Data Mining (Mineria de Dades)

Lluís A. Belanche
belanche@lsi.upc.edu

Soft Computing Research Group

Dept. de Llenguatges i Sistemes Informàtics (Software department)

Universitat Politècnica de Catalunya

2011-2012
Data Mining (Part II)

Contents

1. Association Rules
2. Bayesian decision theory
3. Bayesian classifiers: LDA/QDA
4. Bayesian classifiers: Naïve Bayes
5. Bayesian classifiers: Nearest Neighbours
6. Neural Networks: Multilayer Perceptrons
7. Support Vector Machines
8. Ensemble Learning
The Naïve-Bayes classifier

- We showed that the 0/1 loss Bayes rule minimizing the probability of error could be formulated in terms of a family of discriminant functions:
 \[g_k(x) = P(\omega_k)P(x|\omega_k), k = 1, \ldots, c. \]

- We can expand the conditional probability:
 \[
 P(\omega_k)P(x|\omega_k) = P(\omega_k)P(X_1 = x_1 \land X_2 = x_2 \land \ldots \land X_n = x_n | \omega_k)
 \]
 \[
 = P(\omega_k)P(X_1 = x_1|\omega_k) \prod_{j=2}^{n} P(X_j = x_j | \omega_k, X_1 = x_1 \land X_2 = x_2 \land \ldots \land X_{j-1} = x_{j-1})
 \]
 Assuming that \(X_1, \ldots, X_n\) (in pairs) are statistically independent given the class:
 \[
 = P(\omega_k)P(X_1 = x_1|\omega_k) \prod_{j=2}^{n} P(X_j = x_j | \omega_k)
 \]
 \[
 = P(\omega_k) \prod_{j=1}^{n} P(X_j = x_j | \omega_k)
 \]
 \[\equiv \text{NB}_k(x)\]
The Naïve-Bayes classifier

Example

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>PlayTennis?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>
The Naïve-Bayes classifier

Example

\[P(\omega_k) \approx \hat{P}(\omega_k) = \frac{|S_k|}{|S|}, \quad P(X_j = x_j \mid \omega_k) \approx \hat{P}(X_j = x_j \mid \omega_k) = \frac{|\{x \in S_k \land X_j = x_j\}|}{|\{x \in S_k\}|} \]

The prediction for the test example \(x^* = \text{(Sunny,Hot,Normal,Weak)}^t \) is \(x^* \in \text{Yes} \), given that:

- \(\hat{P}(\text{No}) \cdot \hat{P}(\text{Sunny|No}) \cdot \hat{P}(\text{Hot|No}) \cdot \hat{P}(\text{Normal|No}) \cdot \hat{P}(\text{Weak|No}) \)
 \[= \frac{5}{14} \cdot \frac{3}{5} \cdot \frac{2}{5} \cdot \frac{1}{5} \cdot \frac{2}{5} \approx 0.0069 \]

- \(\hat{P}(\text{Yes|x*}) = \hat{P}(\text{Yes}) \cdot \hat{P}(\text{Sunny|Yes}) \cdot \hat{P}(\text{Hot|Yes}) \cdot \hat{P}(\text{Normal|Yes}) \cdot \hat{P}(\text{Weak|Yes}) \)
 \[= \frac{9}{14} \cdot \frac{2}{9} \cdot \frac{2}{9} \cdot \frac{6}{9} \cdot \frac{6}{9} \approx 0.0141 \]

Note that the posteriors are:

\(\hat{P}(\text{No|x*}) \approx \frac{0.0069}{0.0069 + 0.0141} \approx 0.329, \quad \hat{P}(\text{Yes|x*}) \approx \frac{0.0141}{0.0069 + 0.0141} \approx 0.671 \)
The Naïve-Bayes classifier

Extensions

1. Missing values

2. Null empirical probabilities

3. Continuous r.v.
The Naïve-Bayes classifier

Missing values

These values can be handled in two ways:

1. Ignoring the values in the probability counts in which they are involved

2. Adding a further modality named “Missing”

The second possibility is indicated when their number is significant and/or they can appear in future examples
The Naïve-Bayes classifier

Null empirical probabilities

In future examples x^*, it may happen that some variable X_j has a value x_j^* not present in the sample used to create the classifier. In this case, $\hat{P}(X_j = x_j^* \mid \omega_k) = 0$ and therefore all the discriminants are null.

A possible workaround is the Laplace correction:

$$
\hat{P}_L(X_j = x_j^* \mid \omega_k) = \frac{\{|x \in S_k \land X_j = x_j| + p\}}{|\{x \in S_k\}| + pV_k}, \ p \in \mathbb{N}
$$

where p is the “weight” assigned to the prior probability and V_k is the number of modalities of variable k.

Example. Take $p = 1$ and $V_k = 2$. Assume that $\{|x \in S_k \land X_j = x_j| = 0$. Then $\hat{P}_L(X_j = x_j^* \mid \omega_k) = \frac{1}{|\{x \in S_k\}| + 2}$. Can you give an interpretation?
The Naïve-Bayes classifier

Continuous variables (I)

There are at least three ways of handling continuous variables in this classifier:

1. Assume a particular pdf for the variable and estimate its parameters

2. Discretize the variable and use the standard discrete classifier

3. Do not assume a particular pdf for the variable and use KDE
The Naïve-Bayes classifier

Continuous variables (II)

1. Since we have assumed statistically independent variables (given the class), we can model every variable of each class differently: if the variable is continuous, we can resort to a univariate pdf that we find convenient.

The parameters of the pdf can be found in the usual way, by maximum likelihood. For instance, if X_j is normally distributed for class ω_k:

$$p_{jk}(x) = \frac{1}{\sqrt{2\pi \sigma_{jk}}} \exp \left\{ -\frac{(x - \mu_{jk})^2}{2\sigma_{jk}^2} \right\}$$

The factor $\hat{P}(X_j = x_j^* \mid \omega_k)$ would be replaced by $p_{jk}(x_j^*)$

As an example, consider the variable Temperature in the previous exercise.

Note that there are (somewhat) standard ways to make a univariate pdf closer to that of a gaussian pdf (e.g. log is suitable in presence of a positive skewness).
The Naïve-Bayes classifier

Continuous variables (II)

2. Discretizing the variable is an attractive option, specially in presence of a limited number of examples:

 1. It greatly reduces the amount of noise

 2. It makes the probability estimations more reliable

 3. However, it may entail a loss of information:

 a) We may remove more variability than desired

 b) We loose information on ordering

 A simple method for doing this is to use a histogram

 Another method is to use a special-purpose algorithm, such as CAIM
The Naïve-Bayes classifier

Continuous variables (III)

3. If the pdfs are not known they can be estimated using the data set non-parametric methods like kernel density estimation (KDE)

- A difficult task in the general case, in the univariate case the estimation of the pdf $p(x)$ by kernels is obtained as follows:

$$\hat{p}_h(x) = \frac{1}{nh} \sum_{i=1}^{n} \varphi \left(\frac{x - x_i}{h} \right)$$

(1)

where $x_1, ..., x_n$ is an i.i.d. sample of a continuous r.v. X with unknown pdf $p(x)$.

- The weight function (also called Parzen window or kernel) φ is defined by

$$\varphi(z) = \begin{cases} \frac{1}{2} & \text{if } |z| \leq 1; \\ 0 & \text{otherwise} \end{cases}$$

- This choice for the kernel is called uniform and h is called the bandwidth, a parameter for the contribution of each data point x_i to the approximated density at x.
The Naïve-Bayes classifier

Further questions

1. How is the classifier affected by irrelevant variables?
 → Not much affected, given that often they are evenly distributed across the classes

2. How is the classifier affected by redundant variables?
 → Quite affected, given that, assumed independent, their contribution is multiplied

3. Can you show me an example of conditional independence given the class?