
Skip Lists

Conrado Martínez
U. Politècnica de Catalunya

RA-MIRI 2023–2024

Part

1 Skip lists

Skip lists

W. Pugh

Skip lists were invented by William Pugh (C. ACM, 1990)
as a simple alternative to balanced trees
The algorithms to search, insert, delete, etc. are very
simple to understand and to implement, and they have
very good expected performance—independent of any
assumption on the input

Skip lists

W. Pugh

Skip lists were invented by William Pugh (C. ACM, 1990)
as a simple alternative to balanced trees
The algorithms to search, insert, delete, etc. are very
simple to understand and to implement, and they have
very good expected performance—independent of any
assumption on the input

Skip lists

A skip list S for a set X consists of:
1 A sorted linked list L1, called level 1, contains all elements

of X
2 A collection of non-empty sorted lists L2, L3, . . . , called

level 2, level 3, . . . such that for all i > 1, if an element x
belongs to Li then x belongs to Li+1 with probability p, for
some 0 < p < 1

Skip lists

To implement this, we store the items of X in a collection of
nodes each holding an item and a variable-size array of
pointers to the item’s successor at each level; an additional
dummy node gives access to the first item of each level

Skip lists

To implement this, we store the items of X in a collection of
nodes each holding an item and a variable-size array of
pointers to the item’s successor at each level; an additional
dummy node gives access to the first item of each level

Skip lists

The level or height of a node x, height(x), is the number of
lists it belongs to.
It is given by a geometric r.v. of parameter p:

P[height(x) = k] = pqk−1, q = 1 − p

Skip lists

The level or height of a node x, height(x), is the number of
lists it belongs to.
It is given by a geometric r.v. of parameter p:

P[height(x) = k] = pqk−1, q = 1 − p

Skip lists

The height of the skip list S is the number of non-empty
lists,

height(S) = max
x∈S

{height(x)}

The random variable Hn giving the height of a random skip
list of n is the maximum of n i.i.d. Geom(p)

Several performance measures of skip lists are expressed
in terms of the probabilistic behavior of a sequence of n
i.i.d. geometric r.v. of parameter p

Skip lists

The height of the skip list S is the number of non-empty
lists,

height(S) = max
x∈S

{height(x)}

The random variable Hn giving the height of a random skip
list of n is the maximum of n i.i.d. Geom(p)

Several performance measures of skip lists are expressed
in terms of the probabilistic behavior of a sequence of n
i.i.d. geometric r.v. of parameter p

Skip lists

The height of the skip list S is the number of non-empty
lists,

height(S) = max
x∈S

{height(x)}

The random variable Hn giving the height of a random skip
list of n is the maximum of n i.i.d. Geom(p)

Several performance measures of skip lists are expressed
in terms of the probabilistic behavior of a sequence of n
i.i.d. geometric r.v. of parameter p

Searching in a skip list

Searching for an item x, 42 < x 6 53

12 4240 53 663721

Header

−OO

NIL

OO+

Searching in a skip list

Searching for an item x, 42 < x 6 53

12 4240 53 663721

Header

−OO

NIL

OO+

Searching in a skip list

Searching for an item x, 42 < x 6 53

12 4240 53 663721

Header

−OO

NIL

OO+

Searching in a skip list

Searching for an item x, 42 < x 6 53

12 4240 53 663721

Header

−OO

NIL

OO+

Searching in a skip list

Searching for an item x, 42 < x 6 53

12 4240 53 663721

Header

−OO

NIL

OO+

Searching in a skip list

Searching for an item x, 42 < x 6 53

12 4240 53 663721

Header

−OO

NIL

OO+

Searching in a skip list

procedure SEARCH(S, x)
p← S.header
`← S.height
while ` 6= 0 do

if p.item < x then
p← p.next[`]

else
`← `− 1

end if
end while

end procedure

Insertion in a skip list

Inserting an item x = 48

12 4240 53 663721

Header

−OO

NIL

OO+

Insertion in a skip list

Inserting an item x = 48

12 4240 53 663721

Header

−OO

NIL

OO+

Geom(p)

48

Insertion in a skip list

Inserting an item x = 48

53 66

NIL

OO+12 42403721

Header

−OO

48

Insertion in a skip list

Inserting an item x = 48

53 66

NIL

OO+4812 42403721

Header

−OO

Implementing skip lists

template <typename Key, typename Value>
class Dictionary {
public:

...
private:

struct node_skip_list {
Key _k;
Value _v;
int _height;
vector<node_skip_list*> _next;

node_skip_list(const Key& k, const Value& v, int h) :
_k(k), _v(v), _height(h),
_next(h, nullptr) {

}
};
node_skip_list* _header;
int _height;
double _p; // e.g., _p = 0.5
...

};

Implementing skip lists
template <typename Key, typename Value>
void Dictionary<Key,Value>::lookup(const Key& k,

bool& exists, Value& v) const throw(error) {

node_skip_list* p = lookup_skip_list(_header, _height-1, k);
if (p == nullptr)

exists = false;
else {

exists = true;
v = p -> _v;

}
}

template <typename Key, typename Value>
Dictionary<Key,Value>::node_skip_list*

Dictionary<Key,Value>::lookup_skip_list(
node_skip_list* p,
int l, const Key& k) const throw() {

while (l >= 0)
if (p -> _next[l] == nullptr or k <= p ->_next[l] -> _k)

--l;
else

p = p -> _next[l];

if (p -> _next[0] == nullptr or p -> _next[0] -> _k != k)
// k is not present
return nullptr;

else // k is present, return pointer to the node
return p -> _next[0];

}

Implementing skip lists

To insert a new item we go through four phases:
1) Search the given key. The search loop is slightly

different from before, since we need to keep track
of the last node seen at each level before
descending from that level to the one immediately
below.

2) If the given key is already present we only update
the associated value and finish.

Implementing skip lists

template <typename Key, typename Value>
void Dictionary<Key,Value>::insert_skip_list(...) {

node_skip_list* p = _header;
int l = _height - 1;
vector<node_skip_list*> pred(_height);
while (l >= 0)

if (p -> _next[l] == nullptr or k <= p ->_next[l] -> _k) {
pred[l] = p; // <====== keep track of predecessor at level l
--l;

} else {
p = p -> _next[l];

}

if (p -> _next[0] == nullptr or p -> _next[0] -> _k != k) {
// k is not present, add new node here
...

}
else // k is present, update associated value

p -> _next[0] -> _v = v;
}

Implementing skip lists

3) When k is not present, create a new node with k
and v, and assign a random level r to the new
node, using geometric distribution

4) Link the new node in the first r lists, adding empty
lists if r is larger than the maximum level of the
skip list

Implementing skip lists
template <typename Key, typename Value>
class Dictionary {
public:

...
private:

...
Random _rng; // associate a random number generator

// to the skip list
};

template <typename Key, typename Value>
void Dictionary<Key,Value>::insert_skip_list(...) {

...
// adding new node
// generate random height
int h = 1; while (_rng() > _p) ++h;
node_skip_list* nn = new node_skip_list(k, v, h);
if (h > _height) {

// add new levels to the header
// make pred[i] = _header for all i = _height .. h-1
...

}

// link the new node to h linked lists
for (int i = h - 1; i >= 0; --i) {

nn -> _next[i] = pred[i] -> _next[i];
pred[i] -> _next[i] = nn;

}
}

Implementing skip lists

...
if (h > _height) {

node_skip_list* _new_header =
new node_skip_list(_header -> _k, _header -> _v, h);

vector<node_skip_list*> new_pred(h, nullptr);

// copying
for (int i = _height - 1; i >= 0; --i) {

_new_header -> _next[i] = _header -> _next[i];
new_pred[i] = pred[i];

}

// empty upper levels
for (int i = h - 1; i >= _height; --i) {

_new_header -> _next[i] = nullptr;
new_pred[i] = _new_header;

}

// delete old header
delete _header;

// update the header and vector
// of predecessors
_header = _new_header;
pred = new_pred;
_height = h;

}
...

Performance of skip lists

A preliminary rough analysis considers the search path
backwards. Imagine we are at some node x and level i:

The height of x is > i and we come from level i+ 1 since
the sought key k is smaller than the key of the successor of
x at level i+ 1
The height of x is i and we come from x’s predecessor at
level i since k is larger or equal to the key at x

Performance of skip lists

Figure from W. Pugh’s Skip Lists: A Probabilistic Alternative to Balanced
Trees (C. ACM, 1990)—the meaning of p is the opposite of what we have
used!

Performance of skip lists

The expected number C(k) of steps to “climb” k levels in an
infinite list

C(k) = p(1 + C(k)) + (1 − p)(1 + C(k− 1))

= 1 + pC(k) + qC(k− 1) =
1
q
(1 + qC(k− 1))

=
1
q
+ C(k− 1) = k/q

since C(0) = 0.

Performance of skip lists

The analysis above is pessimistic since the list is not infinite
and we might “bump” into the header. Then all remaining
backward steps to climb up to a level k are vertical—no more
horizontal steps. Thus the expected number of steps to climb
up to level Ln is

6 (Ln − 1)/q

Performance of skip lists

Ln = the level for which the expected number of nodes that
have height > Ln is 6 1/q
Probability that a node has height > k is

P[height(xi) > k] =
∑
i>k

pqi−1

= pqk−1
∑
i>0

qi = qk−1

Number of nodes with height > k is a binomial r.v. with
parameters n and qk−1, hence the expected number is
nqk−1

Then

nqLn−1 = 1/q =⇒ Ln = logq(1/n) = log1/q n

Performance of skip lists

Ln = the level for which the expected number of nodes that
have height > Ln is 6 1/q
Probability that a node has height > k is

P[height(xi) > k] =
∑
i>k

pqi−1

= pqk−1
∑
i>0

qi = qk−1

Number of nodes with height > k is a binomial r.v. with
parameters n and qk−1, hence the expected number is
nqk−1

Then

nqLn−1 = 1/q =⇒ Ln = logq(1/n) = log1/q n

Performance of skip lists

Ln = the level for which the expected number of nodes that
have height > Ln is 6 1/q
Probability that a node has height > k is

P[height(xi) > k] =
∑
i>k

pqi−1

= pqk−1
∑
i>0

qi = qk−1

Number of nodes with height > k is a binomial r.v. with
parameters n and qk−1, hence the expected number is
nqk−1

Then

nqLn−1 = 1/q =⇒ Ln = logq(1/n) = log1/q n

Performance of skip lists

Ln = the level for which the expected number of nodes that
have height > Ln is 6 1/q
Probability that a node has height > k is

P[height(xi) > k] =
∑
i>k

pqi−1

= pqk−1
∑
i>0

qi = qk−1

Number of nodes with height > k is a binomial r.v. with
parameters n and qk−1, hence the expected number is
nqk−1

Then

nqLn−1 = 1/q =⇒ Ln = logq(1/n) = log1/q n

Performance of skip lists

Then the expected number of steps remaining to reach Hn

(=the height of a random skip list of size n) are
we need E[Hn] − Ln vertical steps
we need not more horizontal steps than nodes with height
> Ln, the expected number is 6 1/q, by definition

Performance of skip lists
Recall that the probability that Hn > k is

1 −
(
1 − qk

)n
6 nqk

To bound the expected height E[Hn]

E[Hn] =
∑
k>0

P[Hn > k] =

Ln−1∑
k=0

P[Hn > k]+

∞∑
k=Ln

P[Hn > k]

6 Ln +

∞∑
k=Ln

P[Hn > k] 6 Ln + n

∞∑
k=Ln

qk

= Ln + nqLn
∑
k>0

qk = Ln + nqLn
1

1 − q
= Ln +

1
p

,

since nqLn = 1, by definition.
It follows that the expected additional vertical steps need to
reach Hn from Ln is

E[Hn] − Ln 6 1/p

Performance of skip lists

Summing up, the expected path length of a search is

6 (Ln − 1)/q+ 1/q+ 1/p =
1
q

log1/q n+ 1/p

On the other hand, the average number of pointers per node is
1/p so there is a trade-off between space and time:

p→ 0,q→ 1 =⇒ very tall “nodes”, short horizontal cost
p→ 1,q→ 0 =⇒ flat skip lists
Pugh suggests p = 3/4, optimal choice minimizes factor
(q ln(1/q))−1 is
q = e−1 = 0.36 . . . ,p = 1 − e−1 ≈ 0.632 . . .

A more refined analysis

The cost of insertions, deletions and searches is
essentially that of searching, with

Cost of search = # of forward steps + height(S)

More formally, with X = {x1, x2, . . . , xn},
x0 = −∞ < x1 < · · · < xn < xn+1 = +∞, for 0 6 k 6 n,

Cn,k = Fn,k +Hn cost of searching a key in (xk, xk+1]

Fn,k = # of forward steps to (xk, xk+1]

Hn = height of the skip list

A more refined analysis

The cost of insertions, deletions and searches is
essentially that of searching, with

Cost of search = # of forward steps + height(S)

More formally, with X = {x1, x2, . . . , xn},
x0 = −∞ < x1 < · · · < xn < xn+1 = +∞, for 0 6 k 6 n,

Cn,k = Fn,k +Hn cost of searching a key in (xk, xk+1]

Fn,k = # of forward steps to (xk, xk+1]

Hn = height of the skip list

Analysis of the height

ai = height(xi) ∼ Geom(p)

Hn = height(S) = max{a1, . . . ,an}

E[Hn] =
∑
k>0

P[Hn > k] =
∑
k>0

(1 − P[Hn 6 k])

=
∑
k>0

1 −
∏

16i6n

P[ai 6 k]

 =
∑
k>0

(1 − (P[ai 6 k])n)

=
∑
k>0

(
1 −

(
1 − qk

)n)
with q := 1 − p.

Analysis of the height

W. Szpankowski V. Rego

E[Hn] = logQ n+
γ

L
−

1
2
+ χ(logQ n) +O(1/n)

with Q := 1/q, L := lnQ, χ(t) a fluctuation of period 1,
mean 0 and small amplitude.

Theorem (Szpankowski and Rego,1990)

Analysis of the forward cost

The number of forward steps Fn,k is the number of weak
left-to-right maxima in ak,ak−1, . . . ,a1, with ai = height(xi)

12 4240 53 663721

Header

−OO

NIL

OO+

Analysis of the forward cost

The number of forward steps Fn,k is the number of weak
left-to-right maxima in ak,ak−1, . . . ,a1, with ai = height(xi)

12 4240 53 663721

Header

−OO

NIL

OO+

Analysis of the forward cost

Total unsuccessful search cost

Cn =
∑

06k6n

Cn,k = nHn + Fn

Total forward cost

Fn =
∑

06k6n

Fn,k

Analysis of the forward cost

Total unsuccessful search cost

Cn =
∑

06k6n

Cn,k = nHn + Fn

Total forward cost

Fn =
∑

06k6n

Fn,k

Analysis of the forward cost

6

?

< m

6

?

6

?

m

Header

6 m

NILmσ τ

A recursive decomposition of the skip list S

Analysis of the forward cost

F(S) = total forward cost of the skip list S
The recursive decomposition S = 〈σ,m, τ〉 gives

F(S) = F(σ) + F(τ) + |τ|+ 1

Then the expected forward cost can be calculated as

E[Fn] =
∑

S:skip list of size n

F(S) · P[S]

with
P[S] = P[σ] · pqm−1 · P[τ]

Analysis of the forward cost

F(S) = total forward cost of the skip list S
The recursive decomposition S = 〈σ,m, τ〉 gives

F(S) = F(σ) + F(τ) + |τ|+ 1

Then the expected forward cost can be calculated as

E[Fn] =
∑

S:skip list of size n

F(S) · P[S]

with
P[S] = P[σ] · pqm−1 · P[τ]

Analysis of the forward cost

F(S) = total forward cost of the skip list S
The recursive decomposition S = 〈σ,m, τ〉 gives

F(S) = F(σ) + F(τ) + |τ|+ 1

Then the expected forward cost can be calculated as

E[Fn] =
∑

S:skip list of size n

F(S) · P[S]

with
P[S] = P[σ] · pqm−1 · P[τ]

Analysis of the forward cost

The recurrence is complicated but can be solved exactly

E[Fn] =
p

q

n∑
k=2

(
n

k

)
(−1)k

1
Qk−1 − 1

,

q := 1 − p,Q := 1/q

And then its asymptotic behavior analyzed using the same
techniques as in the analysis of E[Hn]

Analysis of the forward cost

The recurrence is complicated but can be solved exactly

E[Fn] =
p

q

n∑
k=2

(
n

k

)
(−1)k

1
Qk−1 − 1

,

q := 1 − p,Q := 1/q

And then its asymptotic behavior analyzed using the same
techniques as in the analysis of E[Hn]

Analysis of the forward cost

P. Kirschenhofer H. Prodinger

The expected forward cost in a random skip list of size
n is

E[Fn] = (Q−1)n
(

logQ n+
γ− 1
L

−
1
2
+

1
L
χ(logQ n)

)
+O(logn),

with Q := 1/q, L = lnQ and χ a periodic fluctuation of
period 1, mean 0 and small amplitude.

Theorem (Kirschehofer, Prodinger, 1994)

To learn more

[1] L. Devroye.
A limit theory for random skip lists.
The Annals of Applied Probability, 2(3):597–609, 1992.

[2] P. Kirschenhofer and H. Prodinger.
The path length of random skip lists.
Acta Informatica, 31(8):775–792, 1994.

[3] P. Kirschenhofer, C. Martínez and H. Prodinger.
Analysis of an Optimized Search Algorithm for Skip Lists.
Theoretical Computer Science, 144:199–220, 1995.

To learn more (2)

[1] T. Papadakis, J. I. Munro, and P. V. Poblete.
Average search and update costs in skip lists.
BIT, 32:316–332, 1992.

[2] H. Prodinger.
Combinatorics of geometrically distributed random
variables: Left-to-right maxima.
Discrete Mathematics, 153:253–270, 1996.

[3] W. Pugh.
Skip lists: a probabilistic alternative to balanced trees.
Comm. ACM, 33(6):668–676, 1990.

	Skip lists

