Kernel methods and why we should love them

(Els mètodes kernel i el perquè els hauríem d'estimar)

Lluís A. Belanche
belanche@cs.upc.edu

Dept. de Ciències de la Computació Universitat Politècnica de Catalunya

Jornada Pearson @ FME
Barcelona, March 8, 2017

UNIVERSITAT POLITECNICA
BARCELONATECH

A Machine Learning Hall of Fame

Leo Breiman (1928-2005) Vladimir Vapnik (1936-)

John Hopfield (1933-)

Yann LeCun (1960-)

Reminder of the ridge regression framework

We have a finite i.i.d. learning data sample of N observations $D=\left\{\left(\mathbf{x}_{n}, t_{n}\right)\right\}_{n=1, \ldots, N} \mathbf{x}_{n} \in \mathbb{R}^{d}, t_{n} \in \mathbb{R}$

Reminder of the ridge regression framework

We have a finite i.i.d. learning data sample of N observations $D=\left\{\left(\mathbf{x}_{n}, t_{n}\right)\right\}_{n=1, \ldots, N} \mathbf{x}_{n} \in \mathbb{R}^{d}, t_{n} \in \mathbb{R}$

Statistics: estimation of a continuous random variable T conditioned on a random vector \mathbf{X}
Mathematics: estimation of a real function f based on a finite number of noisy examples \mathbf{x}

Reminder of the ridge regression framework

We have a finite i.i.d. learning data sample of N observations $D=\left\{\left(\mathbf{x}_{n}, t_{n}\right)\right\}_{n=1, \ldots, N} \mathbf{x}_{n} \in \mathbb{R}^{d}, t_{n} \in \mathbb{R}$

Statistics: estimation of a continuous random variable T conditioned on a random vector \mathbf{X}
Mathematics: estimation of a real function f based on a finite number of noisy examples \mathbf{x}

1 The departing model is

$$
t_{n}=y\left(\mathbf{x}_{n} ; \mathbf{w}\right)+\varepsilon_{n}, \quad \mathbf{x}_{n} \in \mathbb{R}^{d}, t_{n} \in \mathbb{R}
$$

ε_{n} is a continuous r.v. such that

- $\mathbb{E}\left[\varepsilon_{n}\right]=0$
- $\operatorname{Var}\left[\varepsilon_{n}\right]=\sigma_{n}^{2}<\infty$

Reminder of the ridge regression framework

2 In linear regression, $y(\mathbf{x} ; \mathbf{w}):=\mathbf{w}^{\top} \mathbf{x}$ and $\varepsilon_{n} \sim \mathcal{N}\left(0, \sigma^{2}\right)$ Our statistical model is $T_{n} \sim \mathcal{N}\left(y\left(X_{n} ; w\right), \sigma^{2}\right)$ or:

($\lambda>0$ defines a trade-off between the fit to the data and the complexity of the model)

Reminder of the ridge regression framework

2 In linear regression, $y(\mathbf{x} ; \mathbf{w}):=\mathbf{w}^{\top} \mathbf{x}$ and $\varepsilon_{n} \sim \mathcal{N}\left(0, \sigma^{2}\right)$
3 Our statistical model is $T_{n} \sim \mathcal{N}\left(y\left(\mathbf{X}_{n} ; \mathbf{w}\right), \sigma^{2}\right)$ or:

$$
p\left(t_{n} \mid \mathbf{x}_{n} ; \theta\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}\left(t_{n}-\mathbf{w}^{\top} \mathbf{x}_{n}\right)^{2}\right)
$$

with parameters $\left\{w_{0}, w_{1}, \ldots, w_{d}, \sigma^{2}\right\}$ and input data $\mathbf{x}_{n}:=\left(1, \mathbf{x}_{n}^{\top}\right)^{\top}$
likelihood argument leads to the minimization of the
regularized ($=$ penalized) mean empirical error:
($\lambda>0$ defines a trade-off between the fit to the data and the complexity of the model)

Reminder of the ridge regression framework

2 In linear regression, $y(\mathbf{x} ; \mathbf{w}):=\mathbf{w}^{\top} \mathbf{x}$ and $\varepsilon_{n} \sim \mathcal{N}\left(0, \sigma^{2}\right)$
3 Our statistical model is $T_{n} \sim \mathcal{N}\left(y\left(\mathbf{X}_{n} ; \mathbf{w}\right), \sigma^{2}\right)$ or:

$$
p\left(t_{n} \mid \mathbf{x}_{n} ; \theta\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{1}{2 \sigma^{2}}\left(t_{n}-\mathbf{w}^{\top} \mathbf{x}_{n}\right)^{2}\right)
$$

with parameters $\left\{w_{0}, w_{1}, \ldots, w_{d}, \sigma^{2}\right\}$ and input data $\mathbf{x}_{n}:=\left(1, \mathbf{x}_{n}^{\top}\right)^{\top}$
4 Defining $\mathbf{t}:=\left(t_{1}, \ldots, t_{N}\right)^{\top}, X_{N \times(d+1)}$, a maximum likelihood argument leads to the minimization of the regularized ($=$ penalized) mean empirical error:

$$
E_{\lambda}(\mathbf{w}):=\frac{1}{N} \sum_{n=1}^{N}\|\mathbf{t}-X \mathbf{w}\|^{2}+\lambda\|\mathbf{w}\|^{2}, \lambda>0
$$

($\lambda>0$ defines a trade-off between the fit to the data and the complexity of the model)

Reminder of the ridge regression framework

5 Setting $\nabla E_{\lambda}(\mathbf{w})=\mathbf{0}$, we obtain the (regularized) normal equations:

$$
X^{\top}(\mathbf{t}-X \mathbf{w})=N \lambda \mathbf{w}
$$

with solution $\hat{\mathbf{w}}=\left(X^{\top} X+\lambda N \mathbf{I}\right)^{-1} X^{\top} \mathbf{t}$

$$
\Longrightarrow y(\mathbf{x} ; \hat{\mathbf{w}})=(\hat{\mathbf{w}})^{\top} \mathbf{x}=\left[\mathbf{t}^{\top} X\left(X^{\top} X+\lambda N \mathbf{I}\right)^{-1}\right] \mathbf{x}
$$

Reminder of the ridge regression framework

5 Setting $\nabla E_{\lambda}(\mathbf{w})=\mathbf{0}$, we obtain the (regularized) normal equations:

$$
X^{\top}(\mathbf{t}-X \mathbf{w})=N \lambda \mathbf{w}
$$

with solution $\hat{\mathbf{w}}=\left(X^{\top} X+\lambda N \mathbf{I}\right)^{-1} X^{\top} \mathbf{t}$

$$
\Longrightarrow y(\mathbf{x} ; \hat{\mathbf{w}})=(\hat{\mathbf{w}})^{\top} \mathbf{x}=\left[\mathbf{t}^{\top} X\left(X^{\top} X+\lambda N \mathbf{I}\right)^{-1}\right] \mathbf{x}
$$

Since X is $N \times(d+1)$, the matrix $X^{\top} X$ is $(d+1) \times(d+1)$

Reminder of the ridge regression framework

5 Setting $\nabla E_{\lambda}(\mathbf{w})=\mathbf{0}$, we obtain the (regularized) normal equations:

$$
X^{\top}(\mathbf{t}-X \mathbf{w})=N \lambda \mathbf{w}
$$

with solution $\hat{\mathbf{w}}=\left(X^{\top} X+\lambda N \mathbf{I}\right)^{-1} X^{\top} \mathbf{t}$

$$
\Longrightarrow y(\mathbf{x} ; \hat{\mathbf{w}})=(\hat{\mathbf{w}})^{\top} \mathbf{x}=\left[\mathbf{t}^{\top} X\left(X^{\top} X+\lambda N \mathbf{I}\right)^{-1}\right] \mathbf{x}
$$

Since X is $N \times(d+1)$, the matrix $X^{\top} X$ is $(d+1) \times(d+1)$

- The "model size" does not grow with data size (a parametric model)

Reminder of the ridge regression framework

5 Setting $\nabla E_{\lambda}(\mathbf{w})=\mathbf{0}$, we obtain the (regularized) normal equations:

$$
X^{\top}(\mathbf{t}-X \mathbf{w})=N \lambda \mathbf{w}
$$

with solution $\hat{\mathbf{w}}=\left(X^{\top} X+\lambda N \mathbf{I}\right)^{-1} X^{\top} \mathbf{t}$

$$
\Longrightarrow y(\mathbf{x} ; \hat{\mathbf{w}})=(\hat{\mathbf{w}})^{\top} \mathbf{x}=\left[\mathbf{t}^{\top} X\left(X^{\top} X+\lambda N \mathbf{I}\right)^{-1}\right] \mathbf{x}
$$

Since X is $N \times(d+1)$, the matrix $X^{\top} X$ is $(d+1) \times(d+1)$

- The "model size" does not grow with data size (a parametric model)
- $X^{\top} X+\lambda N \mathbf{I}$ always has an inverse, for all $\lambda>0$

Introduction to kernel functions

We extend the framework it by means of a mapping function:

$$
\varphi: \mathcal{X} \rightarrow \mathcal{H}_{k}
$$

where \mathcal{X} is the input space, \mathcal{H}_{k} is the RKHS generated by k and:

$$
\begin{gathered}
k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \\
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \mapsto\left\langle\varphi(\mathbf{x}), \varphi\left(\mathbf{x}^{\prime}\right)\right\rangle_{\mathcal{H}_{k}}
\end{gathered}
$$

$\langle\cdot, \cdot\rangle$ denotes inner product in \mathcal{H}_{k} (a.k.a. the feature space)

Introduction to kernel functions

We extend the framework it by means of a mapping function:

$$
\varphi: \mathcal{X} \rightarrow \mathcal{H}_{k}
$$

where \mathcal{X} is the input space, \mathcal{H}_{k} is the RKHS generated by k and:

$$
\begin{gathered}
k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \\
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \mapsto\left\langle\varphi(\mathbf{x}), \varphi\left(\mathbf{x}^{\prime}\right)\right\rangle_{\mathcal{H}_{k}}
\end{gathered}
$$

$\langle\cdot, \cdot\rangle$ denotes inner product in \mathcal{H}_{k} (a.k.a. the feature space)

The "kernel trick" consists in performing the mapping and the inner product simultaneously by using the associated k

Introduction to RKHS theory

First, our feature space must have the structure of a Hilbert space:
A vector space endowed with an inner product whose associated norm defines a complete metric:

- Distances, lengths and angles are well-defined for the elements of the space
- Completeness means that all Cauchy sequences defined in the space converge to an element of the space (under the ip-norm)

David Hilbert (1862-1943)

Introduction to RKHS theory

An example of a Hilbert space

The ℓ_{2} space of square-summable sequences

$$
\ell_{2}:=\left\{\left(a_{n}\right)_{n=1}^{\infty}, a_{n} \in \mathbb{R}, \sum_{n=1}^{\infty} a_{n}^{2}<\infty\right\}
$$

- This is a vector space with inner product $\langle a, b\rangle:=\sum_{n=1}^{\infty} a_{n} b_{n}$
- Completeness comes from the fact that \mathbb{R} is complete

Introduction to RKHS theory

Generating the inner product

1 Given a two-place symmetric function k, consider the space of functions $\varphi: \mathcal{X} \rightarrow \mathbb{R}^{\mathcal{X}}$, as

$$
\varphi(\mathbf{x}):=k(\mathbf{x}, \cdot)
$$

2 Define the (soon-to-be) vector space:

Introduction to RKHS theory

Generating the inner product

1 Given a two-place symmetric function k, consider the space of functions $\varphi: \mathcal{X} \rightarrow \mathbb{R}^{\mathcal{X}}$, as

$$
\varphi(\mathbf{x}):=k(\mathbf{x}, \cdot)
$$

2 Define the (soon-to-be) vector space:

$$
\begin{aligned}
\mathcal{H}: & =\operatorname{span}\{\varphi(\mathbf{x}) / \mathbf{x} \in \mathcal{X}\} \\
& =\left\{f(\cdot)=\sum_{n=1}^{N} \alpha_{n} k\left(\mathbf{x}_{n}, \cdot\right) / N \in \mathbb{N}, \mathbf{x}_{n} \in \mathcal{X}, \alpha_{n} \in \mathbb{R}\right\} \\
& =\left\{f=\sum_{n=1}^{N} \alpha_{n} k_{\mathbf{x}_{n}} / N \in \mathbb{N}, \mathbf{x}_{n} \in \mathcal{X}, \alpha_{n} \in \mathbb{R}\right\}
\end{aligned}
$$

Introduction to RKHS theory

Generating the inner product

$$
3 \text { Let } f, f^{\prime} \in \mathcal{H} \text {, be given as } f=\sum_{n=1}^{N} \alpha_{n} k_{\mathbf{x}_{n}}, f^{\prime}=\sum_{m=1}^{M} \alpha_{m}^{\prime} k_{\mathbf{x}_{m}^{\prime}} \text {, }
$$

Introduction to RKHS theory

Generating the inner product

3 Let $f, f^{\prime} \in \mathcal{H}$, be given as $f=\sum_{n=1}^{N} \alpha_{n} k_{\mathbf{x}_{n}}, f^{\prime}=\sum_{m=1}^{M} \alpha_{m}^{\prime} k_{\mathbf{x}_{m}^{\prime}}$, Define an inner product in \mathcal{H} as:

$$
\langle f, g\rangle_{\mathcal{H}}=\left\langle\sum_{n=1}^{N} \alpha_{n} k_{\mathbf{x}_{n}}, \sum_{m=1}^{M} \alpha_{m}^{\prime} k_{\mathbf{x}_{n}^{\prime}}\right\rangle_{\mathcal{H}}:=\sum_{n=1}^{N} \sum_{m=1}^{M} \alpha_{n} \alpha_{m}^{\prime} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}^{\prime}\right)
$$

Introduction to RKHS theory

Generating the inner product

3 Let $f, f^{\prime} \in \mathcal{H}$, be given as $f=\sum_{n=1}^{N} \alpha_{n} k_{\mathbf{x}_{n}}, f^{\prime}=\sum_{m=1}^{M} \alpha_{m}^{\prime} k_{\mathbf{X}_{m}^{\prime}}$, Define an inner product in \mathcal{H} as:

$$
\langle f, g\rangle_{\mathcal{H}}=\left\langle\sum_{n=1}^{N} \alpha_{n} k_{\mathbf{x}_{n}}, \sum_{m=1}^{M} \alpha_{m}^{\prime} k_{\mathbf{x}_{n}^{\prime}}\right\rangle_{\mathcal{H}}:=\sum_{n=1}^{N} \sum_{m=1}^{M} \alpha_{n} \alpha_{m}^{\prime} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}^{\prime}\right)
$$

4 Note that $\langle f, k \mathbf{x}\rangle_{\mathcal{H}}=\sum_{n=1}^{N} \alpha_{n} k\left(\mathbf{x}_{n}, \mathbf{x}\right)=f(\mathbf{x})$

Introduction to RKHS theory

Generating the inner product

3 Let $f, f^{\prime} \in \mathcal{H}$, be given as $f=\sum_{n=1}^{N} \alpha_{n} k_{\mathbf{x}_{n}}, f^{\prime}=\sum_{m=1}^{M} \alpha_{m}^{\prime} k_{\mathbf{X}_{m}^{\prime}}$, Define an inner product in \mathcal{H} as:

$$
\langle f, g\rangle_{\mathcal{H}}=\left\langle\sum_{n=1}^{N} \alpha_{n} k_{\mathbf{x}_{n}}, \sum_{m=1}^{M} \alpha_{m}^{\prime} k_{\mathbf{x}_{n}^{\prime}}\right\rangle_{\mathcal{H}}:=\sum_{n=1}^{N} \sum_{m=1}^{M} \alpha_{n} \alpha_{m}^{\prime} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}^{\prime}\right)
$$

4 Note that $\left\langle f, k_{\mathbf{x}}\right\rangle_{\mathcal{H}}=\sum_{n=1}^{N} \alpha_{n} k\left(\mathbf{x}_{n}, \mathbf{x}\right)=f(\mathbf{x})$ This is called the reproducing property of the kernel
5 This definition ensures the identity we need:

$$
\left\langle\varphi(\mathbf{x}), \varphi\left(\mathbf{x}^{\prime}\right)\right\rangle_{\mathcal{H}}=\left\langle k_{\mathbf{x}}, k_{\mathbf{x}^{\prime}}\right\rangle_{\mathcal{H}}=k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)
$$

Introduction to RKHS theory

Definition (Reproducing Kernel Hilbert space)

A RKHS \mathcal{H} is a Hilbert space of functions f defined on a set \mathcal{X} for which all the evaluation functionals:

$$
\forall \mathbf{x} \in \mathcal{X}, E_{\mathbf{X}}(f):=f(\mathbf{x})
$$

are continuous (evaluation functionals are linear operators)
The existence and uniqueness of a reproducing kernel is derived from the Riesz representation theorem

Introduction to RKHS theory

Definition (Reproducing Kernel Hilbert space)

A RKHS \mathcal{H} is a Hilbert space of functions f defined on a set \mathcal{X} for which all the evaluation functionals:

$$
\forall \mathbf{x} \in \mathcal{X}, E_{\mathbf{X}}(f):=f(\mathbf{x})
$$

are continuous (evaluation functionals are linear operators)
The existence and uniqueness of a reproducing kernel is derived from the Riesz representation theorem

Example

Consider $\mathcal{X}=[0,1]$ and the kernel $k(s, t)=\min \{s, t\}$. The generated RKHS is the Sobolev space \mathcal{H}_{k} with inner product
$\langle f, g\rangle_{\mathcal{H}_{K}}=\int_{0}^{1} f^{\prime}(t) g^{\prime}(t) d t:$

$$
\mathcal{H}_{k}=\left\{f \in L^{2}[0,1] \text { absolutely continuous, } f(0)=0, f^{\prime} \in L^{2}[0,1]\right\}
$$

Introduction to RKHS theory

Definition

A symmetric function k is called a positive semi-definite kernel in \mathcal{X} if for every $N \in \mathbb{N}$, and every choice $\mathbf{x}_{1}, \cdots, \mathbf{x}_{N} \in \mathcal{X}$, the matrix $\mathbf{K}=\left(k_{i j}\right)$, where $k_{i j}=k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ is positive semi-definite (p.s.d.)

Introduction to RKHS theory

Definition

A symmetric function k is called a positive semi-definite kernel in \mathcal{X} if for every $N \in \mathbb{N}$, and every choice $\mathbf{x}_{1}, \cdots, \mathbf{x}_{N} \in \mathcal{X}$, the matrix $\mathbf{K}=\left(k_{i j}\right)$, where $k_{i j}=k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ is positive semi-definite (p.s.d.)

Theorem (Characterization)

k is a reproducing kernel and admits the existence of a map $\varphi: \mathcal{X} \rightarrow \mathcal{H}$ such that \mathcal{H} is a RKHS and $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\langle\varphi(\mathbf{x}), \varphi\left(\mathbf{x}^{\prime}\right)\right\rangle_{\mathcal{H}}$ if and only if k is a p.s.d. symmetric kernel in \mathcal{X}

Introduction to RKHS theory

Why is k p.s.d.?

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\langle\varphi(\mathbf{x}), \varphi\left(\mathbf{x}^{\prime}\right)\right\rangle_{\mathcal{H}}
$$

$\forall \mathbf{c} \in \mathbb{R}^{N}$,

$$
\sum_{i=1}^{N} \sum_{j=1}^{N} c_{i} c_{j}\left\langle\varphi\left(\mathbf{x}_{i}\right), \varphi\left(\mathbf{x}_{j}\right)\right\rangle_{\mathcal{H}}=\left\langle\sum_{i=1}^{N} c_{i} \varphi\left(\mathbf{x}_{i}\right), \sum_{j=1}^{N} c_{j} \varphi\left(\mathbf{x}_{j}\right)\right\rangle_{\mathcal{H}} \geq 0
$$

(1) Which holds for all choices of $\varphi(\cdot)$
(2) Generalizes inner product (think about the case $\varphi(\mathbf{x})=\mathbf{x}$)

Learning in RKHSs

The key for learning in RKHSs is the regularization framework:

- Consider again a learning data sample

$$
D=\left\{\left(\mathbf{x}_{n}, t_{n}\right)\right\}_{n=1, \ldots, N}, \mathbf{x}_{n} \in \mathcal{X}, t_{n} \in \mathbb{R}
$$

- Goal: learn a function $y: \mathcal{X} \rightarrow \mathbb{R}$ from D and a set of possible solutions (models, hypotheses) $\mathcal{H}=\{y \mid y: \mathcal{X} \rightarrow \mathbb{R}\}$
- Assume a loss function $L: \mathbb{R} \times \mathbb{R} \rightarrow[0, \infty)$ that measures the divergence between a model's predictions and the targets:

$$
\begin{gathered}
(t, y(\mathbf{x})) \mapsto L(t, y(\mathbf{x})) \\
\min _{y \in \mathcal{H}_{k}}\left\{\frac{1}{N} \sum_{n=1}^{N} L\left(t_{n}, y\left(\mathbf{x}_{n}\right)\right)+\lambda\|y\|_{\mathcal{H}_{k}}^{2}\right\}, \lambda>0
\end{gathered}
$$

Learning in RKHSs

Theorem (Representer Theorem)

Consider $L: \mathbb{R} \times \mathbb{R} \rightarrow[0, \infty)$ a convex loss function, an observed data sample $D=\left\{\left(\mathbf{x}_{1}, t_{1}\right), \ldots,\left(\mathbf{x}_{N}, t_{N}\right)\right\}$, with $\mathbf{x}_{n} \in \mathcal{X}, t_{n} \in \mathbb{R}$, and \mathcal{H}_{k} a RKHS of functions $y: \mathcal{X} \rightarrow \mathbb{R}$ with reproducing kernel k.

(1) There exists a unique solution $\hat{y_{\lambda}}$ to the problem

Learning in RKHSs

Theorem (Representer Theorem)

Consider $L: \mathbb{R} \times \mathbb{R} \rightarrow[0, \infty)$ a convex loss function, an observed data sample $D=\left\{\left(\mathbf{x}_{1}, t_{1}\right), \ldots,\left(\mathbf{x}_{N}, t_{N}\right)\right\}$, with $\mathbf{x}_{n} \in \mathcal{X}, t_{n} \in \mathbb{R}$, and \mathcal{H}_{k} a $R K H S$ of functions $y: \mathcal{X} \rightarrow \mathbb{R}$ with reproducing kernel k. Then, for all $\lambda>0$,
(1) There exists a unique solution $\hat{y_{\lambda}}$ to the problem:

$$
\hat{y_{\lambda}}:=\underset{y \in \mathcal{H}_{k}}{\arg \min }\left\{\frac{1}{N} \sum_{n=1}^{N} L\left(t_{n}, y\left(\mathbf{x}_{n}\right)\right)+\lambda\|y\|_{\mathcal{H}_{k}}^{2}\right\}
$$

Learning in RKHSs

Theorem (Representer Theorem)

Consider $L: \mathbb{R} \times \mathbb{R} \rightarrow[0, \infty)$ a convex loss function, an observed data sample $D=\left\{\left(\mathbf{x}_{1}, t_{1}\right), \ldots,\left(\mathbf{x}_{N}, t_{N}\right)\right\}$, with $\mathbf{x}_{n} \in \mathcal{X}, t_{n} \in \mathbb{R}$, and \mathcal{H}_{k} a RKHS of functions $y: \mathcal{X} \rightarrow \mathbb{R}$ with reproducing kernel k. Then, for all $\lambda>0$,
(1) There exists a unique solution $\hat{y_{\lambda}}$ to the problem:

$$
\hat{y_{\lambda}}:=\underset{y \in \mathcal{H}_{k}}{\arg \min }\left\{\frac{1}{N} \sum_{n=1}^{N} L\left(t_{n}, y\left(\mathbf{x}_{n}\right)\right)+\lambda\|y\|_{\mathcal{H}_{k}}^{2}\right\}
$$

(2) There exist $\alpha_{1}, \ldots, \alpha_{N} \in \mathbb{R}$ such that

$$
\hat{y_{\lambda}}(\mathbf{x})=\sum_{n=1}^{N} \alpha_{n} k\left(\mathbf{x}_{n}, \mathbf{x}\right), \forall \mathbf{x} \in \mathcal{X}
$$

Kernel ridge regression

We consider the choice $L(t, y(\mathbf{x}))=(t-y(\mathbf{x}))^{2}$

$$
\underset{y \in \mathcal{H}_{k}}{\arg \min }\left\{\frac{1}{N} \sum_{n=1}^{N}\left(t_{n}-y\left(\mathbf{x}_{n}\right)\right)^{2}+\lambda\|y\|_{\mathcal{H}_{k}}^{2}\right\}, \lambda>0
$$

((Given D, λ, the representer theorem ensures a solution:$\hat{y}_{\lambda}=\sum_{n=1}^{N} \alpha_{n} k_{x_{n}} \in \mathcal{H}_{k}$,
\qquad

We consider the choice $L(t, y(\mathbf{x}))=(t-y(\mathbf{x}))^{2}$

$$
\underset{y \in \mathcal{H}_{k}}{\arg \min }\left\{\frac{1}{N} \sum_{n=1}^{N}\left(t_{n}-y\left(\mathbf{x}_{n}\right)\right)^{2}+\lambda\|y\|_{\mathcal{H}_{k}}^{2}\right\}, \lambda>0
$$

(1) Given D, λ, the representer theorem ensures a solution:

$$
\hat{y_{\lambda}}=\sum_{n=1}^{N} \alpha_{n} k_{\mathbf{x}_{n}} \in \mathcal{H}_{k}, \quad \text { or } \hat{y_{\lambda}}(\mathbf{x})=\sum_{n=1}^{N} \alpha_{n} k\left(\mathbf{x}_{n}, \mathbf{x}\right)
$$

Kernel ridge regression

We consider the choice $L(t, y(\mathbf{x}))=(t-y(\mathbf{x}))^{2}$

$$
\underset{y \in \mathcal{H}_{k}}{\arg \min }\left\{\frac{1}{N} \sum_{n=1}^{N}\left(t_{n}-y\left(\mathbf{x}_{n}\right)\right)^{2}+\lambda\|y\|_{\mathcal{H}_{k}}^{2}\right\}, \lambda>0
$$

(1) Given D, λ, the representer theorem ensures a solution:

$$
\hat{y_{\lambda}}=\sum_{n=1}^{N} \alpha_{n} k \mathbf{x}_{n} \in \mathcal{H}_{k}, \quad \text { or } \hat{y_{\lambda}}(\mathbf{x})=\sum_{n=1}^{N} \alpha_{n} k\left(\mathbf{x}_{n}, \mathbf{x}\right)
$$

(2) The parameters $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{N}\right)^{\top} \in \mathbb{R}^{N}$ are obtained as:

$$
\hat{\boldsymbol{\alpha}}=\underset{\boldsymbol{\alpha} \in \mathbb{R}^{N}}{\arg \min }\left\{\frac{1}{N} \sum_{n=1}^{N}\|\mathbf{t}-\mathbf{K} \boldsymbol{\alpha}\|^{2}+\lambda \boldsymbol{\alpha}^{\top} \mathbf{K} \boldsymbol{\alpha}\right\}, \lambda>0
$$

where (as introduced earlier) $\mathbf{K}=\left[k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)\right]$

Learning in RKHSs

$$
\begin{aligned}
\|y\|_{\mathcal{H}}^{2} & =\langle y, y\rangle_{\mathcal{H}_{k}}=\left\langle\sum_{n=1}^{N} \alpha_{n} k\left(\mathbf{x}_{n}, \cdot\right), \sum_{n=1}^{N} \alpha_{n} k\left(\mathbf{x}_{n}, \cdot\right)\right\rangle_{\mathcal{H}_{k}} \\
& =\sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)=\boldsymbol{\alpha}^{\mathrm{T}} \mathbf{K} \alpha \geq 0
\end{aligned}
$$

Learning in RKHSs

$$
\begin{aligned}
&\|y\|_{\mathcal{H}}^{2}=\langle y, y\rangle_{\mathcal{H}_{k}}=\left\langle\sum_{n=1}^{N} \alpha_{n} k\left(\mathbf{x}_{n}, \cdot\right), \sum_{n=1}^{N} \alpha_{n} k\left(\mathbf{x}_{n}, \cdot\right)\right\rangle_{\mathcal{H}_{k}} \\
&=\sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)=\boldsymbol{\alpha}^{\mathrm{T}} \mathbf{K} \boldsymbol{\alpha} \geq 0 \\
& \sum_{n=1}^{N}\left(t_{n}-y\left(\mathbf{x}_{n}\right)\right)^{2}=\sum_{n=1}^{N}\left(t_{n}-\sum_{m=1}^{N} \alpha_{n} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)\right)^{2} \\
&=\sum_{n=1}^{N}\left(t_{n}-(\mathbf{K} \boldsymbol{\alpha})_{n}\right)^{2}=\|\mathbf{t}-\mathbf{K} \boldsymbol{\alpha}\|^{2}
\end{aligned}
$$

Learning in RKHSs

$$
\begin{aligned}
&\|y\|_{\mathcal{H}}^{2}=\langle y, y\rangle_{\mathcal{H}_{k}}=\left\langle\sum_{n=1}^{N} \alpha_{n} k\left(\mathbf{x}_{n}, \cdot\right), \sum_{n=1}^{N} \alpha_{n} k\left(\mathbf{x}_{n}, \cdot\right)\right\rangle_{\mathcal{H}_{k}} \\
&=\sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)=\boldsymbol{\alpha}^{\mathrm{T}} \mathbf{K} \boldsymbol{\alpha} \geq 0 \\
& \sum_{n=1}^{N}\left(t_{n}-y\left(\mathbf{x}_{n}\right)\right)^{2}=\sum_{n=1}^{N}\left(t_{n}-\sum_{m=1}^{N} \alpha_{n} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)\right)^{2} \\
&=\sum_{n=1}^{N}\left(t_{n}-(\mathbf{K} \boldsymbol{\alpha})_{n}\right)^{2}=\|\mathbf{t}-\mathbf{K} \boldsymbol{\alpha}\|^{2}
\end{aligned}
$$

- The solution parameter vector is $\hat{\boldsymbol{\alpha}}=\left(\mathbf{K}+\lambda N \mathbf{I}_{N}\right)^{-1} \mathbf{t}$

$$
\begin{aligned}
&\|y\|_{\mathcal{H}}^{2}=\langle y, y\rangle_{\mathcal{H}_{k}}=\left\langle\sum_{n=1}^{N} \alpha_{n} k\left(\mathbf{x}_{n}, \cdot\right), \sum_{n=1}^{N} \alpha_{n} k\left(\mathbf{x}_{n}, \cdot\right)\right\rangle_{\mathcal{H}_{k}} \\
&=\sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)=\boldsymbol{\alpha}^{\mathrm{T}} \mathbf{K} \boldsymbol{\alpha} \geq 0 \\
& \sum_{n=1}^{N}\left(t_{n}-y\left(\mathbf{x}_{n}\right)\right)^{2}=\sum_{n=1}^{N}\left(t_{n}-\sum_{m=1}^{N} \alpha_{n} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)\right)^{2} \\
&=\sum_{n=1}^{N}\left(t_{n}-(\mathbf{K} \boldsymbol{\alpha})_{n}\right)^{2}=\|\mathbf{t}-\mathbf{K} \boldsymbol{\alpha}\|^{2}
\end{aligned}
$$

- The solution parameter vector is $\hat{\boldsymbol{\alpha}}=\left(\mathbf{K}+\lambda N \mathbf{I}_{N}\right)^{-1} \mathbf{t}$
- We do ridge regression based only on \mathbf{K} (and throw away X)

$$
\begin{aligned}
&\|y\|_{\mathcal{H}}^{2}=\langle y, y\rangle_{\mathcal{H}_{k}}=\left\langle\sum_{n=1}^{N} \alpha_{n} k\left(\mathbf{x}_{n}, \cdot\right), \sum_{n=1}^{N} \alpha_{n} k\left(\mathbf{x}_{n}, \cdot\right)\right\rangle_{\mathcal{H}_{k}} \\
&=\sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)=\boldsymbol{\alpha}^{\mathrm{T}} \mathbf{K} \boldsymbol{\alpha} \geq 0 \\
& \sum_{n=1}^{N}\left(t_{n}-y\left(\mathbf{x}_{n}\right)\right)^{2}=\sum_{n=1}^{N}\left(t_{n}-\sum_{m=1}^{N} \alpha_{n} k\left(\mathbf{x}_{n}, \mathbf{x}_{m}\right)\right)^{2} \\
&=\sum_{n=1}^{N}\left(t_{n}-(\mathbf{K} \boldsymbol{\alpha})_{n}\right)^{2}=\|\mathbf{t}-\mathbf{K} \boldsymbol{\alpha}\|^{2}
\end{aligned}
$$

- The solution parameter vector is $\hat{\boldsymbol{\alpha}}=\left(\mathbf{K}+\lambda N \mathbf{I}_{N}\right)^{-1} \mathbf{t}$
- We do ridge regression based only on \mathbf{K} (and throw away X)
- "Model size" grows with data size (a non-parametric model)

Machine learning: an SVM in action (from the Wikipedia)

These techniques yield models that are:

- non-linear (in the input space \mathcal{X})
- linear (in the feature space \mathcal{H}_{k})

Many (classical and new) learning algorithms can be kernelized

(1) They require solving a problem where the data appear in the form of pairwise inner products (or pairwise Euclidean distances)
(2) The solution is expressed as a linear combination of the kernel function centered at some of the data: sparsity
(3) Examples include SVMs, ridge regression, perceptrons, FDA, PLS [supervised], and PCA, k-means, Parzen Windows [unsupervised]

Introduction to kernel functions

Kernels inherit important properties from inner products:
(1) Symmetry

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=k\left(\mathbf{x}^{\prime}, \mathbf{x}\right)
$$

(2) Cauchy-Schwarz inequality

$$
\left|k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right| \leq \sqrt{k(\mathbf{x}, \mathbf{x})} \cdot \sqrt{k\left(\mathbf{x}^{\prime}, \mathbf{x}^{\prime}\right)}
$$

(3) Definiteness

$$
k(\mathbf{x}, \mathbf{x})=\|\varphi(\mathbf{x})\|^{2} \geq 0
$$

(1) Closure properties:

- Sums and products, direct sums and tensor products
- Multiplication by positive coefficients
- Limits of point-wise convergent sequences
- Composition with certain analytic functions

Introduction to kernel functions

Example

(1) If k is a kernel and p is a polynomial of degree q with non-negative coefficients, then the function

$$
k_{p}\left(\mathbf{x}, \mathbf{x}^{\prime}\right):=p\left(k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right)
$$

is also a kernel.
leads to the so-called polynomial kernel:

Introduction to kernel functions

Example

(1) If k is a kernel and p is a polynomial of degree q with non-negative coefficients, then the function

$$
k_{p}\left(\mathbf{x}, \mathbf{x}^{\prime}\right):=p\left(k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right)
$$

is also a kernel.
(2) The special case where k is linear and

$$
p(z)=(z+c)^{q}, c \geq 0, q \in \mathbb{N}
$$

leads to the so-called polynomial kernel:

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(\mathbf{x}^{\top} \mathbf{x}^{\prime}+c\right)^{q}, \mathbf{x}, \mathbf{x}^{\prime} \in \mathbb{R}^{d}
$$

Introduction to kernel functions

Example

(1) If k is a kernel and p is a polynomial of degree q with non-negative coefficients, then the function

$$
k_{p}\left(\mathbf{x}, \mathbf{x}^{\prime}\right):=p\left(k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right)
$$

is also a kernel.
(2) The special case where k is linear and

$$
p(z)=(z+c)^{q}, c \geq 0, q \in \mathbb{N}
$$

leads to the so-called polynomial kernel:

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(\mathbf{x}^{\top} \mathbf{x}^{\prime}+c\right)^{q}, \mathbf{x}, \mathbf{x}^{\prime} \in \mathbb{R}^{d}
$$

What is the underlying mapping φ here?

Introduction to kernel functions

Example

(1) If k is a kernel and p is a polynomial of degree q with non-negative coefficients, then the function

$$
k_{p}\left(\mathbf{x}, \mathbf{x}^{\prime}\right):=p\left(k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)\right)
$$

is also a kernel.
(2) The special case where k is linear and

$$
p(z)=(z+c)^{q}, c \geq 0, q \in \mathbb{N}
$$

leads to the so-called polynomial kernel:

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(\mathbf{x}^{\top} \mathbf{x}^{\prime}+c\right)^{q}, \mathbf{x}, \mathbf{x}^{\prime} \in \mathbb{R}^{d}
$$

What is the underlying mapping φ here? φ leads into the space spanned by all products of at most q dimensions of \mathbb{R}^{d}

Introduction to kernel functions

Definition (Radial kernels)

We say that a kernel $k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is radial if it has the form

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=t\left(\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|\right)
$$

where $t:[0, \infty) \rightarrow[0, \infty)$ is a differentiable function Radial kernels fulfill $k(\mathbf{x}, \mathbf{x})=t(0)$
\qquad

Introduction to kernel functions

Definition (Radial kernels)

We say that a kernel $k: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ is radial if it has the form

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=t\left(\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|\right)
$$

where $t:[0, \infty) \rightarrow[0, \infty)$ is a differentiable function Radial kernels fulfill $k(\mathbf{x}, \mathbf{x})=t(0)$

The Gaussian kernel

Consider the function $t(z)=\exp \left(-\gamma z^{2}\right), \gamma>0$. The resulting radial kernel is known as the Gaussian RBF kernel:

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\gamma\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}\right)
$$

The kernel matrix for this kernel has always full rank for distinct $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$, so the feature map φ has infinite dimension

(a) Larger margin

(b) Smaller margin

Which solution is more likely to lead to better generalization?

Support Vector Machines

A Support Vector Machine (SVM) is a kernelized two-class classifier (a hyperplane) that aims at leaving the maximum possible margin of separation between the classes, with allowance for margin violations via a complexity parameter

This is a hyperplane! (in some RKHS) -from WwW.kernel-methods.net

Introduction to kernel functions

This is a hyperplane! (in some RKHS) -from www.kernel-methods.net

Kernel ridge regression in action

fitting a polynomial of degree 1 ...

fitting a polynomial of degree $2 \ldots$

fitting a polynomial of degree 6 ...

Kernel ridge regression in action

fitting a polynomial of degree $11 \ldots$

Kernel ridge regression with RBF kernel $(\gamma=1, \lambda=1)$

PCA vs. Kernel PCA

$$
\begin{array}{rr}
\sum_{n=1}^{N} \mathbf{x}_{n}=\mathbf{0} & \sum_{n=1}^{N} \varphi\left(\mathbf{x}_{n}\right)=\mathbf{0} \\
C=\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n} \mathbf{x}_{n}^{\top} & \mathbf{K}=\frac{1}{N} \sum_{n=1}^{N} \varphi\left(\mathbf{x}_{n}\right) \varphi\left(\mathbf{x}_{n}\right)^{\top} \\
C \mathbf{v}=\lambda \mathbf{v} & \mathbf{K} \mathbf{v}=\lambda \mathbf{v} \\
\mathbf{v}=\sum_{n=1}^{N} \alpha_{n} \varphi\left(\mathbf{x}_{n}\right) \\
N \lambda \mathbf{K} \boldsymbol{\alpha}=\mathbf{K K} \boldsymbol{\alpha} \\
\mathbf{K} \boldsymbol{\alpha}=N \lambda \boldsymbol{\alpha}
\end{array}
$$

Kernel methods in action

Definition (The Spectrum kernel)

- Let Σ be a finite alphabet; for $p \geq 1$ and a sequence \mathbf{x}, a p-gram is any block of p adjacent characters from Σ in \mathbf{x}
- The p-spectrum of a sequence \mathbf{x} is the vector of counters of all p-grams that \mathbf{x} contains

Proteins GGTGTCA with alphabet $\Sigma=\{\mathbf{C}, \mathbf{A}, \mathbf{G}, \mathbf{T}\}$ (the four

\qquad
\qquad

Kernel methods in action

Definition (The Spectrum kernel)

- Let Σ be a finite alphabet; for $p \geq 1$ and a sequence \mathbf{x}, a p-gram is any block of p adjacent characters from Σ in \mathbf{x}
- The p-spectrum of a sequence \mathbf{x} is the vector of counters of all p-grams that \mathbf{x} contains

Define $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sum_{s \in \Sigma^{p}}|s \in \mathbf{x}| \cdot\left|s \in \mathbf{x}^{\prime}\right|$

Proteins GGTGTCA with alphabet $\Sigma=\{\mathbf{C}, \mathbf{A}, \mathbf{G}, \mathbf{T}\}$ (the four

\qquad
\qquad

Kernel methods in action

Definition (The Spectrum kernel)

- Let Σ be a finite alphabet; for $p \geq 1$ and a sequence \mathbf{x}, a p-gram is any block of p adjacent characters from Σ in \mathbf{x}
- The p-spectrum of a sequence \mathbf{x} is the vector of counters of all p-grams that \mathbf{x} contains

Define $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sum_{s \in \Sigma^{p}}|s \in \mathbf{x}| \cdot\left|s \in \mathbf{x}^{\prime}\right|$

Example

Proteins GGTGTCA with alphabet $\Sigma=\{\mathbf{C}, \mathbf{A}, \mathbf{G}, \mathbf{T}\}$ (the four nucleobases that make up the DNA) and $p=2$:

GA	GC	GT	GG	CA	CC	\ldots
0	0	2	1	1	0	\ldots

Although the number of distinct p-grams in a text \mathbf{x} is at most $|\Sigma|^{p}$, this kernel can be computed in $O\left(|\mathbf{x}|+\left|\mathbf{x}^{\prime}\right|\right)$ time and memory, for all p

Kernel methods in action

Text visualization: the Reuters news articles dataset

- coffee: "mexico has temporarily suspended overseas coffee sales due to falling prices triggered by the failure of the international coffee organisation (ico) meeting to agree a quota system at its latest meeting, the official notimex news agency said. "we're just waiting a while for prices to improve," an unidentified mexican trader told the agency. mexico has already sold 80 pct of ..."
- crude oil: "u.s. department of energy secretary john herrington said he was "optimistic" about the chances of providing a more generous depletion allowance for oil and gas producers, but added that the plan faces strong opposition from some members of the reagan administration. herrington, speaking to houston oil executives at a breakfast meeting, said administration debate over his plan for a 27.5 pct annual depletion allowance was "heavy and strong" largely because of some fears that ... "

Kernel PCA (5 - spectrum kernel) 100 \%

Classification of DNA sequences with SVMs

- A promoter is a region of DNA that initiates or facilitates transcription of a particular gene
- The dataset consists of 106 DNA sequences described by 57 categorical variables, represented as the nucleotide at each position: [A]denine, [C]ytosine, [G]uanine, [T]hymine
- The response is a binary class: " + " for a promoter gene and "-" for a non-promoter gene

Kernel methods in action

Classification of DNA sequences with SVMs

The similarity between two multivariate categorical vectors is the fraction of the number of matching values.

Another kernel that can be used is the RBF kernel:
\square

In order to use this kernel, categorical variables with m modalities
are coded lusing a hinary exnancion renrecentation

Kernel methods in action

Classification of DNA sequences with SVMs

The similarity between two multivariate categorical vectors is the fraction of the number of matching values.

Definition (Overlap/Dirac kernel)

$$
k_{0}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{1}{d} \sum_{i=1}^{d} \mathbb{I}_{\left\{x_{i}=x_{i}^{\prime}\right\}}
$$

[^0]\square

In order to use this kernel, categorical variables with m modalities are codnad wsine a hinamy axnansion mamerantation

Kernel methods in action

Classification of DNA sequences with SVMs

The similarity between two multivariate categorical vectors is the fraction of the number of matching values.

Definition (Overlap/Dirac kernel)

$$
k_{0}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{1}{d} \sum_{i=1}^{d} \mathbb{I}_{\left\{x_{i}=x_{i}^{\prime}\right\}}
$$

Another kernel that can be used is the RBF kernel:

Definition (Gaussian Radial Basis Function kernel)

$$
k_{\mathrm{RBF}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\gamma\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}\right), \gamma>0
$$

In order to use this kernel, categorical variables with m modalities are coded using a binary expansion representation.

Definition (Univariate kernel $k_{1}^{(U)}$)

$$
k_{1}^{(U)}\left(x_{i}, x_{i}^{\prime}\right)=\left\{\begin{array}{cl}
h_{\alpha}\left(P_{Z}\left(x_{i}\right)\right) & \text { if } x_{i}=x_{i}^{\prime} \\
0 & \text { if } x_{i} \neq x_{i}^{\prime}
\end{array}\right.
$$

where

$$
h_{\alpha}(z)=\left(1-z^{\alpha}\right)^{1 / \alpha}, \alpha>0
$$

[^1]Definition (Univariate kernel $k_{1}^{(U)}$)

$$
k_{1}^{(U)}\left(x_{i}, x_{i}^{\prime}\right)=\left\{\begin{array}{cl}
h_{\alpha}\left(P_{Z}\left(x_{i}\right)\right) & \text { if } x_{i}=x_{i}^{\prime} \\
0 & \text { if } x_{i} \neq x_{i}^{\prime}
\end{array}\right.
$$

where

$$
h_{\alpha}(z)=\left(1-z^{\alpha}\right)^{1 / \alpha}, \alpha>0
$$

Definition (Multivariate kernel k_{1})

$$
k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(\frac{\gamma}{d} \sum_{i=1}^{d} k_{1}^{(U)}\left(x_{i}, x_{i}^{\prime}\right)\right), \gamma>0
$$

Kernel methods in action

Definition (Univariate kernel $k_{1}^{(U)}$)

$$
k_{1}^{(U)}\left(x_{i}, x_{i}^{\prime}\right)=\left\{\begin{array}{cl}
h_{\alpha}\left(P_{Z}\left(x_{i}\right)\right) & \text { if } x_{i}=x_{i}^{\prime} \\
0 & \text { if } x_{i} \neq x_{i}^{\prime}
\end{array}\right.
$$

where

$$
h_{\alpha}(z)=\left(1-z^{\alpha}\right)^{1 / \alpha}, \alpha>0
$$

Definition (Multivariate kernel k_{1})

$$
k_{1}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(\frac{\gamma}{d} \sum_{i=1}^{d} k_{1}^{(U)}\left(x_{i}, x_{i}^{\prime}\right)\right), \gamma>0
$$

Theorem

The kernel matrices generated by k_{1} are p.s.d.

Kernel methods in action

The family of inverting functions $h_{\alpha}(z)$ for different values of α

Test error distributions on the PromoterGene problem (joint work with M. Villegas)

A personal view

Machine learning, statistics and all that jazz

The Hype

> ''They used to call it Statistics, now it is called Machine Learning!') (anonymous)

Machine learning, statistics and all that jazz

The Hype
''They used to call it Statistics, now it is called Machine Learning!', (anonymous)

The Truth
'‘The ideas of machine learning, from methodological principles to theoretical tools, have had a long pre-history in statistics'' (Michael I. Jordan)

Machine learning, statistics and all that jazz

The pseudo-Truth
''What is the difference between statistics, machine learning, AI and data mining?''

Machine learning, statistics and all that jazz

The pseudo-Truth
''What is the difference between statistics, machine learning, AI and data mining?''
(1) If there are up to 3 variables, it is statistics

Machine learning, statistics and all that jazz

The pseudo-Truth
''What is the difference between statistics, machine learning, AI and data mining?''
(1) If there are up to 3 variables, it is statistics
(2) If overfitting is an issue, it is machine learning

Machine learning, statistics and all that jazz

The pseudo-Truth
''What is the difference between statistics, machine learning, AI and data mining?''
(1) If there are up to 3 variables, it is statistics
(2) If overfitting is an issue, it is machine learning
(3) If you produce a promo video of it, it is AI

Machine learning, statistics and all that jazz

The pseudo-Truth
''What is the difference between statistics, machine learning, AI and data mining?',
(1) If there are up to 3 variables, it is statistics
(2) If overfitting is an issue, it is machine learning
(3) If you produce a promo video of it, it is AI
(9) If you don't know what overfitting is, it is data mining

Machine learning, statistics and all that jazz

www.ibmbigdatahub.com/infographic/four-vs-big-data

Machine learning, statistics and all that jazz

Modern sources of data

Machine learning, statistics and all that jazz

[^0]: Another kernel that can be used is the RBF kernel

[^1]: Theorem
 The' 'erne' matrices generated by k_{1} are p.s.d.

