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Reminder of the ridge regression framework

We have a finite i.i.d. learning data sample of N observations
D = {(xn, tn)}n=1,...,N xn ∈ Rd , tn ∈ R

Statistics: estimation of a continuous random variable T
conditioned on a random vector X

Mathematics: estimation of a real function f based on a finite
number of noisy examples x

1 The departing model is

tn = y(xn; w) + εn, xn ∈ Rd , tn ∈ R

εn is a continuous r.v. such that

E[εn] = 0
Var [εn] = σ2

n <∞
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Reminder of the ridge regression framework

2 In linear regression, y(x; w) := w>x and εn ∼ N (0, σ2)

3 Our statistical model is Tn ∼ N (y(Xn; w), σ2) or:

p(tn|xn; θ) =
1√
2πσ

exp

(
− 1

2σ2

(
tn −w>xn

)2
)
,

with parameters {w0,w1, . . . ,wd , σ
2}

and input data xn := (1, x>n )>

4 Defining t := (t1, . . . , tN)>,XN×(d+1), a maximum
likelihood argument leads to the minimization of the
regularized (= penalized) mean empirical error:

Eλ(w) :=
1

N

N∑
n=1

‖t− X w‖2 + λ‖w‖2 , λ > 0

(λ > 0 defines a trade-off between the fit to the data and the complexity of the model)
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Reminder of the ridge regression framework

5 Setting ∇Eλ(w) = 0, we obtain the (regularized) normal
equations:

X>(t− X w) = Nλw

with solution ŵ = (X>X + λNI)−1X>t

=⇒ y(x; ŵ) = (ŵ)>x =
[
t>X (X>X + λNI)−1

]
x

Since X is N × (d + 1), the matrix X>X is (d + 1)× (d + 1)

The “model size” does not grow with data size (a parametric
model)

X>X + λNI always has an inverse, for all λ > 0
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Introduction to kernel functions

We extend the framework it by means of a mapping function:

ϕ : X → Hk

where X is the input space, Hk is the RKHS generated by k and:

k : X × X → R

k(x, x′) 7→
〈
ϕ(x), ϕ(x′)

〉
Hk

〈·, ·〉 denotes inner product in Hk (a.k.a. the feature space)

The “kernel trick” consists in performing the mapping and the
inner product simultaneously by using the associated k
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Introduction to RKHS theory

David Hilbert (1862-1943)

First, our feature space must have
the structure of a Hilbert space:
A vector space endowed with
an inner product whose associated
norm defines a complete metric:

Distances, lengths
and angles are well-defined
for the elements of the space

Completeness means that all
Cauchy sequences defined in the
space converge to an element of
the space (under the ip-norm)

Llúıs A. Belanche belanche@cs.upc.edu Kernel methods and why we should love them



Introduction to RKHS theory

An example of a Hilbert space

The `2 space of square-summable sequences

`2 :=

{
(an)∞n=1, an ∈ R,

∞∑
n=1

a2
n <∞

}

This is a vector space with inner product 〈a, b〉 :=
∞∑
n=1

anbn

Completeness comes from the fact that R is complete
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Introduction to RKHS theory

Generating the inner product

1 Given a two-place symmetric function k, consider the space of
functions ϕ : X → RX , as

ϕ(x) := k(x, ·)

2 Define the (soon-to-be) vector space:

H := span
{
ϕ(x)/ x ∈ X

}
=

{
f (·) =

N∑
n=1

αnk(xn, ·)/ N ∈ N, xn ∈ X , αn ∈ R

}

=

{
f =

N∑
n=1

αnkxn/ N ∈ N, xn ∈ X , αn ∈ R

}
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Introduction to RKHS theory

Generating the inner product

3 Let f , f ′ ∈ H, be given as f =
N∑

n=1
αnkxn , f

′ =
M∑

m=1
α′mkx′

m
,

Define an inner product in H as:

〈f , g〉H =

〈
N∑

n=1

αnkxn ,

M∑
m=1

α′mkx′
n

〉
H

:=
N∑

n=1

M∑
m=1

αnα
′
mk(xn, x

′
m)

4 Note that 〈f , kx〉H =
N∑

n=1
αnk(xn, x) = f (x) This is called the

reproducing property of the kernel

5 This definition ensures the identity we need:〈
ϕ(x), ϕ(x′)

〉
H = 〈kx, kx′〉H = k(x, x′)
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Introduction to RKHS theory

Definition (Reproducing Kernel Hilbert space)

A RKHS H is a Hilbert space of functions f defined on a set X for
which all the evaluation functionals:

∀x ∈ X , Ex(f ) := f (x)

are continuous (evaluation functionals are linear operators)

The existence and uniqueness of a reproducing kernel is derived
from the Riesz representation theorem

Example

Consider X = [0, 1] and the kernel k(s, t) = min{s, t}. The generated
RKHS is the Sobolev space Hk with inner product

〈f , g〉HK
=
∫ 1

0
f ′(t)g ′(t) dt:

Hk =
{

f ∈ L2[0, 1] absolutely continuous, f (0) = 0, f ′ ∈ L2[0, 1]
}
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Introduction to RKHS theory

Definition

A symmetric function k is called a positive semi-definite kernel in
X if for every N ∈ N, and every choice x1, · · · , xN ∈ X , the matrix
K = (kij), where kij = k(xi , xj) is positive semi-definite (p.s.d.)

Theorem (Characterization)

k is a reproducing kernel and admits the existence of a map
ϕ : X → H such that H is a RKHS and k(x, x′) = 〈ϕ(x), ϕ(x′)〉H
if and only if k is a p.s.d. symmetric kernel in X
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Introduction to RKHS theory

Why is k p.s.d.?

k(x, x′) =
〈
ϕ(x), ϕ(x′)

〉
H

∀c ∈ RN ,

N∑
i=1

N∑
j=1

cicj 〈ϕ(xi ), ϕ(xj)〉H =

〈
N∑
i=1

ciϕ(xi ),
N∑
j=1

cjϕ(xj)

〉
H

≥ 0

1 Which holds for all choices of ϕ(·)
2 Generalizes inner product (think about the case ϕ(x) = x)
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Learning in RKHSs

The key for learning in RKHSs is the regularization framework:

Consider again a learning data sample

D = {(xn, tn)}n=1,...,N , xn ∈ X , tn ∈ R

Goal: learn a function y : X → R from D and a set of
possible solutions (models, hypotheses) H = {y |y : X → R}
Assume a loss function L : R×R→ [0,∞) that measures the
divergence between a model’s predictions and the targets:

(t, y(x)) 7→ L(t, y(x))

min
y∈Hk

{
1

N

N∑
n=1

L(tn, y(xn)) + λ‖y‖2
Hk

}
, λ > 0
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Learning in RKHSs

Theorem (Representer Theorem)

Consider L : R × R → [0,∞) a convex loss function, an observed
data sample D = {(x1, t1), . . . , (xN , tN)}, with xn ∈ X , tn ∈ R,
and Hk a RKHS of functions y : X → R with reproducing kernel
k. Then, for all λ > 0,

1 There exists a unique solution ŷλ to the problem:

ŷλ := arg min
y∈Hk

{
1

N

N∑
n=1

L(tn, y(xn)) + λ‖y‖2
Hk

}

2 There exist α1, . . . , αN ∈ R such that

ŷλ(x) =
N∑

n=1

αnk(xn, x), ∀x ∈ X
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Kernel ridge regression

We consider the choice L(t, y(x)) = (t − y(x))2

arg min
y∈Hk

{
1

N

N∑
n=1

(tn − y(xn))2 + λ‖y‖2
Hk

}
, λ > 0

1 Given D, λ, the representer theorem ensures a solution:

ŷλ =
N∑

n=1

αnkxn ∈ Hk , or ŷλ(x) =
N∑

n=1

αnk(xn, x)

2 The parameters α = (α1, . . . , αN)> ∈ RN are obtained as:

α̂ = arg min
α∈RN

{
1

N

N∑
n=1

‖t−Kα‖2 + λα>Kα

}
, λ > 0

where (as introduced earlier) K = [k(xi , xj)]
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N∑

n=1

αnk(xn, x)

2 The parameters α = (α1, . . . , αN)> ∈ RN are obtained as:

α̂ = arg min
α∈RN

{
1

N

N∑
n=1

‖t−Kα‖2 + λα>Kα

}
, λ > 0

where (as introduced earlier) K = [k(xi , xj)]
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Learning in RKHSs

‖y‖2
H = 〈y , y〉Hk

=

〈
N∑

n=1

αnk(xn, ·),
N∑

n=1

αnk(xn, ·)

〉
Hk

=
N∑

n=1

N∑
m=1

αnαmk(xn, xm) = αTKα ≥ 0

N∑
n=1

(tn − y(xn))2 =
N∑

n=1

(
tn −

N∑
m=1

αnk(xn, xm)
)2

=
N∑

n=1

(tn − (Kα)n)2 = ‖t−Kα‖2

The solution parameter vector is α̂ = (K + λNIN)−1t

We do ridge regression based only on K (and throw away X )

“Model size” grows with data size (a non-parametric model)
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Learning in RKHSs
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(
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)2
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n=1

(tn − (Kα)n)2 = ‖t−Kα‖2

The solution parameter vector is α̂ = (K + λNIN)−1t

We do ridge regression based only on K (and throw away X )

“Model size” grows with data size (a non-parametric model)
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Kernel methods

Machine learning: an SVM in action (from the Wikipedia)

These techniques yield models that are:
non-linear (in the input space X )

linear (in the feature space Hk)
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Kernel methods

Many (classical and new) learning algorithms can be kernelized

1 They require solving a problem where the data appear in the form of
pairwise inner products (or pairwise Euclidean distances)

2 The solution is expressed as a linear combination of the kernel
function centered at some of the data: sparsity

3 Examples include SVMs, ridge regression, perceptrons, FDA, PLS
[supervised], and PCA, k-means, Parzen Windows [unsupervised]
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Introduction to kernel functions

Kernels inherit important properties from inner products:

1 Symmetry
k(x, x′) = k(x′, x)

2 Cauchy-Schwarz inequality

|k(x, x′)| ≤
√

k(x, x) ·
√

k(x′, x′)

3 Definiteness

k(x, x) = ‖ϕ(x)‖2 ≥ 0

4 Closure properties:

Sums and products, direct sums and tensor products
Multiplication by positive coefficients
Limits of point-wise convergent sequences
Composition with certain analytic functions
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Introduction to kernel functions

Example

1 If k is a kernel and p is a polynomial of degree q with
non-negative coefficients, then the function

kp(x, x′) := p(k(x, x′))

is also a kernel.

2 The special case where k is linear and

p(z) = (z + c)q, c ≥ 0, q ∈ N

leads to the so-called polynomial kernel:

k(x, x′) = (x>x′ + c)q, x, x′ ∈ Rd

What is the underlying mapping ϕ here? ϕ leads into the
space spanned by all products of at most q dimensions of Rd
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Introduction to kernel functions

Definition (Radial kernels)

We say that a kernel k : Rd × Rd → R is radial if it has the form

k(x, x′) = t(‖x− x′‖),

where t : [0,∞)→ [0,∞) is a differentiable function
Radial kernels fulfill k(x, x) = t(0)

The Gaussian kernel

Consider the function t(z) = exp(−γz2), γ > 0. The resulting
radial kernel is known as the Gaussian RBF kernel:

k(x, x′) = exp(−γ‖x− x′‖2)

The kernel matrix for this kernel has always full rank for distinct
x1, . . . , xN , so the feature map ϕ has infinite dimension
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Support Vector Machines

Which solution is more likely to lead to better generalization?

Support Vector Machines

A Support Vector Machine (SVM) is a kernelized two-class
classifier (a hyperplane) that aims at leaving the maximum
possible margin of separation between the classes, with allowance
for margin violations via a complexity parameter
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Introduction to kernel functions

This is a hyperplane! (in some RKHS) –from www.kernel-methods.net
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Kernel ridge regression in action

sin(x)

x
+N (x , 0.032), x ∈ [−20, 20]



Kernel ridge regression in action

fitting a polynomial of degree 1 ...



Kernel ridge regression in action

fitting a polynomial of degree 2 ...



Kernel ridge regression in action

fitting a polynomial of degree 6 ...



Kernel ridge regression in action

fitting a polynomial of degree 11 ...



Kernel ridge regression in action

Kernel ridge regression with RBF kernel (γ = 1, λ = 1)



Kernel methods in action

PCA vs. Kernel PCA

N∑
n=1

xn = 0

C =
1

N

N∑
n=1

xnx>n

Cv = λv

N∑
n=1

ϕ(xn) = 0

K =
1

N

N∑
n=1

ϕ(xn)ϕ(xn)>

Kv = λv

v =
N∑

n=1

αnϕ(xn)

NλKα = KKα

Kα = Nλα
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Kernel methods in action

Definition (The Spectrum kernel)

Let Σ be a finite alphabet; for p ≥ 1 and a sequence x, a
p-gram is any block of p adjacent characters from Σ in x

The p-spectrum of a sequence x is the vector of counters of
all p-grams that x contains

Define k(x, x′) =
∑

s∈Σp

|s ∈ x| · |s ∈ x′|

Example

Proteins GGTGTCA with alphabet Σ = {C,A,G,T} (the four
nucleobases that make up the DNA) and p = 2:

GA GC GT GG CA CC ...
0 0 2 1 1 0 ...

Although the number of distinct p-grams in a text x is at most |Σ|p, this

kernel can be computed in O(|x|+ |x′|) time and memory, for all p
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Kernel methods in action

Text visualization: the Reuters news articles dataset

coffee: “mexico has temporarily suspended overseas coffee sales

due to falling prices triggered by the failure of the international

coffee organisation (ico) meeting to agree a quota system at its

latest meeting, the official notimex news agency said. ”we’re just

waiting a while for prices to improve,” an unidentified mexican

trader told the agency. mexico has already sold 80 pct of ...”

crude oil: “u.s. department of energy secretary john herrington

said he was ”optimistic” about the chances of providing a more

generous depletion allowance for oil and gas producers, but added

that the plan faces strong opposition from some members of the

reagan administration. herrington, speaking to houston oil

executives at a breakfast meeting, said administration debate over

his plan for a 27.5 pct annual depletion allowance was ”heavy and

strong” largely because of some fears that ... ”
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Kernel methods in action
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Kernel methods in action

Classification of DNA sequences with SVMs

A promoter is a region of DNA that initiates or facilitates
transcription of a particular gene

The dataset consists of 106 DNA sequences described by 57
categorical variables, represented as the nucleotide at each
position: [A]denine, [C]ytosine, [G]uanine, [T]hymine

The response is a binary class: “+” for a promoter gene and
“−” for a non-promoter gene
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Kernel methods in action

Classification of DNA sequences with SVMs

The similarity between two multivariate categorical vectors is the
fraction of the number of matching values.

Definition (Overlap/Dirac kernel)

k0(x, x′) =
1

d

d∑
i=1

I{xi=x ′i }

Another kernel that can be used is the RBF kernel:

Definition (Gaussian Radial Basis Function kernel)

kRBF(x, x′) = exp
(
−γ||x− x′||2

)
, γ > 0

In order to use this kernel, categorical variables with m modalities
are coded using a binary expansion representation.
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Kernel methods in action

Definition (Univariate kernel k
(U)
1 )

k
(U)
1 (xi , x

′
i ) =

{
hα(PZ (xi )) if xi = x ′i

0 if xi 6= x ′i

where

hα(z) = (1− zα)1/α, α > 0

Definition (Multivariate kernel k1)

k1(x, x′) = exp

(
γ

d

d∑
i=1

k
(U)
1 (xi , x

′
i )

)
, γ > 0

Theorem

The kernel matrices generated by k1 are p.s.d.
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Kernel methods in action

The family of inverting functions hα(z) for different values of α
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Kernel methods in action

Test error distributions on the PromoterGene problem
(joint work with M. Villegas)
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A personal view



Machine learning, statistics and all that jazz

The Hype

‘‘They used to call it Statistics, now it is

called Machine Learning!’’ (anonymous)

The Truth

‘‘The ideas of machine learning, from

methodological principles to theoretical tools,

have had a long pre-history in statistics’’

(Michael I. Jordan)
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Machine learning, statistics and all that jazz

The pseudo-Truth

‘‘What is the difference between statistics,

machine learning, AI and data mining?’’

1 If there are up to 3 variables, it is

statistics

2 If overfitting is an issue, it is machine

learning

3 If you produce a promo video of it, it is AI

4 If you don’t know what overfitting is, it is

data mining
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Machine learning, statistics and all that jazz

www.ibmbigdatahub.com/infographic/four-vs-big-data
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Machine learning, statistics and all that jazz

Modern sources of data
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Machine learning, statistics and all that jazz

⇒
{

“Panther ′′ (0.97)
“Drawing ′′ (0.86)
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THE END


