if n = 2k + 1 then k is the

number of internal nodes of the tree. Therefore, the number of binary trees with n internal

2n
n
n+1°

The numbers b,, are called Catalan numbers after the French mathematician Fugene Catalan,

nodes, b,, is given by:

b, =

who wrote an influential paper about them in 1838.

It was easy to solve the enumeration problem for the family of binary trees from its
statement to the final answer, but for many other simple families of trees the way is not so
easy or the answer is not in a convenient “closed form”. However, we are still able to compute
an asymptotic estimation of the number f,, of trees of size n for any simple family F.

The following theorem, due to Meir and Moon, gives the answer [MMT78].

Theorem 2.1. (Meir, Moon) Let ¢(u) be an analytic function in the disk |u| < p <
and let F'(z) denote the solution of F(z) = 2¢(F(2)) in a vicinity of z = 0. For simplicity,
assume that gcd{n|¢, # 0} = 1. Then, [z"|F(z) is asymptotically equivalent to

fo = [2MF(2) ~ ap™n 32 (1 +0 (%)) ;
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where
Ay
2 ¢(1)’ ¢(7)

and T is the root of smallest modulus of the equation ¢(u) — u¢'(u) = 0.

The proof of this theorem combines the implicit function theorem and Darboux’s theo-
rem [MM78]. Similar enumerating results have been obtained by other authors (see, for

example, the survey of Bender [Ben74], where a collection of such results appears).
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Chapter 3

The BST and the Balanced
Probability Models

This chapter deals with the probability models that we will assume for the average-
case analysis of algorithms over trees.

The first probability model we discuss is the Binary Search Tree probability model,
BST probability model for short. Later in this chapter, we present the balanced probability
model, a generalization of the BST model to arbitrary simple families of trees.

We shall see that the BST probability model tends to assign high probability to well
balanced trees, while it assigns low probability to poorly balanced trees of the same size. This
is a characteristic that is preserved in the extension of the model. An important characteristic
of the model is the fact that the corresponding average-case analysis yield first-order ordinary
differential equations. This fact contrasts with the algebraic equations obtained when the
analysis is done over a uniform distribution of the inputs.

When the BST and the balanced models are extended to pairs of trees, the char-
acteristic equations change from ordinary to partial differential equations in two variables.
This change implies a modification of the mathematical techniques needed to complete the

average-case analysis.

The last section of this chapter presents other two probability models, the mST

model and the digital search tree model.

We expect to give in this chapter a brief overview of several recursion models that

appear around tree data structures, and to illustrate our point on the interest that can have
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the study of the relationships between probability models, their mathematical analysis and

the dependences between algorithmic schemes and probability models.

3.1 The BST Probability Model.

The BST probability model is the one corresponding to randomly built binary search
trees. Binary search trees and their balanced variants are mainly used to implement dictionary
operations, i.e. insertions, deletions and queries of items in a set of items [Knu73, AHU76,
Sed88, CLR90, GB91]. A great amount of work has been done on statistics for binary search
trees; most of this work relates to the average-case analysis of algorithms associated with
the manipulation of this particular data structure. Some other works use the BST model
for computing characteristics of binary trees. Devroye proved that the average height of
binary trees under the BST model is asymptotically O(log n) [Dev86]. In his proof, he used
techniques rather different from the ones we use in this work. This expected value of the
height differs from the average height of binary trees under the uniform model, which is
O(y/n) [FO82]. Other known result is about the internal path length of trees. The average
internal path length for binary search trees of size n is O(nlogn) and for uniformly distributed
trees is O(ny/n). The differences lie on the fact that the BST model assigns high probability
to the more balanced binary trees, and relatively low probability to the skewer trees of the
same size.

There are other data structures for which the BST probability model applies as
well : heap-ordered trees [Fla88b], used for the implementation of priority queues, and k-d-
trees [Ben75, BF79, FP86], for range multidimensional search.

Recall that a binary search tree is a data structure that consists in a binary tree
whose nodes are labeled in increasing order from left to right. Binary search trees have the

following recursive definition [VIF'90]:

Definition 3.1. Given a sequence of n keys S = (k1, ks, ..., k,) where the keys belong to a

totally ordered set, we define recursively the binary search tree of § as,

BST(S):{ ky(BST(S), BST(S,)), if |5 > 1,

a, otherwise,

where | 5| denotes the number of keys in 5, S; and S, denote the subsequences of S formed

respectively by the elements of S which are less than ki and greater than ki, and O denotes
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the empty binary tree.

In the model of probability associated with binary search trees, each sequence 5 is
obtained by consecutively sampling at random »n elements from a real interval, or equivalently,
as far as only relative ordering concerns, the elements form a random permutation of size n.
In other words, we consider that the sequences are permutations of the set {1,...,n} and
that all sequences of size n have the same probability 1/n!.

Let N(T') denote the number of sequences 5 of size n that generate the same binary
search tree T' = BST(S5). It has been shown by Knuth [Knu73, exercise 5 of 6.2.2] that we
can compute N(7') from the following recursive equation:

1, i 7T =0

M vy

otherwise.

If we denote by Pr(7") the probability of tree T', then Pr(7) = N(T)/|T|! and we
have the following recursive definition of the BST probability model:

Definition 3.2. The probability Pr(T') of a binary tree T' in the BST probability model is

1, ifT =0
Pr(T) =4 pPe(1h) - Pr(T") ,
7 —, otherwise.
L+ [T + |17

The recursive manner in which we express this probability model is very handy to
simplify some proofs about average behaviour of binary search trees.

For example, consider the internal path lenght of binary trees. The internal path
lenght (IPL, for short) of a tree is the sum of the lenghts of the paths from the root to each
internal node. This quantity is directly related to the performance of insertions, successful
and unsuccessful queries, etc. If we denote ipl(7') the internal path lenght of the tree T" we

have
ipl(TH 4+ ipl(T") + |T'| = 1 if T #£0

, otherwise.

In order to analyze the average value of the IPL for trees of size n, say ipl(n), we introduce

the generating function

Ipl(z) = 3" ipl(T) Pr(T) 2T,
TeB
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o [z"]Ipl(2) = ipl(n).
Using the recursive decomposition of the characteristic, of the probability model and

of the binary trees we get

Ipl(z) = 0 (kT +ipl(17) + |7 + [77]) Pe(T) 2T =
TeB-0O
_ _ Pr(THPH(T") \piypipr
_ lTl Wrr Tl " LA\EJE L T THHIT |—|—1‘
S (i) +l(TT) + [T+ 1T71) e 11 2

TeB-O

By symmetry,

(Tl) Pr(T") i +|T7|+1
Ipl(z) =2 Z (1P1 )+ |T |) m AT T+
TeB-O

Differentiating with respect to z,

d l T
d—Ipl(Z) = 2 Z (1p1 _|_|T |) ( )PI’(TT)Z|T [+1T7] —
z TEB-O
= 2 > ipl(T!) Pr(TH Pr(T7) M Lo ST Pr(T!) Po(77) AT <
Tes-o TEB-O
= 2 Y ipl(Ty) Pr(Ty) Pr(Ty) 2 HRL Lo N 1y| Po(1y) Pr(Ty) 21T
T 12eB T, 15€B

Since T} and Ty are independent in the summations above, and Y75 Pr(T) 2171 = (1 — 2)71,

one has
1

1—2z

S=ipl(Th) Pr(Ty) Pr(Ty) 2T Pl = Tpi(z) -
T1 ,TQEB

Z|T|_1 Z|T|

The generating function > pcp|T| Pr(7T) is the formal derivative of Y 7oz Pr(7T)

Hence,

d 1 1 z
T Pr(T) Pr(Ts) 2 Tl +H T2l — , & ( ) . — .
T1%:68| PP = 1) T2 (1)

Finally, we have
d 2Ipl(=) 2z
dZ p(Z) 1_2 —I_ (1_2)37 p(O)

Solving this differential equation and extracting the n-th coefficient of Ipl(z) yields the known
result [Knu73]
ipl(n) =2(nH, —2n+ H,),

where H, denotes the n-th harmonic number.

A useful way to view the BST model is as an “urn” model: Suppose we have defined

the BST distribution for binary trees of sizes 0 to n — 1. In order to construct a binary
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tree T with n internal nodes, select the size of its left subtree, say ¢, from 0,...,7 — 1, at
random. Then pick a tree Ty of size ¢ with probability Pr(7%), pick another tree Ty of size
n — 1 — ¢ with probability Pr(7%) and set 77 and 7% as the left and right subtrees of the
tree T'. This protocol , also gives a recursive definition of the BST distribution equivalent to
Definition 3.2, and it is equivalent to the classical characterization of random binary search
trees, which states that the size of the left subtree (or of the right subtree) of a tree of size
n is a random discrete variable X taking values in the range [0,...,n — 1] and such that

Pr(X=4)=1/n, t=0,...,n—1.

More details on the average-case analysis for this model will be given in Sections 3.3
and 3.4 of this chapter. In Chapter 4 we analyze the average behavior of the occupancy for

the balanced probability model; the analysis is a just generalization of what we would do for

the BST model.

3.2 Extension of the BST Model to Pairs of Trees.

There are many algorithms that operate over pairs of trees (for example, equality,
unification, tree matching, etc.) and therefore, we need to extend the BST probability model
to pairs of binary trees, in order to analyze such algorithms.

This could be done in several reasonable ways, but we have tried to do such extension
in the simplest fashion and to keep most of the BST model attributes.

One important attribute of the BST probability model (and of other models) is
that the probability of a tree can be recursively defined in terms of the probabilities of its
subtrees and some factor involving their sizes. Qur extensions should mantain this property;
for instance, the probability of a pair should be defined in terms of the probabilities of its

components.

In order to define the extension of the BST probability model to pairs, we confront

two situations:

o If each of the trees is drawn independently one of the other, the probability of the pair
is just

Prinap(1h,Ts) = Pr(1h) - Pr(T3).
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Notice that in this case for all n and m,

Z Prindp(TlvTZ) =1
|T1|:n7|T2|:m

o If we consider pairs of binary trees (73,7%) such that |11| + |12| = n, where n is the
size of the input and assume that all the n + 1 possible partitions of n inton = ¢+ 7
(being |T1| = 7 and |T3] = j) are equally likely, we come up with a definition of a
probability distribution over each of the subsets of pairs of binary trees of total size n.

This probability model will be called extended BST model*.

Definition 3.3. The probability Pr(Ty,T3) of the pair of binary trees (11,1%) in the extended
BST probability model is

PI’(Tl) . PI’(TQ)
Pe(1y, 1) = —————— =P 1, T
I’( 1 2) 1+ |T1| n |T2| I’(O( 1 2))7

where Pr(1") denotes the probability of the single tree T' in the BST model.

Notice that the probability of a pair coincides with the probability of the tree formed by a root
and whose subtrees are the components of the pair; a similar principle is used in the extension
of the balanced model to Cartesian products of simple families of trees (see Section 3.3).

Also, the extended BST model is well defined since

> P, Ty) =1

|1 [+]|T2|=n

An inherent characteristic of the average-case analysis under the extended BST
model is that the functional relations that appear are partial differential equations. Given a

characteristic f(74,7%), we introduce the generating function F(z)

F(z)= > Pr(Ty,Ty) f(Ty, Ty) 2T (3.1)
(T1,T2)eB?

to have that [2"]F(z) is

[2"F(z)= > Pr(Ty,Ty) f(T1,T3).
|(T1,12)|=n

'If there is no confusion, we speak also of BST model when is actually meant extended BST model.
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Since the summation in (3.1) is to be splitted to obtain some functional relation
satisfied by F(z), we must introduce the bivariate generating function corresponding to the
probability model for pairs whose members are independently drawn

Flz,y)= Y. Pr(Ty) Pr(Ty) f(Ty, Tp) «l Ty T2l (3.2)
(Th,T2)€eB?
and then relate F(2) and F(x,y). Using the definition of the extended BST model, one has
1 z
F(z) = —/ F(t,1) dt.
0

z

The extension of the BST model to pairs of trees is the realm of partial differential
equations in two variables. Since the “splitting” of the summation in (3.2) is done for both
Ty and T3, differentiation with respect to z and y should be done and the resulting partial
differential equations are of second order. Deriving asymptotic estimations of the coefficients
of [2"]F(z) is a main subject of this thesis (see Chapters 7 and 8). The first stage of the
analysis under the BST model, where the recursive decomposition of algorithms and data
structures is exploited to derive equations describing the average behavior of the algorithms,

is discussed in the next section, and in Chapters 5 and 6.

3.3 The Balanced Probability Model.

The balanced probability model was defined in an attempt to generalize the BST
probability model to other families of trees (with nodes of arbitrary degree, labels, etc.). At
the same time, we wished that the model kept most of the properties of the BST model. For
instance, the balanced probability model admits a recursive splitting, i.e., the probability of
a given non-empty tree can be expressed in terms of the probabilities of its subtrees. As in
the BST model, well balanced trees are common in the balanced probability model, whereas
poorly balanced trees and linear lists are rare.

In fact, the balanced model is not a concrete model, but a set of rules or principles
that allow the systematic definition of a probability model over any given simple family of
trees. Thus, it would we more appropriate to talk about “...the balanced model for the family
F...7 or “...average-case analysis under a balanced probability model...”. Nevertheless, we
will use the name in a more informal way, just as we do with the term “uniform model”.

Other models for families of trees with internal nodes of degree > 2 and that gener-

alize binary search trees are the quadtree model and the m-ary search tree model. Quadtrees
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are specially useful for geometric data storage and range search, but the degree of internal
nodes in quadtrees must be some power of 2. The m-ary search trees were defined as efficient
data structures for the dictionary problem using external storage and to improve balancing,
by putting m — 1 keys per node (see Subsection 3.5.1). The probability models for these two
generalizations do not coincide with the balanced probability model for the corresponding
families. It should be emphasized that average-case analysis under the balanced probability
model is easier to do than under any of the former models; and there is not an increase of
the difficulty with respect to the analysis with the BST probability model. The same set of
techniques that are used to carry out the analysis under the BST model can be used for the
analysis under the balanced model.

The balanced probability model is also closely related to the so-called increasing
trees [BFS92]; increasing trees are the generalization of the idea of heap ordered trees to trees

with nodes of arbitrary degree.

A rather curious phenomenon is that the balanced model does not depend neither
on the labels of the nodes nor on the number of distinct labels given to nodes of the same

degree.

In order to define the balanced probability model over a simple family of trees F,
generated by the symbol set 5, we assume that we are given probability distributions over
each subset of symbols of the same arity. Let p(s) be the probability of the symbol s € 5.
We impose that

Vk >0 > opls) =1, it v=Hk) #£0.

sev—l(k)

We are now ready to define the balanced probability model over F, by firstly intro-

ducing a weight measure w over F.

Definition 3.4. The weight measure w(1T') of a tree T' € F is recursively defined by

o(T) = { p(s), if T'=s and v(s) =0,

| ps)w(Ty) (M) - by, T = (T4, T and v(s) = k.

And in order to obtain a probability model over F, we define the probability of a

tree T as follows:
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Definition 3.5. The probability Pr(T') of a tree T' in the balanced model is
w(T)

) = e

It can be readily verified that Pr(-) satisfies Kolmogorov’s axioms. Notice that
Pr(T') varies depending on how balanced the tree is, being maximum for complete trees and

minimum for linear list-like trees (see Figure 3.1).

O/i w(T) = 3557685 )
AN w(T) = 353

@)
O/ \O

Figure 3.1: Two particular examples of the weight measure for ternary trees of the same size

(leaves have been omitted).

The definitions above can be extended to k-tuples of trees from a simple family F.
Definition 3.6. The weight w(11,T5,...,Ty) of a k-tuple of trees Ty,... T} in F is

The probability measure over k-tuples (71,...,T%) of size |Th| 4+ -+ |Tx] = n is

defined in the same way it has been done before:

Definition 3.7. The probability Pr(11,15,...,Ty) of a k-tuple of trees Ty, T3, ..., Ty in F is

Pr(Ty,...,T}) = w(Th, ..., T) |
- D jta 4ot tgl=n WL - k)
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Also, we can define a probability model over the Cartesian product F; X --- X Fj,

for Fq,..., Fj simple families of trees, in the same way.

Given a family F let its weight characteristic series be
o) =3 pls) - u' = 37 .
sES n€lmy
A given degree n belongs to the set Imv if there is a least a symbol s in S such that v(s) = n.
Let W(2) = Sgerw(T) 2Tl Then the n-th coefficient of W(z) is the normalizing
constant needed to get the probability distribution for trees of size n (see Definition 3.5). We
will call W(z) the weight generating function of the family F.
Using Definitions 2.1 and 3.4 and depending on the convention for the size of a leaf,
we get the following functional relations for W(z).
If we impose |s| = 0 for all 0-ary symbols s, we get,
T=o)—1,  Wo=1,

whereas if |s| = 1 for s € v71(0) , then W (z) satisfies,
T—ow). W)=,

Note that the weight characteristic series ¢(u) does not depend on the symbols of 5.
Moreover, it does not depend on the number of symbols of a given arity, but on the existence
or not of symbols of the given arity, and consequently, W(z) has the same properties.

Some interesting characteristic series and weight generating functions are given in
Table 3.1, where in the three first families we have assumed that the size of a tree is the
number of internal nodes (leaves have null size) and in the last two families each node, of
whatever arity, contributes to the total size.

In the particular case of binary trees, we have that Pr(7') = w(T"), since [2"|W(z) = 1
for all n > 0. Therefore, the definitions of Pr(7') in the BST model and the balanced model
coincide, as claimed.

Notice also that for pairs of binary trees, Definition 3.7 implies

PI’(Tl) . PI’(TQ)
Pe(1y, 1) = ——+——"-=P T, T
I’( 1 2) |T1| n |T2| 11 I’(O( 1 2))7

so the extension of the BST model to pairs of binary trees is also a particular case of the

balanced model.
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Family o(u) Wi(z)
Linear lists (unary trees) 14w e*
Binary trees (B) 1+ u? T
m-ary trees, m > 1 (7,,) 14+u™ | (1—(m—1)z)" /=D

Motzkin trees (unary-binary trees) | 14+ u + u? @ tan (@z + %) — %
General trees ﬁ 1—+v1-22

Table 3.1: Weight characteristic series and generating functions.

3.4 Average-case Analysis under the Balanced Model.

When the characteristic under study is an inductive valuation and we want to carry
out the analysis of that characteristic for the balanced model, the functional relations over
generating functions are ordinary linear differential equation, as for the BST model.

Any inductive valuation f(7') can be recursively expressed as

AT) =2 f@) + m(T)),

tCT

where ¢t C T denotes that ¢ is a subtree of the root of 7', and m(n) is any numerical function
whose domain are the positive integers.

The steps to be followed are the same as for the BST model. We introduce a
generating function for the sequence of expected values of the characteristic, and translate
the relationships between the expected values to a functional equation for this generating
function. Differentiation must be done because we ought to get rid of the |T|~! factor in the
recursive definition of w(7") so as to relate the generating function with itself.

Let

F(z)= 3" w(T) f(T) =",

TeF

Then, the expected value of f(7') over trees of size n is

R
fm = Cawy

If the size measure over the family F is defined assigning null size to 0-ary nodes,
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then

Fz) = >, mO)p(s)+ > Y. (Tl D+ ()

sev—1(0) kéiﬁy sev=1(k) T1,...Tp€F

A Ta -+ T
+ S(Tk)) pls) w(Tn) - -w(Th)

L [T+ 4 Tl

Differentiating the formula above with respect to z, some additional manipulations

yield

d_F = [ Z w(Ty) - -w(Te)m(- ) STal | T +kF(2) Wk—l(z) _

dz Ty, TREF
k€lmy

= | Y mnt+1) Y Yo w(l)w(Ty) | + F(2) ¢ (W(2) =

>0 k>0 =
n> B0 Ti 44 Ti|=n

n>0

= [ Do mn+1)2"[2"](¢(W(2)) - 1)) + F(z) ¢/ (W(2)) =

= [ mn+1)en [z”]w’(z)) + F(2)¢'(W(2)) =

n>0

= W Ry e ) (3.3)

dz
if we define M(z) = 3°,59m(n)w,z" and w, = [z"]W(z). The initial condition for the
differential equation is L(0) = M(0).

If the balanced model is defined over a family where the size of a tree is the total
number of nodes (leaves and internal nodes), the differential equation relating the generating
function F(z) with itself and M(z) and W(z), is again the same and, with the same initial

condition.

Finally, the average-case analysis over pairs of trees in the balanced model is con-
ducted in the same way as for the BST model. For statistics over m-tuples of trees with
m > 2, a generating function on m variables ought to be defined and the functional relation
over generating functions is, in general, a partial differential equation of the m-th order in m

variables (see Chapter 5).
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3.5 Other Probability Models.

In this section we consider other two interesting models: the mST probability model

and the digital search tree probability model (DST model, for short).

The mST probability model is a generalization of the BST probability model to m-
ary trees. Like the BST and the balanced model, it assigns high probability to well balanced
trees. This model corresponds to m-ary search trees and as we will see has many peculiarities,
since the size of such trees should be defined as the number of keys that a tree holds, not the

number of nodes it has.

The DST probability model corresponds to randomly built digital search trees. While
binary search trees and m-ary search trees are built by comparison of the keys on a given
sequence, the construction of a DST relies on the decomposition of keys into their smaller

units (for instance, the bit representation of the keys, if the keys are integers).

3.5.1 The mST Probability Model.

The m-ary search tree is a natural generalization of the binary search tree, where
each node holds up to m — 1 keys, and internal nodes have degree m > 2. The m-ary search
trees were first introduced by Muntz and Uzgalis [MU71], and balanced variants of them were

suggested thereafter.

The insertion on an m-ary search tree goes as follows: if the root node is not yet
completely filled with m — 1 keys, put the new key in the root, maintaining the increasing
order between the keys already there. If the root has been completely filled the new key is
inserted in the ¢-th subtree if it is greater than the key stored at the root at position ¢ — 1
and less than the key at position ¢. A new node is created if the subtree was empty. The

procedure is applied recursively in this way until the new key gets inserted.

As for binary search trees, we can define m-ary search trees as follows :

Definition 3.8. Let S be a sequence of n keys S = (k1,kz,...,k,) where the k; belong to
a totally ordered set. Furthermore, if n > m — 1, let 5" = (ki, kb, ..., kl,_y) be the ordered

e Vm—1

sequence of the first m — 1 keys in S (k] < ky < ---<kl,_y). Then the m-ary search tree of
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S is

[0], ifn=0
. ifn=1
mST(S) =< [2] ifn=2

(mST(S1), mST(S3),...,mST(Sy)), ifn>m—1.

where the symbol |i| represents a node holding the first 0 < i < m — 1 keys of § in increasing

~]

1]

order, and S5; is the sequence of keys in S such that are greater than k;_l and less than k;
(if j = 1 then Sy contains the keys that are less than k} and if j = m then S, contains the
keys that are greater than kI, _,).

This definition of the m-ary search trees is rather intricate but shows clearly the
following fact : the m-ary search trees are isomorphic (in shape) to the simple family of
trees generated by S = {@, , .. .,} (5 denotes now the set of symbols generating the
family), and where the arity function is v(|m-1|) = m and v = 0 for all other symbols in
S. Now, the symbols |i| have no relation with keys. Also, the size measure over this family
should be defined as the sum of the sizes of all the nodes, with ‘@‘ =0, ‘ =1,..,
“ =m— 1.

The common assumption for the definition of a probability model for m-ary search

trees is that the n! distinct relative orderings of the n keys stored at the tree are equally likely.
Notice that the size of an m-ary search tree ought to be the number of keys in the tree, and
not the number of nodes. Under the previous assumption it turns out that the probability of
a tree of size 0 < ¢ < m — 11is 1 (there is only one m-ary tree of size ¢ if 0 <i <m — 1), and

if the tree has size n > m — 1 then the probability that its i-th subtree has size n; is
-1
n
Pr(|Ti|:ni||T|:n):( 1) , 1<i<m, 0<m;<n—-—m+1, m>2
m J—

So the mST probability model can be defined in an analogous way to our definition

of the BST probability model:

Definition 3.9. The probability Pr(T) of a m-ary search tree in the mSI' probability model
is
1, ifo<|T| <m-—1,

Pr(T) = Pr(T1)"-Pr(Tm)/( 71 ) ) ifT:(Tl""’Tm)'

m—1



3.5. OTHER PROBABILITY MODELS. 47

The average-case analysis of algorithms over m-ary search trees introduces, in gen-
eral, (m — 1)-th order ordinary differential equations. Many interesting characteristics lead
to linear differential equations and the corresponding homogeneous differential equation is an
Euler equation whose solutions can be explicitly computed.

The methodology to follow in the first steps is the familiar one. A generating function

of the characteristic f(7") is introduced

F(z)y= > f(T) Pr(T) 2]

TETm

and then recurrences for f(1') and Definition 3.9 are exploited to get a functional relation
satisfied by F(z).

One of the characteristics of importance in m-ary search trees is the number of nodes
needed to host the n keys. Its expected value is

1 1
n_
2H,—1) m—1

where oo = a(m) is a rather complicated function that never exceeds 2, and is less than 1.5 for
m < 26; and H,, is the m-th harmonic number [Knu73, Bae87, MP89]. The average internal
path length is ~ 1/(H,, — 1)nlnn [Mah86], and the average height tends in probability to

v Inn, where ¥ = y(m) is a decreasing function that for large m approaches 1/Inm [Dev90].

3.5.2 The DST Probability Model.

Digital search trees (DSTs for short) are built based on the decomposition of the
keys in symbols and not on the relative order between them. For simplicity, assume that
the keys consist in bit strings. Therefore, it makes sense to refer to the j-th bit of a key
numbering the bits from left-to-right. Each node holds a key, and the keys stored at the left
subtree of any node share a common prefix with that node followed by 0, whereas the keys
at the right subtree share the same common prefix followed by 1. The length of this prefix is
the level at which the node appears (see Figure 3.2).

When a key is to be retrieved or the spot to insert a new key is needed, the corre-
sponding algorithm follows a path, branching to left or to right when at level j — 1, according
as whether the j-th bit is 0 or 1. In many implementations, it is convenient to require all keys
to be of the same length; but the method also works for varying length keys, if none of the
keys is a proper prefix of another. DSTs were firstly introduced by Coffman and Eve [CET70].
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00010

01110 10001

00011 01101 10010

S ={00010,01110,01101,10001,00011,10010 }

Figure 3.2: A digital search tree.

Additional references for both the implementation and performance analysis are the books of
Knuth [Knu73], Gonnet and Baeza-Yates [GB91] and Mahmoud [Mah92], and the survey by
Flajolet and Sedgewick [F'S86].

Before discussing the appropriate random model for DSTs, it should be emphasized
that the order of insertion of the keys is relevant.

The simplest model for analyzing these data structures is the Bernoulli model (from
now on, called DST model). That model assumes that keys are infinite random strings of
bits, independently generated. This is equivalent to consider that the keys are real numbers
independently sampled from the unit interval. Therefore, the probability that the left subtree

of a tree with n nodes has size ny (and the right subtree n — 1 — ny nodes) is

1 n—1
on—1 n ’

the probability that ny of the n — 1 keys to be inserted start with a 0 and thus get inserted
at the left subtree [F'S86].

Definition 3.10. The probability Pr(T') of a binary tree T' in the DST probability model is

1, ifT =0
Pr(T) = ¢ Pr(T!) - Pr(T7) (1T +|T7| herwi
SITT-1 |Tl| , otherwise.

Some significative results for this model concern the average number of comparisons
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in successful and unsuccessful search in a DST of size n (both are ~ logan + O(1) [KN73,
Knu73, FS86]); and the average height of a DST (~ logaon [Pit85]).

A data structure that is closely related to DSTs, is the trie or radiz search trie. This
data structure has two types of nodes; the internal nodes contain pointers to other nodes,
while the external nodes do actually store the keys. In contrast to DSTs, the shape of a trie
does not depend on the order of insertion of the keys, but a trie storing n keys can have more
than n internal nodes. There is a variant of the trie, called Patricia tree, where exactly n — 1
internal nodes (and n external ones) are needed to store n keys. Although we will not define
their corresponding probability models, we remark that there are many resemblances with
the DSTs. The average-case analysis is performed for these data structures in a similar way.

The average-case analysis in the DST model has some significative differences with
respect to the previously considered models, and leads to difference-differential equations.

In the average-case analysis under the DST model, we use generating functions, but

they are exponential g.f.’s instead of ordinary ones. For instance,
ST

Vi(z) = Z o(T) Pr(T)W

TeB
where v(7") is the measure we are interested in.

If »(T) is an inductive valuation, the functional relation for V(z) is
V'(z) =2V (z/2) + U(z),

using the model given by Definition 3.10 and the definition of inductive valuation, and where
U(z) is a generating function corresponding to the term that depends only on the size in
the definition of the inductive valuation. The next step considers Y (z) = e *V(z) and

X(z) = e *U(2); translating the equation above, one gets
VI(2) + Y (2) = 2 (2/2) + X'(2) + X (),

that corresponds to a non-linear recurrence for the Y,,. The relation between the coefficients

v, = [2"/n!]V(z) and y,, = [z"/n!]Y(z) is given by

Vp = Z (Z) Yk (3.4)

k

There are many instances were ¥, is explicitly known or there is a good estimation,

and relates to the quantities

Qn = H (1 - Q_i)v

1<i<n
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that arise in the theory of partitions. Classical identities (for instance, Euler’s formulae) from
this theory, Rice’s method and the Mellin transform techniques are then used to evaluate

asymptotically (3.4).
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Part III includes most of the contributions and results of this work. Chapter 4
introduces occupancy, a very simple characteristic over m-ary trees. The occupancy of a tree
is closely related with its degree of balancing. We analyze its average behavior under the
uniform model and the probability models described in Chapter 3. This yields a basis for
the comparison of these probability models and allows us to point out some of the distinctive
features of each model. Moreover, the analyses provide an example of the application of some
of the techniques discussed in Part II, and show the nature of the problems and the available
tools associated to the analysis under the different probability models. In this way, we fix
some of the ideas already given in Chapter 3.

Our approach to the study of the BST model begins with the application of the
symbolic operator method to derive a set of algebraic techniques for the average-case analysis
under the BST model. Following similar developments for the analysis under the uniform
model, in Chapter 5 we propose a set of rules that allow the systematic translation of the
algorithmic constructions used in recursive tree algorithms to equations over generating func-
tions. These equations over generating functions describe the average behavior of the analyzed
algorithm, when the input trees are distributed according to the balanced model.

The development of such a set of translation rules permits a better comprehension of
the type of problems that arise in the second stage of the analysis, and the relationships with
some interesting recursion schemes. For instance, the simultaneous descent construction over
pairs of trees is one of the simplest non-trivial recursion schemes. Another basic recursion
scheme that we have studied is based on the conditional iteration construction in combination
with a recursion scheme satisfied by certain binary predicates that we call hereditary proper-
ties. The resulting recursion scheme is the one appearing in the algorithms that check if a
given pair verifies a given hereditary property. Examples of these algorithms are the equality
test, the direct occurrences check and the sequential pattern-matching algorithm. The prob-
ability that a given pair of trees of size n satisfies an hereditary property is a question that
arises in the average-case analysis of all these algorithms. We cope with the problems asso-
ciated to hereditary properties in a general setting and enumerate some particular instances
of these problems in Chapter 6.

The first complete analysis of this work corresponds to the average size of the in-
tersection, in Chapter 7. The intersection of a pair of trees stems from the application of
the simultaneous descent scheme. The average-case analysis of the size of the intersection

begins with the derivation of a partial differential equation that describes the expected size
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of the intersection. We find an explicit solution of the partial differential equation by means
of Riemann’s method. The solution is expressed in terms of Bessel functions. A subsequent
asymptotic analysis and the use of standard complex analysis techniques renders an asymp-
totic estimate of the average size of the intersection under the balanced model. The chapter
examines also the application of the translation rules of Chapter 5 to the analysis of the
intersection algorithm.

Turning back to hereditary properties, we analyze in Chapter 8 the equality test
algorithm and the probability that two binary trees are equal. The analysis of the performance
of the equality test algorithm follows the general framework given in Chapter 6. The partial
differential equation associated to the equality test is more complex than the one of the
intersection. We use an argument of asymptotical equivalence to compute the average-case
complexity of the equality test. Our previous analysis of the intersection proves to be helpful
for the analysis of the equality test, since the same techniques used in the analysis of the
intersection are used to study an algorithm closely related to the equality test. It turns
out that the average-case complexities of the equality test and of the other algorithm are
equivalent. This asymptotical equivalence follows from the asymptotical equivalence of the
corresponding Riemann-Green functions.

Finally, we address the other basic question arising in the context of the equality
between binary trees in Chapter 9. This basic question is that of evaluating the probability
that two trees of size n each are equal. One of the facts that we establish in the chapter is

the exponentially decreasing behavior of this probability for large n.



55

Chapter 4

Average Occupancy of Trees

We begin this part on elementary statistics analyzing a simple characteristic over
trees, called occupancy. The occupancy of a tree is closely related to the degree of balancing
of the tree. We analyze the average behavior of the occupancy under different probability
models. This gives us the opportunity to compare these probability models and discuss their
main distinctive features. Furthermore, the analyses exemplify the techniques involved in
the average-case analysis when each of the probability models is assumed. We will analyze
average behavior of occupancy under the uniform model, the mST model and DST model
and the balanced model.

As far as the author knows, occupancy has never been defined before, although its
definition is quite easy and natural. This is not an strange circumstance since occupancy has
little algorithmic significance.

By occupancy of a tree we mean the sum of the ratios between the number of internal
nodes and the maximum number of nodes at a given level. This characteristic can be defined
for any simple family of trees with bounded arity, but it is not straightforward to do it, unless
we restrict to the case where internal nodes have some fixed arity m. It is not a serious
restriction since all the probabilistic models that we have considered, except the balanced

model, are only defined over m-ary trees.

The occupancy of an m-ary tree T is defined as

oce(T) = Z W;;(E),

k>0

where Wy (T') is the number of internal nodes of T at level k, also known as width of T at
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level k. The definition can be transformed to the recursive expression:

1+ L(oce(Ty) + -+ +oce(T,)), if T+ 0O,
oce(T) = "
0, otherwise.
Let occarrn(n) and occprax(n) denote the minimum occupancy and maximum oc-

cupancy achieved by m-ary trees of size n. These extremal values correspond to linear trees

and complete trees, respectively. No much effort is needed to get,

W = (1m0~ 20
OCEMINII) = T mn m—1’
{
occprax(n) = Uogmnj—l—l—l—W, n:mjn+_11_1—|—ﬁ,0§ﬁ<md+1,
d = |log,, n].

4.1 Average Occupancy under the Uniform Model.

We start computing the average occupancy occ(n), for m-ary trees of size n supposing
that all of them are equiprobable. Let
Occ(z) = Z oce(T) 2T,
TeTm

The average occupancy is therefore,

oce(n) = 7[27%]153:(2),
where 1, ,, stands for the number of m-ary trees of n internal nodes. From the definition of
oce(T') is not difficult to verify that,
Oce(z) = % = F2(2) = F(2),
with F(2) = 2,50 tam 2" = 1+ 2F7(2).
Applying Lagrange-Biirmann inversion formula (see Subsection 1.1.3), we have

)0cc(z) = [Y [%((zy— 1)ymn)y:1] -

mn ( mn + 1 1 )
-1 2 — .
(n) (mn—n+2)(mn—n+1) mn-n+1

And using the same inversion formula, it turns out that,

[1F(2) = by = (m") —

n mn—n+1

Hence, we have the following theorem.
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Theorem 4.1. The average occupancy for uniformly distributed m-ary trees of size n is

(m—1)n+2 T m—1

oce(n) = 2

1 1 1
mtl L ml (1)
n
The theorem above shows that the average value of the occupancy for trees of size

n is of the same order of magnitude as the minimal value, that corresponds to linear trees,

m+ 1
m

oce(n) ~ ~oceprrn(n).

4.2 Average Occupancy under the Balanced Model.

If we use the balanced probability model defined in Section 3.3 for m-ary trees, the

average occupancy is now given by

_ [ rer, oce(T) w(T) 217!
oce(n) = Z oce(T) Pr(T) = Fare 7

|T|=n

where W(z) is the weighting generating function of the family 7.
Denoting by Occ(z) the generating function associated to the occupancy, the rela-

tionships for the occupancy translate into a first-order ordinary differential equation,

d 1 1
—O0cc — —————Occ = Occ(0) =10
=0 T T 12 0 T T (m = Dyl 00 =0
whose solution is,
1 1
OCC(Z) = mW(Z) In (m) .
Using the transfer lemma given in Theorem 1.8 (Subsection 1.2.2), [2"]Occ(2) is
asymptotically,
1 m=2 1 1
n ~—  pwmertelan—— 1 ).
[2"]Oce(z) TR n~m=1 -lnn T/ (m = 1)) ( +O<n))

The n-th coefficient of W (z) is easily computed by means of Darboux’s theorem.
The asymptotic behavior of oce(n) is thus derived and we conclude the following

theorem.

Theorem 4.2. The average occupancy for m-ary trees, under the balanced probability model

is

In n.

oce(n) ~ N
m j—
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The average value of the occupancy under the balanced model behaves now as the

maximum value, achieved by complete trees,

oce(n) ~ I Inm -occprax(n).

m —

4.3 Average Occupancy under the mST Model.

Remember that in the mST model the size of a tree is the number of keys it contains,
not its number of nodes. Recall also that in a mST each node holds up to m — 1 keys and no
node has a non-empty subtree unless it holds m — 1 keys.

To properly define occupancy over the family of mSTs, we introduce the following

definition of the width at level k:

0, if [T) < m—1,

Wi(T) =
{Wk_l(T1)+---+Wk_1(Tm) it 7 =[m-1](Th,...,Tn),

when &k > 0, and
0, if |T|<m-—1,
1, otherwise.

Wo(T) = {

n
m—1

The minimum occupancy is achieved by a tree with | | nodes linearly arranged:

. B (L) [/ (m—1)]

m m
oceprrn(n) = Z — = ~
0<k< n (m-1)] m—1 m—1

and the maximum by a perfectly balanced tree:

oceprax(n) < [log,, (n+ 1)],

where the bound is tight if n = m”* — 1 for some k.

As expected, the generating function

Occe(z) = Z oce(T) Pr(T)z|T|

TETm

satisfies an m-th order ordinary differential equation (see Subsection 3.5.1):
1)!
———0ce(2) = 7——— + (m — D1 - 2)"" D 0cc(z), (4.1)

with OccD(0) =0 for i = 0,...,m — 2 and Occ™1(0) = (m — 1)\.
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The homogeneous equation corresponding to (4.1) is an Euler equation, so its solu-

tion is of the type:

Occp(2) = Z Ai(1 —2)7%,

1<i<m—1
where the s;’s are the solutions of (s + m — 2)™=L = (m — 1)! and the A;’s are constants
depending only on m and the initial conditions. Here, 22 denotes the n-th falling power of
z, 2t =z(z—1)(z—2)---(z —n+1) [GKP89]. Except for s = 1, the other m — 2 solutions
are negative or complex.
To obtain a particular solution we assume that
Occy(z) = A %
for some function u(z) and a constant A. Application of Liebniz’s rule for the m-th derivative

of a product and the initial conditions of the problem show that such a particular solution is

1 1
Occy(z) = ﬁ nli(i_;) )

where H,, denotes the n-th harmonic number. Therefore, the following theorem is satisfied:

Theorem 4.3. The average occupancy for m-ary trees, under the mST probability model is

Inm

log,, n+ O(1).

oce(n) ~
m—1

As for the balanced model, the average occupancy for m-ary search trees of size n

is proportional to the occupancy of the complete trees of size n,

Inm

oce(n) ~ occprax(n).

m—1

4.4 Average Occupancy under the DST Model.

The digital search tree model was only defined for binary trees in Subsection 3.5.2.
We perform therefore the analysis only for this family of trees and take m = 2 in our definition
of the occupancy. The generalization of the model to m-ary trees and of the forthcoming
results are immediate. A difference with the previous sections will be the use of an exponential
generating function for the sequence of expected values {F(n)}nzoz

T

Occ(z) = Z Pr(T)oce(T)—-
TeB o
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From the definition of occ(7") and the definition of Pr(7) in the DST probability

model, we get that Occ(z) verifies a difference-differential equation:

%Occ = ¢* + 72 Oce(2/2).

Let ®(z) = 32,50 ®5 2" /n! = €72 0cc(z). Then
— n
oce(n) = Z (k) by,
0<k<n

and

do
— 4+ ® =14 ®(2/2).
e =11 0(:)2)

Since ®(z) is an exponential generating function, we have

%qumc—%):ewlﬂ Q—%)

1<j<n

Some standard manipulations, including the use of Euler formulae [Knu68] yield

oce(n) ==Y (Z argy 2—j~l) (exp(n/Qj) - 1) )

320 \i>0
where l
(—1)it12-()
a; = )
Qi—1
the quantities (), are
Qn = (1 - 2_2)7
1<i<n
and
a1 1
Yo == 5 = —a=16066...
>1 1-2 >1 20—1

The last step involves the approximation of oce(n) by means of a continuous function

and the application of the Mellin transform techniques (see Subsection 1.2.3). Let
O(z) = =3 [ S a1 277 | (exp(z/27) - 1).
320 \i>0

Hence, oce(n) = ©(n). And from Cauchy’s residue formula (1.6)

O(z) = — Z Res[0%(s)z ™% s = o] + O(z™7), r — 00, (4.2)
—p<Ro<d
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where ©*(s) denotes the Mellin transform of the function ©(z). Here,

0%(s) =

and the fundamental strip is < —1;0 >.
Then (4.2) yields

B I'(s)z™*
O(z) = Res[ 1

2 0T

I'(s)
o Z @i+1 1 _ 9s—1

1>0

0] —I—ZRes [Fl(si;s: @k

Pyt — 25 In2

_I_
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F -5
+ ZaH_lRes [%;5 = 0] .
I>1
Since
I(s)a™* v
Res[l_Qs,SZO = logzx—l—ﬁ,
I'(s)z—* 27i 1 27i —orikl
_ =7 - 712 mlklog, z
Res[1—28 ATY) In 2 (1112 )e ’
I'(s)z—* ] 1
Res [1_25_1;5:0 = T o1
we obtain:

Theorem 4.4. The average occupancy for binary trees, under the DST' probability model is

oce(n) = logyn + 172 —a — do(logyn)

In 2
where v = 0.57721 ... is Euler’s constant, a = 3_,50(2" — 1)~} = 1.6066 . .. and
1 27i i
60($) T (ﬂk) 6—2k771x
n

1112]#0

is a periodic function of mean value 0 and small amplitude (< 107°).

The properties of the function ég(z) have been considered in the analysis of approximate
counting [Fla85] and are quite similar to the properties of another function that appears in
the analysis of radix exchange sort [Knu73].

As in the last two analysis, the average occupancy is of the same order of magnitude
as the maximum occupancy. This is because the DST model also assigns high probability to

well balanced trees and low probability to poorly balanced trees.
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4.5 Conclusions.

Even this simple example captures some of the particularities of the average-case
analysis for each of the considered models; and reflects the differences that should be expected
between the corresponding results.

First of all, the average-case analysis under the balanced model involves first-order
differential equations over generating functions. The average-case analysis under the uni-
form model leads to combinatorial problems and the functional relations for the generating
functions are of algebraic nature.

The results summarized in the theorems at the end of each section allow us to
conclude that the expectation of occupancy is determined by the high probability of complete
and nearly complete trees for the balanced model, whereas corresponds to the occupancy of
the linear trees if the uniform model is assumed. Similarly, the mST and the DST probability
models assign high probability to well balanced trees, and the average occupancy for these
models behaves like the upper bound for the occupancy, a bound that is achieved by complete

trees.
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Chapter 5

Recursive Tree Algorithms and the
Balanced Model

A lot of work has been done on the mechanization of the analysis of algorithms and
data structures and there have been several approaches to the subject. One of the approaches
to the mechanization of the analysis is that of Flajolet and Steyaert. Their approach consists
in the translation of the structure of programs to equations over generating functions that
describe the average-case complexity of the programs. To do so, they provide a system of
rules that map each elementary algorithmic construction and each data type construction
into an operation over the generating functions. The generating functions are associated
to the sequences of the cumulated complexities (complexity descriptors) and the counting
generating functions, since the analysis is done under the uniform model. The next stage
of their approach is to recover asymptotic estimates of the average-case complexity of the
algorithm from the equations over generating functions, using complex analysis techniques.
We have already described this methodology in Part I. These ideas have been applied in
the design and implementation of the automatic algorithm analyzer AYQ) [FSZ89, FSZ91].
A€ consists in the conjunction of: 1) an algebraic analyzer that automatically computes the
equations over generating functions from the algorithm and data structures specification; 2)
an analytic analyzer, that tries to solve the equations and then applies some techniques of
complex analysis to extract asymptotic information from the explicit form of the generating

functions.

The system of rules mapping programs to a set of relations satisfied by complexity
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descriptors constitutes the algebraic part of a complexity calculus. The programs that can be
analyzed in this way are, a priori, all those that can be expressed using the algorithmic and
data type constructions considered, since the system of rules is complete with respect to the
“programming language”. As long as the algorithmic constructions guarantee the termination
of the algorithms that they express, the question of undecidability does not arise, at least
in principle, and there is no theoretical limit on the possibility of analyzing the algorithm
behavior. However, there are practical limitations to what can be analyzed: the “size” and

complexity of the programs to be analyzed, the complexity of the functional equations, etc.

A basic reference on the subject of automatic analysis is the paper A Complezity
Calculus for Recursive Tree Algorithms [FS87]. Flajolet and Steyaert concentrate on the anal-
ysis of algorithms dealing with trees and give a set of rules to translate the operations of a
language called PL-tree into equations over generating functions. PL-tree is a restricted pro-
gramming language over tree structures that has conditionals, iteration and recursive descent
constructions. The language has enough expressiveness to include formal differentiation, tree
matching, reduction/simplification algorithms, etc.

Once we restrict our interest to algorithms dealing with trees, the development of a
complexity calculus for the balanced model is an immediate objective. OQur purpose in this
chapter is to devise a system of rules for the systematic translation of programs to functional
relations over complexity descriptors. We will point out the similarities with the uniform case
and the particular characteristics of the system of translation rules for the balanced model

that we propose.

5.1 Translation Rules.

We shall use the programming language PL-tree as described in the paper of Flajolet
and Steyaert [F'S87]. We will introduce each construction and the corresponding translation
rule at the same time.

A generating function whose n-th coefficient is the expected value of the complexity
measure of an algorithm for inputs of size n is often called complezity descriptor.

The complexity descriptors that we use are of the type (see Sections 3.3 and 3.4)

A(xy, 22,0 ) = Z wl(Tl)---wm(Tm)a(Tl,...,Tm)x|1T1|x|2T2|...xg’"|,
TyoTom
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in order to analyze the average behavior of an algorithm .4 whose input is an m-tuple
(Th,...,T) in Fq X --- x F,, and whose time complexity is denoted by a(Ty,...,T,,). Each
F; is a simple family of trees with weight measure w;(+), characteristic series ¢;(u), weight

generating function W;(z), etc.! Then, the coefficient

[$71u$7212 cearm AT, )

divided by [z™|Wq(2)[z"2]Wy(z) - -[2"]W,,(2) is the expected value of the complexity of
the algorithm for inputs (74,...,7,,) such that |T;] = n;, 1 <7 < m. We will often use
A(z) instead of A(z, z,...,2) to denote the complexity descriptor needed for the average-case
analysis over the set of inputs of total size n = |Ty| + -+ - 4+ |T)n].

Also, by A(21,...,2, | Q) we mean the complexity descriptor associated to the al-
gorithm A but over the set of inputs that satisfy the m-ary predicate ¢). We shall refer to
this type of descriptor as a conditional complexity descriptor.

There is a full correspondence between some rules in the complexity calculus for the
uniform model and that for the balanced model. The rules are syntactically identical if the

corresponding construction does not access the subtrees (recursive descent) of the input trees:

1. I Q =01V Qe and Q1 Ay = false then
Alzy, .0y xm | Q) = A(x1, .oy 2m | Q1)+ A(T1, .o 20 | Q2).

2. If the algorithm A actually operates on p < m trees, say A(T1,...,1Ty) = B(1T,...,1))
then

Az, zm) = B(ar, ..., 2p) H Wi(z;).
p<i<m

3. Composition: If A(Ty,...,T,) = B(T1,...,T,);C(1T1,...,T,,), where the semicolon
denotes the usual sequential composition of procedures, then, for any predicate (), we

have

Alz1, . 2, | Q)= Blz1,...,2, | Q)+ C(a1,.. ., 2, | Q).

4. Conditional: For the conditional construction
A(Ty,...,T) = i Q(Ty,...,T,) then B(Ty,...,T,)
else C(11,....T,)
endif;

!We will omit subscripts in the arity function v;(s) and the probabilities p;(s) associated to S;, to simplify
the notation.
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the translation rule states that

Alzy, . 0yxm) = QT (21, ..y 2m) + B, ...,z | Q) + Cla1, ..., 20 | Q),

where QT'(z1,...,%,) is the complexity descriptor associated to the algorithm testing

if Q(T1,...,T,) holds or does not.

The differences between the system of translation rules for the balanced model and
the system of rules for the uniform model lie on the translation rules for the constructions
involving subtree descent. Interestingly enough, there are clear relations between the “shapes”
adopted by functional equations for each one of the systems of rules. We give some clarifying

examples in the form of proposition.

Proposition 5.1.

1. Subtree Descent: Let A(T) = B(T[i1),T[is],...,T[i,]), for some distinct i1, ..., ¢, and
where T[i] denotes the i-th subtree of T'. Then

dA

= = BERWE),
bl = Y

2. Iteration: Let

A(Ty,...,Ty) = for (i1,...,0,) with Q(iy,..., iy, root(Ty),...,root(T,,)) do
B(Ti[t1], - .-, Tinlim])

endfor;

where each i; takes successively the values in {1,...,deg(T;)}. The procedure B is
applied to each m-tuple (T1[i1],. .., Tin[tn]) if the predicate (), depending on iy,. .., 0,
and the roots of the m input trees, is true. We assume that the test of the predicate )

takes constant time. The relation between the complexity descriptors is then

am
————A(@1, ) = B(a1, o) Fo(Wi(a1), .o Wz )+ [ 65(Wi20)).
8x1 - awm 1<:<m
where
Folaroonzn) = 3 pls)eeplsn) 5Tl
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. Distributive Descent: Let

A(Ty,...,Ty) = for (iy,...,1,) do
B(Th[i), -, Tilim))

endfor;

This construction is a particularization of the previous, when no condition is imposed

neither on the roots of the input trees nor on the indexes 1;. Then,

P = B(z1,...,%m) H PH(Wi(xs)).

1<e<m

. Simultaneous Descent: Let

A(Ty,...,Ty,) =for i :=1 to deg(Ty) do B(T\[{],...,Tn[]) endfor;

where Ty, ..., T, belong to the family F and all of them have the same root symbol.
This construction consecutively applies the procedure B to the m-tuple of first subtrees
of the m input trees, then to the m-tuple of second subtrees, etc. Then

8m
mA(wl,...,xm|Eqroot) = B(ay,...,x) ' | J[ W) -

1<e<m

where the m-ary predicate Eqroot is true if and only if its m arguments have the same

root, and

)= > pr(s) -t

s€S—v~1(0)
Notice that if S has only one kind of symbol for each possible arity or m=1 then
(u) = ¢(u) - 1.

. Partial Descent: Let

A(T1,T;) = for ¢ := 1 to deg(7y) do B(11,15[!]) endfor;

The construction applies the procedure B to each of the pairs consisting of the first
input tree and each of the subtrees of the root of the second input tree. If T, belongs
to the family F then we have
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6. Conditional Iteration: Let

A(Ty,...,Ty) = for i:=1to deg(Ty) while Q(Ty[i],...,Tx[i]) do
B(T1[d), ..., Tuld])

endfor;

The construction applies consecutively the procedure B to m-tuples of subtrees of the
m input trees, like in simultaneous descent, but this process halts before visiting the
m-tuple of 1-th subtrees if that tuple does not satisty the m-ary predicate (). Then, the
complexity descriptor associated to A satisfies
am
mA(xl, ey T | Eqroot) =
¢ (Thcian W) = 0(W (1, 2] Q)
H1gigm W) = W(at,.. . o | Q) '

(B, 2m | Q)+ QT (w1, 2))

where B(21,...,2, | Q) is the conditional complexity descriptor of the procedure B over
inputs satisfying the predicate ), QT (x1,...,%,,) is the complexity descriptor of the
procedure that tests if predicate () holds and

) = > p(s)-url,

s€S—v—1(0)

W(z1,....en|Q) = S wl(Tl)---wm(Tm)xllTu...wgml.
Q(Tl,...,Tm)

The proofs of the formulas in the proposition above are similar to our derivation of
equation (3.3) in Section 3.4, but the complexity measures, complexity descriptors, etc. have
m arguments instead of only one, and the manipulation gets m times more cumbersome.

For example, for the simultaneous descent construction one has:
AT, oy D) = BN e T1]) 4 B2, Tonl2]) 4 -4 B(TATKL ., T [K])

with k£ = deg(7}) = --- = deg(T,,), and a(-) and b(-) denoting the complexity of algorithms
A and B on input (T1,...,T,,), respectively.
The complexity descriptor A(z1,...,2, | Eqroot) is, by definition,
A(z1,...,2m | Eqroot) = Z a(Ty,....,T) w(Tl)---w(Tm)xLTﬂ_,.ggg’”. (5.1)

Ty,... TmeF
root(Ty)=---=root(Tm)
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Let $> = S — v71(0) be the set of symbols of non-null arity. Moreover, to simplify
notation in the following derivation, we will use k for v(s) and the convention that the index
¢ runs from 1 to m and the index j runs from 1 to £ = v(s). For instance, the summation

index T;[j] € F indicates that the sum extends for
BT T, Tuf1],. o Tolk] € .

The decomposition of F, the definition of w(-) and the condition that all the roots

must be equal allow us to rewrite equation (5.1) as
A(z1,..., 2, | Eqroot) =

= Z P (s) Z a(Ty,....,Tn)w(Ti[1]) - - -w(T,,[k])

[Ty [1]|+-+|Ta [R]|+1
2y

T+ -+ TR+

seS> Ty=s(Ty[11,..., T; [k])
T;[11eF
Differentiating w.r.t. x1,29,...,&,, yields
am
— A e E t) =
8$18$m (xlv 7$m| qI’OO)
Ty ]|+ +|T1 [k
= )Y T T w(TiA]) (T ] 2R
SES> Ty=s(T3[1],..., T [K])
T;[jlex

And using the recursive definition of a(-) in terms of b(-)

am
mA(xlv cees I | EqI’OOt) =
= e X [ R VAN P ] ] W(TA[1]) - - - e(Ty[R]) @ BT
sES> Ti[j]eF

By symmetry,

am
For e A@ns - o | Eqroot) =
= Z k- pm(S) Z b(Tl[l], RN Tm[l]) w(Tl[l]) . w(Tm[k]) $|1T1[1]|+"'+|T1 Gl
sES> Ti[j)eF
Hence,
e o
8$18$m LlyeeeyTm qroot) =
= Z k‘pm(S)B($177$m) H Wk_1($i).
SES> 1<i<m

And introducing ¢ (u) = 3e5-,-1(0) 2" () - u (),

8m

T oa Ao | Baroot) = Bla,.. o) - ¢ (Kllm W(wi)) .
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We remark that the PL-tree language only allows boolean functions and procedures,
and does not allow assignment of variables. Programs written in PL-tree can output symbols
in a write-only file. We use return to return boolean values and strings of symbols (trees),
for convenience, but the reader must be aware that “returned” trees cannot be used to guide

the subsequent behavior of the program that makes the call.

5.2 Formal Differentiation.

This section illustrates our point on the usefulness and limitations of the translation
rules for the balanced model, analyzing a formal differentiation algorithm. Given a term
containing constants, variables and operators and represented by a labelled tree, the algorithm
outputs the tree that represents the derivative of the input term.

Since formal differentiation algorithms operate over single trees, the algorithmic
constructions lead to ordinary differential equations over the complexity descriptors.

We will follow the presentation of the paper of Flajolet and Steyaert [FS87], where
they analyzed formal differentiation algorithms for the uniform model. The same concepts
that appeared in that paper are relevant in the average-case analysis with the balanced model.
In particular, one should introduce the concept of header, the additional symbols needed
to express the derivative of an expression. The derivative is built using the header, the
subexpressions of the original expression and the derivatives of these subexpressions. We
must also take into account how many copies of the subexpressions need to be done when
differentiating. For any given symbol s € 5, where ' is the symbol set generating the family
F, we denote by h(s) the size of the header corresponding to s and by a;(s) the number of
copies of T; that have to be done when differentiating a tree T" with s at the root. Furthermore,
let a(s) = a1(s) + - - - + ag(s), for a symbol s of arity k.

For instance, let S = { z,cnst, NE 171, sin, cos, log, +, —, %, / }, each symbol having
the obvious meaning. Fach node with a label enst has an additional field with the value of

the constant. Let d(7") or d1' denote the derivative of the expression represented by 7'. Then

d(log(T)) = /(dT.T),  h(log) =1, ai(log) =1,
«(dT, —(sin(T))), h(cos) =3, aq(cos) =1,

QL
—~
[w)
o
w
—~

~
~—
~—

[l

d(/(T1,T2)) = [(—=(x(dT1,Ts),#(T1,dT2)),*(T2, T2)),  h(/) =5, o1(/) =1, a(/)=3.
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function Diff(7T : Expr) returns Expr is

1 case root(7T) of

3 X : return 1 /* returns a ’cnst’ with value ’1° */
4 cnst : return O

5

/@ return /(Diff(T[l]),*(2,\/_(Copy(T[1]))))

6 * : return +(x(Diff(T[1]),Copy(T[2])),*(Copy(T[1]),Diff(T[2])))
7 endcase
endfunction;

Algorithm 5.1: Formal differentiation.

The differentiation algorithm consists in a conditional structure that checks which
differentiation rule should be applied, examining the symbol at the root, and then generates
the derivative of the input expression recursively applying the formal differentiation proce-
dure, generating the header and making as many copies of the subexpressions as needed (see
Algorithm 5.1).

If we denote diff(7") the complexity of the differentiation algorithm for the input tree
T and by Diff(2) its complexity descriptor we have

Diff(z) = > w(T)diff(7) "1 =
TeF
= Test(z) + Gen(z|root = s1) 4 - -+ Gen(z | root = 57,
where Test(z) = W(2) is the complexity descriptor associated with the conditional structure
checking which of the symbols in $ is the root of the expression; and Gen(z|root = s;) is
the complexity descriptor of the procedure that actually generates the derivative of a tree T
when the root symbol is s;. To generate such derivative one must generate a header with
h(s;) symbols (Gen_header), make a;(s;) copies of the j-th subtree of T, for j = 1,...,v(s;)
(Copy_subexpr) and finally differentiate each of the v(s;) subtrees of T' (Diff_subexpr). Hence,

Gen(z|root =s) = Gen_header(z|root = s)+4 Copy_subexpr(z|root = s)+

+ Diff subexpr(z|root = s).
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The generation of the header does not actually depend on T except for its root, and the

generation of each symbol of the header requires constant (unit) time, so
d
d—Gen_header(z | root = s) = h(s) p(s) W”(S)(Z)_
z

For the copies of the subtrees, we have a simultaneous descent, but the cost of the body is
different in each iteration, since a;(s) copies are made when visiting the ¢-th subtree, and

furthermore we impose that the root of the input tree 7" is the symbol s. Therefore,
d
d—Copy_subeXpr(z | root = s) = a(s) p(s) W71 (z)Copy(=),
z

where Copy(z) is the complexity descriptor associated with the procedure "copy’. The differ-
entiation of the subexpressions is also a simultaneous descent construction, but the root is
again s, so

d
d—Diff_subeXpr(z | root = s) = p(s) v(s) WY1 () Diff( ).
z
The procedure ’copy’ makes a simultaneous descent to copy each subtree and puts
a root above the copies, or simply returns a leaf if a leaf must be copied. To simplify, we
assume that the cost of testing if the input tree is a leaf, returning a leaf if it is the case and
putting a root above the copies of subtrees is unitary. The translation rules yield

d d
ECopy(Z) = EConst_ops(z) + Copy(z)¢'(W(2)),

and

Const_ops(z) = W(z).

Therefore,

Copy(z) = z2W'(2).

Putting everything together,

%Diﬁ(z) = W(2) + H(W(2)) + 2W'(2)A(W(2)) + Diff(2)¢/ (W(2)), (5.2)

where ¢(-) is the characteristic series of the family, and H(u) and A(u) are polynomials defined
as follows:

H(u) = 3 p(s)h(s)u"t),

SES

Alu) = Z p(s)a(s) u’ ()1,

SES
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Furthermore, since the size of an expression is the total number of symbols, the initial condi-
tion for equation (5.2) is Diff(0) = 0.

Hence, we can express Diff(z) as

Diff(z) = W'(2) /Oz W'(t) + H(W(Q/)/(J;)tW'(t)A(W(t))

For our particular example, the only allowed degrees for nodes are 0, 1 and 2. That

dt.

implies that H and A are polynomials of second and first degree respectively, and that the
weighting generating function for the family is
V3 V3 T 1
= Ztan | o4~ | — =,
Wi(z) 5 tan | = z 4+ G 5
The asymptotic expansion of Diff(z) around the dominant singularity z = 27+/3/9 and the
application of standard complex analysis techniques yields

% = QVA?nlnn (1 + 0 (ﬁ)) )

where 4 is the coefficient of u in A(u). The other coefficient of A(u) and the coefficients
of H(u) appear in the lower order terms of the formula above. As in the uniform model,
the average-case complexity of the formal differentiation algorithm is strongly influenced by
the task of producing the copies of subexpressions, and it is between the worst case (O(n?))

and the best case (O(n)) complexities; however, the average-case complexity of this kind of

algorithms for the uniform model is O(n/n).

5.3 Conclusions.

The translation rules that we have proposed allow the systematic description of
the average behavior of algorithms by means of functional equations, for a large class of
algorithms dealing with trees and under the balanced probability model. The first stage of
the average-case analysis of such algorithms can be done by mechanical application of the
rules (see Section 5.1) and it is attainable by automatic symbolic computation methods.

For the second stage of the analysis, that of extracting asymptotic estimates of the
average behavior of the algorithm from the functional equations that describe it, we con-
clude that it is necessary to develop techniques to cope with ordinary and partial differential

equations, since this is the type of equations that characterize the balanced model.
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An interesting question that arises in the analysis of algorithms for the balanced
model is the evaluation of the probability (or weight) of subsets of pairs of trees satisfying a
predicate () and the evaluation of the conditional complexity descriptors A(z1,...,2,|Q),
when the predicate () is itself recursively defined.

In next chapter, we examine a family of recursively characterized binary predicates,
the common mathematical problems that appear because of the common characterization of
the predicates, the evaluation of complexity descriptors conditional to one of these predicates
and some of the contexts where these problems appear: equality testing, unification and

pattern-matching.
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Chapter 6

Hereditary Properties.

The purpose of the previous chapter was to establish some algebraic techniques that
reduced the average-case analysis of algorithms under the BST and balanced models to the
study of generating functions that satisfy differential equations.

From now on, our objective is the application of these techniques to the analysis
of concrete algorithms. We begin analyzing very simple algorithms, with the purpose of
progressively going into more complex algorithms.

This simplicity criterion has leaded us to consider algorithms that perform a simul-
taneous traversal of a pair of trees. Such algorithms compare at each step, and according to
some given criterion, a pair of nodes that appear at the same place in both trees.

As we will soon see, this type of elementary algorithms appear as integral components

of more complex procedures of substantial relevance.

We begin with the study of a family of algorithms whose main characteristic is to
verify that given pairs of trees satisfy a property, that belongs to a class that we call hereditary
properties. Hereditary properties are predicates over pairs of trees that are recursively charac-
terized by the fact that the property holds for a given pair of non-empty trees if and only the
pairs of left subtrees and the pair of right subtrees also verify the property (see Section 6.1).
The rest of the chapter is devoted to study the hereditary properties. The similarities of the
recursive formulation of hereditary properties reflect in a unified mathematical formulation

of the problems where these predicates get involved.

We choose to study hereditary properties, because its simplicity and because they

arise in different contexts of tree manipulation: equality (see Chapter 8), unification, tree
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matching. The problem of evaluating the probability that a pair of a given size satisfies one
of this properties is a challenging mathematical problem and is a quantity of main importance
to understand the average performance of the algorithms that are related in some way to that
property (see Chapters 8 and 9).

On the other hand, the algorithms that check if given pairs verify an hereditary prop-
erty have the same structure, and therefore their average behavior is described by structurally
identical equations over generating functions. The probability of the property, as a function
of the size, gets involved in the equations for the average behavior of these algorithms.

The equations for algorithms that are based upon conditional and conditional iter-
ation constructions also have some similarities with the equations of the algorithms checking
hereditary properties. On the contrary, the equation for the average-case complexity of the
intersection algorithm is structurally different from the equations of the former type (see
Chapter 7). One of the reasons for such difference is that the intersection algorithm is an
application of simultaneous (unconditional) descent, whilst the hereditary property checkers

are representative of the algorithms based in conditional iteration.

6.1 The Recursive Characterization of Hereditary Proper-

ties.

Consider the balanced probability model restricted to families of labelled binary
trees, that is, .S = £ + M, where £ is the set of 0-ary symbols and M the set of binary
symbols (see Section 3.3). We shall use B to denote the family of trees generated by 9
although we used this symbol only for the family with S = {0, 0 } (unlabelled binary trees).
Trees in L will be said to be empty or to be leaves, and the size of a tree is defined as the
number of its internal nodes.

The probability model for these families of binary trees is recursively defined by

p(s), ifT=seL,

Pr(T) = p(s)wv if T = s(Ty,Ty),s € M.

Recall that for any family such that ¢(u) = 1+ u? and the size of trees is the number of

internal nodes, the weight measure coincides with the probability.

A binary predicate h over pairs of trees is said to be an hereditary property when a

pair satisfies the property if and only if the pair of left subtrees satisfies the property and the
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pair of right subtrees also satisfies the property. Therefore, the additional definition of the
predicate for pairs where at least one of the trees is a leaf fully characterizes the predicate.

More formally, we have the following definition.

Definition 6.1. A binary predicate h : B X B — {true, false} is an hereditary property if for

any pair of non-empty trees (11,T3) verifies
h(Ty, Ty) <= h(TL,TY) A W(T], Ty) A r(root(Ty), root(Ty)), (6.1)
for some binary predicate r : M x M — {true, false} not identically false.

Most times, our ultimate goal will be to evaluate the probability that a pair (77, 7%)
of sizes m and n satisfies h, when the trees are distributed according to the BST model. This
evaluation is analogous to the problem of counting how many pairs of trees of sizes m and n
do satisfy the predicate h. Notice that the predicate r must not be identically false for the
definition to have any interest.

The differences between hereditary properties rely on the definition of the property
when at least one of the trees is a leaf, and on the definition of the predicate r corresponding
to each property.

The algorithms that check if a given pair belongs to the subset satisfying an heredi-
tary property h follow the scheme given in Algorithm 6.1. We call such algorithms hereditary
property checkers. A direct consequence is that their average-case complexity depends on the
probability that a pair of trees verifies the property.

The evaluation of the predicate r(s1, s3), made by function R, requires constant time
for any binary symbols s; and sy. Since W(z) = (1 — 2)~! for binary trees, the complexity
descriptor of an hereditary property checker can be expressed as

O’H 1
dxdy  (1—2))(1—-vy)

2

5T

+ basis_H(z,y |11 € LV Ty € LV =r(root(T}),root(13))) +

0x0y
+ H(z,y) (erW(x,ym)) , (6.2)
where
Wz, y|h)= S Pr(Ty) Pr(Ty) 2 Tily Tl

R(Ty,Ts) 18 true
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function H(17,7% : BinTree) returns Boolean is

1 if Ty or Ty is a leaf or =R(root(1}),root(1y)) then
2

3 else

4 if H(T},T}) then

5 return H(I7,T7)

6 else return false

7 endif

8 endif

endfunction;

Algorithm 6.1: Algorithmic scheme for hereditary property checkers.

basis_H is the complexity descriptor of the procedure that is performed if the test of line 1 is
satisfied, we have considered negligible the cost of line 6 and we have considered the test in
line 1 to have unit cost.

Notice that the coefficient [¢™y"|W (x,y|h) is the probability that a pair of trees of
sizes m and n, respectively, satisfies property h, when the trees are independently chosen and
distributed according to the balanced model.

Renaming Q(z,y) = W(z,y|h) and using the definition of hereditary properties, it
turns out that Q(z,y) satisfies the non-linear second-order partial differential equation:

2*Q

900y - 1Q*(z,y), (6.3)

where

p= > p(s1)p(sa).

51,82 €M
7(s1,82)

We call Equation (6.3) the characteristic equation of the hereditary properties. The initial
conditions depend on the way that h is defined for the induction basis, that is, for pairs in
LXxL+(B—-L)xL+Lx(B—-L). In particular, the initial conditions may depend on the
the probability assigned to each leaf.
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If $={0,0} then u =1 and equation (6.3) reduces to

9’Q
920y~ Q*(z,y).

6.2 A Short Catalogue of Hereditary Properties.

6.2.1 Equality of Binary Trees.

The first hereditary property we consider is the equality of a pair of binary trees.
Clearly, the equality predicate verifies (6.1) and for the basis, when one of the members of
the pair is empty, h(?,t') is true only if both ¢ and ¢ belong to £ and ¢ = ¢'. The predicate
r is true if and only if both binary symbols are the same. The algorithm that checks the
equality between binary trees receives a more complete treatment in Chapter 8, whereas the

evaluation of the probability that two binary trees are equal is the subject of Chapter 9.

6.2.2 Unification of First-Order Terms.

In the context of unification two interesting hereditary properties appear. The prob-
lem of unification of two first-order terms consists in producing the most general substitution
of the variables in the input terms that makes them equal, or detecting that no such a substi-
tution exists. For example, the terms f(z,¢(z,2)) and f(h(w), g(t,h(w))) can be unified by
means of the general substitution {z < h(w),z < t}!. On the other hand, f(y) and g(z) are
not unifiable, since f and ¢ are not variables and hence, no substitution of variables would
make the terms equal. Neither are f(g(x)) and f(z), since the substitution 2 — g(z) would
introduce an infinite recursion.

Unification is a very important operation in symbolic computation, arising in areas
such as automatic theorem proving, the design of logic programming languages and natural
language parsers, machine learning systems, etc. [KB70, CL73, Mil78, Col82]. For addi-
tional information on the unification problem and its basic terminology, the interested reader
could refer to the survey of Knight [Kni89]. A lot of unification algorithms have been pro-
posed: Herbrand-Robinson [Rob71], Paterson-Wegman [PW78], Martelli-Montanari [MM8&2],
etc. The average-case analysis of these algorithms is quite difficult, even when the terms are
assumed to be equally likely [CDS89, ACFT91]. For the average-case analysis of unification

algorithms is common to modellize terms as trees with the appropriate labels at the nodes.

1We use the first lower case letters a, ...,k to denote operators, while s,¢,..., 7 will denote variables.
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From now on, we will talk about trees and not about terms. The properties (and the families
characterized by these properties), that we have mentioned earlier, are relevant to understand
the causes of failure in unification and to analyze the average behavior of different unification
algorithms.

One of the causes of failure is the apparition of a direct occurrence. Two trees are
said to have a direct occurrence if and only if there is a leaf with variable z at some place of
one of the trees, while the same place in the other tree is the root of a subtree that contains
a leaf z. An example of failure because of a direct occurrence was already given: f(g(x)) and
f(2) are not unifiable since = appears in the tree f(z) and at the corresponding place of the
other tree there is the subtree g(z) that contains 2. Figure 6.1 also exemplifies the direct
occurrence problem.

A pair of trees is consistent if it does not contain any direct occurrence. The family
of consistent pairs of trees properly contains the family of unifiable trees [ACF191], since
there are other causes of failure in the unification process. And it turns out that a pair of
non-empty trees is consistent if and only if the pair of left subtrees and the pair of right
subtrees are both consistent. To isolate the phenomenon of consistency from other causes of
failure, we define the predicate r to be true for any two binary symbols. The basis of the
relation is that a pair (7', 2) (conversely, (2,7")) with 2 € £ is consistent if and only if 7" also
belongs to £ or it is a binary tree generated by S = M + (£ — ), i.e., does not contain z.

Obviously, the probability of the set of consistent pairs of trees of a given size is also

relevant in the average-case analysis of the direct occurrences check.

The other interesting property appearing in the context of unification is also related
to a cause of failure: clashes. A pair of trees is said to clash if and only if there is some
internal node f in one of the trees and at the corresponding place of the other tree there is
another internal node ¢, such that f # g. A pair of trees that clashes cannot be unified. For
instance, b( f(u,v),g(z,y)) and b(g(u,v),g(z,y)) are not unifiable since these trees clash: the
operator f appears at the first tree and g appears in the second tree at the same place.

A pair of non-empty trees does not clash if the pair of left subtrees does not clash,
the pair of right subtrees does not clash and the roots are equal. By the definition, any pair
where one of the members is a leaf does not clash. Therefore, non-clash is an hereditary

property and we have fully characterized it: the predicate r is the equality between symbols

and h(T,z) = h(z,T) is true for any tree T'if z € L.
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A leaf z

A tree containg a leaf z

Figure 6.1: A pair of trees containing a direct occurrence.

6.2.3 Pattern Matching in Trees.

This subsection covers the problem of tree matching [KMR72, HO82, SF83]. Tree
matching occurs as an important element in the design of intepreters for functional languages,
automatic implementation of abstract data types, code optimization, symbolic computation,
structured program editors, etc.

The input to a tree matching algorithm consists of two trees T and P called text
and pattern, respectively. The pattern P is a tree with an additional type of leaves; the new
type of leaf is denoted by * and called wildcard. More precisely, the texts are trees in a
simple family generated by a symbol set 5, whereas the patterns belong to the simple family
generated by S’ = {x} 4+ 5, for some x ¢ 5 and with v(*) = 0.

A pattern P is said to occur at a place of the text T if the subtree rooted at that
place and P match node by node, except for the wildcards of P that can “match” a whole
subtree (see Figure 6.2). The output of the algorithm should be one or all the places where
the pattern P occurs in the text T, if P occurs at all. On the other hand, an occurrence is
called root occurrence of P in T if the place where P occurs is precisely the root of T'. For
the sake of simplicity, we shall consider that texts contain only one type of binary node.

The predicate “P occurs at the root of 177 satisfies (6.1), provided we take into
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Pattern P

/T\T

O
/T
bk *

Figure 6.2: The pattern P occurs at some places of T' (dashed lines). The ocurrence that is

marked with RO is a root occurrence.

account the slight modification introduced by the fact that 7" and P do not belong to the same
family of trees. A distinctive characteristic of root occurrence is that it is not symmetrically
defined for pairs where one of the members is a leaf. If the text is a leaf and the pattern is
not, then the pattern cannot occur at the root of the text. If the pattern is any 0-ary symbol
# *, that is, belongs to 9, then the text must be the same symbol to match the pattern. But
if the pattern is * then the text will always match the pattern.

Several tree matching algorithms have been proposed, the sequential tree matching
algorithm being the simplest. The sequential tree-matching algorithm makes a preorder
traversal of the tree, checking if the pattern occurs at the root of each subtree of the text.
To determine if the pattern occurs at a given tree (root occurrence) a procedure following
the scheme in Algorithm 6.1 is used. Therefore, the probability that a pattern P occurs at
the root of the text T" appears as part of the analysis and directly influences the average-case
complexity of the sequential tree-matching algorithm; eventually, the average-case complexity
of other tree matching algorithms may also depend on the probability of root occurrence of a

pattern in a text.
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6.3 The Characteristic Equation for Hereditary Properties.

In this section, we examine the particularization of equation (6.3) for each of the
hereditary properties that we have considered in the previous section. Recall that (6.3) states
that the generating function Q(z,y) verifies

2?Q

_ 2

where the coefficient [#™y"]Q(z,y) is the probability that a pair of trees of sizes m and n
satisfies a certain hereditary property and p =37, ,,)P(s1) p(s2).

Equality: In the case of equality, the roots of non-empty trees must be equal; therefore,
B= D sem p(s). A pair containing a leaf is equal if and only if both members of the
pair are the same leaf, yielding as initial conditions Q(z,0) = Q(0,2) = A =3, p*(s).
The partial differential equation corresponding to equality is then

2
;;gy = uQ*(z,y),
Q(z,0) = Q0,2)=A.

The case of S = {O,0}, A = u = 1 was the first one we have studied. It is not difficult
to see that [2'y7]Q(z,y) = 0if i # j, so Q(x,y) = R(z - y). The generating function
R(z) is studied in Chapter 9.

Direct Occurrences (in Unification): Since the predicate r is identically true for all pairs
of binary operators we have ¢t = 1. On the other hand, the problem is meaningless if

k = |L] < 2. Moreover, assume that p(s) = 1/k for all leaves s € £. Then, making

e=1-1/k,
0*Q 2
axay Q ($7y)7
622’
Q(=0) = Q0,5 =1+-"".

Clash (in Unification): This phenomenon directly depends on M, the set of binary symbols,
since a pair of non-empty trees does not clash if the roots are identical. The phenomenon
is trivial unless |[M| > 2. Hence, u = 3,0 p*(s) < 1. For pairs containing at least a

leaf, a clash cannot occur: consequently, the initial conditions are Q(z,0) = Q(0,z) =
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(1 — 2)71. The partial differential equation for the probability of non-clash is then

82
S = nQ )
Q=00 = Q0.2 = .

Root Occurrence (in Tree Matching): We have assumed already that there is only one
possible binary operator, giving g = 1. Due to the asymmetry on the definition of root
occurrence, we take the pattern as the first argument of the predicate and the text as

the second one, by convention.

The probability of the 0-ary symbols will differ in the family of texts and the family of
patterns, so we will use p(-) and p/(-) to denote these probabilities. Recall that the set
of leaves in the family of patterns is the same as the set of leaves in the family of text

trees, £, plus the additional wildcard . Letting A = " . p(s)p/(s) and p. = p'(*) one

has
’Q
axay - Q ($7y)7
Q($,0) = A+p
_ 2
Q0,y) = A+1_y.

The concept of hereditary property can easily be extended to m-ary predicates; the
generalization would yield non-linear partial differential equations of the type
g™
e Tl
For our purposes of presentation of the phenomenon of hereditary properties and its mathe-
matical characterization, binary predicates are simpler, aesthetically more pleasant, and what

is more important, fully capture the essence of the problem.

The simplest equations (presumably) are those of the equality and the non-clash, if
we consider their initial conditions. It is likely that we cannot draw any information about the
singularities of the function Q(z,y) from the initial conditions alone, although there are some
suggestive observations. For instance, there is some empirical evidence that for non-clash,
Q(z,y) is analytic in the domain |z| < 1,|y] < 1. On the other hand, for the consistency

relation, empirical evidence indicates that Q(x,y) is analytic on |2] < C,|y| < C for some
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C > 1(C = €'7), and thus the probability that a pair of binary trees of size n is consistent
(does not have a direct occurrence) would exponentially decrease with n. On the other hand,
in the case of equality (with p = A = 1), Q(x, y) is analytic in the region |z-y| < p = 3.1408 ...
(see Chapter 9), but it is difficult to figure out the relation between the initial conditions and
the domain of convergence.

In connection with the complexity calculus, information on the order of growth (or
decrease) of the probability of an hereditary property can be of much value, as in the analysis
of the equality test algorithm (see Chapter 8). Thus, a result similar to Theorem 8.2 holds for
the direct occurrences check algorithm. Theorem 8.2 states that the average-case complexity
of the equality test is ©(logn) and that would also be the average-case complexity of the
direct occurrences check, provided that we were able to show that the probability that a pair

of trees of size n is consistent is exponentially small.
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Chapter 7

Average Size of Intersection

This chapter investigates a simple characteristic over pairs of binary trees, the size of
the intersection of the pair, when the pairs are distributed according to the BST probability
model. We will see that the functional equation that arises in this analysis is a partial
differential equation.

The intersection of pair of binary trees is the tree that remains if we stack one above
the other and put a leaf whenever two leaves or a leaf and an internal node are on top one of
the other; and an internal node if both trees have an internal node at the corresponding place.
When each pair of trees with total size n is equiprobable, the average size of the intersection
is O(1). But if we assume the BST probability model the average size of the intersection is
O(n?272/\/logn).

We chose to study the average size of the intersection of two binary trees because
of its simplicity. Although this is a very elementary problem, it reflects the structure of the
problems dealing with a pair of trees and the extended version of the BST probability model.

The computation of the intersection appears in a natural way in the analysis of a
number of algorithms; for example in processes involving tree matching [SF83] or unifica-
tion [CDS89]. For instance, the intersection of binary trees is exactly the kernel of the tree
shuffle algorithm described in Choppy, Kaplan and Soria [CKS89]. The time complexity of
computing the intersection of any pair of binary trees is twice the size of the intersection of
the two trees plus one.

The rest of this chapter is structured as follows. In Section 7.1 we obtain and solve
a partial differential equation which defines the probabilistic generating function associated

with the size of the intersection of binary trees. In Section 7.2 we derive exact expressions for
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function Inters(1i,7> : BinTree) returns BinTree is
1 if 71 or15 ¢s O then

2 return O

3 else

4 return o(Inters(7},T)),Inters(T],T3))

5 endif

endfunction;

Algorithm 7.1: The intersection algorithm.

the n-th coefficient of the function obtained in the previous section. In the following Section
we deduce the main result of the chapter, which is the asymptotic behaviour of this coefficient.
Section 7.4 discusses the generalization of the previous results to m-ary trees, if the balanced
probability model is assumed.

An appendix on Riemann’s method for the solution of partial differential equation

ends the chapter.

7.1 Average Size of the Intersection of Two Binary Trees.

Let B be the set of all binary trees, and let o denote any internal node, as usual.
Given trees 17,75 € B we wish to compute the average size of the intersection of the two

trees, where the intersection of Ty and 7%, denoted (77 N1%), is given by:

a, if Ty or Ty is O,
o((T{ N T8, (T N'T3)), otherwise.

(ThNTy) = {

The intersection is computed by the intersection algorithm in the obvious way (see
Algorithm 7.1 and Figure 7.1).
We shall define the size of the intersection of trees Ty and Ty by
07 if T1 or TQ 18 \:‘7

S(Tl,TQ) = (71)
L+ s(TL, T + s(T7,T5), otherwise.
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VaN N N
NN, S N N

c/\z/\zc/\ c/\z/\ SN N
e /\j E/\E/\j
e /\j

c/\
AN

Figure 7.1: An example of the intersection of two trees.

We wish to compute the average value of s(17,75) over all the pairs (17,75) with
|Ty| + |T| = n. Let s(n) denote this average value, then we get

s(n)= > s(T1.Ty) - Pr(Ty, Ty).
[T1]+]T2]=n

Following the standard technique (see Section 3.1 and Chapter 5) let us define the

generating function:

S(z)= 3 s(Ty,Ty) - Pr(Ty, Tp) - T2,
(T1,T2)€B?

and the bivariate generating function for the random independence model

S(zoy)= > s(Th,Ty) Pr(Ty) Pr(Ty)a iyl T2l (7.2)
(Th,T2)eB?

Therefore, we have to evaluate

and the relation between S(z,y) and 5(2) is given by

S(z) = l/z S(t, 1) d. (7.3)

z
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We use the following decomposition of the Cartesian product of binary trees
B*=(0,0)+0x(B-0)+(B-0)x O+ (B-0)~% (7.4)

From equation (7.2) and using (7.4), (7.1) and Definition 3.2, we get the following partial
differential equation

0*S(x,y) _ 1 25(z,y)
oxdy (1 —2)2(1—y)? + 1-2)1-y) (7.5)

subject to the boundary conditions: for all  and y, S(z,0) = 0 and S(0,y) = 0. These

boundary conditions are given by the consideration of the intersection of an arbitrary tree
and a leaf and the intersection of a leaf and an arbitrary tree, respectively.

The generating function S(z,y) can be reexpressed as
1
(I—2)(1-y)

where —(1 —2)™! - (1 — y)~! is a particular solution of (7.5) and Sj(z,y) satisfies the homo-

S(z,y)= Sp(z,y) — (7.6)

geneous equation

9°5 25
b I (7.7)
920y ~ (1= a)(1— )
with boundary conditions Sy(z,0) = 1/(1 —z) and S,(0,y)=1/(1—y).
Making the change of variables
X = —2In(1-=2)
Y = —2In(1-y)
and setting
G(X,Y) = Sp(1— e XIV2 1 ¢ VIV2, (7.8)
we finally obtain the hyperbolic differential equation
0*°G
axoy & (79)

subject to boundary conditions G(X,0) = eX/ﬁ, G(0,Y) = Y2,

This partial differential equation can be solved by the method of Riemann (see the

appendix at the end of this chapter) to yield

G(X)Y) = %/OX&N?JO (21\/(X—t)Y) dt +

% /OY e!NV2, (21,/(1/ - t)X) dt + Jo(2iVXY), (7.10)

where Jy(-) denotes the Bessel function of the first kind of order 0.
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7.2 Exact Developments.

In this section, we state two theorems concerning the exact average size of the inter-
section of a pair of trees of size n. The exact values are not in a closed form and involve sums
of binomial and Stirling numbers of the first kind. A first application of standard asymptotic
methods shows that s(n) = O(nQﬁ_z). Nevertheless, we will get better asymptotic estimates
from the solution (7.10) of the partial differential equation in next section, and hence we
will not give further details about the way this asymptotic estimation can be computed from
the exact value of @ The exact developments were obtained by more classical methods,
setting up recurrences and solving them.

The coefficients of the generating function

S(e,y)= > sama"y”
n,m >0
satisfy the following recurrence
(m4+1)(n+ 1D)spt1me1 = (n+1)(m+1) +2 Z i 5 spo=5S0k =0, k>0,
0<i<n
0<;<m

which can be obtained from the differential equation (7.5). The recurrence can be simplified

and transformed into

1
n-m

Spom = (I—nm+n+m)sy_1m-1 +n(m—1)s,m_1+ (n—1)ms,_1m], n,m >0

R. Baeza-Yates worked out this recurrence and was able to prove the following

result [BCDM92]:

Theorem 7.1. The expected size of the intersection of two independently chosen random

binary trees of sizes n and m, under the BST model, is given by the formula

min(n,m) ATl & T ml I |n m||n
s o (S PIS [T -

where, as usual, the notation [} denotes the Stirling numbers of first kind [Knu68].

On the other hand, we know by (7.3) that

1
n+1

[2"]5(2) = [2"]5(z2, 2) (7.11)

and using the previous Theorem 7.1 one also gets the following result
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Theorem 7.2. Under the BST model, the average size of the intersection of two trees T;

and Ty such that |Ty| 4 |T2| = n, is given by the formula

. S CENANRTE N I I
-l % 0 -5l 0)) -

7.3 Asymptotic Results.

We are interested in obtaining asymptotics to the [2"]5(z). Using (7.11) together

with (7.6) we obtain an expression for the average value of s(71,73)

[ 1
s(n) = e

[2"]5h(2, 2) — 1. (7.12)

To obtain an asymptotic value for [2"]5%(z, 2) we need first the following technical

lemma,

Lemma 7.1. The asymptotic behavior of G(Z,7) is given by

G(Z,7) ~ 3J0(2iZ) + V2 - %JO(QiZ).

Proof. Let G(Z,Z) = A(Z) + Jo(2iZ) with

A7) = \/5/02 V2, (21,/(2 - t)Z) dt. (7.13)

Let us recall the series expansion of Jy(z) (1.4)

Then, substituting in (7.13)

A(Z) = \/5/02 eih? (Z ((;,1)); (=(Z - t)Z)k) dt
k>0 V7

If we define 4
Bu(Z) = /OZ VA7 — it = (VR RS - (i)] , (7.14)

sk
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we get

()
= V2 ]; e e Z) =2 ]; ; [T
where (7.14) can be proved by induction on k.
Let us consider the coefficient a,, = [Z"]A(Z). In order to evaluate the asymptotic
behaviour of a,, we shall distinguish three different cases:
if n =0 then ag = 0,
if n =2p+ 1, then

2 2p+ 1\
Aop+1 = ) 2 ’
’ (V2)r+i(2p + 1) ;;) ( k )
if n = 2p, then
2 {2\,
= — 2%,
“ = 2 (2p)! ];) (k)

The value of each one of the summations involved in these expressions tends to

concentrate in its last term; therefore, we write them in the following form,

2V/2

— / e —
T S G+ D)
2
_ "
T
with
+1
i X p-l— 1) 'p! 9=J
g p+1—J)(p+J)!
C// — 2_]
! = ( p+ ik
Let us consider c;’ first. Since
2 "2
Vi, 1-L (p) <1,
(p—)p+ )t
we have
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Therefore as p — 00, ¢;) — 1. The same argument holds for ¢} So we conclude that A(Z) is

asymptotically equivalent to

A(Z) — Z azp Z2p + Z a9p41 Z2p+1 —

p>0 p>0
2p+1
= 2
Z ‘ plp_l_l)
p>0 p>0

~ 2Jo(27) + ﬂ%JO(QiZ)

Hence,

G(Z,7) ~ 3Jo(A2) + V2 %JO(QiZ).

Now, we are in position to state the asymptotic behavior of [2"]S4(z, 2).

Lemma 7.2. The asymptotic behavior of [2"]S}(z, z) is given by
[2"Sh(2,2) ~ e1 - [2"]Jo(=2V2 - i-In(1 — 2)),
where ¢1 = 3 + 2/2.

Proof. The statement of the lemma is obtained from Lemma 7.1 by making the change of
variable Z = —v/2In(1 — z) and taking into account that [2"]J5(21Z)| 7= —ain(1-b2) is asymp-
totically twice [2"]Jo(2iZ)|7=_qm(1-bs) for any constants a > 0, b > 0. Let f, and g, be
[2"]F(2) = [2"]Jo(21Z)| 7=—am(1-bz) and [2"]G(2) = [2"]J3(21Z)| 7= —am(1-bz), Tespectively.

Since
dl dz
E;__'G%Z)E;W
we have
1 -0z
G(z) = dSn+ 1) fupr 2" =
ab
n>0
1
= = Z[(n + 1) fog1 — bnf,] 2"
n>0

Using Lemma 7.3, one obtains the asymptotic behavior of f,

n2a—1bn

Vinn ’

fh ~ A
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for some constant A depending on a and b.

Now,

n+ 1) fre1 —bnf, ~
( )f +1 f \/ln—n ln:n-l—lz

Inn
Abn—l—ana—l 1
= 20— (1+0(— )=

¢ Vinn (1+ <lnn)
= 2abf,.

A2 [(1+ 1/n)% 1] -

Finally, combining this last result with the relation between f,, and g, yields

gu = (0 D s = bufa] ~ 26,

as claimed. m
An asymptotic estimation of the n-th coefficient of Jo(—2iyv/2In(1 — 2)) is given in
the following lemma.

Lemma 7.3. The n-th coeflicient of Jo(—ialn(1 — 3z)) for any positive real numbers o and

3, is asymptotically given by

(" o(—ialn(1 = B2)) = 5" 2F(o\4/)§\/ﬁ3% (1 L0 (ﬁ)) . (7.15)

Proof. The asymptotic expansion of Jy(2) (see Section 1.3, equation (1.5)) can be used to
estimate the asymptotic behavior of the n-th coefficient of Jo(—ialn(1l — §z)) for any real
positive numbers o and 3. If = — 371 then |In(1 — $82)] tends to infinity and | arg(—ialn(1—
Bz)| < m provided that we are sufficiently close to $71 and | arg(1 — 82)| > 0. Therefore,

‘ B 9 1/2 . N |1 — Bz~
hi-ian( =5 = 5 (=) l(l_ﬂ e (lln(l/(l—ﬁZ))l)]’

where we have used the exponential form of cos and

* (=32 ) -

o (‘1 —1ﬂz )‘ = ol (‘1 —1ﬁz

since @ > 0 and we may assume that |1 — 32| < 1.

|S(—ialn(1l — §2))|

«

«

).
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Finally, using the transfer lemma given in Theorem 1.8 gives! the stated asymptotic
estimate for the n-th coefficient of Jo(—iaIn(1 — §2)).

The asymptotic behavior of the n-th coefficient of Jy(—ialn(1l — 2)) can be alter-
natively derived using Laplace’s method and the integral representation of Jy(z) (see Sec-

tion 1.3). m

Applying the previous lemma with & = 2¢/2 and 3 = 1, we obtain:

[+ Jo (=2iv2In(1 = 2)) = ¢ - "\2/%1 (1 +0 (ﬁ)) , (7.16)

where the value of the constant ¢g is given by
B 1
©25/4/70(2V/2)

Combining Lemma 7.2 together with (7.12) and (7.16) yields the following theorem:

c2 = 0.1381288%8...

Theorem 7.3. Under the extended BS'T model, the average size of the intersection of two

trees behaves asymptotically as

with ¢ = ¢1co = 0.8050738....

Again, it should be emphasized, that under the uniform model, the average size of
the intersection of two trees is 1.5 - (1 +0 (%)), which is quite a different result from the
one we just obtained. This constant average behavior for the size of the intersection can be
explained in rather intuitive terms. The probability that a pair of trees of size n consists
in a leaf and a tree of size n is about 0.5 for uniformly distributed pairs. The size of the
intersection of such pairs is null. Analogously, the probability that a pair of size n is of the
type (D o’ T)or (T, - D) is approximately 0.125, and the size of the intersection of such
pairs is 1, etc.

As said in the introduction, it also follows from Theorem 7.3 that under the BST

model the average-case complexity of the intersection algorithm is

712\/5_2 1
2 vVinn ‘ <1+O (m))7

while under the uniform distribution the average-case complexity of the intersection algorithm

is 4+ (1+0 (L)) [CKS89).

'If « is a positive integer a slight modification of the transfer lemma must be used instead.
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7.4 Average Size of Intersection under the Balanced Model.

The analysis of the average size of the intersection of two m-ary trees distributed
accordingly to the balanced probability model is done in a similar way to that of the case of
binary trees.

Given two m-ary trees T, T" its intersection is the m-ary tree defined by:

7 9 ifTVIDOI’/IWID7
"nT" =
o((Ty NIy, ... (T, nTry), if T =o(1y,...,T))and T" = o(TY,...,T").

Let s(T',T") denote the size of the intersection of 77 and T”. Then s(7”,T") is null
if any of the trees is a leaf; otherwise, it is the sum of the sizes of the intersections of the
subtrees.

The average value of s(7',T") over all the pairs (77,7") € 7,2 with |[T'| +|T"| = n
is given by the quotient of the n-th coefficients of two generating functions (see for example,

Section 3.4):

s(n) = ST ST T Pr(T,T") =
|T'|+|T*"|=n
e ST - w (TN T 278 (2, 2)
Yy rn=n w(T7) - w (1) [z W2(z)’
where
S(x,y)= Z S(T/,T")w(T’)w(T”)ac|T/|y|T"| (7.17)
(T, T")eT2
and
W(z)= 3 el = (1= (m—- 1)z, (7.18)
TETm

Recall that w(-) denotes the weight measure of the object considered, and that W(z)
is the weighting generating function of the family of trees (in this case, the family of m-ary
trees).

The asymptotic behavior of the n-th coefficient (n — o0) of W?(z) can be derived

by means of Darboux’s theorem (see Subsection 1.2.2) that yields the following value:

—(m— m— 1
["TW2(z) ~ (m = 1) =Dl

Ty (o). (119)
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Differentiating (7.17) and using the definitions of w(1') (Section 3.3) and s(17,1"),
together with (7.18), we get the following hyperbolic partial differential equation

9*S(z,y)

geoy  — V@) W)+ W () W)™t m - S(z,y), (7.20)

subject to the boundary conditions: for all 2 and y, S(2,0) =0 and S(0,y) = 0.
This partial differential equation admits a particular solution and the general solu-
tion for the corresponding homogeneous equation can be obtained by means of the Riemann’s

method. The asymptotic behavior of the solution of the homogeneous equation can be derived

in much the same way as in Lemma 7.2 and turns out to be asymptotically equivalent to

/i

R ST

m—1

with ¢ = ((y/m + 1)/(m — 1))%. Finally, the asymptotic behavior of s(n) is gathered using

Lemma 7.3. These steps lead us to the following theorem:

Theorem 7.4. Under the balanced probability model, the average size of the intersection of

two m-ary trees behaves asymptotically as

(2v/m=2)/(m-1)
s(n)wc-n -(1—|—O<1)),

Inn

where the constant ¢ has value

_ m+2ym+l T(EE)
C 2y amt A (m — 1)3/2 F(ﬂ)

-1

—

C

Notice that Theorem 7.3 is just a particular case of Theorem 7.4, setting m = 2.

Before finishing, let us see how the translation rules of Chapter 5 can be applied to
the intersection algorithm for pairs of m-ary trees. We define the size of a tree as the number
of internal nodes that it contains, and the size of a pair as the sum of the sizes, as usual. The
algorithm consists in a simple test followed by a simultaneous descent construction that is
performed when none of the members of the pair is a leaf, like in Algorithm 7.1, but repeatedly
for the first, second, third, ...pair. The simultaneous descent loop computes the intersection
of each of the m pairs of subtrees and the results are attached to a root. The resulting tree

is the intersection of the pair. This part, the simultaneous descent and the construction of
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the result form a procedure that we will call Int_loop. Therefore, the complexity descriptor
Intsc(z, y) of the intersection algorithm is given by

Intsc(a,y) = Test(z,y)+ Return(a,y |7y = OV Ty = O) + Intdoop(a, y | Ty £ O ATy # O).

The test and the instruction returning a leaf have constant complexity, and hence,

Test(z,y) = W(x)W(y),
1+ W)+ W(y),

Return(z,y |7y =0V T, = 0)

taking into account in the last equation that |O] = 0.

Since the input is a pair of m-ary trees, we know that the simultaneous descent is
performed only if both trees in the pair have the same root and have subtrees. Within the
loop, we attach each newly computed intersection of the corresponding pairs of subtrees to
a root. As each edge between the root and a subtree can be added in constant time, we can

write

Int loop(z,y|Ty # O ATy # 0) = m(W(z) - 1)(W(y) — 1) + Desc(z, y),

where Desc(z,y) is the complexity descriptor associated to the simultaneous descent. Apply-
ing rule 4 of Proposition 5.1 and as non-empty trees have the same root (there is only one

type of internal node, of degree m)

2
dxdy
For the family of m-ary trees, ¥(u) = ¢(u) — 1 = u™, so we have the following

Desc(z, y | Eqroot) = Intsc(z, y)¢' (W (z)W (y)).

functional equation for Intsc(z,y)

0?Intsc
dxdy

The initial conditions of the partial differential equation above as well as W(z)

depend on the definition of size. As we take [0 = 0, W(z) = (1 — (m—1)2)""("=1 and the

= W/(z)W'(y)(1+m) 4+ m - Intsc(z,y) - W™ Ha)W™ L (y).

equation reads

38?;;(: (14 m)(W ()W (y)™ + m - Intsc(x,y) - (W ()W (y))™ ",

Intsc(z,0) = Intsc(0,z2)= W(z).

This partial differential equation is almost identical to (7.20), except for the fact
that (7.20) corresponds to the size of intersection and the last one corresponds to the com-

plexity of the algorithm computing the intersection. The same methods used to obtain the
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average behavior of the size of the intersection could be applied to get the average-case com-

plexity of the intersection algorithm.

Appendix A Riemann’s Method.

Riemann’s method was devised in 1860 to obtain solutions of second-order linear
partial differential equations (see for instance [Rie53],[CH62, ch. 5],[Cop75, ch. 5]). The
method is applied for the analysis of the average size of the intersection (in this chapter) and

for the analysis of the average-case complexity of the equality test (Chapter 8).

Riemann’s method can be applied to equations of the form
Upy + 2htgy + by, + 29Uy + 2fuy + cu = F(z,y),

where v = wu(z,y), subscripts denote partial differentiation with respect to the indicated
variable(s) as usual and a,b,h,g,f and ¢ are functions of # and y alone.
We will begin introducing the notion of adjoint linear operator and of Riemann-

Green function. Let the linear operator L be
Llu] = attyy + 2httgy + buy, + 2gu, + 2 fu, + cu.

Then, there exists a unique linear operator L* called the adjoint of L, and a function v, called

Riemann-Green function of L, such that vL[u] — wL*[v] is a divergence, i.e.,

0H 0K
Lu] —ul*[v] = — + —.
oLl = ul ] = 5+ 5
The adjoint operator L* of I can be calculated using Green’s theorem.

Theorem 7.5. (Green) Let D be some domain closed by a regular closed curve C'. If u and
v are continuous in the closure of D, both u, and v, exist and are bounded in D, and the

double integrals of u, and v, over D exist, then

//D(ux—l—vy)dxdy:/c(lu—l—mv)ds

where (I, m) are the direction cosines of the outward normal to C'.

Since L* does not depend on any particular domain, we can use a domain D con-

sisting of a rectangle to apply Green’s theorem, and one obtains

L*[v] = (av)ype + 2(hv)zy 4 (b0)yy — 2(9v)s — 2(fv)y + cv (7.21)
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Q@ = (21,%) P = (z0,%0) Q@ = (21,%) P = (29,90)
D D
C
¢ \R:($07y1) 7777‘AI($1,@/1) ‘R:(xovyl)

(a) (b)

Figure 7.2: The domain of dependence for the solution of an hyperbolic partial differential

equation. (a) C' is non-degenerate; (b) C' is degenerate.

H = avu, —u(av), + hvuy — u(hv), 4+ 2guv, (7.22)
K = hvuy, —u(hv), + bouy, — u(bv), + 2 fuv. (7.23)

in order that L* is unique, and vL[u] — wL*[v] is a divergence.

Riemann’s method can be applied to solve the so-called Cauchy problem for linear
equations of hyperbolic type. A linear second-order partial differential equation is said to be
hyperbolic in a domain D if and only if ab—h? < 0in D. There is a canonical form into which

any hyperbolic partial differential equation can be transformed using characteristic variables:
2Upy + 29ty + 2 fuy + cu = F(z,y),

so L*[v] = 2v,y — 2(gv)y — 2(fv)y + cv, H = vuy — uvy + 2¢gv and K = vu, — uvy + 2 fuv.
As we shall deal with partial differential equations where ¢ = b = 0 and h is some constant,
all of them are of hyperbolic type. The equations we will find are already in canonical form,
except that we have to multiply by 2 both sides of these equations.

Let €' be some regular duly-inclined arc for which u,u, and u, are known, i.e.,
Cauchy data is given for C'. The arc can degenerate to a pair of characteristics; this is the
case in our applications of the method. Let the characteristics x = x¢ and y = yo through
P = (z9,y0) cut C at Q = (z1,y0) and R = (z0,y1), and let D be the domain bounded by
PQ.PR and C (see Figure 7.2(a)).
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Using Green’s theorem and equations (7.21) to (7.23) it can be shown that, if L*[v] =

0 then
1 1
u(zo,y0) = 5“(90173/0) (90173/0790073/0)4‘ su(zo, y1)v(T0, Y15 %o, Yo) +
—I—% (Kde — Hdy)+ // z,y; o, Yo ) F (2, y) dedy, (7.24)
QR

where the Riemann-Green function v(z,y; 2o, yo) also verifies

Vy = f?] on y¥ = Yo,

vy = gv on r ==xy

and
v(2o, Yo o, Yo) = 1.
In our application of the method, the arc C is degenerated and consists in the
parallel segments to z and y-axis, cutting at A = (21,%1), so @ = (z1,9) and R = (20, 91)
(see Figure 7.2(h)).
Using the identity

v — uyv — 2euv = (uv), — 2v(u, + eu),

where z is any of # and y, and e = e(z,y) is any function, and integrating the first term
of (7.24), we have
w(zo,y0) = w1, y1)v(@1, y1; %o, yo) +
Yo

+ v(uy + fu)dy +

Y1

o 1
+/ o(g + gu)da + 5 //D v(@,y; o, y0) Pz, y) dedy.  (7.25)
1

The partial differential equation (7.9) arising in the analysis of the average size of

the intersection is

L[G] = 2G,, — 2G = 0,

provided we multiply both sides by 2.

Then FF = f = g = 0 and ¢ = =2, yielding L™ = L. On the other hand, Cauchy
data is known along the z-axis and y-axis, i.e. 1 = gy = 0. Therefore, the functions given
initially are G(z,0), G(0,y), and

a_G
Oz

oa
y=0 ’ 8@/

=0
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The last two functions can be computed from the first two, if G(z,y) is analytic at (z,y) =

(0,0), since

a_G
Oz

Y igija Ty =
y=0 ,j>0 y=0
= Z(l +1)gip102" =

i>0

d : d
= § 7 f= G ,0),
dx z’>og 0%F dx (2,0)
and analogously Gy(0,y) = d/dy G(0,y).

In order to obtain the Riemann-Green function, we try a Hadamard series develop-

ment for it,

v; 17
U($, Y5 Lo, @/0) = Z ]~—'27
i>0 J°
where v; are functions to be determined and I' = (2 — 20)(y — yo)-
Imposing the conditions that v should satisfy, we obtain that v; = 1, for all ;7 > 0.

Hence,

v(z,y; 20, %0) = Jo (21\/(95 — zo)(y — 3/0)) :

Changing dummy variables under integration signs by ¢, and zo,50 by z,y, equa-

tion (7.25) becomes,

G(z,y) = /y Jo (21 x(y — t)) 96 dt +
0 dy z=0,y=t
v 0G
Jo | 2 -1 — dt
s [T (/e —0w) 5 L

+ G(0,0)J0(2i/TY).

Substituting G,(0,¢) and G,(t,0) by the particular values corresponding to the

intersection, we obtain the explicit solution of the homogeneous equation (7.9), given in (7.10).
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Chapter 8

Average-case Complexity of the

Equality Test

The equality test of trees is an important algorithm in its own, but it is also the
core of many other algorithms for trees, for example simplification [CFS90]; and it is closely

related to other algorithms such as tree matching [SF83] and unification [CDS89].

It is well known that it takes O(1) steps on average to decide if the trees in the
given pair of total size n are equal or not, when the uniform probability model for the input
is assumed. In other words, it takes a constant number of steps on the average to decide if

they are equal or not, no matter what is the size of the given trees.

In this chapter we present the analysis of the average-case complexity of the canonical

algorithm performing the equality test, under the BST probability model.

As in the previous chapter, this analysis includes the solution of a partial differential
equation. The partial differential equation describing the average behavior of this algorithm
follows from the set of rules of Chapter 5 and more specifically from the considerations we
have made in Chapter 6. This equation is but a member of a broader class of equations:
algorithms that check hereditary properties have average behaviors that are described by
means of similar equations.

An interesting way to see the difference between the intersection algorithm and
the equality test is that equality test checks an hereditary property, while the intersection
algorithm is closely related to the class of algorithms that check “disjunctive hereditary prop-

erties”: by disjunctive hereditary property we mean a binary predicate that holds for a given
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pair if it holds for the pair of left subtrees or it holds for the pair of right subtrees, but not
for both.

In spite to solve the partial differential equation that describes the average behavior
of the equality test, we solve a simpler equation and show the asymptotic equivalence be-
tween the solutions of the simpler equation and of the original equation. Using that indirect
mechanism, we prove that the average-case complexity of testing equality of a pair of binary
trees with total size n is ©(logn) under the BST distribution. This result and that of Chap-
ter 7 clearly contrast with those obtained using the uniform model, that predicts qualitatively
identical average behaviors for equality test and the intersection algorithm (constant). They
are of different orders of magnitude if the BST probability model is assumed instead.

Section 8.1 is devoted to the formulation of the problem. The application of the
translation rules given in Section 5.1 reduces the analysis to the study of a partial differential
equation. The difficulty to solve it leads us to seek lower and upper bounds for the average-
case complexity of the algorithm. In the same section, we provide a non-trivial upper bound.

In Section 8.2 our efforts are directed towards finding a lower bound. We introduce
and analyze a related algorithm that yields a logarithmic lower bound.

In Section 8.3 we deal again with the initial problem and we show that the average-
case complexity of the equality test is of the same order of magnitude as the lower bound al-
ready known. We get this last result in a rather subtle way: we show that the Riemann-Green
function of the partial differential equation associated to the equality test is asymptotically
equivalent to the Riemman-Green function of the partial differential equation associated to the
problem that provides the lower bound. Hence, their solutions are asymptotically equivalent

and the result is proved.

8.1 Testing Equality of Binary Trees.

In order to test the equality of two binary trees, one proceeds as follows : if one of
the given trees is a leaf determine with a unique comparison if the other is also a leaf; if both
are not leaves, recursively test if their left subtrees are equal; if so, continue testing equality
of the right subtrees and then return true or false depending on the last test. Otherwise,
return false (see Algorithm 8.1). The result is that a simultaneous preorder traversal of the

pair of trees is carried on until a difference is found or the traversal is finished.
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function Equal?(7},7T; : BinTree) returns Boolean is
if Ty or Ty is O then
return true if both are O, false otherwise
else
if Equal? (7}, 7)) then
return Equal?(17,17)
else
return false
endif
endif

© 00 N O oW NN e

endfunction;

Algorithm 8.1: Equality test.

This proccess follows the algorithmic scheme given in Algorithm 6.1 and therefore
the average-case complexity of the equality test is can be described by means of (6.2).

We will denote by e(17,7%) the number of steps that Algorithm 8.1 performs on
input (71,73), and the average of e(T1,T3) over all pairs (11,7%) of joint size |T1| + |12] = n

will be denoted e(n). Hence,

e(n)= > Pr(Ty,Ty)- (T, Ty). (8.1)
[T1]+]T2]=n

The complexity descriptor E(z) will be used for the average complexity of the equality test
over pairs of size n
E(z)= Y Pr(T1,Ty)e(Ty, Ty) 2NIHIT (8.2)
T, 1B
while E(z,y) is the complexity descriptor corresponding to the average of e(17,7T3) over pairs

of sizes m and n

E(z,y)= Y. Pr(Ty)Pr(Ty)e(Ty, Tp) 2Tyl T2l (8.3)
Tl,TQEB

Therefore, e(n) = [2"]F(z) and the two generating functions are related by

E(z) = l/z E(t,1) dt. (8.4)

z
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Notice that we can use Pr(-) in the complexity descriptors instead of the weight w(-), since
both measures coincide for binary trees.

Particularizing Equation (6.2) for the case of the equality test and renaming

W(z,y|Equality) = Q(,y),

we have
0*FE 1 1
90y (I—2)2(1—y)? + E(z,y) (m + Q(x,y)) . (8.5)

Since we are considering binary trees, the size of leaves is null and then the initial conditions

of F(z,y) are,

Va E(z,0)= ) (8.6)

vy E(0,y) = i (8.7)

We have already discussed about the generating function Q(z,y) in Chapter 6. For

binary trees, we have u = A = 1, and Q(z,y) satisfies Q,, = Q*. Also, and this was already
mentioned, Q(x - y) depends, in fact, on the product x - y. Defining

R(z) =Y Pr¥(T) 7] (8.8)

TeB

we have that Q(z,y) = R(2-y). R(z) satisfies the second order ordinary differential equation:
_ _— 2 =
iyt R*(z) =0, (8.9)

with R(0) = R'(0)=1

Equation (8.9) seems very difficult to be solved explicitly, mainly because its non-
linearity. Moreover, R(z) has a finite movable singularity that depends on the initial condi-
tions (see Chapter 9).

In order to obtain the answer for the average-case complexity of the equality, we
will devise an upper and a lower bound for it. Our purpose is to squeeze the average-case
complexity of the equality test between two non-trivial bounds (i.e., neither its worst-case nor
its best-case complexity are of help), giving some approximate idea of its order of magnitude.
This approach has been very sucessful since we have been able to prove that the average-case

complexity of the equality test actually reaches the lower bound.

A first non-trivial upper bound can be obtained in the following way; we replace in
the previous algorithm the conditional execution of the equality test over right subtrees (lines

4-8) by
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function BackboneEqual?(7Ty,T; : BinTree) returns Boolean is
if Ty or Ty is O then
return true if both are O, false otherwise
else
return BackboneEqual? (T}, T%)
endif

endfunction;

Algorithm 8.2: Backbones equality test.

return Equal?(7T},T!) and Equal?(717,T})

This version works correctly but in an inefficient way, since it tests the equality
of the right subtrees even when left subtrees are not equal, just as an algorithm testing a
“disjunctive hereditary property” ought to do.

The average-case complexity of this dully version coincides with the average-case
complexity of the algorithm of intersection of binary trees (since symmetrically tests equality

in both pairs of subtrees, when the trees in the original pair are not empty) and then

e(n) = 0(n*Y272 ] \/logm),

under the assumption that input is distributed according to the BST probability model (see
Theorem 7.3).

Recall that both tests (that defined in Algorithm 8.1 and the dully proposed ver-
sion) have the same worst-case complexity and constant average-case complexity when the
probability model is the uniform one. On the contrary, these algorithms have qualitatively

different average behavior for the BST model, as we shall see.

8.2 A Lower Bound for Equality.

In the previous section, we found an upper bound to e(n). In this section we are

going to develop a lower bound, and in this way get a first estimation for e(n).
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Algorithm 8.2 tests if the leftmost branches, also called backbones [Cul85], of two
given trees are equal or not. For any given pair of binary trees, Algorithm 8.2 never makes
more steps than the equality test algorithm with the same pair of trees as input.

Let {(T1,T3) denote the number of steps it takes to decide if T and T3 have the same
backbone. Then I(17,T%) < e(1y,T3), for all pairs (11,1%), and similarly, the average number

of steps done by algorithm BackboneEqual? on input of size n, say I(n), verifies {(n) < e(n).

Straighforward application of the translation rules of Section 5.1 yield

2

oL _ ! Li@.y) (8.10)

dzdy  (1-x)*(1-y)*  (1—=z)(l-y)

subjected to the initial conditions,
Ve D(2,0)= — (8.11)
? - 1 _ x? *
1

L = —. A2
Yy (0,y) = — , (8.12)

where L(x,y) is the complexity descriptor associated to I(17,7%). As usual,
_ ars
i < )
n+1
To solve this equation we proceed as in the analysis of intersection looking for a
particular solution. It turns out that
i (5) +1n (25)
2 (I-2)(1-y)

is such a particular solution. Therefore, if we denote L (z,y) the solution of the homogeneous

equation we have
— 1
[ =
()=

where H, ~Inn+ v+ O(1/n) denotes the n-th harmonic number.

("] Ln(z,2) + Hppr — 1 (8.13)

The homogeneous partial differential equation can be solved by means of Riemann’s
method. To do so, we use a change of variables to get the homogeneous partial differential
equation 2G/,, —2G = 0 and then apply the method in the “standard” way (see the appendix A
at the end of Chapter 7). Finally we obtain the following technical lemma:

Lemma 8.1. Let Lj(z,y) be the solution of the homogeneous equation corresponding to (8.10).
Then
[2"]Lp(z,2) ~ 3-[2"]Jo (—2iln(1 — 2)),
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The proof of this lemma is analogous to that of Lemma 7.2.

Using Lemma 7.3 and Lemma 8.1 we get the asymptotic behavior of the coefficients

of Ly(z,z). Combining this asymptotic behavior with equation (8.13) we get Theorem 8.1.

Theorem 8.1. The average-case complexity of the algorithm that tests if the leftmost branches

of a pair of binary trees of size n are equal is asymptotically

3
l(n) ~ Hn_|_1 -1 + m + O(ln_3/2 n)
~ Inn+ O(1).

8.3 The Average-case Complexity of Equality Testing.

The question that now arises is how far is e(n) from the bounds we have obtained

in previous sections:

Inn+0(1)<e(n) <ec nzﬁ_z/vlnn.

Is it of the same order of magnitude as any of them?

Let us consider the length of the backbone of binary trees distributed accordingly
to the BST probability model. Its expectation is O(logn), whereas its standard deviation is
O(y/log n). We conclude that the probability of two trees of size n having the same backbone

is small, namely of order O(1/y/logn). This fact strongly suggests that e(n) = O(I(n)).

A closer look at equations (8.5) and (8.10) reveals that they are very similar, where
the unique difference is the term Q(z,y) in the factor multiplying the unknown function.
Moreover, F(x,y) and L(z,y) have Taylor series development only in the region { (z,y)||z| <
1, |yl < 1}, while the domain of convergence of Q(z,y) is larger (see Chapter 9). Therefore,
if the behavior of e(n) is determined by the singularities of E(z,y), then Q(z,y) can be
considered just as a “perturbation” that can be neglected.

This observation leaded us to consider whether there is a relationship between the
solutions of both equations, and more precisely how their respective Riemann-Green functions
are related.

The Riemann-Green functions are, respectively, the solutions of the homogeneous

equations,

0% X 1
920y~ (m + R(z - @/)) (8.14)



110 CHAPTER 8. AVERAGE-CASE COMPLEXITY OF THE EQUALITY TEST

After O(logn) steps a difference is likely to be found

Figure 8.1: Testing equality of leftmost branches.

and ,
0“v v
= 8.15
920y~ (1= ) (1= )’ (8:15)
where both functions share the same initial conditions:
oo _ o _oo| _oo
8$ y=0 8$ y=0 83/ =0 83/ =0 ’
v(0,0;0,0) = ©(0,0;0,0)= 1. (8.16)

Therefore, using equation (7.25) we can express F(z,y) in the following way

E(xz,y) = FE(0,0)¢ (0096@/)+
oE
+ / O,t,xy dt—l—/ 150963/)8 dt +
=0 €T | x=t
y= y=0
1
0(s,1; ds dt 1
+ [ [t ,x,y>(1_8)2(1_t)2 sdt, (8.17)

and in the same way we can express L(z,y) as

L(z,y)

L(0,0)v(0,0; x y)—l—
/y v(0,¢; ‘ dt+/ (t,0; )G_L dt +

_|_

+ // v(s,t;2,y) = )1(1—15)2 ds dt. (8.18)
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It should be pointed out that both £ and L satisfy hyperbolic partial differential
equations and that those equations are self-adjoint. In particular, their respective Riemann-

Green functions have the following “symmetry” property:

U($, Y5 Xo, @/0) = U($07 Yos ¥, y)v

o(z,y;20,90) = O(T0,Y0;2,Y)-

If we make a change of variables

{X = In (L)

Yo= ()

1-y

the partial differential equations satisfied by F and L are correspondingly transformed, and
the new Riemann-Green functions are characterized by simpler equations. The following
result establishes the relation between V(X,Y; Xo, Yp) = v(x, y; 20, yo) and V(X, Y; Xo,Y0) =
b(z, y; 20, Yo)-

Lemma 8.2. Let V(X,Y; Xo,Ys) = v(z,y;20,y0) and V(X,Y;XO,YO) = (@, y; %0, Yo)-

Then as X — 00,Y — oo along the real axis and if Xy and Yy are real valued, we have,

V(X,Y; Xo,Yo) ~ V(X,Y; Xo, Yo)

The lemma holds also if we interchange X with Xo and Y with Yy, by the symmetry of V and
V w.r.t. the pairs (X,Y);(Xo, Yo).

Proof. In order to obtain the Riemann-Green functions V and V we assume that both have
Hadamard series expansions.

Making the change of variables described above

{X = In (L)

Y In (ﬁ) ’

equations (8.14,8.15) are transformed into

92V
0XdY

9%V
0XdY

= V[1+R(1-eX) (1= V)@ (8.19)

= V. (8.20)
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Imposing conditions (8.16) we find that the coefficients of the Hadamard series de-

velopment of V' are V,, = 1, for every n > 0, and we obtain

V(X,Y; Xo,Yy) = Jo (21\/()( - Xo)(Y — Yo))

We shall use the following formula to relate V,, and V,, [Cop75]:

r n—1
v, = _Itto / 5 Llv,—1]ds, n >0, (8.21)
™ Jo g

where v,, are the coeflicients in the Hadamard series expansion of the Riemann-Green function
v of an arbitrary linear differential operator L, x = xg + rsinf, y = yo + rcos#f, and L is
given as a function of £ = zp + ssin @ and 1 = yo + scos @ instead of x and y.

Using (8.21) to determine the coefficients V,, in the Hadamard series development of

V we get
Vo = 1
N n r 1 82Vn_1 .
n = T " - Vn— ds —
V, - [/0 S (85877 V, 1) S
- / Sn_l Vn—l h(fﬂ?) d‘g]v (822)
0

where A(X,Y) = R((1 — e=X)(1 — e7Y))e=(X+Y) and the we have expressed (X,Y) in polar
coordinates: X = Xo+rsinf, Y = Yy+rcosf. The variables £ and n are also transformed

to polar coordinates: £ = Xg + ssinf and n = Yy + scos#.

Now, we will sketch the induction proof for Lemma 8.2.
For n = 0, we have Vo= Vo= 1. Assume that, for all j < n,if X — oc and ¥ — oo,
we have V; ~ V;. Then, from (8.22) we obtain

V, ~V, + l/ st h(&,m)ds. (8.23)
™ Jo

In Chapter 9 we examine in depth the behavior of R(z); it is not difficult to prove
that R(|z])is a monotonic increasing function and that it is analytic in a disk of radius larger
than 1. These two facts are crucial to finish the proof; since the modulus of % is bounded, we
can use the Mean Value Theorem to evaluate the integral in (8.23).

By hypothesis, both Xy and Y are real and both X and Y tend to oo along the real

axis. Hence, r and # are also real. Then, from (8.23) one gets

. K r
Vi~V b e—<X0+YO>/ t"tet dt, (8.24)
0

a?’L T?’L
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where K is a constant and a = sinf + cosf. Since X — oo and Y — oo, it follows that

r — oo and the equation above is

. !]r
V, ~ VR (XotYo) oy (8.25)

a?’L T?’L

Hence, Lemma 8.2 follows. m

Undoing the change of variables, and applying Lemma 8.2 to the partial differential
equations (8.17,8.18) we have

E(z,y)~ L(z,y),

when # — 1 and y — 1 along the real axis. To translate this asymptotic equivalence of
functions to asymptotic equivalence of coefficients one must show that suitable Tauberian
conditions hold since we have only proved that the asymptotic equivalence is valid when both
x and y tend to 1 along the real axis. In particular, we can show that the Hardy-Littlewood-

Karamata theorem can be applied because we have

E(z,z)~ 3Jo(—2iln(1 - 2)) + M z—17.

using once again the asymptotic expansion of Jy(z) for large z, and the fact that all [z"]E(z, 2)
are positive and form a monotonic sequence.

It is now immediate to state our main theorem,

Theorem 8.2. Under the BST probability model, the average-case complexity time of the

equality test for pairs of binary trees of size n behaves as

e(n) = O(logn). (8.26)

We point out that if we assume that the input is uniformly distributed the average-
case complexity of the equality test algorithm is O(1) as for the intersection algorithm; this
fact shows that the BST probability model predicts qualitative differences between the com-
plexity of algorithms where the former does not. On the other hand, the uniform and the BST
probability models do not discriminate between the average-case complexities of the equality
test and of the backbones equality test, since both algorithms have the same average-case

complexity for each one of these models. In particular, the average-case complexities are
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logarithmic for the BST model and constant for the uniform model. This is because the
probability of two binary trees being equal is exponentially decreasing with the size of the

trees in both models, although at different rates.
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Chapter 9

On the Probability of Two BSTs
Being Equal

In Chapter 8 we have analyzed the average-case complexity of the canonical algo-
rithm for the equality test between binary trees. The analysis is carried on without explicitly
solving the equation associated to the binary predicate of equality, that is one of the so-called
hereditary properties (see Chapter 6). In this chapter we address the problem of evaluat-
ing the probability that two binary search trees are equal, when the trees are independently

drawn and have n internal nodes each.

9.1 The Problem.

Recall that the problem of evaluating the probability that two trees of size n each are

equal, reduces to the evaluation of the following bivariate generating function (see Chapter 6):
Qa,y) = > Pri(T)alTlyll,
TeB
Since Q(x,y) = R(z - y) we can alternatively evaluate
R(z) = Z Pr(T) AT = Z T 2"
TeB n>0

Here, r,, denotes the probability that two BSTs, of size n each, are equal.

It turns out that this problem is by no means easy to solve, since the power series

R(z) is the solution of the non-linear second-order differential equation

2y oy =yt =0, (9.1)
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with initial conditions
y(0) = (0) = 1. (9:2)

The singularities of the solution of (9.1) are not fixed (if it has any at all), as they depend on
the initial conditions and on the differential equation itself [Inc56]. This differential equation
is a particular case of the Emden-Fowler equation (see [Bel53, Zwi89]), but neither the singu-
larities nor asymptotic expansions of the solution have been studied for (9.1). From now on,
we will denote by R(z) the unique analytic solution of (9.1),(9.2); so, R(z) is a valid power
series expansion for R inside the convergence disk of R(z).

Although the problem of evaluating R(z) seems very difficult, recall that the analysis
of equality test made in Chapter 8 was still possible, because we only needed to show that
the function R(z) is analytic in a disk of radius p > 1.

The proof of the the last fact and other elementary facts about R(z) is based upon
the recurrence obeyed by the coefficients r,, of the power series R(z):

Z TETn—k

0<k<n
(n+1)?

Tntl = ; ro = 1.

Our aim is to derive the asymptotic behavior of r, = [2"]R(z) for large n. To obtain
this objective, we will use the technique of subtracted singularities and try to apply one of the
transfer lemmas (see Subsection 1.2.2). In particular, the two conditions for the application
of a transfer lemma are that we have an asymptotic expansion of the solution of (9.1),(9.2)
around the singularity with smallest modulus; and that such an expansion involves functions
belonging to a certain restricted class including algebraic and logarithmic functions. Moreover,
the asymptotic expansion should hold for some domain of the complex plane enclosing the
disk of convergence, and therefore, requires the analytic continuation of R(z) outside this disk

(see Subsection 1.2.2).

9.2 The Domain of Analyticity of R(z).

We begin enumerating three easy-to-prove propositions about the power series R(z).

Proposition 9.1.

1. R(z) is analytic in a disk of finite radius 1 < p < .
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Vs

Figure 9.1: The domain of analyticity of R(z) encloses the disk |z| < p.

2. R(|z|) is a monotonic increasing function and for every z in the convergence disk,

|R(2)| < R(|2]); R(2) has a singularity at the real positive axis at z = p.
3. R(z) and all its derivatives become infinite at the singularity at p.
Proof. In order to prove (1) it suffices to show by induction that
Vn > 1, cln(3\/§)_” <r,< czn(\/g)_”

for some constants ¢; and ¢y. Fact (2) follows from the positivity of the r,,. Finally, (3) is

proved by reductio ad absurdum, showing that R(z) would not be singular otherwise. m

The following lemma establishes that the domain of analyticity of R properly encloses

the disk |z] < p (see Figure 9.1).

Lemma 9.1. Assume that z = p, el is a singularity of R(Z), for some p, > 0 and 6 # 0.
Then, p, > p.

Proof. The proof of this lemma is based upon a continuity argument due to Michele Loday-

Richaud. Suppose that z = p, ¥ is a singularity of R(Z) in the direction given by 6 # 0. For
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any z > 0, let v(z) = 2R'(x). Therefore,
R(z) = 1—|—/Oz%d¢.

Furthermore, let w(z) = |v(2 ei€)| and let u(z) = |R(z ei€)|. Neither w(z) nor u(z) are
bounded in a neighbourhood of p,, by reductio ad absurdum. By Proposition 9.1 (2), if
z is close enough to the origin, then w(z) < v(z) and u(z) < R(z). Fix z1, such that
0<ay <p, wx) < v(z;) and u(zy) < R(xy). Since v, w, u and R are continuous
functions, there must be zq such that 0 < z3 < 23 < p and w(zy) < v(2g) and u(zy) < R(xy).

Let t € [0,p — 22) N [0,p, — 1), where 27 and x5 are as before. We prove that
w(zy + 1) < v(xg + ) for any such ¢. Assume that ¢y is the minimum value such that
w(zy 4+ 1) = v(xg + t1). Since w(zy +¢) < v(ag + 1), we have w'(zy + 1) > v'(z2 + t1). We
get then,

EQ(@ +t) =0 (zg+ 1) <@y + 1) < (@ + 1),

where the last inequality is given by the fact that |w’| < |v'|, whenever w is differentiable.

Hence,

0§U@rHﬂ§u@ﬂ+Ah£%£U@ (224 ¥)

~ t1 v
dip < R(x -I-/
T A T
yielding the contradiction. Therefore, w(z1+1t) < v(zo+1t) for any ¢t € [0, p—22)N[0, p, — 21).

dp = R(xa + 1),

The last argument and the fact that w(z) is not bounded in a neighbourhood of p,,
yield that
Py = ptx— 22

and the lemma follows. m

9.3 A Family of Solutions around the Singularity.

The asymptotic expansion for R(Z) can be obtained solving the differential equa-
tion (9.1) in a neighborhood of z = p (see example 5 in Section 4.3 of the book of Bender and
Orszag [BOT78], for instance). Making the change of variables Z = p — z, we obtain

(p—2)y' —y —y*=0. (9.3)

Local analysis shows that the leading singular behavior of y(Z) that becomes infinite

at Z =01is
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for A = 6p. However, this leading behavior does not mean that R(Z) has a pole at z = p.
If there is a pole at z = p then R(z) = y(Z) = Z 2F(Z) where F(Z) is analytic in a
neighborhood of Z = 0. But F(Z) is not analytic in a neighborhood of Z = 0 and the

singularity is not a pole, because the assumption that
y(Z) = Z_2 (ao +a17Z + a2Z2 + a3Z3 + .. )

leads to a contradiction.
Trying instead a series including terms of the type Z™ In" Z [BO78] no contradiction

arises and we can conclude that

Y(Z)=dosoZ*+daoZ7' + > dpn 2™ log" Z (9.4)
m,n>0
is a family of solutions of (9.3), depending on two arbitrary constants p and h, since d,, , =
dyn(h, p)forall m > —2,n > 0. We shall consider only those functions such that p is actually
the radius of convergence of R(z) and use Y3(Z) to denote the dependence on h.
Substituting (9.4) into (9.3) and equating terms in Z"™ log" Z, for m > —2,n > 0

we can set up the following recurrences for the coefficients d,, ,, (we omit some of them):

d—z,o = 0p,
d_1o0 = —12/5,
d4,0 = hv

p((m+ 1)+ 2)d 20+ (20 + 3) (0 + Ddyangn) +
(m+ 1)?dpg1,0 — (2m+ 2)(n+ 1)dpy1nt1

(n+2)(n + 1)dmi1,nt2

2d_1 00410 + 2d_2 0dq2,n + Z dij dm—in_j.

0<i<m
0<y<n

p(n+2)(n+ 1)dmy2n42

+ + +

From the recurrences above is straightforward to prove the following lemma, by

induction on m:

Lemma 9.2, Forallm > -2, n >0, dpn=0, ifn> {jJ
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From now on, we shall denote ¢(m) := {THJ , since this integer function will appear

quite often in the rest of the chapter.

A second inductive proof shows that the following lemma holds.

Lemma 9.3. Foa allm > -2, n >0,

(=" 5
dm,n = pm-l-l ]Xmm (hp ) N m > —2,71 > 0

where K, () are polynomials of degree ¢(m) — n and their coefficients are constants that

do not depend on h nor on p. Moreover, K4 o(x) =z and dqo = h.

Our recurrences for d,, ,, translate to recurrences for the coefficients of the polyno-
mials K, ,(2), and Lemma 9.2 implies that K, ,(z) = 0 whenever n > ¢(m).

To finish our collection of lemmas about the polynomials K, ,,, we state:

Lemma 9.4. For all m > 0,n > 0 and for any ¢ > ¢'/% ~ 1.18136. . .,
Cm

mrn!’

[ Ko, (0)] <

Proof. We shall only give an sketch of the proof of the lemma. It can be proved by induction
on m and n. In fact, the right way to carry on the proof is to use the following ordering for
the pairs (m,n): (m,n) < (m/,n')if m < m’ or, m = m’ and n > n’. Then induction is done
over whole “columns”, i.e. from n = ¢(m) to n = 0, and then over m. To simplify notation,
let us denote K, , = Ky, ,,(0).

Assume that the lemma is true for all m such that 0 < m < mg and mg > 3, and
for all n < ¢(mg). Let m = my — 1. Since Kp42,(0) = 0if n > ¢(m + 2), we need only to
prove that the lemma is also true for n < ¢(m + 2). We start with the following recurrence
(valid for all m 4+ 2 > 4),

v

m? —3m—10
+ (m+2- 1)2 + 2K 1 0) K10 — 2m+2)(n+ 1)K g1 np1 +
+ e+ 2 DR+ 2 KijKpoin].

0<i<m
0<y<n

Kopton [(277”& +3)(n+ 1) Kpyont1+ (n+2)(n+ 1)K pq2 042 +

Applying the induction hypothesis and substituting Koo and K_; o by their known
values, we have

cmt? 2m + 3 . 1
T (mA42)mn! | (m?2+3m—10)(m+2)  (m?43m—10)(m+ 2)

5T
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4 1<m—|—2)n m2—|—2m—19/5+ 2m + 2 4 1 4
¢\m+1 m? +3m — 10 (m?+3m—10)(m+1) (m? +3m—10)(m+ 1)?
1 (m2—|—2m)” - - 14 (m—l—Q)”

+ §_2m2+3m—100§<:m’ (= 4 3m — 1002 \ m '

Additional manipulations show that the expression inside the square brackets is <1

for any m > 0 and any n such that 0 < n < @(m +2),if ( > /6. m
We remark that the bound provided by this lemma is not tight.

Once we are equipped with the last three lemmas we are ready to prove that Yy(7)

1/6p < p and cut along the real

is analytic in a punctured disk around Z = 0 of radius 6 = e~
axis for Z > 0. Recall that we already know from Proposition 9.1 that p > /6 and hence

6 > 2.0.
Lemma 9.5. The function

Yo(Z)=d20 272 +d_10Z7" + > dpn 2™ log" Z

m,n>0

is analytic in the domain D = { Z|0 < |Z| < e=Y/%p,0 < |arg(Z)| < 7 }.

Proof. By definition, the functions

d_ d_
Z22,07 Z1,07 and dy, , 2™ log" Z

are analytic in D). Hence, we ought to prove that

> dpn 2™ logh Z
m,n>0
is uniformly convergent for any Z in D. Lemmas 9.3 and 9.4 provide the adequate majorization

for |dp, »|; for ¢ = exp(1/6), we have

Let Zy be any complex number inside D. By Lemma 9.2, d,,, ,, = 0 whenever n > (m). If
|Zo| < 1 then |Zolog Zo| < |Zo|'/?(1 + 7) and we can bound the absolute value of each of the

summands by
|dmn Zg' log" Zo| < P_(m+1)C—M|Z0|m_n/2(1 + )/,

m?’L
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But as m — n/2 > m/2, we get

(o 251 log™ Zo| < p= DS 721 4 e,
n.

m?’L

from where it follows that

is convergent. Analogously, if 1 < |Zo| < e=Y/p, | Zylog Zo| < | Zo|(logp + 7) and a similar
bound whose sum is convergent can be found.
This proves that 3=, .~o dm,n 2" log" Z uniformly converges and hence that Yo(Z)

is analytic in D. m

9.4 Asymptotic Behavior of the n-th Coefficient of R(z).

Up to this point we have already shown that f%(z) is analytic in a domain properly
enclosing the disk of convergence of R(z). Also, that there is a family Y (Z) of solutions of
the differential equation around the singularity at p and that Yo(Z) is analytic in a region
of radius e~ /%) centered at p. The next step would be proving that there is some domain
where one of the Y,(Z)’s is a valid asymptotic expansion of R(z). Nevertheless, we have been

not able to do so and therefore we introduce the following conjecture

Conjecture 9.1. For some z such that both R(z) and Yy(p — z) are analytic

Yolp—2) = R(2),
Yip-2) = R(2).

There is overwhelming empirical evidence that the conjecture actually holds. For
instance, numerical computations of p using Hadamard’s expression of the convergence ra-
dius (p~! = lim,— 7‘7(11/”)) and the ones done assuming the conjecture are coincident in all
significative digits, giving p = 3.140857701.... On the other hand, approximations of R(z)
by Yo(z), along the real axis, are good. Finally, it can be shown that for any h such that
|h p®| < 1, then Yj(z) is analytic on a domain Dj = {Z]0 < |Z] < 6,0 < |arg(Z) < 7},
with 6 ~ 0.35. If we require that Y},(Zy) = R(p — Zy) and —Y/(Zy) = R'(p — Zy) for some

Zo € Dy, and solve these equations for an unknown h, our numerical calculations show that
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Figure 9.2: Domains of analyticity of R(2) and Y(Z).

|h| — 0 as we increase the accuracy of the approximations of Y}, (%), Y/ (Zo), R(p — Zp) and
R'(p = Zo).

If the conjecture is true, the rest of the argumentation is simple. By the existence
and uniqueness theorem for analytic solutions of ordinary differential equations, R(Z) and
Yo(Z) must coincide in a neighbourhood of the point where we conjecture the functions are
equal. By the analytic continuation principle, it can be stated that both functions are equal
in A’ = DN A, where A is the domain of analyticity of R(z) (see Figure 9.2).

Therefore, all conditions for the application of a transfer lemma are fulfilled since
R(z) is analytic in the domain A’ and as z — p inside A’ we have

R(Z) _ d_s0 n d_10
(=22 (p=2)
+ > D dnalp—2)"log"(p - 2).

m>00<n<m

We summarize our results in the following claim.

Claim 9.1. The probability that two binary search trees are equal, if they are independently
drawn and have size n each is, provided that Conjecture 9.1 holds,

T~ 6np "L —12/5p7 7 4 pnt Z d;7kn_j_1 logh=' n,

J2>0
0<k<e(s)
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where p = 3.140857701 ..., and the constants d}k are
di , ~ K;(0)(=1)"*"log" p

Notice that the leading behavior of the asymptotic estimate of r, does not depend

on h.
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Part IV

Conclusions and Open Problems






IV.1. ANALYSIS OF THE COMMON SUBEXPRESSION PROBLEM. 127

This part contains the description and the first steps of the analysis of the common
subexpression problem.We obtain an explicit expression for the generating function associated
to the size of the compacted tree, and leave open the estimation of asymptotic behavior of
the coeflicients of that generating function.

We also summarize the main conclusions of the thesis, discussing the results obtained

and its significance.

IV.1 Analysis of the Common Subexpression Problem.

This section presents a problem that is quite different from those problems that
we have examined in thesis. The problem of common subexpression, also known as tree
compaction problem, is an interesting representant of a different family of problems. The
canonical algorithm that performs the tree compaction is one of the so-called bottom-up
algorithms [CFS90]. We are particularly interested in the evaluation of the average size of

the compacted tree, as a function of the size of the original tree.

Any tree can be represented in a one-to-one correspondence by a direct acyclic
graph (DAG, for short), where common subtrees are factored and represented only once. In
the implementation, several pointers will point to the root of any common subtree, and the
resulting structure is a DAG (see Figure IV.3). The compaction process can be done in linear
time, and is routinely used in Lisp systems, computer algebra and symbolic manipulation
systems and compilers (mainly in the register allocation, code generation and optimization
steps).

As the size of the DAG will be most of the times less than the size the original
tree, the expected savings in storage is the quantity that we are interested in analyzing. The
analysis of the size of the DAG corresponding to a tree of size n was done for the uniform
model and related variants by Flajolet, Sippala, and Steyaert [FSS90].

A similar approach to that followed in the mentioned paper, works for the BST
model, but algebraic equations are replaced by differential ones, and the “classification” on
sizes that works for the uniform model seems no longer possible for the BST model.

Let K(T') be the size of the DAG obtained when tree 7" is compacted. Then the
average size of a DAG coming from a tree of size n is

K= Y. Pr(T) K(T),

|T|=n
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Figure IV.3: Compacted representation (DAG) of a labelled binary tree.

where Pr(T') denotes the probability of the tree T in the BST model.
The characteristic K (7") turns out to be
=> 1,
uCT
u
where v C T means that u is a subtree of T and O denotes the empty tree; therefore, every
subtree u of T' contributes by 1 to K (T') no matter the number of times it appears.

Hence, if we define the generating function K(z) for the sequence {K(n)},>o as

usual, then we have

K(z) = ZK(n ZPI’ AT =
n>0 TeB
= ZPI’(T) Z 1] 27
TeB OucT
= Z pr(T) 271,
(w,TY)EF

with F = {(u,T)|T € B,O#u CT}.

The set F can be expressed as

F = U {u} x Ay,

ueB-0
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A = {TeBluCT}=u+o(Ay,B—Ay)+o(B— Ay Ay) +o(Au, Ay).

And hence

K(z) = Z Au(2),

ueB-0

Au(z) = >0 Pr(1) L

TeA
Notice that the last equations are valid for any probability model.
Using the recursive decomposition of A, as well as the definition of Pr(7T") we can

easily derive the following differential equation for A,(z)

dA,
dz

= |u| Pr(u) 2= + 21A+(z) — A2(2), (IV.1)

subject to initial conditions A,(0) =0, A, (0) = 0if |u| > 1 and A} (0) = 1if |u| = 1.
Let y(z) = Ay(z), n = |u| — 1 and A = (n+ 1) Pr(u). Then (IV.1) is

2

y = — P+ A",
1—2z

which is a Ricatti differential equation [Inch6]. If we take

the original differential equation is transformed into
w' = A"w =0,

whose solution is (see, for eample [AS64, (9.1.51)])

) Zn/?—l—l
w(z) =2 C, (21\/X n—|—2)

where v = nlﬁ and C, is a linear combination of the Bessel functions J, and Y, (a cylinder

function).

Hence, K(z) can be expressed as

’ d S1/2 /2
K(z)= - Z 111(1_2&, (21\/X n—I—Q))'

ueB-0

Notice that the order of the cylinder functions in K(z) depends only on the size of

u, but their arguments depend also on Pr(u).
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IV.2 Conclusions.

The recursive nature of the BST model allows the average-case analysis of algorithms
under this model, by means of the symbolic operator method. The resulting equations over
generating functions for the BST model are differential equations. For the case of algorithms
dealing with pairs of trees the equations are partial differential. Specific mathematical tools,
such as the Riemann’s method, are needed in order to obtain the asymptotic estimates of the
coeflicients of the generating functions that satisfy those partial differential equations.

We have explored some simple recursion schemes over pairs of trees. We have been
able to perform the complete analysis of the average size of the intersection of trees, and of the
average-case complexity of the equality test algorithm. The average size of the intersection
of a pair of trees of size n turns out to be @(nzﬁ_Q/\/@). The average-case complexity
of the equality test is ©(logn). These results contrast with the results corresponding to the
uniform model, that are in both cases O(1). We say that the BST model is able to discriminate
between the equality test algorithm and the intersection algorithm, because their average-case
complexities are qualitatively different. This is not the case for the uniform model.

Closely related to the problem of equality is the problem of evaluating the probability
that two binary trees of the size n are equal. It appears to be O(p™" n). We have also examined
other problems associated to hereditary properties, that are characterized by the same kind
of differential equations.

A lot of work has still to be done for a better comprehension of the BST model
and the average-case analysis under the BST model. However, much of the mathematical
problems that arise in these studies are rather difficult, as this thesis shows.

A possible line of research is the development of complex analysis techniques to cope
with multivariate complex functions. Almost all of the complex analysis techniques in use in
the area of average-case analysis deal with functions of a single variable. For instance, much
is known about the nature of the singularities and the asymptotic behavior of the Taylor
coeflicients of functions satisfying linear ordinary differential equations. A lot of information
can be extracted without even solving the differential equations. Similar results for partial
differential equations would be of great interest for the average-case analysis under the BST
model, where this type of equations arise naturally.

Besides the BST model, it would be interesting to study other probability models,

such as the mST, DST or quadtree model. Furthermore, these models could be generalized
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to arbitrary families of trees and to pairs of trees. Just to give an example, the extension of
the DST model to pairs of trees is quite similar to the extension of the BST model to pairs,
and the type of equations that appear in the average-case analysis under the extended DST

model are, in general, partial difference-differential equations.
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