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Preface

These are the slides for the first half of the course Advanced Machine Learning Techniques from the
master on Artificial Intelligence of the Barcelona Computer Science School (Facultat d’Informàtica
de Barcelona), Technical University of Catalonia (UPC, BarcelonaTech).

This slides are used in class to present the topics of the course and have been prepared using
the papers and book references that you can find in the course website http://www.cs.upc.edu/
~bejar/amlt/amlt.html).

This document is a complement so you can prepare the classes and use it as a reference, but it is
not a substitute for the classes or the material from the webpage of the course.

Javier Béjar
Barcelona, 2016
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Javier Béjar cbea (CS - MIA) Knowledge Discovery in Databases AMLT - 2016/2017 1 / 32

Outline

1 Knowledge Discovery in Databases
Introduction
Definitions of KDD

2 The KDD process
Steps of KDD
Discovery goals
Mining Methodologies

3 Applications

4 Tools

5 Challenges
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Knowledge Discovery in Databases Introduction

Knowledge Discovery in Databases

Practical application of the methodologies from machine
learning/statistics to large amounts of data

The main problem addressed is the impossible task of manually
analyzing (make sense of) all the data we are systematically collecting

These methodologies are useful for automating/helping the process of
analysis/discovery

The final goal is to extract (semi)automatically actionable/useful
knowledge

“We are drowning in information and starving for knowledge”
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Knowledge Discovery in Databases Introduction

Knowledge Discovery in Databases

The high point of KDD starts around late 1990s

Many companies show their interest in obtaining the (possibly)
valuable information stored in their databases (purchase transactions,
e-commerce, web data, ...)

The goal is to obtain information that can lead to better commercial
strategies and practices from a better understanding of the consumers
preferences and their behaviour

Many companies are putting a lot of effort on the development/use of
this kind of technology (analysis and tools)

Several buzz words have appeared: Business Intelligence, Business
Analytics, Predictive Analytics, Data Science, Big Data ...
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Knowledge Discovery in Databases Introduction

Knowledge Discovery in Databases

Not only business data are in need of these kinds of techniques

Analyzing scientific data has supposed an important impulse

Space probes

Remote sensors on satellites

Astronomical observations (big array observatories)

Large scientific experiments (LHC, ITER)

Genome Project, microarray data ⇒ Bioinformatics

Neuroscience (Human Brain Project)

Data grows faster that the ability to analyze it
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Knowledge Discovery in Databases Introduction

KDD: Machine learning

Inductive machine learning: Discovery of patterns/models from
data

Supervised discovery/Unsupervised discovery

Unstructured/Structured representations

Logic representations/Probabilistical representations

Scalability
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Knowledge Discovery in Databases Introduction

KDD: Statistics/Data Analysis

Statistical Data Modeling: Fitting of probability models to data

Supervised/Unsupervised modeling

Structured models

Probabilistic representation/interpretation of data

Scalability

Statistical Machine Learning
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Knowledge Discovery in Databases Introduction

KDD: Databases/Algorithmics/Visualization

Data access:

SQL vs NoSQL

Distributed file systems

Redundancy/Fault Tolerance/Parallelism

Databases for structured data: Transactions, Graphs, Time sequences

Distributed processing paradigms/scalabilility: MapReduce, Hadoop,
Spark, ..

Data visualization: from data cubes to structured data representation
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Knowledge Discovery in Databases Definitions of KDD

KDD definitions

“It is the search of valuable information in great volumes of data”

“It is the explorations and analysis, by automatic or
semiautomatic tools, of great volumes of data in order to
discover patterns and rules”

“It is the nontrivial process of identifying valid, novel,
potentially useful, and ultimately understandable patterns in
data”
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Knowledge Discovery in Databases Definitions of KDD

Elements of KDD

Pattern: Any representation formalism capable to describe the
common characteristics of a group if instances

Valid: A pattern is valid if it is able to predict the behaviour of new
information with a degree of certainty

Novelty: It is novel any knowledge that it is not know respect the
domain knowledge and any previous discovered knowledge

Useful: New knowledge is useful if it allows to perform actions that
yield some benefit given a established criteria

Understandable: The knowledge discovered must be analyzed by an expert
in the domain, in consequence the interpretability of the
result is important
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Javier Béjar cbea (CS - MIA) Knowledge Discovery in Databases AMLT - 2016/2017 12 / 32



The KDD process

KDD as a process

The actual discovery of patterns is only one part of a more complex
process

Raw data in not always ready for processing (80/20 project effort)

Some general methodologies have been defined for the whole process
(CRISP-DM or SEMMA)

These methodologies address KDD as an engineering process, despite
being business oriented are general enough to be applied on any data
discovery domain
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The KDD process Steps of KDD

The KDD process (I)

Steps of the Knowledge Discovery
in DB process

1 Domain study
2 Creating the dataset
3 Data preprocessing
4 Dimensionality reduction
5 Selection of the discovery goal
6 Selection of the adequate

methodologies
7 Data Mining
8 Result assessment and

interpretation
9 Using the knowledge
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The KDD process Steps of KDD

The KDD process (II)

1. Study of the domain
Gather information about the domain. Characteristics, goal of the
discovering process (attributes, representative examples, types of
patterns, sources of data)

2. Creating the dataset
From the information of the previous step it is decided what source of
data will be used. It has to be decided what attributes will describe
the data and what examples are needed for the goals of the discovery
process

Javier Béjar cbea (CS - MIA) Knowledge Discovery in Databases AMLT - 2016/2017 15 / 32

The KDD process Steps of KDD

The KDD process (III)

3. Data preprocessing and cleaning
It has to be studied the circumstances that affect the quality of the
data

Outliers

Noise (does it exists?, does it present any pattern?, can it be reduced?)

Missing values

Discretization of continuous values
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The KDD process Steps of KDD

The KDD process (V)

4. Data reduction and projection
We have to study what attributes are relevant to our goal (depending
on the task some techniques can be used to measure the relevance of
the attributes) and the number of examples that are needed. Not all
the data mining algorithms are scalable

Instance selection (do we need all the examples? sampling techniques)

Attribute selection (what is really relevant?)
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The KDD process Steps of KDD

The KDD process (VI) - Attribute selection

It is very important to use methods for attribute selection:

Reduces the dimensionality of the data (curse of dimensionality)

Eliminates/Reduces irrelevant and redundant information

The result of the process is easier to interpret

Attribute selection techniques:

Mathematical/Statistical techniques: Principal component analysis
(PCA), projection pursuit, Multidimensional scaling

Heuristics for attribute relevance evaluation (ranking of attributes,
search in the space of subsets of attributes)
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The KDD process Steps of KDD

The KDD process (VII)

5. Selecting the discovery goal
The characteristics of the data, the domain and the aim of the project
determines what kind of analysis are feasible or possible
(group partitioning, summarization, classification, discovery of
attribute relations, ...)

6. Selecting the adequate methodologies
The goal and the characteristics of the data determines the more
adequate methodologies
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The KDD process Steps of KDD

The KDD process (VIII)

7. Applying the methodologies (Data Mining)
The different parameters of the chosen methodologies has to be
adjusted by experimentation and analysis in order to obtain the best
possible results

8. Interpreting the results
From the knowledge of the domain (expert) it will be assessed the
relevance and importance of the result. This interpretation step could
suppose feedback for the previous steps, it is possible that some
adjustments are needed or some previous decisions have to be changed

9. Incorporating the new knowledge
The new knowledge is used to perform the intended task goal of the
discovery process
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The KDD process Discovery goals

Goals of the KDD process

There are different goals that can be pursued as the result of the discovery
process, among them:

Classification: We need models that allow to discriminate instances that
belong to a previously known set of groups (the model could
or could not be interpretable)

Clustering/Partitioning/Segmentation: We need to discover models that
clusters the data into groups with common characteristics (a
characterizations of the groups is desirable)

Regression: We look for models that predicts the behaviour of
continuous variables as a function of others
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The KDD process Discovery goals

Goals of the KDD process

Summarization: We look for a compact description that summarizes the
characteristics of the data

Causal dependence: We need models that reveal the causal dependence
among the variables and assess the strength of this
dependence

Structure dependence: We need models that reveal patterns among the
relations that describe the structure of the data

Change: We need models that discover patterns in data that has
temporal or spatial dependence
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The KDD process Mining Methodologies

Methodologies for KDD

There are a lot of methodologies that can be applied in the discovery
process, the more usual are:

Decision trees, decision rules:

Usually are interpretable models
Can be used for: Classification, regression, and summarization
trees: C4.5, CART, QUEST, rules: RIPPER, CN2, ..

Classifiers, Regression:

Low interpretability but good accuracy
Can be used for: Classification and regression
Statistical regression, function approximation, Neural networks,
Support Vector Machines, k-NN, Local Weighted Regression, ...
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The KDD process Mining Methodologies

Methodologies for KDD

Clustering:

Its goal is to partition datasets or discover groups
Can be used for: Clustering, summarization
Statistical Clustering, Unsupervised Machine learning, Unsupervised
Neural networks (Self-Organizing Maps)

Dependency models (attribute dependence, temporal
dependence, graph substructures)

Its goal is to obtain models (some interpretables) of the dependence
relations (structural, causal temporal) among attributes/instances
Can be used for: causal dependence discovery, temporal change,
substructure discovery
Bayesian networks, association rules, Markov models, graph algorithms,
...
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Applications

Applications

Business:

Costumer segmentation, costumer profiling, costumer transaction data,
customer churn

Fraud detection

Control/analysis of industrial processes

e-commerce, on-line recommendation

Financial data (stock market analysis)

WEB mining

Text mining, document search/organization

Social networks analysis

User behavior
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Applications

Applications

Scientific applications:

Medicine (patient data, MRI scans, ECG, EEG, ...)

Pharmacology (Drug discovery, screening, in-silicon testing)

Astronomy (astronomical bodies identification)

Genetics (gen identification, DNA microarrays, bioinformatics)

Satellite/Probe data (meteorology, astronomy, geological, ...)

Large scientific experiments (CERN LHC, ITER)
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Tools

Tools for KDD

There are a lot of tools available for KDD

Some tools were developed at universities (C5.0, CART/MARS) and
have become a commercial product, others still remain open source
(Weka, R, scikit-learn)

Big fish eats little fish (C5.0 → Clementine → SPSS-clementine →
IBM DBMiner)

Data analysis software companies incorporate KDD techniques inside
classical data analysis tools (SPSS, SAS)

Companies selling databases add KDD tools as an added value (IBM
DB2 (intelligent Miner), SQL Server, Oracle)

Machine Learning as a Service (Amazon, Microsoft, Google, IBM
Watson, Big ML, ...)

Javier Béjar cbea (CS - MIA) Knowledge Discovery in Databases AMLT - 2016/2017 29 / 32

Tools

Tools for the course

Python

General programming language, easy to learn
numpy, scipy, pandas
scikit-learn (http://scikit-learn.org)
Data preprocessing, Clustering Algorithms, Association Rules, ...

R (http://cran.r-project.org/)

Statistic analysis oriented language, more steep learning curve
Many packages
Data preprocessing, Clustering Algorithms, Association Rules, ...
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Challenges

Open problems

Scalability (More data, more attributes)

Overfitting (Patterns with low interest)

Statistical significance of the results

Methods for temporal data/relational data/structured data

Methods for data cleaning (Missing data and noise)

Pattern comprehensibility

Use of domain knowledge

Integration with other techniques (OLAP, DataWarehousing, Business
Intelligence, Intelligent Decision Support Systems)

Privacy
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Introduction Data Representation

Data representation

Unstructured datasets:

Examples described by a flat set of attributes: attribute-value
matrix

Structured datasets:

Individual examples described by attributes but also having
relations among them: sequences (time, spatial, ...), trees,
graphs

Sets of structured examples (sequences, graphs, trees)
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Introduction Data Representation

Unstructured data

Only one table of observations

Each example represents an
instance of the problem

Each instance is represented by a
set of attributes (discrete,
continuous)

A B C · · ·
1 3.1 a · · ·
1 5.7 b · · ·
0 -2.2 b · · ·
1 -9.0 c · · ·
0 0.3 d · · ·
1 2.1 a · · ·
...

...
...

. . .
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Introduction Data Representation

Structured data

One sequential relation among
instances (Time, Strings)

Several instances with internal
structure (eg: sequences of
events)
Subsequences of unstructured
instances (eg: sequences of
complex transactions)
One big instance (eg: time
series)

Several relations among instances
(graphs, trees)

Several instances with internal
structure (eg: XML documents)
One big instance (eg: social
network)
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Introduction Data Representation

Data Streams

Endless sequence of data (eg:
sensor data)

Several streams
synchronized

Unstructured instances

Structured instances

Static/Dynamic model
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Introduction Data Representation

Data representation

Most of unsupervised learning algorithms are specifically fitted
for unstructured data

The data representation used is equivalent to a database table
(attribute-value pairs)

More specialized algorithms have been developed to process
structured data: Graph clustering, Sequence mining, Frequent
substructures

The representation of these types of data is sometimes algorithm
dependent
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Data Preprocessing

Data preprocessing

Usually raw data is not directly adequate for analysis

The usual reasons:

The quality of the data (noise/missing values/outliers)

The dimensionality of the data (too many attributes/too many
examples)

The first step of any data analysis task is to assess the quality of
the data

The techniques used for data preprocessing are usually oriented
to unstructured data
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Data Preprocessing Outliers

Outliers

Outliers are examples that have values very different from the
rest of the dataset

They can be considered as examples with erroneous values

It could have an important impact on the results of some
algorithms

Javier Béjar BY:© $\© C© (CS - MAI) Data Preprocessing AMLT - 2016/2017 11 / 71

Data Preprocessing Outliers

Outliers

The different values can happen in all or only a few of attributes

The usual way to correct this circumstance is to eliminate the
examples

If the exceptional values are only in a few attributes these could
be treated as missing values
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Data Preprocessing Outliers

Outliers Detection
Parametric methods

Assuming a probabilistic distribution for the attributes (eg:
Univariate Gaussian, Gaussian Mixture Model), test for the
probability of the examples, those with low probability can be
labeled as outliers

Using the upper and lower quantiles of the distribution as
decision criteria, discard the observations that are at a specific
distance above or below the quantiles
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Data Preprocessing Outliers

Outliers Detection
Non parametric methods

Generate a histogram of the attributes (binning) and discard the
examples that are in bins that have a low number of examples

Perform kernel density estimation (KDE) and label as outliers
examples that belong to low density areas

Using a proximity criteria, test for abnormalities in the
distribution of the distances to the k-nearest neighbors
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Data Preprocessing Missing Values

Missing values

Missing values appear because of errors or omissions during the
gathering of the data

They can be substituted to increase the quality of the dataset
(value imputation)

Global constant for all the values
Mean or mode of the attribute (global central tendency)
Mean or mode of the attribute but only of the k nearest
examples (local central tendency)
Learn a model for the data (regression, bayesian) and use it to
predict the values

Problem: we are modifying the statistical distribution of the
data)

Javier Béjar BY:© $\© C© (CS - MAI) Data Preprocessing AMLT - 2016/2017 15 / 71

Data Preprocessing Missing Values

Missing values

Missing Values Mean substitution 1-neighbor substitution
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Data Preprocessing Normalization

Normalization

Normalizations are applied to quantitative attributes in order to
eliminate the effect of having different scale measures

Range normalization: Transform all the values of the attribute
to a preestablished scale (eg: [0,1], [-1,1])

x − xmin

xmax − xmin

Distribution normalization: We transform the data in order to
obtain certain specific statistical distribution with preestablished
parameters (Usually a Gaussian distribution with mean 0 and
standard deviation 1)

x − µx

σx
Javier Béjar BY:© $\© C© (CS - MAI) Data Preprocessing AMLT - 2016/2017 17 / 71

Data Preprocessing Discretization

Discretization

Discretization allows to transform quantitative attributes to
qualitative attributes

Equal size bins: We choose the number of values that we need
and divide the interval in equal bins

Equal frequency bins: We choose the number of values that
we need, but we create the intervals so each bean has the same
number of examples (the size of the intervals will be different)

Distribution approximation: We calculate a histogram of the
data and we fit a function. The intervals are where the function
has its minima

Other techniques: We can apply entropy based measures,
MDL or even clustering
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Data Preprocessing Discretization

Discretization

Same size

Same Frequency

Histogram

Javier Béjar BY:© $\© C© (CS - MAI) Data Preprocessing AMLT - 2016/2017 19 / 71

Data Preprocessing Discretization

Python Notebooks

These two Python Notebooks show some examples of the effect of
missing values imputation and data discretization and normalization

Missing Values Notebook (click here to go to the url)

Preprocessing Notebook (click here to go to the url)

If you have downloaded the code from the repository you will able to
play with the notebooks (run jupyter notebook to open the
notebooks)
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Javier Béjar BY:© $\© C© (CS - MAI) Data Preprocessing AMLT - 2016/2017 21 / 71

Dimensionality Reduction The curse of dimensionality

The curse of dimensionality

There are two problems that come from the dimensionality of a
dataset

The computational cost of processing the data (scalability of
the algorithms)
The quality of the data (more probability of bad data)

There are two elements that define the dimensionality of a
dataset

The number of examples
The number of attributes

Usually the problem of having too many examples can be solved
using sampling.

Attribute reduction has different solutions
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Dimensionality Reduction The curse of dimensionality

Reducing attributes

Usually the number of attributes of the dataset has an impact
on the performance of the algorithms:

Because their poor scalability (cost is a function of the number
of attributes)
Because the inability to cope with irrelevant/noisy/redundant
attributes

There are two main methodologies to reduce the number of
attributes of a dataset

Transforming the data to a space of less dimensions preserving
somewhat the original data (dimensionality reduction)
Eliminating the attributes that are not relevant for the goal task
(feature subset selection)
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Dimensionality Reduction The curse of dimensionality

Dimensionality reduction

We are looking for a new dataset that preserves the information
of the original dataset but has less attributes

Many techniques have been developed for this purpose

Projection to a space that preserve the statistical model of the
data (PCA, ICA)

Projection to a space that preserves distances among the data
(Multidimensional scaling, random projection, nonlinear scaling)
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Dimensionality Reduction Component Analysis

Component analysis

Principal Component Analysis: Data is projected on a set of
orthogonal dimensions (components) that are linear combination
of the original attributes. The components are uncorrelated and
are ordered by the information they have. We assume gaussian
distribution. Global variance is preserved.

Independent Component Analysis: Transforms the dataset
projecting the data to a set of variables statistically independent
(all statistical momentums are independent). We assume non
gaussian data.
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Dimensionality Reduction Component Analysis

Principal Component Analysis

The model that we want is a projection matrix where the dimensions
are orthogonal (linearly independent) and preserve data variance

Y

X

w1*Y+w2*X
w3*

Y+w4*
X
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Dimensionality Reduction Component Analysis

Principal Component Analysis

Principal components are an ordered set of vectors that are the
best linear approximation of the data:

f (λ) = µ + Vqλ

µ is a location vector in Rp, Vq is a p × q matrix of q
orthogonal unit vectors and λ is a q vector of parameters

We want to minimize the reconstruction error for the data:

min
µ,{λi},Vq

N∑

i=1

||xi − µ− Vqλi ||2
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Dimensionality Reduction Component Analysis

Principal Component Analysis

Optimizing partially for µ and λi :

µ = x̄

λi = V T
iq (xi − x̄)

We can obtain the matrix Vq by minimizing:

min
Vq

N∑

i=0

‖(xi − x̄)− VqV
T
q (xi − x̄)‖2

2
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Dimensionality Reduction Component Analysis

Principal Component Analysis

Assuming x̄ = 0 we can obtain the projection matrix Hq = VqV
T
q

by Singular Value Decomposition of the data matrix X

X = UDV T

U is a N × p orthogonal matrix, its columns are the left singular
vectors

V is a p × p diagonal matrix with ordered diagonal values called
the singular values

The columns of UD are the principal components

The solution to the minimization problem are the first q
principal components

The singular values are proportional to the reconstruction error
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Dimensionality Reduction Component Analysis

Kernel PCA

PCA is a linear transformation, this means that if data is linearly
separable, the reduced dataset will be linearly separable (given
enough components)

We can use the kernel trick to map the original attribute to a
space where non linearly separable data is linearly separable

Distances among examples are defined as a dot product that can
be obtained using a kernel:

d(xi , xj) = Φ(xi)
TΦ(xj) = K (xi , xj)

Different kernels can be used to perform the transformation to
the feature space (polynomial, gaussian, ...)
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Dimensionality Reduction Component Analysis

Kernel PCA

The computation of the components is equivalent to PCA but
performing the eigen decomposition of the covariance matrix
computed for the transformed examples

C =
1

M

M∑

j=1

Φ(xj)Φ(xj)
T

Pro: Helps to discover patterns that are non linearly separable in
the original space

Con: Does not give a weight/importance for the new
components
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Dimensionality Reduction Component Analysis

Kernel PCA
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Dimensionality Reduction Component Analysis

Sparse PCA

PCA transforms data to a space of the same dimensionality (all
eigenvalues are non zero)

An alternative to PCA is to solve the minimization problem
posed by the reconstruction error using regularization

A penalization term is added to the objective function
proportional to the norm of the eigenvalues matrix

min
U,V
‖X − UV ‖2

2 + α‖V ‖1

The `-1 norm regularization will encourage sparse solutions (zero
eigenvalues)
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Dimensionality Reduction Multidimensional Scaling

Multidimensional Scaling

A transformation matrix transforms a dataset from M dimensions to
N dimensions preserving pairwise data distances

[MxN]
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Dimensionality Reduction Multidimensional Scaling

Multidimensional Scaling

Multidimensional Scaling: Projects a dataset to a space with
less dimensions preserving the pair distances among the data

A projection matrix is obtained by optimizing a function of the
pairwise distances (stress function)

This means that the actual attributes are not used in the
transformation

There are different objective functions that can be used (least
squares, Sammong mapping, classical scaling, ...).

The optimization problem is solved by gradient descent
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Dimensionality Reduction Multidimensional Scaling

Multidimensional Scaling

Least Squares Multidimensional Scaling (MDS)

The distorsion is defined as the square distance between the
original distance matrix and the distance matrix of the new data

SD(z1, z2, ..., zn) =

[∑

i 6=i ′

(dii ′ − ‖zi − zi ′‖2)2

]

The problem is defined as:

arg min
z1,z2,...,zn

SD(z1, z2, ..., zn)
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Dimensionality Reduction Multidimensional Scaling

Multidimensional Scaling

Several optimization strategies can be used to solve this problem

If the distance matrix is euclidean it can be solved using eigen
decomposition just like PCA

In other cases gradient descent can be used using the derivative
of SD(z1, z2, ..., zn) and a step α in the following fashion:

1 Begin with a guess for Z
2 Repeat until convergence:

Z (k+1) = Z (k) − α∇SD(Z )
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Dimensionality Reduction Multidimensional Scaling

Multidimensional Scaling - Other functions

Sammong Mapping (emphasis on smaller distances)

SD(z1, z2, ..., zn) =

[∑

i 6=i ′

(dii ′ − ‖zi − zi ′‖)2

dii ′

]

Classical Scaling (similarity instead of distance)

SD(z1, z2, ..., zn) =

[∑

i 6=i ′

(sii ′ − 〈zi − z̄ , zi ′ − z̄〉)2

]

Non metric MDS (assumes a ranking among the distances, non
euclidean space)

SD(z1, z2, ..., zn) =

∑
i ,i ′[θ(||zi − zi ′ ||)− dii ′]

2

∑
i ,i ′ d

2
i ,i ′
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Dimensionality Reduction Multidimensional Scaling

Random Projection

A random transformation matrix is generated:

Rectangular matrix N × d
Columns must have unit length
Elements are generated from a gaussian distribution (not
strictly necessary)

A matrix generated this way is almost orthogonal (close to a
PCA transformation)

The projection will preserve the relative distances among
examples

The effectiveness usually depends on the number of dimensions
(this can be estimated from the number of examples)
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Dimensionality Reduction Multidimensional Scaling

Nonnegative Matrix Factorization (NMF)

NMF performs an approximation of a matrix in the product of
two matrices

V = WH

Similar to PCA, the eigen decomposition transforms the original
data matrix in the product of two matrices

The main difference is that the values of the matrices are
constrained to be positive

The formulation assumes that the data is a sum of unknown
positive latent variables

The positiveness assumption helps to interpret the result

Eg.: In text mining, a document is an aggregation of topics

There are many variants and algorithms
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Dimensionality Reduction Multidimensional Scaling

Nonlinear scaling

The previous methods perform a linear transformation between
the original space and the final space

For some datasets this kind of transformation is not enough to
maintain the information of the original data

Nonlinear transformations methods:

ISOMAP

Local Linear Embedding

Local MDS
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Dimensionality Reduction Multidimensional Scaling

ISOMAP

Assumes a low dimensional dataset embedded in a larger
number of dimensions

The geodesic distance is used instead of the euclidean distance

It is assumed that the relation of an instance with its immediate
neighbors is more representative of the structure of the data

The transformation generates a new space that preserves
neighborhood relationships
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Dimensionality Reduction Multidimensional Scaling

ISOMAP

Euclidean

Geodesic

a

b
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Dimensionality Reduction Multidimensional Scaling

ISOMAP

Algorithm:
1 For each data point find its k closest neighbors (points at

minimal euclidean distance)
2 Build a graph where each point has an edge to its closest

neighbors
3 Approximate the geodesic distance for each pair of points by

the shortest path in the graph
4 Apply a MDS algorithm to the distance matrix of the graph
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Dimensionality Reduction Multidimensional Scaling

ISOMAP Example

a

b

a

b

Original Transformed
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Dimensionality Reduction Multidimensional Scaling

Local linear embedding

Performs a transformation that preserves local structure

Assumes that each instance can be reconstructed by a linear
combination of its neighbors (weights)

From this weights a new set of data points that preserve the
reconstruction is computed for a lower set of dimensions

Different variants of the algorithm exist
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Dimensionality Reduction Multidimensional Scaling

Local linear embedding

Algorithm:
1 For each data point find the K nearest neighbors in the original

space of dimension p (N (i))
2 Approximate each point by an mixture of the neighbors:

min
Wik

‖xi −
∑

k∈N (i)

wikxk‖2

where wik = 0 if k 6∈ N (i) and
∑N

i=0 wik = 1 and K < p
3 Find points yi in a space of dimension d < p that minimize:

N∑

i=0

‖yi −
N∑

k=0

wikyk‖2
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Dimensionality Reduction Multidimensional Scaling

Local MDS

Performs a transformation that preserves locality of closer points
and puts farther away non neighbor points

Given a set of pairs of points N where a pair (i , i ′) belong to the
set if i is among the K neighbors of i ′ or viceversa

Minimize the function:

SL(z1, z2, . . . , zN) =
∑

(i ,i ′)∈N
(dii ′−‖zi−zi ′‖)2−τ

∑

(i ,i ′)6∈N
(‖zi−zi ′‖)

The parameters τ controls how much the non neighbors are
scattered
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Dimensionality Reduction Application: Wheelchair control

Wheel chair control characterization

Wheelchair with shared control (patient/computer)

Recorded trajectories of several patients in different situations

Angle/distance to the goal, Angle/distance to the nearest
obstacle from around the chair (210 degrees)

Characterization about how the computer helps the patients
with different handicaps

Is there any structure in the trajectory data?
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Dimensionality Reduction Application: Wheelchair control

Wheel chair control characterization
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Dimensionality Reduction Application: Wheelchair control

Wheel chair control characterization
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Dimensionality Reduction Application: Wheelchair control

Wheel chair control characterization
PCA 88 =⇒ 3 dimensions
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Dimensionality Reduction Application: Wheelchair control

Wheel chair control characterization
SparsePCA 88 =⇒ 3 dimensions
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Dimensionality Reduction Application: Wheelchair control

Wheel chair control characterization
MDS 88 =⇒ 3 dimensions
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Dimensionality Reduction Application: Wheelchair control

Wheel chair control characterization
ISOMAP (k-n=3) 88 =⇒ 3 dimensions
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Dimensionality Reduction Application: Wheelchair control

Wheel chair control characterization
ISOMAP (k-n=10) 88 =⇒ 3 dimensions
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Dimensionality Reduction Attribute Selection

Unsupervised Attribute Selection

The goal is to eliminate from the dataset all the redundant or
irrelevant attributes

The original attributes are preserved

The methods for Unsupervised Attribute Selection are less
developed than in Supervised Attribute Selection

The problem is that an attribute can be relevant or not
depending on the goal of the discovery process

There are mainly two techniques for attribute selection:
Wrapping and Filtering

Javier Béjar BY:© $\© C© (CS - MAI) Data Preprocessing AMLT - 2016/2017 57 / 71

Dimensionality Reduction Attribute Selection

Attribute selection

Wrapping:

A model to evaluate the relevance of subsets of attributes
In supervised learning this is easy, in unsupervised learning it is
very difficult
Results depend on the chosen model and on how well this
models capture the actual structure of the data

Filtering:

A measure assess the relevance of each attribute
This kind of measures are difficult to obtain for unsupervised
tasks
The idea is to obtain a measure that evaluates the capacity of
each attribute to reveal the structure of the data (class
separability, similarity of instances in the same class)
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Dimensionality Reduction Attribute Selection

Unsupervised feature selection

The filter methods order the attributes using measures of the
structure of the data

Measures of properties of the spatial structure of the data
(Entropy, PCA, laplacian matrix)
Measures of the relevance of the attributes respect the inherent
structure of the data
Measures of attribute correlation

The wrapper methods are more diverse

Clustering algorithms that compute weights for the attributes
Clustering algorithms with an objective function that penalizes
the size of the model
Consensus clustering
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Dimensionality Reduction Attribute Selection

Laplacian Score

The Laplacian Score is a filter method that ranks the features
respect to their ability of preserving the natural structure of the
data.

This method uses the spectral matrix of the graph computed
from the near neighbors of the examples

Similarity is usually computed using a gaussian kernel (edges not
present have a value of 0)

Sij = e
||xi−xj ||2

σ

And all edges not present have a value of 0.
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Dimensionality Reduction Attribute Selection

Laplacian Score

The Laplacian matrix is computed from the similarity matrix S
and the degree matrix D as

L = S − D

The score first computes for each attribute r and their values fr
the transformation f̃r as:

f̃r = fr −
f Tr D1

1TD1
1

and then the score Lr is computed as:

Lr =
f̃ Tr Lf̃r

f̃ Tr Df̃r
This gives a ranking for the relevance of the attributes
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Dimensionality Reduction Attribute Selection

Python Notebooks

These two Python Notebooks show some examples dimensionality
reduction and feature selection

Dimensionality reduction and feature selection Notebook (click
here to go to the url)

Linear and non linear dimensionality reduction Notebook (click
here to go to the url)

If you have downloaded the code from the repository you will able to
play with the notebooks (run jupyter notebook to open the
notebooks)
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Similarity functions

1 Introduction

2 Data Preprocessing

3 Dimensionality Reduction

4 Similarity functions
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Similarity functions

Similarity/Distance functions

Unsupervised algorithms need similarity/distance to compare
examples

This comparison will be obtained using functions of the
attributes of the examples

Usually we suppose that the examples are embedded in a
N-dimensional space where it can be defined a similarity/distance

There are domains where this assumption is not true so some
other kind of functions will be needed to represent instances
relationships
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Similarity functions

Properties of Similarity/Distance functions

The properties of a similarity function are:

1 s(p, q) = 1⇐⇒ p = q

2 ∀p, q s(p, q) = s(q, p)

The properties of a distance function are:
1 ∀p, q d(p, q) ≥ 0 and ∀p, q d(p, q) = 0⇐⇒ p = q

2 ∀p, q d(p, q) = d(q, p)

3 ∀p, q, r d(p, r) ≤ d(q, p) + d(p, r)
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Similarity functions

Distance functions

Minkowski metrics (Manhattan, Euclidean)

d(i , k) =

(
d∑

j=1

|xij − xkj |r
) 1

r

Mahalanobis distance

d(i , k) = (xi − xk)T · ϕ−1 · (xi − xk)

where ϕ is the matrix covariance of the attributes
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Similarity functions

Distance functions

Chebyshev Distance

d(i , k) = max
j
|xij − xkj |

Camberra distance

d(i , k) =
d∑

j=1

|xij − xkj |
|xij |+ |xkj |
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Similarity functions

Similarity functions

Cosine similarity

d(i , k) =
xTi · xj

‖ xi ‖ · ‖ xj ‖

Pearson correlation measure

d(i , k) =
(xi − x i)

T · (xj − x j)

‖ xi − x i ‖ · ‖ xj − x j ‖
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Similarity functions

Similarity functions
Binary data

Coincidence coefficient

s(i , k) =
a00 − a11

d

Jaccard coefficient

s(i , k) =
a11

a00 + a01 + a10
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Similarity functions

Python Notebooks

This Python Notebook shows examples of using different distance
functions

Distance functions Notebook (click here to go to the url)

If you have downloaded the code from the repository you will able to
play with the notebooks (run jupyter notebook to open the
notebooks)
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Similarity functions

Python Code

In the code from the repository inside subdirectory
DimReduction you have the Authors python program

The code uses the datasets in the directory authors from the
datasets zipfile

Auth1 has fragments of books that are novels or philosophy
works
Auth2 has fragments of books written in English and books
translated to English

The code transforms the text to attribute vectors and applies
different dimensionality reduction algorithms

Modifying the code you can process one of the datasets and
choose how the text is transformed into vectors
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Outline

1 Unsupervised Learning
Introduction

2 Hierarchical Algorithms
Statistical Algorithms
Concept Formation Algorithms

3 Partitional algorithms
Model/Prototype Clustering
Density/Grid Clustering
Graph Clustering
Other Approaches

4 Applications
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Unsupervised Learning

1 Unsupervised Learning

2 Hierarchical Algorithms

3 Partitional algorithms

4 Applications
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Unsupervised Learning Introduction

Unsupervised Learning

Usually learning can be done in a supervised or unsupervised way

There is a strong bias in the machine learning community towards
supervised learning

But a lot of concepts are learned unsupervisedly

The discovery of new concepts always is unsupervised
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Unsupervised Learning Introduction

Unsupervised Learning

Learning by the discovery of predefined structures

For example: probability distributions/models using parametric or non
parametric estimation

It is assumed that the data is embedded in a N-dimensional space
that has a similarity/dissimilarity function defined

Bias:

Examples are more related to the nearest examples than to the farthest

Look for compact groups that are maximally separated from each other

Areas related: Statistics, machine learning, graph theory, fuzzy theory,
physics
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Unsupervised Learning Introduction

Unsupervised Learning

Goals:

Summarization: To obtain representations that describe an unlabeled
dataset

Understanding: To discover the concepts inside the data

These task are difficult because the discovery process is biased by
context

Different answers can be valid depending of the discovery goal or the
domain

There are few criteria to validate the results

Representation of the clusters: Unstructured (partitions) or relational
(hierarchies)
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Unsupervised Learning Introduction

Unsupervised Learning Algorithms
Strategies

Hierarchical algorithms

Examples are organized as a binary tree

Based on a relationship among examples computed from
similarities/dissimilarity functions

No explicit division in groups, has to be chosen a posteriori

Partitional algorithms

Only a partition of the dataset is obtained

Based on the optimization of a criteria (assumptions about the
characteristics of the cluster model)
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Hierarchical Algorithms

1 Unsupervised Learning

2 Hierarchical Algorithms

3 Partitional algorithms

4 Applications
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Hierarchical Algorithms Statistical Algorithms

Hierarchical algorithms

Based on graph theory

The examples form a full connected graph

Similarity defines the length of the edges

The clustering is decided using a connectivity criteria

Based on matrix algebra

A distance matrix is calculated from the examples

The clustering is computed using the distance matrix

The distance matrix is updated after each step (different updating
criteria)
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Hierarchical Algorithms Statistical Algorithms

Hierarchical algorithms

Graphs

Single Linkage, Complete Linkage, MST
Divisive, Agglomerative

Matrices

Johnson algorithm
Different update criteria (S-L, C-L, Centroid, minimum variance)

Computational cost

From O(n inst3 × num dimensions) to O(n inst2 × num dimensions)

Javier Béjar cbea (CS - MAI) Unsupervised Learning AMLT - 2016/2017 10 / 110



Hierarchical Algorithms Statistical Algorithms

Agglomerative Graph Algorithm

Algorithm: Agglomerative graph algorithm

Compute distance/similarity matrix
repeat

Find the pair of examples with smallest similarity
Add an edge to the graph corresponding to this pair
if Agglomeration criteria holds then

Merge the clusters the pair belongs to
end

until Only one cluster exists

Single linkage = The new edge is between to disconnected graphs

Complete linkage = The new edge creates a clique with all the nodes
of both subgraphs
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Hierarchical Algorithms Statistical Algorithms

Hierarchical algorithms - Graphs
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Hierarchical Algorithms Statistical Algorithms

Agglomerative Johnson algorithm

Algorithm: Agglomerative Johnson algorithm

Compute Distance/similarity matrix
repeat

Find the pair of groups/examples with the smallest similarity
Merge the pair of groups/examples
Delete the rows and columns corresponding to the pair of
groups/examples
Add a new row and column with the new distances to the new group

until Matrix has one element

Single linkage = Distance between the closest examples

Complete linkage = Distance between the farthest examples

Average linkage = Distance between group centroids
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Hierarchical Algorithms Statistical Algorithms

Hierarchical algorithms - Matrices

2 3 4 5

1 6 8 2 7
2 1 5 3
3 10 9
4 4

2,3 4 5

1 7 2 7
2,3 7.5 6
4 4

1,4 5

2,3 7.25 6
1,4 5.5

1,4,5

2,3 6.725
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Hierarchical Algorithms Statistical Algorithms

Hierarchical algorithms - Example
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Hierarchical Algorithms Statistical Algorithms

Hierarchical algorithms - Problems

A partition of the data is not given, it has to be decided a posteriori

Some undesirable and strange behaviours could appear (chaining,
inversions, breaking large clusters)

Some have problems with different sized clusters and convex shapes

Dendrogram is not a practical representation for large amounts of data

Its computational cost is high for large datasets

Time is O(n2) in the best case
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Hierarchical Algorithms Statistical Algorithms

Python Notebooks

This Python Notebook shows examples of using different hierarchical
clustering algorithms

Hierarchical Clustering Algorithms Notebook (click here to go to the
url)

If you have downloaded the code from the repository you will able to play
with the notebooks (run jupyter notebook to open the notebooks)
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Hierarchical Algorithms Concept Formation Algorithms

Other hierarchical algorithms
Concept Formation

Learning has an incremental nature (experience is acquired from
continuous observation, not at once)

Concepts are learned with their relationships (polithetic hierarchies of
concepts)

Search in the space of hierarchies

An objective function measures the utility of the learned structure

The updating of the structure is performed by a set of conceptual
operators

The result depends on the order of the examples
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Hierarchical Algorithms Concept Formation Algorithms

Concept Formation - COBWEB

JH Gennari, P Langley, D Fisher, Models of incremental concept
formation, Artificial intelligence, 1989

Based on ideas from cognitive psychology

Learning is incremental
Concepts are organized in a hierarchy
Concepts are organized around a prototype and described
probabilistically
Hierarchical concept representation is modified via cognitive operators

Builds a hierarchy top/down

Four conceptual operators

Uses an heuristic measure to find the basic level (Category utility)
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Hierarchical Algorithms Concept Formation Algorithms
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Hierarchical Algorithms Concept Formation Algorithms

COBWEB
Category utility (CU)

Category utility balances:

Intra class similarity: P(Ai = Vij |Ck)
Inter class similarity: P(Ck |Ai = Vij)

It measures the difference between a partition of the data and no
partition at all

For qualitative attributes and a set of k categories {C1, ... Ck} is
defined as:

∑K
k=1 P(Ck)

∑I
i=1

∑J
j=1 P(Ai = Vij |Ck)2 −∑I

i=1

∑J
j=1 P(Ai = Vij)

2

K

(see the derivation on the paper)
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Hierarchical Algorithms Concept Formation Algorithms

Operators

Incorporate: Put the example inside an existing class

New class: Create a new class at this level

Merge: Two concepts are merge and the example is incorporated
inside the new class

Divide: A concept is substituted by its children

Ei

MERGE

E i+1

SPLIT
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Hierarchical Algorithms Concept Formation Algorithms

COBWEB Algorithm

Procedure: Depth-first limited search COBWEB (x: Example, H:
Hierarchy)

Update the father with the new example
if we are in a leaf then

Create a new level with this example
else

Compute CU of incorporating the example to each class
Save the two best CU
Compute CU of merging the best two classes
Compute CU of splitting the best class
Compute CU of creating a new class with the example
Recursive call with the best choice

end

Javier Béjar cbea (CS - MAI) Unsupervised Learning AMLT - 2016/2017 23 / 110

Partitional algorithms

1 Unsupervised Learning

2 Hierarchical Algorithms

3 Partitional algorithms

4 Applications
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Partitional algorithms

Partitional algorithms

The computational cost to find the optimal partition of N objects in K
groups is NP-hard

Model/prototype based algorithms (K-means, Gaussian Mixture
Models, Fuzzy K-means, Leader algorithm, ...)

Density based algorithms (DBSCAN, DENCLUE, ...)

Grid based algorithms (STING, CLIQUE, ...)

Graph theory based algorithms (Spectral Clustering, ...)

Other approaches:

Affinity Clustering
Unsupervised Neural networks
SVM clustering
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Partitional algorithms Model/Prototype Clustering

K-means

Our model is a set of k hyperspherical clusters

An iterative algorithm assigns each example to one of K groups (K is
a parameter)

Optimization criteria: minimize the distance of each example to the
centroid of the class) (square error)

Distorsion =
K∑

k=1

∑

i∈Ck

‖ xi − µk ‖2

Optimization by a Hill Climbing search algorithm

The algorithm converges to a local minima
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Partitional algorithms Model/Prototype Clustering

K-means

Algorithm: K-means (X: Examples, k:integer)

Generate k initial prototypes (e.g. the first k examples)
Assign the k examples to its nearest prototype
SumD = Sum of square distances examples-prototypes
repeat

Recalculate prototypes
Reassign examples to its nearest prototype
SumI = SumD
SumD = Sum of square distances examples-prototypes

until SumI - SumD < ε
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K-means
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Partitional algorithms Model/Prototype Clustering

K-means
Practical problems

The algorithm is sensitive to the initialization (to run the algorithm
from several random initializations is a common practice, with the
additional computational cost)

Sensitive to clusters with different sizes/densities and outliers

To find the value of k is not an easy problem (experimentation with
different values is needed)

A solution is found even if the classes are not hyperspherical (some
classes could be split/merged)

No guarantee about the quality of the solution

The spatial complexity makes it not suitable for large datasets
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Partitional algorithms Model/Prototype Clustering

K-means++
Initialization Strategies

K-means++ modifies the initialization strategy of the algorithm

The idea is to try to maximize distance among initial centers

Algorithm:

1 Choose one center uniformly at random from among the data points

2 For each data point x , compute d(x , c), the distance between x and
the nearest center that has already been chosen

3 Choose one new data point at random as a new center, using a
weighted probability distribution where a point x is chosen with
probability proportional to d(x , c)2

4 Repeat Steps 2 and 3 until k centers have been chosen

5 Proceed with the standard K-means algorithm
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Bisecting K-means

Bisecting K-means iteratively splits a cluster in two until the desired
number of clusters is obtained

Pro: Reduces the effect of the initialization/a hierarchy is
obtained/can be used to determine K

Con: Different criteria can be used to decide which cluster to split
(the largest, the one with largest variance, ...)

Algorithm:
1 Choose a number of partitions
2 Apply K-means to the dataset with k=2
3 Evaluate the quality of the current partition
4 Pick the cluster to split using a quality criteria
5 Apply K-means to the cluster with k=2
6 If the number of clusters is less than desired repeat from step 3
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Partitional algorithms Model/Prototype Clustering

Global K-means

Global K-means minimizes the clustering initialization dependence by
exploring the clusterings that can be generated using the examples as
initialization points

For generating a partition with K clusters explores all the alternative
partitions from 1 to K clusters.
Algorithm:

Compute the centroid of the partition with 1 cluster
For C from 2 to k:

for each example e, compute K-means initialized with the C − 1
centroids from the previous iteration and an additional with e as the
C -th centroid
Keep the clustering with the best objective function as the C -clusters
solution

Pro: Reduces the initialization problem/obtains all partitions from 2
to K

Con: Computational cost (runs K × N the K-means algorithm)
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Partitional algorithms Model/Prototype Clustering

Other K-means variants

Kernel K-means:

Distances are computed using a kernel
Pro: Clusters that are non linearly separable can be discovered (non
convex)
Con: Centroids are in the feature space, no interpretation in the
original space (image problem)

Fast K-means

Use of the triangular inequality to reduce the number of distance
computations for assigning examples to centroids

K-Harmonic means

Use of the Harmonic mean instead of the minimum distance in the
objective function
Pro: Less sensitive to initialization
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Partitional algorithms Model/Prototype Clustering

K-medoids

K-means assumes continuous attributes (a centroid can be computed)

In some problems a centroid makes no sense (nominal attributes,
structured data)

One or more examples for each cluster are maintained as a
representative of the cluster

The distance from each examples to the medoid of their cluster is
used as optimization criteria

Con: For one representative the cost per iteration is O(n2), for more
it is NP-hard

Pro: It is not sensitive to outliers
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K-medoids - PAM

Partitioning Around Medoids (PAM):

1 Randomly select k of the n data points as the medoids

2 Associate each data point to the closest medoids

3 For each medoid m

For each non-medoid o: Swap m and o and compute the cost

4 Keep the best solution

5 If medoids change, repeat from step 2
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Partitional algorithms Model/Prototype Clustering

Incremental algorithms: Leader Algorithm

The previous algorithms need all data from the beginning

An incremental strategy is needed when data comes as a stream:

A distance/similarity threshold (D) determines the extent of a
prototype

Inside the threshold: Incremental updating of the model (prototype)

Outside the threshold: A new prototype is created

The threshold D determines the granularity of the clusters

The clusters are dependent on the order of the examples
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Leader Algorithm

Algorithm: Leader Algorithm (X: Examples, D:double)

Generate a prototype with the first example
while there are examples do

e= current example
d= distance of e to the the nearest prototype
if d ≤ D then

Introduce the example in the class
Recompute the prototype

else
Create a new prototype with this example

end

end
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Partitional algorithms Model/Prototype Clustering

Leader Algorithm
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Partitional algorithms Model/Prototype Clustering

Mixture Decomposition - EM algorithm

We assume that the data are drawn from a mixture of probability
distribution functions (usually Gaussian), we are looking for the
parameters of the distributions that explain better the data

The model of the data is:

P(x |θ) =
K∑

i=1

P(wi )P(x |θi ,wi )

Being K the number of clusters and
∑K

i=1 P(wi ) = 1

Each instance has a probability to belong to a class
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Partitional algorithms Model/Prototype Clustering

Mixture Decomposition - EM algorithm
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Mixture Decomposition - EM algorithm

The goal is to estimate the parameters of the distribution that
describes each class (e.g.: means and standard deviations)

The algorithm maximizes the likelihood of the distribution respect the
dataset

It performs iteratively two steps:

Expectation: We calculate a function that assigns a degree of
membership to all the instances to any of the K probability distributions

Maximization: We re-estimate the parameters of the distributions to
maximize the membership
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EM Algorithm (K Gaussian)

For the Gaussian case:

P(x |−→µ ,Σ) =
K∑

i=1

P(wi )P(x |−→µi ,Σi ,wi )

Being −→µ the vectors of means and Σ the covariance matrices
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EM Algorithm (K Gaussian)

The computations depend on the assumptions that we make about the
attributes (independent or not, same σ, ...)

The attributes are independent: µi and σi have to be computed for
each class (O(k) parameters) (model: hyper spheres or ellipsoids
parallel to coordinate axis)

The attributes are not independent: µi , σi and σij have to be
computed for each class (O(k2) parameters) (model: hyper ellipsoids
non parallel to coordinate axis)
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EM Algorithm (K Gaussian)

For the case of A independent attributes:

P(x |−→µi ,Σi ,wi ) =
A∏

j=1

P(x |µij , σij ,wi )

The model to fit is

P(x |−→µ ,−→σ ) =
K∑

i=1

P(wi )
A∏

j=1

p(x |µij , σij ,wi )
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Partitional algorithms Model/Prototype Clustering

EM Algorithm (K Gaussian)

The update of the parameters in the maximization step is:

µ̂i =

∑N
k=1 P(wi |xk ,−→µ ,−→σ )xk∑N
k=1 P(wi |xk ,−→µ ,−→σ )

σ̂i =

∑N
k=1 P(wi |xk ,−→µ ,−→σ )(xk − µ̂i )2

∑N
k=1 P(wi |xk ,−→µ ,−→σ )

P̂(wi ) =
1

N

N∑

k=1

P(wi |xk ,−→µ ,−→σ )
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Partitional algorithms Model/Prototype Clustering

EM Algorithm (K Gaussian)

A set of K initial distributions is generated N(µi , σi ), µi and σi are
vectors corresponding to the mean and the variance of the attributes

We repeat until convergence:

1 Expectation: Compute the membership of each instance to each
probability distribution. Usually we use the log likelihood function of
the distribution

Each instance will have a weight depending of the probability assigned
by the previous step wxj,i = log(P(xj |N(µi , σi )))

2 Maximization: Recompute the parameters using the weights from the
previous steps and obtain the new µi and σi for each distribution
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EM algorithm - Comments

K-means is a particular case of this algorithm (hard partition)

The main advantage is that we obtain a membership as a probability
(soft assignments)

Using different probability distribution we can find different kinds of
structures.

The problem is to derive the calculations for the iterative updating of
the parameters

Javier Béjar cbea (CS - MAI) Unsupervised Learning AMLT - 2016/2017 47 / 110

Partitional algorithms Model/Prototype Clustering

Dirichlet Process Mixture Model

One of the problems of GMM is to decide a priori the number of
components

This problem can be solved using a mixture model that uses as a prior
a Dirichlet distribution

Dirichlet distribution assumes an unbound number of components

A finite weight is distributed among all the components by the
Dirichlet distribution

The fitting of the model will decide what number of components
better suits the data
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Dirichlet Process Mixture Model
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Fuzzy Clustering

Fuzzy clustering relax the hard partition constraint of K-means

Each instance has a membership to each partition

A new optimization function is introduced:

L =
N∑

i=1

K∑

k=1

δ(Ck , xi )
b‖xi − µk‖2

where
∑K

k=1 δ(Ck , xi ) = 1 and b is a blending factor

This is an advantage from other algorithms when the groups are
overlapped
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Fuzzy Clustering

C-means is the most known fuzzy clustering algorithm, it is the fuzzy
version of K-means

The algorithm performs an iterative optimization of the objective
function

The updating of the cluster centers is computed as:

µj =

∑N
i=1 δ(Cj , xi )

bxi∑N
i=1 δ(Cj , xi )b

And the updating of the memberships:

δ(Cj , xi ) =
(1/dij)

1/(1−b)

∑K
k=1(1/dik)1/(1−b)

, dij = ‖xi − µj‖2
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Fuzzy Clustering

The C-means algorithm looks for spherical clusters, other alternatives:

Gustafson-Kessel algorithm: A covariance matrix is introduced for each
cluster in the objective function that allows elipsoid shapes and
different cluster sizes

Gath-Geva algorithm: Adds to the objective function the size and an
estimation of the density of the cluster

Also different objective functions can be used to detect specific
shapes in the data (lines, rectangles, ...) this characteristic is widely
used in image recognition
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Python Notebooks

This Python Notebook shows examples of using different the K-means and
GMM and their problems

Prototype Based Clustering Algorithms Notebook (click here to go to
the url)

If you have downloaded the code from the repository you will able to play
with the notebooks (run jupyter notebook to open the notebooks)
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Partitional algorithms Density/Grid Clustering

Density/Grid Based Clustering

The number of groups is not decided beforehand

We are looking for regions with high density of examples

We are no limited a predefined shapes (there is no model)

Different approaches:

Density estimation

Space partitioning

Multidimensional histograms

Usually applied to datasets with low dimensionality
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Density estimation
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Space Partitioning
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Multidimensional Histograms
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DBSCAN/OPTICS

Ester, Kriegel, Sander, Xu A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise (DBSCAN) (1996)

Ankerst, Breunig, Kriegel, Sander OPTICS: Ordering Points To Identify
the Clustering Structure (2000)

Used in spatial databases, but can be applied to data with more
dimensionality
Based on finding areas of high density, it finds arbitrary shapes
We define ε-neighbourhood, as the instances that are at a distance less
than ε to a given instance

Nε(x) = {y ∈ X |d(x , y) ≤ ε}
We define core point as the instances that have a certain number of
elements in Nε(x)

Core point ≡ |Nε(x)| ≥ MinPts
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DBSCAN - Algorithm
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DBSCAN - Density

We say that two instances p and q are Direct Density Reachable
with respect to ε and MinPts if:

1 p ∈ Nε(q)

2 |Nε(q)| ≥ MinPts

We say that two instances p and q are Density Reachable if there
are a sequence of instances p = p1, p2, . . . , pn = q where pi+1 is
direct density reachable from pi

We say that p and q are Density connected if there is an instance o
such that both p and q are Density Reachable from o
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DBSCAN - Cluster Definition

Cluster

Given a dataset D, a cluster C with respect ε and MinPts is any subset of
D that:

1 ∀p, q p ∈ C ∧ density reachable(q, p) −→ q ∈ C

2 ∀p, q ∈ C density connected(p, q)

Any point that can not be connected using these relationships is treated as
noise
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DBSCAN - Algorithm

Algorithm

1 We start with an arbitrary instance and compute all density reachable
instances with respect ε and MinPts.

2 If it is a core point we will obtain a group, otherwise, it is a border
point and we will start from other unclassified instances

To decrease the computational cost R∗ trees are used to store and
compute the neighborhood of instances

ε and MinPts are set from the thinnest cluster from the dataset

The OPTICS algorithm defines a heuristic to find a good set of values for
these parameters
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DBSCAN - Algorithm

Datos Epsilon, MinPts=5 First Iteration (DDR) First Iteration (DR,DC)
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DENCLUE

Hinneburg, Keim An Efficient Approach to Clustering in Large
Multimedia Databases with noise (1998)

Clustering algorithm based on kernel density estimation

Defines the influence of an example in a dataset as the sum of a
kernel for all the data (for example a gaussian kernel)

f yB (x) = fB(x , y)

Defines the density function of a dataset as the sum of the influences
of all examples of the dataset

f DB (x) =
N∑

i=1

f xiB (x)
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DENCLUE

We define the gradient of f DB (x) as

5f DB (x) =
N∑

i=1

(xi − x)f xiB (x)

A point x∗ is a density-attractor iff is a local maximum of the density
function f DB
A point x is density-attracted to a density-attractor iff
∃k ∈ N; d(xk , x∗) ≤ ε

x0 = x , x i = x i−1 + δ · 5f DB (x i−1)

‖ 5 f DB (x i−1)‖
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DENCLUE

We define a Center-defined Cluster (wrt to σ,ξ) for a
density-attractor x∗ as the subset of examples being density-attracted
by x∗ and with f DB (x∗) > ξ

We define an Arbitrary-shape cluster (wrt to σ,ξ) for a set of
density-attractors X as the subset of examples being density-attracted
to any x∗ ∈ X with f DB (x∗) > ξ and with any density-attractor from
X connected by a path P with ∀p ∈ P : f DB (p) > ξ

Different algorithms can be reproduced with the right choice of σ and
ξ parameters (DBSCAN, K-means, hierarchical clustering)
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DENCLUE - example

Density attractor
Density attractor

Cluster
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DENCLUE - Algorithm

For efficiency reasons the density functions are only computed for the
neighbours of each point

The algorithm is divided in two phases:
1 Preclustering: The dataspace is divided in d-dimensional hypercubes,

only using the cubes with datapoints. These hypercubes are mapped to
a tree structure for efficient search. From this hypercubes given a
threshold, only the highly populated ones and their neigbours are
considered.

2 Clustering: For each datapoint in the hypercubes a local density
function and a local gradient are computed. Using a Hill-Climbing
algorithm the density-attractor for each point is computed. For
efficiency reasons each point near the path computed during the search
of a density-attractor is assigned to that density-attractor.
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CLIQUE

Agrawal, Gehrke, Gunopulos, Raghavan Automatic Subspace Clustering
of High Dimensional Data for Data Mining Applications (1998)

It generates CNF descriptions from the groups that discovers

The goal is to find a space with less dimensions where the groups are
easier to identify

The algorithm is scalable and can be used with data of high
dimensionality

The goal is to obtain interpretability

It is based on density estimation techniques

Each dimension of the dataset is divided using a grid
The bins with higher density than certain threshold are identified
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CLIQUE - Algorithm

1. Identify the subspaces with clusters

It applies a bottom up strategy identifying first the bins of higher
density in one dimension and combining them
A combination of k + 1 dimensions can only have high density bins if
there are high density bins in k dimensions
This rule gives the set of candidate to high density bins when we
increase the dimensionality by one
Some other heuristics are used to reduce the computational cost of the
search
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CLIQUE - Algorithm
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CLIQUE - Algorithm

2. Identify the clusters

We receive the set of dense bins from the previous step
We look for contiguous bins and consider them in the same group
Two bins are connected if they share a side in one dimension or there is
an intermediate bin that connect them
This problem is equivalent to find the connected components of a graph

Javier Béjar cbea (CS - MAI) Unsupervised Learning AMLT - 2016/2017 72 / 110



Partitional algorithms Density/Grid Clustering

CLIQUE - Algorithm
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CLIQUE - Algorithm

3. Generate the minimal description of the clusters

We receive a set of connected components in k dimensions
The problem is to look for the minimal cover for each connected
component (NP-hard)
We compute an approximation using rectangles that cover part of the
group maximally and after this we reduce the redundancies
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Partitional algorithms Density/Grid Clustering

CLIQUE - Algorithm
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Partitional algorithms Density/Grid Clustering

Python Notebooks

This Python Notebook compares Prototype Based and Density Based
Clustering algorithm

Density Based Clustering Notebook (click here to go to the url)

If you have downloaded the code from the repository you will able to play
with the notebooks (run jupyter notebook to open the notebooks)
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Partitional algorithms Graph Clustering

Based in graph theory

Different kinds of graphs are defined with the examples (MST,
Voronoi, Delanau, ...) based on their
similarities/distances/neighborhood relations

A consistency criteria for the edges of the graph is defined (delete
inconsistent edges)

The set of unconnected components defines the clusters

Two advantages: we do not need to know the number of classes
beforehand, we do not look for a specific model (any shape is
possible)
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Partitional algorithms Graph Clustering

Based in graph theory
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Partitional algorithms Graph Clustering

Spectral Clustering

Spectral graph theory defines properties that hold the eigenvalues and
eigenvectors of the adjacency matrix or Laplacian matrix of a graph

Spectral clustering uses spectral properties of the distance matrix

The distance matrix represents a graph that connects the examples

Complete graph

Neighbourhood graph (different definitions)

From the diagonalization of this matrix some clustering algorithms
can be defined
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Partitional algorithms Graph Clustering

Spectral Clustering (First approach)

We start with the similarity matrix (W ) of a dataset (complete or not)

This matrix represents the similarity graph of the instances

The degree of an edge is defined as:

di =
n∑

j=1

wij

We define the degree matrix D as the matrix with values
d1, d2, . . . , dn as diagonal

We can define different Laplace matrices:

Unnormalized: L = D −W

Normalized: Lsym = D−1/2LD−1/2 or also Lrw = D−1L
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Partitional algorithms Graph Clustering

Spectral Clustering (First approach)

We can cluster a dataset following this steps:
1 Compute the Laplace matrix from the similarity matrix

2 Compute the first K eigenvalues of the Laplace matrix

3 Use the eigenvectors as new datapoints

4 Apply K-means as clustering algorithm

We are embedding the dataset in a space with less dimensions
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Partitional algorithms Graph Clustering

Spectral Clustering (Second approach)

From the graph defined from the similarity matrix and its Laplacian
matrix (see previous slides), it is possible to define the problem as a
graph partitioning problem, so any graph partitioning algorithm can
be used

Given two disjoint sets of vertex A and B, we define:

cut(A,B) =
∑

i∈A,j∈B
wij

We can partition the graph solving the mincut problem choosing a
partition that minimizes :

cut(A1, . . . ,Ak) =
k∑

i=1

cut(Ai ,Ai )
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Partitional algorithms Graph Clustering

Spectral Clustering (Second approach)

Using directly the weights of the Laplacian not always gives good
results, there are alternative objective functions that are used also to
solve this problem

RatioCut(A1, . . . ,Ak) =
k∑

i=1

cut(Ai ,Ai )

|Ai |
(1)

Ncut(A1, . . . ,Ak) =
k∑

i=1

cut(Ai ,Ai )

vol(Ai )
(2)

Where |Ai | is the size of the partition and vol(Ai ) is the sum of the
degrees of the vertex in Ai
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Partitional algorithms Other Approaches

Other clustering approaches

Several other approaches exists for partitioning data

Affinity Propagation clustering (message passing)
Self organizing maps (neural networks)
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Partitional algorithms Other Approaches

Affinity Propagation Clustering

Affinity clustering is a message passing algorithm related to graph
partitioning

The algorithm establish the set of examples that have to be the
cluster prototypes and how the examples are attached to them

Each pair of objects have a distance defined s(i , k) (eg.: euclidean
distance)

The algorithm does not set the number of clusters, each example
receives a value r(k, k) that represents the preference for each point
to be an exemplar
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Partitional algorithms Other Approaches

Affinity Propagation Clustering - Messages

The examples pass two kind of messages

Responsibility r(i , k), that is a message that an example i passes to the
candidate to exemplars k of the point. This represents the evidence of
how good is k for being the exemplar of i

Availability a(i , k), sent from candidate to exemplar k to point i . This
represents the accumulated evidence of how appropriate would be for
point i to choose point k as its exemplar

The algorithm is related to other message passing algorithms used for
belief propagation in probabilistic graphical models
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Partitional algorithms Other Approaches

Affinity Propagation Clustering - Updating

All availabilities are initialized to 0

The responsibilities are updated as:

r(i , k) = r(i , k)−maxk ′ 6=k{a(i , k ′) + s(i , k ′)}
The availabilities are updated as:

a(i , k) = min{0, r(k , k) +
∑

i ′ 6∈{i ,k}
max(0, r(i ′, k))}

The self availability a(k , k) is updated as:

a(k , k) =
∑

i ′ 6=k

max(0, r(i ′, k))}

The exemplar for a point is identified by the point that maximizes
a(i , k) + r(i , k), if this point is the same point, then it is an exemplar.
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Partitional algorithms Other Approaches

Affinity Propagation Clustering - Algorithm

1 Update the responsibilities given the availabilities

2 Update the availabilities given the responsibilities

3 Compute the exemplars

4 Terminate if the exemplars do not change in a number of iterations
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Partitional algorithms Other Approaches

Affinity Propagation Clustering - Algorithm
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Partitional algorithms Other Approaches

Unsupervised Neural Networks

Self-organizing maps are an unsupervised neural network method
Can be seen as an on-line constrained version of K-means
The data transformed to fit in a 1-d or 2-d regular mesh (rectangular
or hexagonal)
The nodes of this mesh are the prototypes
This algorithm can be used as a dimensionality reduction method
(from N to 2 dimensions)
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Partitional algorithms Other Approaches

Self-Organizing Maps

To build the map we have to decide the size and shape of the mesh
(rectangular/hexagonal)

Each node of the mesh is a multidimensional prototype of p features

Algorithm: Self-Organizing Map algorithm

Initial prototypes are distributed regularly on the mesh
for Predefined number of iterations do

foreach Example xi do
Find the nearest prototype (mj)
Determine the neighborhood of mj (M)
foreach Prototype mk ∈M do

mk = mk + α(xi −mk)
end

end

end
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Partitional algorithms Other Approaches

Self-Organizing Maps

During the iterations the mesh is transformed to be closer to the data,
but maintaining the bidimensional relationship between prototypes

The performance of the algorithm depends on the learning rate α,
usually is decreased from 1 to 0 during the iterations

The neighborhood of a prototype is defined by the adjacency of the
cells and the distance of the prototypes

The number of neighbors used in the update is decreased during the
iterations from a predefined number to 1 (only the prototype nearest
to the observation)

Different variations of the algorithm give more weight depending on
the distance of the prototypes
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Partitional algorithms Other Approaches

Python Notebooks

This Python Notebook has examples for Spectral and Affinity Propagation
Clustering

Spectral and Affinity Propagation Clustering Notebook (click here to
go to the url)

If you have downloaded the code from the repository you will able to play
with the notebooks (run jupyter notebook to open the notebooks)
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Partitional algorithms Other Approaches

Python Code

In the code from the repository inside subdirectory Clustering you
have the python programs HierarchicalAuthors,
PartitionalAuthors and DensityBasedCity

The first and second ones use the authors dataset and allows to
compare hierarchical clustering and partitional clustering with this
data. You can observe what happens with both datasets and using
different attributes

The third one uses data from the City datasets that represents
events in different cities (Tweets and Crime) showing results for a
variety clustering algorithms. You can use data from different cities.

Javier Béjar cbea (CS - MAI) Unsupervised Learning AMLT - 2016/2017 94 / 110



Applications

1 Unsupervised Learning
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Applications

Barcelona Twitter/Instagram Dataset

Goal: To analyze the geographical behavior of people living/visiting a
city

Dataset: Tweets and Instagram posts inside a geographical area

Attributes: geographical information / time stamp of the post

Processes:

Geographical discretization for user representation

Discovery of behavior profiles
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Applications

The data

The dataset is composed of several hundreds of thousands of events
during several months (represents less than 5 % of the actual events)

Each event has a geographical position (latitude/longitude) and a
time stamp (inside an area of 30× 30 Km2)

For the purpose of the analysis (geoprofiles) the actual data is
difficult to analyze:

The resolution of the coordinates is too fine, low probability of two
events in the exact same place

Clustering geographically the events can help to make sense of the
data
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Applications

Clustering of the events

Being the data geographically distributed there are few alternatives
(clusters of arbitrary shapes)

The more adequate methods seem:

Density based clustering

Grid based clustering

The size of the dataset (∼ 2.5 million events) could arise scalability
issues, so a preliminar coarse grained clustering could be helpful (for
example k-means, or the leader algorithm)
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Applications

Clustering of the events - DBSCAN

The epsilon parameter in this case has an intuitive meaning (how close
geographically the points have to be to be considered in a cluster)

The minpoints is more difficult, for this dataset, some areas have a lot
of events and others have a few of them

Another curious thing about this dataset is that people tweets from
almost everywhere, so we do not want to have just one cluster that
connects everything

Unfortunately the results are not so good, apart of taking a long time
to obtain the results (∼ 4 hours) only a few clusters are found and a
large number of examples is discarded as noise
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Applications

Clustering of the events - Leader
Leader algorithm (200m/500m radius)
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Applications

Geographical profiles

We want to find groups of users that have similar behavior (in place
and time) along the period of data collection

The clusters from the discretization can be the basis for the
geographical profiles

Additionally a discretization of time can help to have a finer grained
representation

Different representation can be used to generate the dataset:

Presence/absence of a user in a place at a specific time interval
Absolute number of visits of a user to a place in a time interval
Normalized frequency of the visits of a user to a place in a time interval
...

Different choices of representation and discretization allow for
different analysis

Javier Béjar cbea (CS - MAI) Unsupervised Learning AMLT - 2016/2017 101 / 110

Applications

Geographical profiles

It is more difficult to choose what clustering algorithm is adequate

We can explore different alternatives and analyze the results

Some choices will depend on:

If the dataset generated is continuous or discrete
The size of the dataset
Our assumptions about the model that represents our goals (Shape of
the clusters, Separability of the clusters/Distribution of examples)
Interpretability/Representability of the clusters

Experts on the domain have to validate the results, but some general
assumptions can be used to evaluate the alternatives

We will explore two alternatives:

K-means algorithm (simple and efficient, spherical clusters)
Affinity propagation clustering (adaptative and non predefined shape)

Javier Béjar cbea (CS - MAI) Unsupervised Learning AMLT - 2016/2017 102 / 110



Applications

K-means

Clustering results depend on the chosen representation

Our assumption is that:

Several profiles should arise from the data
The number of people for each profile should be large

A large value of k is used, very small clusters are bound to appear

Most of clustering result in a very large cluster (most of the data) and
a large number of very small ones

The clustering that is closer to our assumptions is the one that uses
binary representation normalized using TF-IDF

Relatively large number of clusters (around 25)
A large cluster, several medium sized clusters and a few small ones
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Applications

K-means
Cluster example K=20
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Applications

K-means
Cluster example K=20
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Applications

K-means
Cluster example K=20
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Applications

Affinity propagation

The only parameter of the algorithm is the damping factor (explore
the range of values)

Like for K-means the results vary depending on the representation

There are a slightly larger number of clusters and more distributed

Also the clustering more close to our assumptions is the binary
representation

A larger number of clusters with more evenly distributed sizes

Javier Béjar cbea (CS - MAI) Unsupervised Learning AMLT - 2016/2017 107 / 110

Applications

Affinity propagation
Cluster example
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Applications

Affinity propagation
Cluster example
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Applications

Affinity propagation
Cluster example
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Javier Béjar cbea (CS - MAI) Clustering Evaluation/Model Assessment AMLT - 2016/2017 1 / 43

Outline

1 Cluster Evaluation

2 Internal criteria

3 External criteria

4 Number of clusters

5 Application

6 Cluster Visualization
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Cluster Evaluation

Model evaluation

The evaluation of unsupervised learning is difficult

There is no goal model to compare with

The true result is unknown, it may depend on the context, the task to
perform, ...

Why do we want to evaluate them?

To avoid finding patterns in noise

To compare clustering algorithms

To compare different models/parameters
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Cluster Evaluation

Model evaluation
What can be evaluated?

Cluster tendency, there are clusters in the data?

Compare the clusters to the true partition of the data

Quality of the clusters without reference to external information

Compare the results of different clustering algorithms

Evaluate algorithm parameters

For instance, to determine the correct number of clusters

Javier Béjar cbea (CS - MAI) Clustering Evaluation/Model Assessment AMLT - 2016/2017 5 / 43

Cluster Evaluation

Model evaluation
Cluster Tendency

Before clustering a dataset we can test if there are actually clusters

We have to test the hypothesis of the existence of patterns in the data
versus a dataset uniformly distributed (homogeneous distribution)

Hopkins Statistic
1 Sample n points (pi ) from the dataset (D) uniformly and compute the

distance to their nearest neighbor (d(pi ))
2 Generate n points (qi ) uniformly distributed in the space of the dataset

and compute their distance to nearest neighbors in D (d(qi ))
3 Compute the quotient:

H =

∑n
i=1 d(pi )∑n

i=1 d(pi ) +
∑n

i=1 d(qi )

4 If points are uniformly distributed the value of H will be around 0.5
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Cluster Evaluation

Model evaluation
Cluster Quality criteria

We can use different methodologies/criterion to evaluate the quality
of a clustering:

Comparison with a model partition/labeled data (External criteria)

Quality measures based on the examples/quality of the partition
(Internal criteria)

Comparison with other clusterings (Relative criteria)
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Internal criteria

Internal criteria

We can measure some properties that are expected in a good
clustering

Compact groups
Well separated groups

The indices are based on the model of the groups

We can use indices based on the attributes values measuring the
properties of a good clustering

These indices are based on statistical properties of the attributes of
the model

Values distribution
Distances distribution
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Internal criteria

Internal criteria - Indices

Some of the indices correspond directly to the objective function
optimized:

Quadratic error/Distorsion (k-means)

SSE =
k∑

k=1

∑

∀xi∈Ck

‖ xi − µk ‖2

Log likelihood (Mixture of gaussians/EM)
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Internal criteria

Internal criteria - Indices

For prototype based algorithms several measures can be use to
compute quality indices

Scatter matrices: interclass distance, intraclass distance, separation

SWk
=

∑

∀xi∈Ck

(xi − µk)(xi − µk)T

SBk
= |Ck |(µk − µ)(µk − µ)T

SMk,l
=

∑

∀i∈Ck

∑

∀j∈Cl

(xi − xj)(xi − xj)
T
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Internal criteria

Internal criteria - Indices

Trace criteria (lower overall intracluster distance/higher overall
intercluster distance)

Tr(SW ) =
1

K

K∑

i=1

SWk
Tr(SB) =

1

K

K∑

i=1

SBk

Determinant criteria (higher cross-intercluster distance)

Det(SM) =
1

K 2

K∑

i=1

K∑

j=1

SMi,j
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Internal criteria

Internal criteria - Indices

Condorcet criteria (total interclass/intraclass distances)

∑

Ci∈C

∑

xj , xk ∈ Ci

xj 6= xk

s(xj , xk) +
∑

Ci∈C

∑

xj∈Ci ;xk 6∈Ci

s(xj , xk)

Calinski-Harabasz index (interclass-intraclass distance ratio)

CH =

∑K
i=0 |Ci | × ‖µi − µ‖2/(K − 1)

∑K
k=1

∑|Ci |
i=0 ‖xi − µi‖2/(N − K )
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Internal criteria

Internal criteria - Indices

Davies-Bouldin criteria (maximum interclass-intraclass distance ratio)

R̄ =
1

K

K∑

i=1

Ri

where

Rij =
SWi

+ SWj

SMij

Ri = max
j :j 6=i

Rij
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Internal criteria

Internal criteria - Indices

Silhouette index (maximum class spread/variance)

S =
1

N

N∑

i=0

bi − ai
max(ai , bi )

Where

ai =
1

|Cj | − 1

∑

y∈Cj ,y 6=xi

‖y − xi‖

bi = min
l∈H,l 6=j

1

|Cl |
∑

y∈Cl

‖y − xi‖

being xi ∈ Cj ,H = {h : 1 ≤ h ≤ K}
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Internal criteria

Internal criteria - Indices

In the literature can be found more than 30 different indices

Several studies and comparisons have been performed

Recent studies (Arbelatiz et al, 2013) have exhaustively studied these
indices, some have a performance significativelly better that others

Some of the indices show a similar performance (not statistically
different)

The study concludes that Silhouette, Davies-Bouldin and Calinski
Harabasz perform well in a wide range of situations
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Internal criteria

Internal criteria - Interclass distance

Data with 5 clusters
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Internal criteria

Internal criteria - Davies-Bouldin

Data with 5 clusters
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External criteria

External criteria

These indices measure if a clustering is similar to a model partition P

It is equivalent to have a labeled dataset (ground thruth)

If we do not have a model these criteria can be used to compare the
results of using different parameters of different algorithms

For instance, can be used to assess the sensitivity to initialization

The main advantage is that these indices are independent of the
examples/cluster description

These means that can be used to assess any clustering algorithm
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External criteria

External criteria - Indices

All the indices are based on the coincidence of each pair of examples
in the groups of two clusterings

The computations are based on we have four values:

The two examples belong to the same class in both partitions (a)

The two examples belong to the same class in C , but not in P (b)

The two examples belong to the same class in P, but not in C (c)

The two examples belong to different classes in both partitions (d)
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External criteria

External criteria - Indices

Rand/Adjusted Rand statistic:

R =
(a + d)

(a + b + c + d)
; ARand =

a− (a+c)(a+b)
a+b+c+d

(a+c)+(a+b)
2 − (a+b)(a+c)

a+b+c+d

Jaccard Coefficient:

J =
a

(a + b + c)

Folkes and Mallow index:

FM =

√
a

a + b
· a

a + c
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External criteria

External criteria - Indices - Information Theory

Defining Mutual Information between two partitions as:

MI (Yi ,Yk) =
∑

X i
c∈Yi

∑

X k
c′∈Yk

|X i
c ∩ X k

c ′ |
N

log2(
N|X i

c ∩ X k
c ′ |

|X i
c ||X k

c ′ |
)

and Entropy of a partition as

H(Yi ) = −
∑

X i
c∈Yi

|X i
c |

N
log2(

|X i
c |

N
)

where X i
c ∩X k

c ′ is the number of objects that are in the intersection of
the two groups
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External criteria

External criteria - Indices - Information Theory

Normalized Mutual Information:

NMI (Yi ,Yk) =
MI (Yi ,Yk)√
H(Yi )H(Yk)

Variation of Information:

VI (C ,C ′) = H(C ) + H(C ′)− 2I (C ,C ′)

Adjusted Mutual Information:

AMI (U,V ) =
MI (U,V )− E (MI (U,V ))

max(H(U),H(V ))− E (MI (U,V ))
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Number of clusters

Number of clusters

A topic related to cluster validation is to decide if the number of
clusters obtained is the correct one

This point is important specially for the algorithms that need this
value as a parameter

The usual procedure is to compare the characteristics of clusterings of
different sizes

Usually internal criteria indices are used in this comparison

A graphic of this indices for different number of clusters can show
what number of clusters is more probable
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Number of clusters

Number of clusters - Indices

Some of the internal validity indices can be used for this purpose:

Calinsky Harabasz index
Silhouette index

Using the within class scatter matrix (SW ) other criteria can be
defined:

Hartigan index:

H(k) =

[
SW (k)

SW (k + 1)
− 1

]
(n − k − 1)

Krzanowski Lai index:

KL(k) =

∣∣∣∣
DIFF (k)

DIFF (k + 1)

∣∣∣∣

being DIFF (k) = (k − 1)2/pSW (k − 1)− k2/pSW (k)
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Number of clusters

Number of clusters - The Gap Statistic

Assess the number of clusters comparing a clustering with the
expected distribution of data given the null hypothesis (no clusters)

Different clusters of the data increasing the number of clusters and
compared to datasets (B) generated with a uniform distribution

The Gap statistic:

Gap(k) = (1/B)
∑

b

log(SW (k)b)− log(SW (k))

From the st. dev. (sdk) of
∑

b log(SW (k)b) is defined sk as:

sk = sdk
√

1 + 1/B

The probable number of clusters is the smallest number that holds:

Gap(k) ≥ Gap(k + 1)− sk+1
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Number of clusters

Number of clusters - Cluster Stability

The idea is that if the model chosen for clustering a dataset is
correct, it should be stable for different samplings of the data

The procedure is to obtain different subsamples of the data and
cluster them and test their stability

Using disjoint samples:

The dataset is divided in two disjoint samples that are clustered
separately
Indices can be defined to assess stability, for example using the
distribution of the number of neighbors that belong to the
complementary sample

Using non disjoint samples:

The dataset is divided in three disjoint samples (S1,S2, S3)
Two clusterings are obtained from S1 ∪ S3, S2 ∪ S3

Indices can be defined about the coincidence of the common examples
in both partitions
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Number of clusters

Python Notebooks

This Python Notebook has examples for Measures of Clustering Validation

Clustering Validation Notebook (click here to go to the url)

If you have downloaded the code from the repository you will able to play
with the notebooks (run jupyter notebook to open the notebooks)
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Number of clusters

Python Code

In the code from the repository inside subdirectory Validation you
have the python program ValidationAuthors,

The authors dataset is clustered with different algorithms (K-means,
GMM, Spectral) and different validity indices are plotted for the
number of clusters
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Application

1 Cluster Evaluation

2 Internal criteria

3 External criteria

4 Number of clusters

5 Application

6 Cluster Visualization
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Application

Application: Wheelchair Control Dataset

Wheelchair with shared control (patient/computer)

Recorded trajectories of several patients in different situations

Angle/distance to the goal, Angle/distance to the nearest obstacle
from around the chair (210 degrees)

Characterization about how the computer helps the patients with
different handicaps

How many clusters characterize the trajectories?
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Application

Wheel chair control characterization
PCA 88 =⇒ 3 dimensions
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Application

Wheel chair control characterization
Silhouette index for k-means
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Application

Wheel chair control characterization
Stability/Consensus ARAND and ANMI for k-means
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Cluster Visualization

1 Cluster Evaluation

2 Internal criteria

3 External criteria

4 Number of clusters

5 Application

6 Cluster Visualization
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Cluster Visualization

Cluster visualization

Another method for model assessment is to visualize the data and
look for clusters

Dimensionality reduction

Project the dataset to 2 or 3 dimensions
The clusters in the new space could represent clusters in the original
space
The confidence depends on the reconstruction error of the transformed
data and that the transformation maintains the relations in the original
space

Distance matrix visualization

The distance matrix represents the examples relationships
Can be rearranged so the closer examples appear in adjacent columns
Patterns in the rearranged matrix can show cluster tendency

Both methodologies are computationally expensive
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Cluster Visualization

Cluster visualization - Distance matrix

There are several methods

The simplest one is to use a hierarchical clustering algorithm and
rearrange the matrix using a inorder traversal of the tree

Results will depend on the algorithm used and the distance/similarity
function

Can be applied to quantitative and qualitative data

See patterns in the distance matrix is not always guarantee of clusters
in the data
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Cluster Visualization

Cluster visualization - Distance matrix

Dataset with five well separated clusters
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Cluster Visualization

Cluster visualization - Distance matrix

Dataset with five noisy and overlapping clusters

Javier Béjar cbea (CS - MAI) Clustering Evaluation/Model Assessment AMLT - 2016/2017 41 / 43

Cluster Visualization

Cluster visualization - Distance matrix

Random Data
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Cluster Visualization

Cluster visualization - Distance matrix

Three rings dataset (euclidean distance, cosine similarity)
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Introduction
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Introduction Motivations

Clustering in KDD

One of the main tasks in the KDD process is the analysis of data
when we do not know its structure

This task is very different from the task of prediction in which we
know the goal function and we try to approximate it

A great part of the KDD tasks are non supervised problems
(KDNuggets poll, 2-3 most frequent task)

Problems: Scalability, arbitrary cluster shapes, limited types of data,
finding the correct parameters, ...

There are some new algorithms that deal with these kind of problems
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Scalability Strategies
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Scalability Strategies

Strategies for cluster scalability

One-pass

Process data as a stream

Summarization/Data compression

Compress examples to fit more data in memory

Sampling/Batch algorithms

Process a subset of the data and maintain/compute a global model

Approximation

Avoid expensive computations by approximate estimation

Paralelization/Distribution

Divide the task in several parts and merge models
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Scalability Strategies

One pass

This strategy is based on incremental clustering algorithms

They are cheap but order of processing affects greatly their quality

Although they can be used as a preprocessing step

Two steps algorithms

1 A large number of clusters is generated using the one-pass algorithm

2 A more accurate algorithm clusters the preprocessed data
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Scalability Strategies

Data Compression/Summarization

Not all the data is necessary to discover the clusters

Discard sets of examples and summarize by:

Sufficient statistics

Density approximations

Discard data irrelevant for the model (do not affect the result)
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Scalability Strategies

Approximation

Not using all the information available to make decisions

Using K-neighbours (data structures for computing k-neighbours)

Preprocessing the data using a cheaper algorithm

Generate batches using approximate distances (eg: canopy clustering)

Use approximate data structures

Use of hashing or approximate counts for distances and frequency
computation

Javier Béjar cbea (CS - MIA) Clustering in KDD AMLT - 2016/2017 9 / 1

Scalability Strategies

Batches/Sampling

Process only data that fits in memory

Obtain from the data set:

Samples (process only a subset of the dataset)

Determine the size of the sample so all the clusters are represented

Batches (process all the dataset)
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Scalability Strategies

Paralelization/Distribution/Divide&Conquer

Paralelization of clustering usually depends on the specific algorithm

Some are difficult to parallelize (eg: hierarchical clustering)

Some have specific parts that can be solved in parallel or by
Divide&Conquer

Distance computations in k-means

Parameter estimation in EM algorithms

Grid density estimations

Space partitioning

Batches and sampling are more general approaches

The problem is how to merge all the different partitions
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Scalable Algorithms
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Scalable Algorithms

Scalable Hierarchical Clustering

Patra, Nandi, Viswanath, Distance based clustering method for arbitrary

shaped clusters in large datasets Pattern Recognition, 2011, 44, 2862-2870

Strategy: One pass + Summarization

The leader algorithm is used as a one pass summarization using
Leader algorithm (many clusters)

Single link is used to cluster the summaries

Theoretical results guarantee the equivalence to SL at top levels

Summarization makes the algorithm independent of the dataset size
(depends on the radius used on the leader algorithm and the volume
of the data)

Complexity O(c2)
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Scalable Algorithms

One pass + Single Link

1st Phase

2nd Phase

Leader Algorithm

Hierarchical Clustering
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Scalable Algorithms

BIRCH

Zhang, Ramakrishnan, Livny BIRCH: An Efficient Data Clustering Method

for Very Large Databases (1996)

Strategy: One-pass + Summarization

Hierarchical clustering with limited memory

Incremental algorithm

Based on probabilistic prototypes and distances

We need two pass from the database

Based on an specialized data structure named CF-tree (Clustering
Feature Tree)
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Scalable Algorithms

BIRCH (CF-tree)

It is a balanced n-ary tree that contains groups represented by
probabilistic prototypes

Leaves can contain as much as L prototypes and its radius can not be
more than T

Each non terminal node has a fixed branching factor (B), each
element is a prototype that summarizes its subtree

The choice of the parameters is crucial because we could fill all
available space during the process

This can be solved by changing the parameters values (basically T )
and recompressing the tree. In fact T determines the granularity of
the final groups
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Scalable Algorithms

BIRCH - Insertion algorithm

1 Traverse the tree until a leave is found and choose the nearest
prototype

2 On this leave we could introduce the instance in an existing group or
create a new prototype depending on if the distance is greater than
parameter T or not

3 If the current leave has not space for the new prototype we proceed
to create a new terminal node and we distribute the prototypes
among the current node and the new node

4 The distribution is performed choosing the two most different
prototypes and dividing the rest using their proximity to these two
prototypes

5 This division will create a new node in the ascendant node, if the new
node exceeds the capacity of the father we will split it and we will
continue the process until the root of the tree is reached if necessary

6 Additionally we could perform merge operations to compact the tree
and reduce space

Javier Béjar cbea (CS - MIA) Clustering in KDD AMLT - 2016/2017 17 / 1

Scalable Algorithms

BIRCH - Insertion Algorithm

Insertion + division
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Scalable Algorithms

BIRCH - Clustering algorithm

1 Phase 1: Construction of the CF-tree, we obtain a hierarchy that
summarizes the database as a set of groups which granularity is
defined by T

2 Phase 2: Optionally we modify the CF-tree in order to reduce its size
by merging near groups and deleting outliers

3 Phase 3: We use the prototypes inside the leaves of the trees as new
instances and we run a clustering algorithm with them (for instance
K-means)

4 Phase 4: We refine the groups assigning the instances from the
original database to the prototypes obtained in the previous phase
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Scalable Algorithms

One pass + CFTREE (BIRCH)

1st Phase - CFTree 2nd Phase - Kmeans
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Scalable Algorithms

Scalable K-means clustering

Bradley, Fayyad, Reina, Scaling Clustering Algorithms to Large Databases,

Knowledge Discovery and Data Mining (1998)

Strategy: Sampling + Summarization

Clustering algorithms need to have all data in main memory to
perform their task

We try to obtain scalability looking for an algorithm that:

Only look at the data one time
To be anytime (always a result is available)
To be incremental (to cluster more data we do not need to start from
scratch)
To be suspendable (we can restart the process from the actual state)
To use limited memory
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Scalable Algorithms

Scalable K-means clustering (Algorithm)

Obtain a sample that fits in memory

Update the actual model

Classify new instances as:

Necessary
Discardable (We keep their information as sufficient statistics)
Summarizable using data compression

Decide if the model is stable or we keep clustering more data
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Scalable Algorithms

Canopy Clustering

McCallum, Nigam, Ungar Efficient clustering of high-dimensional data sets

with application to reference matching (2002)

Strategy: Divide&Conquer + Approximation

The approach is based on a two stages clustering

The first stage can be seen as a preprocess determining the
neighborhood of the densities of examples and reducing the number
of distances that have to be computed on the second stage

This first stage is the called canopy clustering, relies on a cheap
distance and two parameters T1 > T2

This parameters are used as two centered spheres that determine how
to classify the examples.
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Scalable Algorithms

Canopy Clustering - Algorithm

Algorithm:
1 One example is picked at random and the cheap distance from this

example to the rest is computed
2 All the examples that are at less than T2 are deleted and included in

the canopy
3 The points at less than T1 are added to the canopy of this examples

without deleting them
4 The procedure is repeated until the example list is empty
5 Canopies can share examples

After this procedure the examples can be clustered using different
algorithms

For agglomerative clustering only the distances among the examples
in the canopies have to be computed
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Scalable Algorithms

Canopy Clustering - Algorithm

1st Canopy 2nd Canopy 3rd Canopy

Javier Béjar cbea (CS - MIA) Clustering in KDD AMLT - 2016/2017 25 / 1

Scalable Algorithms

Canopy Clustering - Algorithm

For EM and K-means there are different methods:

Method 1: Prototypes are associated with canopies, only distances
inside a canopy are computed and only the examples inside a canopy
can influence a prototype. The number of prototypes per canopy have
to be decided. The EM or K-means only use for each prototypes the
examples of the associated canopies
Method 2: Use a set of prototypes covering the dataset and then
distribute them in the canopies. We allow data in other canopies to
influence the prototypes but only using the mean of their canopies.
Method 3: We allow to create or merge prototypes inside a canopy
avoiding to have prototypes that cover examples that belong to more
than one canopy.
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Scalable Algorithms

Mini-batch K-means

Sculley, Web-scale k-means clustering Proceedings of the 19th international

conference on World wide web, 2010, 1177-1178

Strategy: Sampling

Apply K-means to a sequence of bootstrap samples of the data

Each iteration the samples are assigned to prototypes and the
prototypes are updated with the new sample

Each iteration the weight of the samples is reduced (learning rate)

The quality of the results depends on the size of the batches

Convergence is detected when prototypes are stable
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Scalable Algorithms

Mini-batch K-means (algorithm)

Given: k, mini-batch size b, iterations t, data set X
Initialize each c ∈ C with an x picked randomly from X
v ← 0
for i ← 1 to t do

M ← b examples picked randomly from X
for x ∈ M do

d[x] ← f(C,x)

for x ∈ M do
c ← d[x]
v[c] ← v[c] + 1

η ← 1
v [c]

c ← (1-η)c+ηx
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Scalable Algorithms

CURE

Guha, Rastogi, Shim CURE: An efficient clustering algorithm for large

databases (1998)

Strategy: Sampling + Divide&Conquer

It uses hierarchical agglomerative clustering

It is scalable and is capable of treating outliers

Scalability is obtained using sampling techniques and partitioning the
dataset

It uses a set of representatives (c) for cluster instead of centroids, this
allows to find non spherical groups

The distance is computed as the nearest pair of representatives
among groups

The clustering algorithm is agglomerative and merges pairs of groups
until k groups are obtained
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Scalable Algorithms

CURE - Algorithm

1 Draws a random sample from the dataset

2 Partitions the sample in p groups

3 Executes the clustering algorithm on each partition

4 Deletes outliers

5 Runs the clustering algorithm on the union of all groups until it
obtains k groups

6 Label the data accordingly to the similarity to the k groups
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Scalable Algorithms

CURE - Algorithm

Sampling+Partition Clustering partition 1

Clustering partition 2 Join partitions Labelling data 

DATA
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Scalable Algorithms

Rough-DBSCAN

Viswanath, Babu, Rough-DBSCAN: A fast hybrid density based clustering

method for large data sets Pattern Recognition Letters, 2009, 30, 1477 - 1488

Strategy; One-pass + Summarization

Two stages algorithm:
1 Preprocess using the leader algorithm

Determine the instances that belong to the higher densities and their
neighbours

2 Apply DBSCAN algorithm

Determine the densities for the selected instances
Approximate the values of the densities from their distances and the
sizes of the neighbor
Assign the neighbors accordingly to the found densities
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Scalable Algorithms

Python Notebooks

This Python Notebook has examples comparing K-means algorithm with
two scalable algorithms Mini Batch K-means and BIRCH

Clustering DM Notebook (click here to go to the url)

If you have downloaded the code from the repository you will able to play
with the notebooks (run jupyter notebook to open the notebooks)

Javier Béjar cbea (CS - MIA) Clustering in KDD AMLT - 2016/2017 33 / 1



6
Semisupervised Clustering

155



Semi-supervised Clustering
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Semisupervised Clustering
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Semisupervised Clustering

Semi-supervised Clustering

Sometimes we have available some information about the dataset we
are analyzing unsupervisedly

Could be interesting to incorporate this information to the clustering
process in order to:

Bias the search of the algorithm toward the solutions more consistent
with our knowledge
Improve the quality of the result reducing the algorithm natural bias
(predictivity/stability)
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Semisupervised Clustering

Semi-supervised Clustering

The information that we have available can be of different kinds:

Sets of labeled instances
Constrains among certain instances: Instances that have to be in the
same group/instances that can not belong to the same group
General information about the properties that the instances of a group
have to hold
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Semisupervised Clustering

How to use supervised information

Usually the use will depend on the model we can obtain
1 Begin with a prior model that changes how the search is performed
2 Bias the search, pruning the models that are not consistent with the

supervised knowledge
3 Modify the similarity among instances to match the constraints

imposed by the prior knowledge

Javier Béjar BY:© $\© C© (CS - MAI) Semi-supervised Clustering AMLT - 2016/2017 6 / 1



Semisupervised Clustering/Labeled Examples
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Semisupervised Clustering/Labeled Examples

Semi supervised clustering using labeled examples

Assuming that we have some labeled examples, these can be used to
obtain an initial model

We only have to know what examples belong to clusters, the actual
clusters are not needed

We can begin from this model the clustering process

This means that we decide the starting point of the search using the
supervised information

This initial model changes the search and the final model (bias)

This differs from semi-supervised learning from a supervised
perspective, were the labels of some of the examples are known

Javier Béjar BY:© $\© C© (CS - MAI) Semi-supervised Clustering AMLT - 2016/2017 8 / 1



Semisupervised Clustering/Labeled Examples

Semi supervised clustering using labeled examples

Basu, Banerjee, Mooney, “Semi supervised clustering by seeding”,
ICML 2002

Algorithm based on K-means (spherical clusters based on prototypes)

The usual initialization of K-means is by selecting randomly the initial
prototype (there are other alternatives)

Two proposals:

Use the labeled examples to build the initial prototypes (seeding)
Use the labeled examples to build the initial prototypes and constrain
the model so the labeled examples are always in the initial clusters
(seed and constraint)

The initial prototypes give an initial probability distribution for the
clustering
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Semisupervised Clustering/Labeled Examples

Semi supervised clustering using labeled examples
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Semisupervised Clustering/Labeled Examples

Seeded-KMeans

Algorithm: Seeded-KMeans

Input: The dataset X , the number of clusters K , a set S of labeled
instances (k groups)

Output: A partition of X in K groups
begin

Compute K initial prototypes (µi ) using the labeled instances
repeat

Assign each example from X to their nearest prototype µi
Recompute the prototype µi with the examples assigned

until Convergence

end
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Semisupervised Clustering/Labeled Examples

Constrained-KMeans

Algorithm: Constrained-KMeans

Input: The dataset X , the number of clusters K , a set S of labeled
instances (k groups)

Output: A partition of X in K groups
begin

Compute K initial prototypes (µi ) using the labeled instances
repeat

Maintain the examples from S in their initial classes
Assign each example from X to their nearest prototype µi
Recompute the prototype µi with the examples assigned

until Convergence

end
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Semisupervised Clustering/Constraints
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Semisupervised Clustering/Constraints

Semi supervised clustering using constraints

To have labeled examples means that the number of clusters and
something about the characteristic of the data is known

Sometimes it is easier to have information about if two examples have
to be in the same or different clusters

This information can be expressed by means of constraints among
examples: must links and cannot links

This information can be used to bias the search and only look for
models that maintain these constraints
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Semisupervised Clustering/Constraints

Semi supervised clustering using constraints
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Semisupervised Clustering/Constraints

Semi supervised clustering using constraints

Basu, Bilenko, Mooney, “A probabilistic framework for
semi-supervised clustering”, ICML 2002

Algorithm based on K-means (spherical clusters based on prototypes)

A set of must-link cannot-link constraints is defined over a subset of
examples

The quality function of the K-means algorithm is modified to bias the
search

A hidden markov random field is defined using the constraints
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Semisupervised Clustering/Constraints

Semi supervised clustering using constraints

The labels of the examples can
be used to define a markov
random field

The must-links and cannot-links
define the dependence among
the variables

The clustering of the examples
has to maximize the probability
of the hidden markov random
field

Data

Hidden�MRF

Must�link

Must�link

Cannot�link
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Semisupervised Clustering/Constraints

Semi supervised clustering using constraints

A new objective function for the K-Means algorithm is needed

The main idea is to introduce a penalty term to the objective function
that:

Penalizes the clustering that puts examples with must-links in different
clusters
Penalizes the clustering that puts examples with cannot-links in the
same cluster

This penalty has to be proportional to the distance among the
instances
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Semisupervised Clustering/Constraints

Semi supervised clustering using constraints

The new objective function is:

Jobj =
∑

xi∈X
D(xi , µli ) +

∑

(xi ,xj )∈M,[li 6=lj ]

wij ϕD(xi , xj) +

∑

(xi ,xj )∈C,[li=lj ]

w̄ij (ϕDmax − ϕD(xi , xj))

Where D is the distortion function, M and C are the sets of must and
cannot links, wij and w̄ij are the weight of the penalty for violating
the constraints and ϕD is an increasing function of the distance
between two examples

The specific function depends on the distortion measure selected
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Semisupervised Clustering/Constraints

HMRF-KMeans

The initialization of the process begins by analyzing the constraints
and inferring a set of examples to obtain the initial prototypes

The constraints conform a graph that divide a part of the examples in
different groups (connected components of the graph)

With these instances K prototypes are computed and used to
initialize the algorithm

The algorithm minimizes the objective function using an expectation
and an minimization step
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Semisupervised Clustering/Constraints

HMRF-KMeans

Algorithm: HMRF-KMeans

Input: The dataset X , the number of clusters K , a set of must and
cannot links, a distance function D and a set of weights for
violating the constraints

Output: A partition of X in K groups
begin

Compute K initial prototypes (µi ) using constraints
repeat

E-step: Reassign the labels of the examples using the prototypes
(µi ) to minimize Jobj
M-step: Given the cluster labels recalculate cluster centroids to
minimize Jobj

until Convergence

end
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Semisupervised Clustering/Constraints

Semi supervised clustering using constraints

The constraints can also be seen as an indication of the inadequacy of
the distance measure between two instances

A must-link violation means that the distance function assigns a
similarity less than the desired similarity
A cannot-link violation means that distance function assigns a
similarity larger than the desired similarity

The previous algorithm can be modified to introduce weights to
modify the distances among instances with constraints (an additional
maximization step is needed)
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Semisupervised Clustering/Distance Learning
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Semisupervised Clustering/Distance Learning

Semi supervised clustering with Distance Learning

Other approaches learn the more adequate distance function to fulfill
the constraints

The constraints are used as a guide to find a distance matrix that
represents the relations among examples

This problem can be defined as an optimization problem that
optimizes the distances among examples with respect to the
constraints

This methods are related to kernel methods, the goal is to learn a
Kernel matrix that represents a new space where the instances have
appropriate distances
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Semisupervised Clustering/Distance Learning

Semi supervised clustering with Distance Learning

There are several methods:

Relevant Component Analysis [Yeung, Chang (2006)] (optimization
of linear combination of distance kernels generated by must and cannot
links)
Optimization using Spectral Graphs for maintaining the constrains in
the new space and the structure of the original space
Learning of Mahalanobis distances: separate/approach the different
dimensions to match the constraints
Kernel Clustering (Kernel K-means) with kernel matrix learning via
regularization
Probabilistic Clustering (Model Based) with constraints via EM
(modify the probabilities matching the constrains)
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Semisupervised Clustering/Distance Learning

Semi supervised clustering with Distance Learning

Original First Iteration

Second Iteration Third Iteration
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Association Rules Introduction

Association rules

A Binary database is a database where each row is composed of
binary attributes

A B C D . . .
T1 1 0 0 1 . . .
T2 0 1 1 1 . . .
T3 1 0 1 0 . . .
T4 0 0 1 0 . . .

From this database frequent patterns of occurrence can be
discovered
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Association Rules Introduction

Association rules

This kind of databases appear for example on transactional data
(market basket analysis)

An association rule represents coocurence of events in the
database

TID Items

1 Bread, Chips, Beer, Yogourt, Eggs

2 Flour, Beer, Eggs, Butter,

3 Bread, Ham, Eggs, Butter, Milk

4 Flour, Eggs, Butter, Chocolate

5 Beer, Chips, Bacon, Eggs

{Flour} → {Eggs}
{Beer} → {Chips}
{Bacon} → {Eggs}
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Association Rules Definitions

Definitions (I)

We define R as the set of attributes of the database

We define X as a subset of attributes from R .

We say that X is a pattern from DB if there is any row where
all the attributes of X are 1.

We define the support (frequency) of a pattern X as the
function:

fr(X ) =
|M(X , r)|
|r |

Where |M(X , r)| is the number of times that X appears in the
DB and |r | is the size of the BD.
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Association Rules Definitions

Definitions (II)

Given a minimum support (min sup ∈ [0, 1]), we say that the
pattern X is frequent (frequent itemset) if:

fr(X ) ≥ min sup

F(r ,min sup) is the set of patterns that are frequent in :

F(r ,min sup) = {X ⊆ R/fr(X ) ≥ min sup}
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Association Rules Definitions

Definitions (III)

Given a BD with R attributes and X and Y attribute subsets,
with X ∩ Y = ∅, an association rule is the expression:

X ⇒ Y

conf (X ⇒ Y ) is the confidence of an association rule,
computed as:

conf (X ⇒ Y ) =
fr(X ∪ Y )

fr(X )

We consider a minimum value of confidence (min conf ∈ [0, 1])
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Apriori algorithm

1 Association Rules
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Apriori algorithm Finding association rules

Finding association rules

Given a minimum confidence and a minimum support, a
association rule (X ⇒ Y ) exists in a DB if:

(fr(X ∪ Y ) ≥ min sup) ∧ (conf (X ⇒ Y ) ≥ min conf )

Trivial approach:

It is enough to find all frequent subsets from R
We have to explore ∀X ∀Y ((X ⊆ R) ∧ (Y ⊆ X )) the
association rule (X − Y )⇒ Y

There are 2|R| candidates
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Apriori algorithm Finding association rules

Space of itemsets

A B C D

AB AC AD BC BD CD

ABC ABD BCDACD

ABCD
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Apriori algorithm Finding association rules

Properties of frequent sets

We need ways to prune the search space

Given X and Y with Y ⊆ X :

If fr(Y ) ≥ fr(X ), if X is frequent, Y also is frequent
If any subset Y from X is not frequent then X is not frequent

This is known as the anti-monotone property of support

A feasible exploration approach is

Find the frequent sets starting from size 1 and increasing its size
Prune the candidates including infrequent itemsets
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Apriori algorithm Finding association rules

Pruning of itemsets

A B C D

AB AC AD BC BD CD

ABC ABD BCDACD

ABCD

Infrequent
itemset

Pruned
Superset
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Apriori algorithm Finding association rules

Finding frequent sets

Fl(r ,min sup) is the set of frequent sets from R of size l .

Given a set of patterns of length l , the only frequent set
candidates of length l + 1 will be those which all subsets are in
the frequent sets of length l .

C (Fl+1(r)) = {X ⊆ R/|X | = l + 1 ∧
∀Y (Y ⊆ X ∧ |Y | = l ⇒ Y ∈ Fl(r))}

The computation of association rules can be done iteratively
starting with the smallest frequent subsets until no more
candidates are obtained
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Apriori algorithm Algorithm

Association Rules Algorithm

Algorithm: Apriori (R,min sup,min conf)

C,CCan,CTemp:set of frequent subsets
RAs:Set of association rules, L:integer
L=1
CCan=Frequent sets 1(R,fr min)
RAs=∅
while CCan 6= ∅ do

L=L+1
CTemp=Candidate sets(L,R,CCan) = C (Fl+1(r))
C=Frequent sets(CTemp,min sup)
RAs=RAs ∪ Confidence rules(C,min conf)
CCan=C

end
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Apriori algorithm Algorithm

Initial set of itemsets

A DCB
L=1

L=2

L=3

L=4 ABCD

ABC ABD ACD BCD

AB AC AD BC BD CD
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Apriori algorithm Algorithm

Itemsets size=1

A DC
L=1

L=2

L=3

L=4 ABCD

ABC ABD ACD BCD

AB AC AD BC BD CD
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Apriori algorithm Algorithm

Itemsets size=2

A DC
L=1

L=2

L=3

L=4 ABCD

ABC ABD ACD BCD

AC AD CD
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Apriori algorithm Algorithm

Itemsets size=3

A DC
L=1

L=2

L=3

L=4 ABCD

ACD

AC AD CD
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Apriori algorithm Algorithm

Final frequent itemsets

A DC
L=1

L=2

L=3

L=4

ACD

AC AD CD
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Apriori algorithm Computational Cost

Effect of Support

The specific value used as min sup has effect on the
computational cost of the search

If it is too high, only a few patterns will appear (we could miss
interesting rare occurrences)
If it is too low the computational cost will be too high (too
many associations will appear)

Unfortunately the threshold value can not be known beforehand

Sometimes multiple minimum supports are needed (different for
different groups of items)
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Apriori algorithm Computational Cost

Other factors affecting computational cost

Number of different items

The more items there are the more space is needed to count its
support

Size of the database

The algorithm has to perform multiple passes to count the
support

Average transaction width

Affects the maximum length of frequent itemsets
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Apriori algorithm Computational Cost

Other pruning strategies

Some itemsets are redundant because they have identical
support as their supersets

We could focus only on those itemsets, reducing the number of
candidates

Maximal frequent itemsets: A frequent itemset for which
none of its immediate supersets are frequent
Closed frequent itemsets: A frequent itemset for which none
of its immediate supersets have the same support, and its
support is larger than minsupport

Maximal frequent itemsets ⊆ Closed frequent itemsets ⊆ Frequent itemsets
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FP-Growth

Other approaches

Despite of prunning and search strategies for Association Rules
candidate generation is expensive

Other strategies allow to extract association rules using
specialized data structures
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FP-Growth

FP-Growth

Han, Pei, Yin, Mao Mining Frequent Patterns without
Candidate Generation: A Frequent-Pattern Tree Approach
(2004)

The problem of the apriori approach is that the number of
candidates to explore in order to find long patterns can be very
large

This approach tries to obtain patterns from transaction
databases without candidate generation

It is based on a specialized data structure (FP-Tree) that
summarizes the frequency of the patterns in the DB

The patterns are explored incrementally adding prefixes without
candidate generation
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FP-Growth FP-tree

FP-Tree

The goal of this structure is to avoid to query the DB to
compute the frequency of patterns

It assumes that there is an order among the elements of a
transaction

This order allows to obtain common prefixes from the
transactions

The transactions with common prefixes are merged in the
structure maintaining the frequency of each subprefix
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FP-Growth FP-tree

FP-Tree - Algorithm

1 Compute the frequency of each individual item in the DB

2 Create the tree root (empty prefix)
3 For each transaction from the DB

1 Pick the frequent items
2 Order the items by their original frequency
3 Iterate for each item, inserting it in the tree

If the node has a descendant equal to the actual item increase
its frequency
Otherwise, a new node is created
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FP-Growth FP-tree

FP-Tree - Example

BD Transactions
1 a, e, f
2 a, c, b, f, g
3 b, a, e, d
4 d, e, a, b, c
5 c, d, f, b
6 c, f, a, d

Item frequency
a 5
b 4
c 4
d 4
e 3
f 4
g 1

BD Transactions (fr=4)
1 a, f
2 a, c, b, f
3 a, b, d
4 a, b, c, d
5 b, c, d
6 a, c, d, f
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FP-Growth FP-tree

FP-Tree - Example

a

b

c

d

f4

4

4

4

5

λ

a

f

1

1

Trans(a,f)
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FP-Growth FP-tree

FP-Tree - Example

a

b

c

d

f4

4

4

4

5

λ

a

f 1

b

c

f

2

1

1

1

Trans(a,b,c,f)
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FP-Growth FP-tree

FP-Tree - Example

a

b

c

d

f4

4
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4
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f 1
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FP-Growth FP-tree

FP-Tree - Example

a

b

c

d

f4
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4

4
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f 1

b
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f
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d
1

Trans(a,b,cd)

d
1

2
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FP-Growth FP-tree

FP-Tree - Example

a

b

c

d

f4

4

4

4
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f 1
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FP-Growth FP-tree

FP-Tree - Example

a

b

c

d

f4

4

4

4
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a

f 1

b

c

f
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d
1
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FP-Growth FP-tree

The FP-Growth Algorithm

1 Given an item, select all the paths that contain the item (prefix
paths)

2 Convert all the paths that contain the item into a conditional
FP-tree:

1 Update the counts along the path using the frequency of the
selected item

2 Truncate the paths removing the nodes for the item
3 Eliminate from the paths the items that are no longer frequent

(if any)

3 For all the items previous in order that are frequent in the
conditional FP-tree

1 Count the prefix as frequent
2 Recursivelly find the frequent items for that prefix
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FP-Growth FP-tree

FP-Growth - Example

Extract patterns with suffix d

a:10 b:7

b:5

c:2 d:2

c:3 c:4

d:2

d:2

c:4

d:3
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FP-Growth FP-tree

FP-Growth - Example

Keep only the paths that contain d (minsupport = 2)

a:10 b:7

b:5

d:2

c:4

d:2

d:2

c:4

d:3
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FP-Growth FP-tree

FP-Growth - Example

Generate the conditional FP-tree for d (updating the counts)

a:2 b:4

b:2

d:2

c:2

d:2

d:2

c:3

d:3
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FP-Growth FP-tree

FP-Growth - Example

Prune the path eliminating d (is no longer needed)

a:2 b:4

b:2 c:2

c:3
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FP-Growth FP-tree

FP-Growth - Example

Solve the problem for the predecesors of d , in this case b and c (we
are looking if bd and cd are frequent)

a:2 b:4

b:2 c:2

c:3

If we continue the algorithm, the patterns extracted would be {[d],
[bd], [cd], [abd], [bcd]}
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Measures of interestingness

Measures for association rules interestingness

Given a rule, its interestingness can be computed from a
contingency table:

Y ¬Y
X f11 f10 f1+

¬X f01 f00 f0+

f+1 f+0 |r |
f11; support of X and Y

f10; support of X and ¬Y
f01; support of ¬X and Y

f01; support of ¬X and ¬Y
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Measures of interestingness

Measures for association rules interestingness

Other measures are based on probabilistic independence and
correlation

Lift/Interest factor N × f11

f1+ × f+1

All Confidence ḿın(
f11

f1+
,
f11

f+1
)

Max Confidence máx(
f11

f1+
,
f11

f+1
)

Kulczynski
1

2
(
f11

f1+
+

f11

f+1
)

Cosine Measure
f11√
f1+f+1
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Measures of interestingness

Properties of a measure of interestingness

Properties that a measure must hold

If A and B are statistically independent then M(A,B) = 0
M(A,B) increases monotonically with P(A,B) when P(A) and
P(B) remain unchanged
M(A,B) decreases monotonically with P(A) (or P(B)) when
P(A,B) and P(B) (or P(A) ) remain unchanged

Other properties

Symmetry (M(A,B) = M(B,A))
Invariant to row/column scaling
Invariant to inversions (f11 ↔ f00, f10 ↔ f01)
Null addition invariant (not affected if f00 is increased)
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Measures of interestingness

Python Notebooks

This Python Notebook has examples using the Authors dataset for
Apriori and FP-Growth

Association Rules Notebook (click here to go to the url)

If you have downloaded the code from the repository you will able to
play with the notebooks (run jupyter notebook to open the
notebooks)
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Twitter - City Connections
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Twitter - City Connections

Twitter - City Connections

The dataset consists on tweets with a time stamp and longitude
and latitude coordinates

Data has been collected for several months (2.5 million tweets)
in the Barcelona area (30Km × 30Km)

The goal is to perform spatio-temporal analysis of the behavior
of people in a geographical area

We are interested in patterns that show connections among
different parts of the city
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Twitter - City Connections

Twitter - City Connections

One approach is to consider a tweet as an event performed by a
user

The events of a user in a single day can be seen as a transaction
(market basket)

The attributes of a transaction are the time and the position of
the user

To discover city connections can be solved by discovering
frequent itemsets
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Twitter - City Connections

Twitter - City Connections - Preprocess

Considering all possible values for position and time makes
impossible to discover frequent patterns

In order to obtain a suitable representation for frequent itemsets
discovery we need to discretize the attributes

For time:

Consider different meaningful hour groups (morning, evening,
night, ...)
Groups of hours

For coordinates:

Equally spaced grid (granularity?)
Clustering (what clustering algorithm?)
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Twitter - City Connections

Twitter - City Connections - Preprocess

We pick to discretize time in intervals of 8 hours (0-7, 8-16,
13-23)

Two possibilities for coordinates:

An equally spaced 300× 300 grid (100m × 100m)
Clusters obtained by the leader algorithm (radius 100m)

The first option makes that a transaction has a determined
number of attributes (300× 300× 3), but no all the possibilities
will appear

For second the option the number of attributes will depend on
the densities in the coordinates
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Twitter - City Connections

Twitter - City Connections - Process

Generate the database of transactions

Discard the transactions that have only value for 1 attribute

Decide for a value for the support parameters

Use FP-Grow because of the size of the dataset and the number
of possible attributes

Only present maximal itemsets to reduce the number or
redundant patterns
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Twitter - City Connections

Twitter - City Connections
Grid Discretization 100m sup=50
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Twitter - City Connections

Twitter - City Connections - results
Leader Clustering Discretization 100m sup=50

Javier Béjar cbea (CS - MAI) Association rules AMLT - 2016/2017 54 / 54



8
Mining Structured Data

197



Mining of structures
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Javier Béjar BY:© $\© C© (CS - MAI) Mining of structures AMLT - 2016/2017 1 / 63

Outline

1 Introduction
Motivation

2 Sequences
Introduction
Clustering Sequences
Frequent patterns in sequences
Frequent Strings
Frequent transaction sets
Clustering of Data Streams

3 Application

4 Graph mining
Introduction
Mining large graphs
Mining sets of graphs

Clustering of graphs
Mining frequent Graphs
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Introduction Motivation

Mining of structures

There are some domains where patterns are more complex

In these domains instances are related to each other

Mining these relationships is more interesting than mining instances
individually

For example:

Temporal domains

Relational databases

Structured instances (trees, graphs)

Usually the methods used in this kind of domains are specific
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Sequences Introduction

Mining of sequences

These domains suppose some kind of sequential relationship among
instances (usually temporal)

We can have a unique sequence or a set of sequences

This kind of data can not be analyzed using classical techniques from
time series analysis (ARIMA modeling, Kalman filter, ...)

What makes different this kind of data?

Usually qualitative data

Very short series or a long series that has to be segmented

Interest in the relationships among series

Interest only in a part of the series (episodes, anomalies, novelty, ...)
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Sequences Introduction

Examples of sequence data

Customer transactions over the time: Sets of transactions ordered by
purchase time

Web Data: Browsing activity of users in a web site

Sensor data: History of events generated by a sensor (alarms,
anomalies)

Genome sequences: DNA/Protein sequences
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Sequences Clustering Sequences

Mining of sequences - Clustering Sequences

Clustering of temporal series: Clustering algorithms applied to a set
of short series

Representation of the series, representation of the groups
New distance measures (scale invariant, shape distances, ...)
How to segment a unique series in a set of series? what parts are
interesting?
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Sequences Clustering Sequences

Clustering Sequences - Data representation

Segments (windows) of the series (overlapping/non overlapping)

Width of the window (series segmentation)

Feature extraction: Generate informative features from the series
windows:

Extreme points (maximum, minima, inflection points)

Frequency domain features (Fourier Transform, Wavelets, ...)

Chaos theory (time-lag transformation)

Probabilistic models (Hidden Markov Models)
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Sequences Clustering Sequences

Clustering Sequences - Data representation

Original Series Discrete Fourier Coefficients

Discrete Wavelet Coefficients 1-Lag Series
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Sequences Clustering Sequences

Clustering Sequences - Distance Functions

Usual distance functions ignore time
dynamic

Euclidean, hamming, ...

Patterns in series contain noise,
time/amplitude scaling, translations

Dynamic Time Warping (DTW)
Longest Common Subsequence (LCSS)
Edit Distance with Real Penalty (ERP)
Edit Distance on Real Sequence (EDR)
Spatial Assembly Distance (SpADe)
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Sequences Clustering Sequences

Clustering Sequences - Distance Functions - DTW

Javier Béjar BY:© $\© C© (CS - MAI) Mining of structures AMLT - 2016/2017 12 / 63



Sequences Frequent patterns in sequences

Mining of sequences - Subpatterns

Frequent sequence patterns: Discovery of patterns inside the sequence

The series does not need to have a temporal relationship (eg.: DNA
sequences)

The values can be continuous, discrete or structured (transaction
data)

Goals:

Discovery of subseries that reveal some causality of events
Discovery of abnormal/novel patterns (deviation from normal behavior)
Discovery of frequent patterns
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Sequences Frequent patterns in sequences

Frequent Motifs

Keogh, Lonardi, Chiu Finding Surprising Patterns in a Time Series
Database In Linear Time and Space (2002)

Quantitative data, continuous time series

The goal is to discover the most frequent patterns given a window
length

The trivial algorithm is O(N2)

To reduce computational complexity the windows are transformed to
a simplified representation (Symbolic Aggregate Approximation/SAX)

Distance over new representation is a lower bound of distance in
original space

Javier Béjar BY:© $\© C© (CS - MAI) Mining of structures AMLT - 2016/2017 14 / 63



Sequences Frequent patterns in sequences

Frequent Motifs - SAX

a

b

c

a b c a a b
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Sequences Frequent patterns in sequences

Frequent Motifs - Algorithm

A window of a specified length is used to segment the sequence
(overlapped windows)

The transformed sequence is stored in multiple hash tables using
locality sensitive hashing

Search for similar sequences:

Sequences appearing in the same or contiguous buckets in different
hash tables are compared
First, compute the distance in the transformed series (cheap), if it is
less than a threshold, then compute the exact distance
If sequences are near, store the sequences as candidate frequent motifs

Return the candidates that appear more than a number of times
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Sequences Frequent Strings

Frequent Strings

Vilo Discovering Frequent Patterns from Strings (1998)

The sequence is a string of characters (no assumptions about the
relationship among the elements of the sequence)

We look for frequent patterns of any length (complete, with
equivalent classes, with wildcards)

These algorithms use specialized data structures to obtain the
patterns within a reasonable computational cost (for example
suffix-trees)

The construction of these structures are sometimes a preprocess (later
we extract the patterns) or given a threshold frequency we obtain
only the patterns we are looking for
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Sequences Frequent Strings

Frequent Strings - Algorithm

A suffix-trie is obtained from the sequence, a given (k) parameter sets the
minimum frequency of the patterns. The structure is created with the
empty string.

1 For each character that belongs to the alphabet of the sequence

1 Compute a list with the next position to the occurrence of the character
2 If the character appears more than k times we create a new descendant

in the trie

2 Recursive call for each descendant created
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Sequences Frequent Strings

Frequent Strings - Example
121110987654321

ABACABBAACA$ K=2

A=2,4,6,9,10,12
B=3,7,8
C=5,11

λ{1,2,3,4,5,6,7,8,9,10,11,12}
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Sequences Frequent Strings

Frequent Strings - Example
121110987654321

A=4,9
B=8
C=

A=6,12
B=
C=

A=10
B=3,7
C=5,11

ABACABBAACA$ K=2

A=2,4,6,9,10,12
B=3,7,8
C=5,11

λ{1,2,3,4,5,6,7,8,9,10,11,12}

A B C {5,7}{2,4,6,9,10,12} {3,7,8}
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Sequences Frequent Strings

Frequent Strings - Example
121110987654321

A=4,9
B=8
C=

A=6,12
B=
C=

A=10
B=3,7
C=5,11

A=6,12
B=
C=

ABACABBAACA$ K=2

A=2,4,6,9,10,12
B=3,7,8
C=5,11

λ{1,2,3,4,5,6,7,8,9,10,11,12}

A B C {5,7}{2,4,6,9,10,12} {3,7,8}

AACB {6,12}{4,9}{5,11}{3,7}
A=4
B=8
C=

B=
C=

A=10

C=

A=
B=7
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Sequences Frequent Strings

Frequent Strings - Example
121110987654321

A=4,9
B=8
C=

A=6,12
B=
C=

A=10
B=3,7
C=5,11

A=6,12
B=
C= C=

A=
B=7

C=

A=
B=7

ABACABBAACA$ K=2

A=2,4,6,9,10,12
B=3,7,8
C=5,11

λ{1,2,3,4,5,6,7,8,9,10,11,12}

A B C {5,7}{2,4,6,9,10,12} {3,7,8}

AACB {6,12}{4,9}{5,11}{3,7}
A=4
B=8
C=

B=
C=

A=10

A {6,12}

{A,B,C,AB,AC,BA,CA,ACA}.
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Sequences Frequent transaction sets

Frequent Transactions

Sometimes the events in the sequence are sets of elements

The definition of sequence has to be adapted:

Given an ordered list of elements:

s =< e1e2e3... >

Each element contains a collection of items

ei = {i1, i2, ..., ik}

Also the definition of subsequence:

A sequence < a1, a2, ..., an > is contained in another sequence
< b1, b2, ..., bm > (m ≥ n) if exists integers i1 < i2 < ...in such that
a1 ⊆ bi1, a2 ⊆ bi2,an ⊆ bin
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Sequences Frequent transaction sets

Generalized Sequence Pattern (GSP)

Agrawal, Srikant, Mining Sequential Patterns (1995)
Srikant, Agrawal, Mining Sequential Patterns: Generalizations and
Improvements (1996)

An apriori approach to the mining of sequential patterns

A similar monotonic property exists among a sequence and its
subsequences:

Given a sequential pattern s all its subsequences are also sequential
patterns
Given a sequential pattern s if s ′ is a subsequence then
support(s) ≤ support(s ′)

This means that generating all the frequent sequences for a database
can be done using a sequential approach
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Sequences Frequent transaction sets

Generalized Sequence Pattern (GSP)

Each iteration the sequences of length k + 1 are generated by merging
the frequent sequences of length k

For the generation of candidates all items in each transaction are
listed alphabetically

Each iteration the database is scanned to test for the candidates and
compute their support

Sequences not frequent are pruned
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Sequences Frequent transaction sets

Generalized Sequence Pattern (GSP)

Case 1:

(ab)(ac)ab + (ab)(ac)ac ⇒ (ab)(ac)a(bc), (ab)(ac)abc, (ab)(ac)acb

Case 2:

(ab)(ac)(ab) + (ab)(ac)(ac)⇒ (ab)(ac)(abc)

Case 3:

(ab)(abc) + (ab)(ab)a⇒ (ab)(abc)a
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Sequences Clustering of Data Streams

Clustering of Data Streams

Data streams: Modeling an on-line continuous series of data

Each item of the series is an instance (one value, a vector of values,
structured data)

For instance, sensory data (one or multiple synchronized data), stream
of documents (twitter/news)

Data is generated from a set of clusters (stable or changing over
time)

For example, states from a process or semantic topics

The data is processed incrementally (model changes with time)

Only the current model
Periodic snapshots

Different goals: Model the domain, detect anomalies/novelty/bursts,
change (Concept drift)
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Sequences Clustering of Data Streams

Clustering of Data Streams - Micro clusters

Aggarwal, Han, Wang, Yu, On Clustering Massive Data Streams: A

Summarization Paradigm Data Streams - Models and Algorithms, Springer,

2007, 31, 9-38

On-line phase:
Maintains/creates microclusters
Number of microclusters is larger than the actual number of clusters of
the dataset (approximate the densities)
When new data arrives, it is incorporated to a microcluster or
generates new microclusters
The number of microclusters is fixed, so microclusters are merged to
maintain the number
Periodically the microclusters are stored

Off-line phase:
Given a time window the stored clusters are used to compute the
microclusters inside the time frame
A k-means algorithm is used to compute the clusters for the time
window
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Sequences Clustering of Data Streams

Clustering of Data Streams - Density Based

Cao, Ester, Qian, Zhou, Density-Based Clustering over an Evolving Data

Stream with Noise Proceedings of the Sixth SIAM International Conference on

Data Mining, 2006

On-line phase:

Core-micro-clusters (a weighted sum of close points)
The weight of a point fades exponentially with time (damping model)
New examples are merged and mc are classified as:

core-mc, sets of points with weight over a threshold
potential-mc
outlier-mc, sets of points with weight below a threshold

outlier-mc dissapear with time

Off-line phase: Modified version of DBSCAN
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Sequences Clustering of Data Streams

Clustering of Data Streams - Density Based

Time n Time n+t

Clusters Clusters 
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3 Application
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Application

Spinal Cord Signals Analysis

Recorded signals over the lumbar vertebrae of an anesthetized cat
(from L4 to L7)

Different experimental conditions

Study of the peaks generated spontaneously by groups of neurons

Study of the synchronizations of the peaks in the different recording
points

Study of the sequential pattern behavior

Left Right

L5rL

L5cL

L5cR

L6rR

L6rL

L6cR

L6cL

L5rR

8
0

 m
V

200 ms
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Application

Spinal Cord Signals Analysis
Peak Data
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Application

Spinal Cord Signals Analysis
Shapes dictionary

Goal: Determine an structure for the peaks

Process

Identify the peaks in the signals (peak finding algorithm)
The peaks extracted from each measuring point will be the first dataset
Clean/Transform the data to visualize the structure
Cluster the datasets to obtain patterns of peaks (k-means =⇒
determine the number of clusters)

Results: A tentative dictionary of peaks shapes
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Application

Spinal Cord Signals Analysis
Clusters
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Application

Spinal Cord Signals Analysis
Synchronization Patterns

Goal: Find patterns in the synchronizations of the peaks

Process

Determine the synchronizations in the signal (synchronization
algorithm)
Generate a database of transactions from the synchronizations
Apply a frequent transactions algorithm to the transactions database

Results: A set of frequent sequences of synchronization
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Application

Spinal Cord Signals Analysis
Finding Synchronizations
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Application

Spinal Cord Signals Analysis
Synchronization sequences
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Graph mining Introduction

Mining of Structures

There is a lot of information that has a relational structure

Methods and models used for unstructured data are not expressive
enough

Sometimes structure can be flattened, but lots of interesting
information is lost

Relational database ⇒ unique merged table

Attributes representing relations ⇒ inapplicable attributes

Graph data ⇒ strings based on graph traversal algorithms

Documents ⇒ bag of words
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Graph mining Introduction

Mining of Structures (WWW/Social networks)
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Graph mining Introduction

Mining of Structures (Relational databases/Ontologies)
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Graph mining Introduction

Mining of Structures (XML documents/Text)
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Graph mining Introduction

Mining of Structures (Chemical compounds/Gene
interactions)
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Graph mining Introduction

Mining of Structures

All these types of data have in common that can be represented using
graphs and trees

Algorithms that use these data structures as input are needed

Historically we can find different approaches to the discovery of
patterns in graphs/trees:

Inductive logic programming: Structure is represented using logic
formulas
Graph algorithms

Classic algorithms for detecting dense subgraphs (cliques)
Graph isomorphism algorithms
Graph partitioning algorithms
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Graph mining Introduction

Mining of Structures: Computational issues

Most of the problems used to discover structures in graphs are
NP-Hard

Graph partitioning (Not for bi partitioning)

Graph isomorphism

Other approaches for mining graphs

Two different problems:

Mining large graphs (only one structure) ⇒ Partitioning, dense
subgraphs

Mining sets of graphs ⇒ common substructures
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Graph mining Mining large graphs

Mining Large Graphs

Some information can be described as a large graph (several instances
connected by different types of relations)

For example: Social networks, Web pages,

We are interested in discovering interesting substructures by:

Dividing the graph in subgraphs (k-way partitioning, node clustering)

Extracting dense substructures
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Graph mining Mining large graphs

Graph partitioning (2-way)

The simplest partitioning of a graph is to divide the graph in two
subgraphs

We assume that edges have values as labels (similarity, distance, ...)

This problem is the minimum cut-problem:

“Given a graph, divide the set of nodes in two groups so the cost of
the edges connecting the nodes between the groups is minimum”

This problem is related to the maximum flow problem that can be
solved in polynomial time
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Graph mining Mining large graphs

Graph partitioning (k-way)

The general problem is NP-hard

It can be solved approximately by local search algorithms (hill
climbing)

Kerninghan-Lin Algorithm:

1 Start with a random cut of the graph

2 Interchange a pair nodes from different partitions that reduces the cut

3 Iterate until convergence

There are different variations of this algorithm that changes the
strategy for selecting the pair of nodes to interchange
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Graph mining Mining large graphs

Graph partitioning (k-way) - Clustering

Clustering algorithms can be adapted to obtain a graph partition

K-means and K-medoids variations:

Nodes of the graphs as prototypes
Objective functions to define node membership to clusters (geodesic
distance)
Network structure indices

Spectral Clustering

Define the Laplacian matrix from the graph
Perform the eigendecomposition
The largest Eigenvalues determine the number of clusters
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Graph mining Mining large graphs

Graph partitioning (k-way) - Clustering

Girvan-Newman Algorithm (Social Networks)

Is based on the concept of edge betweenness centrality :

B(e) =
NumConstrainedPaths(e, i , j)

NumShortPahts(i , j)

Random Walk Betweeness: Compute how often a random walk starting
on node i passes through node j
Detects bridges among dense components (edges that are not in the
shortest paths between pairs of nodes)
Algorithm:

1 Rank edges by B(e)
2 Delete edge with the highest score
3 Iterate until a specific criteria holds (eg. number of components)
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Graph mining Mining large graphs

Dense subgraphs

Not always a complete partitioning of the graph is necessary

Dense subgraphs can represent interesting behaviors

Different types of (pseudo)dense subgraphs:

Clique: All nodes are connected

Quasi-clique: Almost all nodes are connected (minimum density or
minimum degree)

K-core: Every node connects to at least k nodes

K-plex: Each node is missing no more than k-1 edges

...

Different goals: Minimum size, all or the best ranked, overlapping or
not
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Graph mining Mining sets of graphs

Mining Sets of Graphs

Some information can be described as a collection graph

For example: XML documents, chemical molecules

We can use two approaches:

Cluster the graphs for common patterns and summarization

Find frequent substructures
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Graph mining Mining sets of graphs

Clustering of Graphs

We look at a graph as a complex object

We have to adapt the elements of clustering algorithms to this
objects:

Distance measures to compare graphs

Summarization of graphs as prototypes
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Graph mining Mining sets of graphs

Clustering of Graphs - XProj

This algorithm partitions a set of XML documents in K classes

The summarization and similarity are based on frequent substructures

For each partition the frequent substructures of size l are computed
and used as prototype

The number of substructures of the prototypes in a graph is used as
similarity

The more expensive part is the computation of the substructures
(cost is reduced by linearizing the graphs)
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Graph mining Mining sets of graphs

Clustering of Graphs - XProj

Algorithm: XProj

Partition the documents in K random subsets
Compute the prototypes (frequent substructures length l) Sk
repeat

Assign each document to the most similar prototype (Sk)
/* let M1, . . .Mk be the new partitions */

foreachMi do
Recompute the most frequent substructures of length l of Mi

if frequency of substructures > minsup then
Modify the prototype

end

end

until convergence criteria

Javier Béjar BY:© $\© C© (CS - MAI) Mining of structures AMLT - 2016/2017 56 / 63



Graph mining Mining sets of graphs

Mining frequent Graphs/Trees

We look for frequent graphs/trees in a database

Usually the structures are transformed to some kind of canonical
representation (adjacency matrix, tree traversal)

This representation gives a unique code for each different graph

We can discover patterns in this code related to the patterns that
appear in the original graphs

Some of the approaches use the same properties used in association
rules increasing the size of the patterns until no pattern is found
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Graph mining Mining sets of graphs

gSpan

Yan, Han gSpan: Graph-Based Substructure Pattern Mining
Proceedings of the IEEE International Conference on Data Mining 2002

The graphs have labels in their edges and their vertices

A canonical representation is used to reduce the cost to compute
graph isomorphism

This representation is based on the tree obtained by the depth first
search of the graph and a lexicographical order among labels

This representation transforms a graph into a string that contains the
labels of the graph

With this representation we can have an ordering over all the graphs
that can be used to explore all possible subgraphs
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Graph mining Mining sets of graphs

gSpan - DFS Lexicographic order

We assume an initial vertex (v0) and an order among vertices
(i = 0 . . . n), many DFS traversals of a graph can obtained

For a DFS traversal of a graph we define the forward edges (those
with i < j , the DFS tree of the graph) and the backward edges (those
with i > j)

We define a linear order among edges, given e1 = (i1, j1) and
e2 = (i2, j2)

if ii = i2 and j1 < j2 then e1 ≺T e2; if i1 < j1 and j1 = i2 then e1 ≺T e2;
if e1 ≺T e2 and e2 ≺T e3 then e1 ≺T e3

Given a DFS tree for a graph and edge sequence can be defined based
on ≺T , this is the DFS code of the graph

Given the DFS codes for a graph the linear order and a linear order
for its labels ≺L, a linear order among codes can be defined

The Minimum DFS code is the canonical label for G
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Graph mining Mining sets of graphs

gSpan - DFS Lexicographic order
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0: (0,1,X,a,X)
1: (1,2,X,a,Y)
2: (2,0,Y,b,X)
3: (2,3,Y,b,Z)
4: (3,0,Z,c,X)
5: (2,4,Y,d,Z)

DFS DFS Code

Javier Béjar BY:© $\© C© (CS - MAI) Mining of structures AMLT - 2016/2017 60 / 63



Graph mining Mining sets of graphs

gSpan - Algorithm

Initialization (D, MinSup)

1 sort labels of the vertices and
edges in D by frequency

2 remove infrequent vertices and
edges

3 S0=code of all frequent graphs
with single edge

4 sort S0 in DFS lexicographic
order

5 S = S0

6 for each code s in S0

1 gSpan(s,D,MinSup,S)
2 D = D − s
3 if |D| < MinSup then return

gSpan(s,D,MinSup,S)

1 if s! = mincode(s) then return

2 insert s into S

3 C = ∅
4 scan D

find every edge e such that s
can be right-most extended to
frequent s ∗ e
insert s ∗ e into C ;

5 sort C in DFS lexicographic
order

6 for each s ∗ e in C do

gSpan(s ∗ e,D,MinSup,S)
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gSpan - Example

Minsup=2

Not minimal Not minimal

Not minimal Not minimal

Not minimal Not minimal

Javier Béjar BY:© $\© C© (CS - MAI) Mining of structures AMLT - 2016/2017 62 / 63



Graph mining Mining sets of graphs

Python Notebooks

This Python Notebook has examples of dense subgraphs discovery and
comunity discovery using geolocation information from Twitter for
London, Paris and Barcelona

Dense Subgraphs Notebook (click here to go to the url)

If you have downloaded the code from the repository you will able to play
with the notebooks (run jupyter notebook to open the notebooks)
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