PACMAN and reinforcement learning
PACMAN and RL - Goals

- Model the behaviour of game characters: ghost
- The usual way: Program by hand the decisions of the character
- Drawbacks:
 - Difficult to program (lots of possible states)
 - Difficult to adapt the behaviour to the human player
- Solution: Learn how to act by training the character
- Reinforcement learning allows to train a decision mechanism from sequences of actions obtained from character-player interaction
To solve a problem using reinforcement learning we need to formalize it using a decision Markov process: states and actions

- **States**: Positions of the ghost + state of PACMAN (vulnerable, invulnerable)
- **Actions**: Possibles movements of the ghost

2. We have to decide what states will generate a reward:
 - Ghost catches PACMAN vulnerable → positive reward
 - PACMAN invulnerable catches ghost → negative reward

3. We have to decide what to use for training: sequences of actions of the ghost
We can model the problem at different levels of granularity.

We can consider the model from RL as a high level decision mechanism that gives an indication of the action to perform and another decision mechanism gives the primitive actions to achieve it.

Simple model:
- **State:** \(\{> 10, > 5, \leq 5, \text{PACMAN}\} \times \{\text{Vulnerable, Invulnerable}\} \)
- **Acciones:**
 - Approach \(> 5\) Approach \(\leq 5\)
 - Attack PACMAN
 - Flee \(> 10\) Flee \(> 5\)
 - Maintain \(> 10\) Maintain \(> 5\) Maintain \(\leq 5\)
PACMAN and RL - Simple Model (II)
We have two sets of states
For the case of vulnerable PACMAN:

- $ (> 10, V)$
- $ (> 5, V)$
- $ (\leq 5, V)$
- (PM, V)

- Maintain > 10
- Flee > 10
- Appro > 5
- Maintain > 5
- Flee > 5
- Appro ≤ 5
- Attack PM
The training sequences will be sequences of ghost movements

Problem: Not all sequences end in a goal state

We can add positive and negative rewards in the rest of the states to be able to use all training sequences

- Approach vulnerable PACMAN \rightarrow positive
- Approach invulnerable PACMAN \rightarrow negative
PACMAN and RL - Detailed Model (I)

- We can model the problem so the decisions are primitive actions.
- Detailed model:
 - **States:** Product set of the coordinates of PACMAN and the ghost and the state of PACMAN.
 - **Actions:** up, down, left, right.
PACMAN and RL - Detailed Model (II)

- We will have a model for the states when PACMAN is vulnerable and other when is invulnerable
- The goal state will be those where the coordinates of PACMAN and the ghost are the same (distance = 0)
- The reward can be a function of the distance
- **Drawbacks:**
 - The model is large (but can be indexed)
 - The number of training sequences to obtain a good model could be very large
- **Advantages:**
 - When the model converges the behaviour will be to approach or flee PACMAN using the shortest path