Updating K-d Trees

Amalia Duch
Conrado Martínez

Univ. Politècnica de Catalunya, Spain
1. Introduction
2. Updating with split and join
3. Analysis of split and join
4. Copy-based updates
5. Analysis of copy-based updates
6. The cost of insertions and deletions
A relaxed K-d tree is a variant of K-d trees (Bentley, 1975), where each node stores a random discriminant i, $0 \leq i < K$.

They were introduced by Duch, Estivill-castro and Martínez (1998) and subsequently analyzed by Martínez, Panholzer and Prodinger (2001), by Duch and Martínez (2002a, 2002b), and by Broutin, Dalal, Devroye and McLeish (2006).
A relaxed K-d tree is a variant of K-d trees (Bentley, 1975), where each node stores a random discriminant i, $0 \leq i < K$

They were introduced by Duch, Estivill-castro and Martínez (1998) and subsequently analyzed by Martínez, Panholzer and Prodinger (2001), by Duch and Martínez (2002a, 2002b), and by Broutin, Dalal, Devroye and McLeish (2006)
Relaxation allows insertions at arbitrary positions.

Subtree sizes can be used to guarantee randomness under arbitrary insertions or deletions, hence we can provide guarantees on expected performance.

The average performance of associative queries (e.g., partial match, orthogonal range search, nearest neighbors) is slightly worse than standard K-d trees.
- Relaxation allows insertions at arbitrary positions.
- Subtree sizes can be used to guarantee randomness under arbitrary insertions or deletions, hence we can provide guarantees on expected performance.
- The average performance of associative queries (e.g., partial match, orthogonal range search, nearest neighbors) is slightly worse than standard K-d trees.
- Relaxation allows insertions at arbitrary positions.
- Subtree sizes can be used to guarantee randomness under arbitrary insertions or deletions, hence we can provide guarantees on expected performance.
- The average performance of associative queries (e.g., partial match, orthogonal range search, nearest neighbors) is slightly worse than standard K-d trees.
```c
struct node {
    Elem key;
    int descr, size;
    node* left, * right;
};
typedef node* rkdt;

Insertion in relaxed K-d trees

rkdt insert(rkdt t, const Elem& x) {
    int n = size(t);
    int u = random(0,n);
    if (u == n)
        return insert_at_root(t, x);
    else { // t cannot be empty
        int i = t -> descr;
        if (x[i] < t -> key[i])
            t -> left = insert(t -> left, x);
        else
            t -> right = insert(t -> right, x);
        return t;
    }
}
```
Deletion in relaxed K-d trees

```cpp
cdkd delete(rkdtd t, const Elem& x) {
    if (t == NULL) return NULL;
    if (t -> key == x)
        return delete_root(t);
    int i = t -> discr;
    if (x -> key[i] < t -> key[i])
        t -> left = delete(t -> left, x);
    else
        t -> right = delete(t -> right, x);
    return t;
}
```
1. Introduction

2. Updating with split and join

3. Analysis of split and join

4. Copy-based updates

5. Analysis of copy-based updates

6. The cost of insertions and deletions
Insertion at root

```cpp
rkdt insert_at_root(rkdt t, const Elem& x) {
    rkdt r = new node;
    r -> info = x;
    r -> descr = random(0, K-1);
    pair<rkdt, rkdt> p = split(t, r);
    r -> left = p.first;
    r -> right = p.second;
    return r;
}
```
pair<rkdt, rkdt> split(rkdt t, rkdt r) {
 if (t == NULL) return make_pair(NULL, NULL);
 int i = r -> discr; int j = t -> discr;
 if (i == j) {
 // Case I
 ...
 } else {
 // Case II
 ...
 }
}
```cpp
if (i == j) {
    if (r -> key[i] < t -> key[i]) {
        pair<rkd, rkd> p = split(t -> left, r);
        t -> left = p.second;
        return make_pair(p.first, t);
    } else {
        pair<rkd, rkd> p = split(t -> right, r);
        t -> right = p.first;
        return make_pair(t, p.second);
    }
} else { // i != j
    ...
}
```
Split: Case II

if (i == j) {
 ...
} else { // i != j
 pair<rkdt, rkdt> L = split(t -> left, r);
 pair<rkdt, rkdt> R = split(t -> right, r);
 if (r -> key[i] < t -> key[i]) {
 t -> left = L.second;
 t -> right = R.second;
 return make_pair(join(L.first, R.first, j), t);
 } else {
 t -> left = L.first;
 t -> right = R.first;
 return make_pair(t, join(L.second, R.second, j));
 }
}
Deletion in relaxed K-d trees

```c
rkdt delete(rkdt t, const Elem& x) {
    if (t == NULL) return NULL;
    int i = t->discr;
    if (t->key == x)
        return join(t->left, t->right, i);
    if (x->key[i] < t->key[i])
        t->left = delete(t->left, x);
    else
        t->right = delete(t->right, x);
    return t;
}
```
Joining two trees

rkdt join(rkdt L, rkdt R, int i) {
 if (L == NULL) return R;
 if (R == NULL) return L;

 // L != NULL and R != NULL
 int m = size(L); int n = size(R);
 int u = random(0, m+n-1);
 if (u < m) // with probability m / (m + n)
 // the joint root is that of L
 ...
 else // with probability n / (m + n)
 // the joint root is that of R
}
1. Introduction
2. Updating with split and join
3. Analysis of split and join
4. Copy-based updates
5. Analysis of copy-based updates
6. The cost of insertions and deletions
\(s_n = \text{avg. number of visited nodes in a split} \)

\(m_n = \text{avg. number of visited nodes in a join} \)

\[
\begin{align*}
\hspace{1cm} s_n &= 1 + \frac{2}{nK} \sum_{0 \leq j < n} \frac{j + 1}{n + 1} s_j + \frac{2(K - 1)}{nK} \sum_{0 \leq j < n} s_j \\
&\quad + \frac{K - 1}{K} \sum_{0 \leq j < n} \pi_{n,j} m_j,
\end{align*}
\]

where \(\pi_{n,j} \) is probability of joining two trees with total size \(j \).
\(s_n = \text{avg. number of visited nodes in a split} \)

\(m_n = \text{avg. number of visited nodes in a join} \)

\[
s_n = 1 + \frac{2}{nK} \sum_{0 \leq j < n} \frac{j + 1}{n + 1} s_j + \frac{2(K - 1)}{nK} \sum_{0 \leq j < n} s_j \\
+ \frac{K - 1}{K} \sum_{0 \leq j < n} \pi_{n,j} m_j,
\]

where \(\pi_{n,j} \) is probability of joining two trees with total size \(j \).
\(s_n = \text{avg. number of visited nodes in a split} \)

\(m_n = \text{avg. number of visited nodes in a join} \)

\[
\begin{align*}
 s_n &= 1 + \frac{2}{nK} \sum_{0 \leq j < n} \frac{j + 1}{n + 1} s_j + \frac{2(K - 1)}{nK} \sum_{0 \leq j < n} s_j \\
 &\quad + \frac{K - 1}{K} \sum_{0 \leq j < n} \pi_{n,j} m_j,
\end{align*}
\]

where \(\pi_{n,j} \) is probability of joining two trees with total size \(j \).
The recurrence for s_n is

$$s_n = 1 + \frac{2}{nK} \sum_{0 \leq j < n} \frac{j + 1}{n + 1} s_j + \frac{2(K - 1)}{nK} \sum_{0 \leq j < n} s_j$$

$$+ \frac{2(K - 1)}{nK} \sum_{0 \leq j < n} \frac{n - j}{n + 1} m_j,$$

with $s_0 = 0$.

The recurrence for m_n has exactly the same shape with the rôles of s_n and m_n interchanged; it easily follows that $s_n = m_n$.
The recurrence for s_n is

$$s_n = 1 + \frac{2}{nK} \sum_{0 \leq j < n} \frac{j + 1}{n + 1} s_j + \frac{2(K - 1)}{nK} \sum_{0 \leq j < n} s_j$$

$$+ \frac{2(K - 1)}{nK} \sum_{0 \leq j < n} \frac{n - j}{n + 1} m_j,$$

with $s_0 = 0$.

The recurrence for m_n has exactly the same shape with the rôles of s_n and m_n interchanged; it easily follows that $s_n = m_n$.
Define

\[S(z) = \sum_{n \geq 0} s_n z^n \]

The recurrence for \(s_n \) translates to

\[
\frac{z}{1-z} \frac{d^2 S}{dz^2} + 2 \frac{1-2z}{1-z} \frac{dS}{dz} - 2 \left(\frac{3K-2}{K} - z \right) \frac{S(z)}{(1-z)^2} = \frac{2}{(1-z)^3},
\]

with initial conditions \(S(0) = 0 \) and \(S'(0) = 1 \).
Define

\[S(z) = \sum_{n \geq 0} s_n z^n \]

The recurrence for \(s_n \) translates to

\[
 z \frac{d^2 S}{dz^2} + 2 \frac{1 - 2z}{1 - z} \frac{dS}{dz} - 2 \left(\frac{3K - 2}{K} - z \right) \frac{S(z)}{(1 - z)^2} = \frac{2}{(1 - z)^3},
\]

with initial conditions \(S(0) = 0 \) and \(S'(0) = 1 \).
The homogeneous second order linear ODE is of hypergeometric type.

An easy particular solution of the ODE is

\[-\frac{1}{2} \left(\frac{K}{K-1} \right) \frac{1}{1-z}\]
The homogeneous second order linear ODE is of hypergeometric type.

An easy particular solution of the ODE is

$$\frac{1}{2} \left(\frac{K}{K-1} \right) \frac{1}{1-z}$$
Theorem

The generating function $S(z)$ of the expected cost of split is, for any $K \geq 2$,

$$S(z) = \frac{1}{2} \frac{1}{1 - \frac{1}{K}} \left[(1 - z)^{-\alpha} \cdot \frac{\Gamma(1 - \alpha, 2 - \alpha)}{2} \right] - \frac{1}{1 - z},$$

where $\alpha = \alpha(K) = \frac{1}{2} \left(1 + \sqrt{17 - \frac{16}{K}} \right)$.
Theorem

The expected cost s_n of splitting a relaxed K-d tree of size n is

$$s_n = \eta(K) n^{\phi(K)} + o(n),$$

with

$$\eta = \frac{1}{2} \frac{1}{1 - \frac{1}{K}} \frac{\Gamma(2\alpha - 1)}{\alpha \Gamma^3(\alpha)},$$

$$\phi = \alpha - 1 = \frac{1}{2} \left(\sqrt{17 - \frac{16}{K}} - 1 \right).$$
Plot of $\phi(K)$

$\phi(2) = 1 \leq \phi(K) \leq \phi(\infty) = (\sqrt{17} - 1)/2 \approx 1.5615, \quad K \geq 2$
\(\eta(2) = 1 \geq \eta(K) \geq \eta(\infty) \approx 0.5107, \quad K \geq 2 \)
1. Introduction

2. Updating with split and join

3. Analysis of split and join

4. Copy-based updates

5. Analysis of copy-based updates

6. The cost of insertions and deletions
Modified standard insertion

```c
// inserts the tree z in the appropriate leaf of T
rkdt insert_std(rkdt T, rkdt z) {
    if (T == NULL) return z;
    else {
        int i = T -> discr;
        if (z -> key[i] < T -> key[i])
            T -> left = insert(T -> left, z);
        else
            T -> right = insert(T -> right, z);
        return T;
    }
}
```
Copy-based insertion (1)

```cpp
rkdt insert_at_root(rkdt T, const Elem& x) {
    rkdt result = new node(x, random(0, K-1));
    int i = result -> discr;
    queue<rkdt> Q;
    Q.push(T);
    while (!Q.empty()) {
        rkdt z = Q.pop(); if (z == NULL) continue;
        // insert one or both subtrees of z
        // back to Q
        result = insert_std(result, z);
    }
    return result;
}
```
... if (z -> discr != i) {
 Q.push(z -> left);
 Q.push(z -> right);
 z -> left = z -> right = NULL;
} else {
 if (x[i] < z -> key[i]) {
 Q.push(z -> left);
 z -> left = NULL;
 } else {
 Q.push(z -> right);
 z -> right = NULL;
 }
}
Copy-based deletion

```c
rkdt delete_root(rkdt T) {
    Elem x = T -> key;
    int i = T -> discr;
    queue<rkdt> QL, QR;
    rkdt result = NULL;
    QL.push(T -> left); QR.push(T -> right);
    while (!QL.empty() && !QR.empty()) {
        rkdt U = QL.front(); rkdt V = QR.front();
        int m = size(U); int n = size(V);
        if (random(0,m+n-1) < m) {
            QL.pop();
            // insert U (and eventually one of
            // its subtrees) into the current result;
            // insert one or two subtrees of U back into
            // QL
            result = insert_std(result, U);
        } else {
            // symmetric code with QR and V
        }
    }
    return result;
}
```
1. Introduction
2. Updating with split and join
3. Analysis of split and join
4. Copy-based updates
5. Analysis of copy-based updates
6. The cost of insertions and deletions
The cost of building T using copy-based insertion:

$$C(T) = 1 + \frac{1}{K} \left(\frac{|L| + 1}{|T| + 1} (P(L) + C(L)) \right)$$

$$+ \frac{1}{K} \left(\frac{|R| + 1}{|T| + 1} (P(R) + C(R)) \right)$$

$$+ \frac{K - 1}{K} (P(L) + P(R) + C(L) + C(R)),$$

where $P(T)$ denotes the number of nodes visited by a partial match in a random tree T.

\[
C(T) = P(T) + \frac{1}{K} \frac{|L| + 1}{|T| + 1} C(L) + \frac{1}{K} \frac{|R| + 1}{|T| + 1} C(R)
\]

$$+ \frac{K - 1}{K} (C(L) + C(R)),$$
The cost of making an insertion at root into a tree of size \(n \):

\[
C_n = P_n + \frac{2}{nK} \sum_{0 \leq k < n} \frac{k + 1}{n + 1} C_k + \frac{2(K - 1)}{nK} \sum_{0 \leq k < n} C_k.
\]

with \(P_n \) the expected cost of a partial match in a random relaxed \(K \)-d tree of size \(n \) with only one specified coordinate out of \(K \) coordinates.
Theorem (Duch et al. 1998, Martínez et al. 2001))

The expected cost P_n (measured as the number of key comparisons) of a partial match query with s out of K attributes specified, $0 < s < K$, in a randomly built relaxed K-d tree of size n is

$$P_n = \beta(s/K) \cdot n^{\rho(s/K)} + \mathcal{O}(1),$$

where

$$\rho = \rho(x) = \left(\sqrt{9 - 8x} - 1\right)/2,$$

$$\beta(x) = \frac{\Gamma(2\rho + 1)}{(1 - x)(\rho + 1)\Gamma^3(\rho + 1)},$$

and $\Gamma(x)$ is Euler’s Gamma function.
We will use Roura’s Continuous Master Theorem to solve recurrences of the form:

\[F_n = t_n + \sum_{0 \leq j < n} w_{n,j} F_j, \quad n \geq n_0, \]

where \(t_n \) is the so-called toll function and the quantities \(w_{n,j} \geq 0 \) are called weights.
Theorem (Continuous master theorem, Roura 2001)

Let \(t_n \sim Cn^a \log^b n \) for some constants \(C, a \geq 0 \) and \(b > -1 \), and let \(\omega(z) \) be a real function over \([0, 1]\) such that

\[
\sum_{0 \leq j < n} \left| \omega_{n,j} - \int_{j/n}^{(j+1)/n} \omega(z) \, dz \right| = O(n^{-d})
\]

for some constant \(d > 0 \). Let \(\phi(x) = \int_0^1 z^x \omega(z) \, dz \), and define \(H = 1 - \phi(a) \). Then

1. If \(H > 0 \) then \(F_n \sim t_n / H \).
2. If \(H = 0 \) then \(F_n \sim t_n \ln n / H' \), where \(H' = -(b + 1) \int_0^1 z^a \ln z \omega(z) \, dz \).
3. If \(H < 0 \) then \(F_n = \Theta(n^\alpha) \), where \(\alpha \) is the unique real solution of \(\phi(x) = 1 \).
Applying the CMT to our recurrence we have

- $\omega(z) = \frac{2z}{K} + \frac{2(K-1)}{K}$
- $t_n = P_n \implies a = \varrho = \rho(1/K) = (\sqrt{9 - 8/K} - 1)/2$

Thus $\mathcal{H} = 0$
Applying the CMT to our recurrence we have

- \(\omega(z) = \frac{2z}{K} + \frac{2(K-1)}{K} \)
- \(t_n = P_n \implies a = \varrho = \rho(1/K) = (\sqrt{9 - 8/K} - 1)/2 \)

Thus \(\mathcal{H} = 0 \)
We have to compute \(\mathcal{H}' \) with \(b = 0 \)

\[
\mathcal{H}' = -(b + 1) \int_0^1 z^a \omega(z) \ln z \, dz
\]

and get

\[
\mathcal{H}' = 2 \frac{K \varrho^2 + (4K - 2) \varrho + 4K - 3}{K(\varrho + 2)^2(\varrho + 1)^2}.
\]
Theorem

The average cost C_n of copy-based insertion at root of a random relaxed K-d tree is

$$C_n = \gamma \cdot n^\varrho \ln n + o(n \ln n),$$

where

$$\varrho = \varrho(K) = \rho(1/K) = \left(\sqrt{9 - 8/K} - 1\right)/2,$$

$$\gamma = \frac{\beta(1/K)}{H'} = \frac{\Gamma(2\varrho + 1)K(\varrho + 2)^2(\varrho + 1)}{2(1 - \frac{1}{K})\Gamma^3(\varrho + 1)(K\varrho^2 + (4K - 2)\varrho + (4K - 3))}.$$

The average cost C'_n of copy-based deletion of the root of a random relaxed K-d tree of size $n + 1$ is C_n.
1. Introduction
2. Updating with split and join
3. Analysis of split and join
4. Copy-based updates
5. Analysis of copy-based updates
6. The cost of insertions and deletions
The recurrence for the expected cost of an insertion is

\[I_n = \frac{I_n}{n+1} + \left(1 - \frac{1}{n+1}\right) \left(1 + \frac{2}{n} \sum_{0 \leq j < n} \frac{j + 1}{n+1} I_j \right) \]

\[= \frac{I_n}{n+1} + 1 + O\left(\frac{1}{n}\right) + \frac{2}{n+1} \sum_{0 \leq j < n} \frac{j + 1}{n+1} I_j. \]

with \(I_n \) the average cost of an insertion at root.

The expected cost of deletions satisfies a similar recurrence; it is asymptotically equivalent to the average cost of insertions.

We substitute \(I_n \) by the costs obtained previously and apply the CMT to solve
Theorem

Let I_n and D_n denote the average cost of a randomized insertion and randomized deletion in a random relaxed K-d tree of size n using split and join. Then

1. if $K = 2$ then $I_n \sim D_n = 4 \ln n + \mathcal{O}(1)$.
2. if $K > 2$ then

$$I_n \sim D_n = \eta \frac{\phi - 1}{\phi + 1} n^{\phi - 1} + \mathcal{O}(\log n),$$

where $I_n = \eta n^\phi + \mathcal{O}(1)$.
Theorem

Let I_n and D_n denote the average cost of a randomized insertion and randomized deletion in a random relaxed K-d tree of size n using split and join. Then

1. If $K = 2$ then $I_n \sim D_n = 4\ln n + O(1)$.
2. If $K > 2$ then

$$I_n \sim D_n = \eta \frac{\phi - 1}{\phi + 1} n^{\phi - 1} + O(\log n),$$

where $I_n = \eta n^\phi + O(1)$.

Note that for $K > 2$, $\phi(K) > 1!$
Theorem

For any fixed dimension $K \geq 2$, the average cost of a randomized insertion or deletion in random relaxed K-d tree of size n using copy-based updates is

$$I_n \sim D_n = 2 \ln n + \Theta(1).$$
Theorem

For any fixed dimension $K \geq 2$, the average cost of a randomized insertion or deletion in random relaxed K-d tree of size n using copy-based updates is

$$I_n \sim D_n = 2 \ln n + \Theta(1).$$

The "reconstruction" phase has constant cost on the average!
Summary:

- Updating with split and join is only practical for $K = 2$ despite the algorithms are elegant and simple; but their use induces expected cost $\Theta(n^\phi)$ with $\phi > 1$ for insertions and deletions in higher dimensions.

- Copy-based updates are also simple and practical, yielding expected logarithmic cost of insertions and deletions for any fixed dimension K.

- The optimization of copy-based updates does only apply to relaxed K-d trees; without the optimization it yields insertions and deletions with expect cost $\Theta(\log^2 n)$.

- Logarithmic time for insertions and deletions had only been achieved before using rather complex schemes (e.g. pseudo K-d trees, divided K-d trees).
Summary:

- Updating with split and join is only practical for $K = 2$ despite the algorithms are elegant and simple; but their use induces expected cost $\Theta(n^\phi)$ with $\phi > 1$ for insertions and deletions in higher dimensions.

- Copy-based updates are also simple and practical, yielding expected logarithmic cost of insertions and deletions for any fixed dimension K.

- The optimization of copy-based updates does only apply to relaxed K-d trees; without the optimization it yields insertions and deletions with expect cost $\Theta(\log^2 n)$.

- Logarithmic time for insertions and deletions had only been achieved before using rather complex schemes (e.g. pseudo K-d trees, divided K-d trees).
Summary:

- Updating with split and join is only practical for $K = 2$ despite the algorithms are elegant and simple; but their use induces expected cost $\Theta(n^\phi)$ with $\phi > 1$ for insertions and deletions in higher dimensions.

- Copy-based updates are also simple and practical, yielding expected logarithmic cost of insertions and deletions for any fixed dimension K.

- The optimization of copy-based updates does only apply to relaxed K-d trees; without the optimization it yields insertions and deletions with expected cost $\Theta(\log^2 n)$.

- Logarithmic time for insertions and deletions had only been achieved before using rather complex schemes (e.g. pseudo K-d trees, divided K-d trees).
Summary:

- Updating with split and join is only practical for $K = 2$ despite the algorithms are elegant and simple; but their use induces expected cost $\Theta(n^\phi)$ with $\phi > 1$ for insertions and deletions in higher dimensions.

- Copy-based updates are also simple and practical, yielding expected logarithmic cost of insertions and deletions for any fixed dimension K.

- The optimization of copy-based updates does only apply to relaxed K-d trees; without the optimization it yields insertions and deletions with expect cost $\Theta(\log^2 n)$.

- Logarithmic time for insertions and deletions had only been achieved before using rather complex schemes (e.g. pseudo K-d trees, divided K-d trees).