Epidemic models over networks

Argimiro Arratia & R. Ferrer-i-Cancho

Universitat Politècnica de Catalunya

Version 0.4
Complex and Social Networks (2016-2017)
Master in Innovation and Research in Informatics (MIRI)
Official website: www.cs.upc.edu/~csn/
Contact:

- Ramon Ferrer-i-Cancho, rferrericancho@cs.upc.edu, http://www.cs.upc.edu/~rferrericancho/
- Argimiro Arratia, argimiro@cs.upc.edu, http://www.cs.upc.edu/~argimiro/
Epidemic models attempt to capture the dynamics in the spreading of a disease (or idea, computer virus, product adoption).

Central questions they try to answer are:

- How do contagions spread in populations?
- Will a disease become an epidemic?
- Who are the best people to vaccinate?
- Will a given YouTube video go viral?
- What individuals should we market to for maximizing product penetration?
In today’s lecture

Classic epidemic models (full mixing)
- The SI model
- The SIR model
- The SIS model

Epidemic models over networks
- Homogeneous models
- Scale-free network model for SIS
- A general network model for SIS
Full mixing assumption

In classic epidemiology, it is assumed that every individual has an equal chance of coming into contact with every other individual in the population.
Full mixing assumption

In classic epidemiology, it is assumed that every individual has an equal chance of coming into contact with every other individual in the population.

*Dropping this assumption by making use of an underlying contact network leads to the more realistic models over networks (second half of the lecture)!
The SI model (fully mixing susceptible – infected)
Notation (following [Newman, 2010])

- Let $S(t)$ be the number of individuals who are *susceptible* to sickness at time t
- Let $X(t)$ be the number of individuals who are *infected* at time t
- Total population size is n
- Contact with infected individuals causes a susceptible person to become infected
- An infected *never recovers* and stays infected and infectious to others

\[^1\text{Well, really } S \text{ and } X \text{ are random variables and we want to capture number of infected and susceptible } in \text{ expectation.}\]
In the SI model, individuals can be in one of two states:

- *infective* (I), or
- *susceptible* (S)

The parameters of the SI model are

- β infection rate: probability of contagion after contact per unit time
The SI model

Dynamics

\[
\frac{dX}{dt} = \beta \frac{SX}{n} \quad \text{and} \quad \frac{dS}{dt} = -\beta \frac{SX}{n}
\]

where

- \(\frac{S}{n} \) is the probability of meeting a susceptible person at random per unit time
- \(\frac{XS}{n} \) is the average number of susceptible people that infected nodes meet per unit time
- \(\beta \frac{XS}{n} \) is the average number of susceptible people that become infected from all infecteds per unit time
Define $s = S/n$ and $x = X/n$, since $S + X = n$ or equivalently $s + x = 1$, we get:

$$\frac{dx}{dt} = \beta (1 - x) x$$

The solution to the differential equation (known as the "logistic growth equation") leads to the logistic growth curve

$$x(t) = \frac{x_0 e^{\beta t}}{1 - x_0 + x_0 e^{\beta t}}$$

where $x(0) = x_0$
The SI model

Logistic growth equation and curve

\[x(t) = \frac{x_0 e^{\beta t}}{1 - x_0 + x_0 e^{\beta t}} \]
Solving the logistic growth equation I

\[\frac{dx}{dt} = \beta (1 - x)x \]

\[\iff \int_{x_0}^{x} \frac{1}{(1 - x)x} \, dx = \int_{0}^{t} \beta \, dt \]

\[\iff \int_{x_0}^{x} \frac{1}{(1 - x)x} \, dx + \int_{x_0}^{x} \frac{1}{x} \, dx = \beta t - \beta x_0 \]

\[\iff \int_{x_0}^{x} \frac{1}{(1 - x)} \, dx + \int_{x_0}^{x} \frac{1}{x} \, dx = \beta t \]

\[\iff \ln \frac{1 - x_0}{1 - x} + \ln \frac{x}{x_0} = \beta t \]

\[\iff \ln \frac{(1 - x_0)x}{(1 - x)x_0} = \beta t \]
Solving the logistic growth equation II

\[
\ln \left(\frac{1 - x_0}{1 - x} \right) x \frac{x}{x_0} = \beta t
\]

\[\iff\]

\[
\left(\frac{1 - x_0}{1 - x} \right) x = e^{\beta t}
\]

\[\iff\]

\[
\frac{x}{1 - x} = \frac{x_0 e^{\beta t}}{1 - x_0}
\]

\[\iff\]

\[
\frac{1 - x}{x} = \frac{1 - x_0}{x_0 e^{\beta t}}
\]

\[\iff\]

\[
\frac{1}{x} = \frac{1 - x_0}{x_0 e^{\beta t}} + 1 = \frac{1 - x_0 + x_0 e^{\beta t}}{x_0 e^{\beta t}}
\]

\[\iff\]

\[
x = \frac{x_0 e^{\beta t}}{1 - x_0 + x_0 e^{\beta t}}
\]
The SIR model
Allowing recovery and immunity

In the SIR model, individuals can be in one of two states:

▶ infective (I), or
▶ susceptible (S), or
▶ recovered (R)

The parameters of the SIR model are

▶ β infection rate: probability of contagion after contact per unit time
▶ γ recovery rate: probability of recovery from infection per unit time
The SIR model

Dynamics

\[
\frac{ds}{dt} = -\beta sx \quad \frac{dx}{dt} = \beta sx - \gamma x \quad \frac{dr}{dt} = \gamma x
\]

The solution to this system (with \(s + x + r = 1 \)) is not analytically tractable, but solutions look like the following:
Now we are interested in considering the *fraction of the population that will get sick* (i.e. size of the epidemic), basically captured by $r(t)$ as $t \to \infty$.

Substituting $dt = \frac{dr}{\gamma x}$ from the third equation into $ds = -\beta sxdt$ and solving for s (assuming $r_0 = 0$), we obtain that

$$s(t) = s_0 e^{-\frac{\beta}{\gamma} r}$$

and so

$$\frac{dr}{dt} = \gamma(1 - r - s_0 e^{-\frac{\beta}{\gamma} r})$$
The SIR model II
A threshold phenomenon

As $t \to \infty$, we get that $r(t)$ stabilizes and so $\frac{dr}{dt} = 0$, thus:

$$r = 1 - s_0 e^{-\frac{\beta}{\gamma}r}$$

Assume that $s_0 \approx 1$, since typically we start with a small nr. of infected individuals and we are considering large populations, and so $r = 1 - e^{-\frac{\beta}{\gamma}r}$
The SIR model III
A threshold phenomenon

\[y = r \]
\[y = 1 - e^{-1.5r} \]
\[y = 1 - e^{-1r} \]
\[y = 1 - e^{-0.5r} \]
The SIR model IV
A threshold phenomenon

- If $\frac{\beta}{\gamma} \leq 1$ then no epidemic occurs
- If $\frac{\beta}{\gamma} > 1$ then epidemic occurs
- $\beta = \gamma$ is the epidemic transition
The SIR model

The basic reproduction number R_0

Basic reproduction number R_0

R_0 is the average number of additional people that a newly infected person passes the disease onto before they recover2.

- $R_0 > 1$ means each infected person infects more than 1 person and hence the epidemic grows exponentially (at least at the early stages)
- $R_0 < 1$ makes the epidemic shrink
- $R_0 = 1$ marks the *epidemic threshold* between the growing and shrinking regime

In the SIR model, $R_0 = \frac{\beta}{\gamma}$

2It is defined for the early stages of the epidemic and so one can assume that most people are in the susceptible state.
The SIS model
People can cure but do not become immune

In the SIS model, individuals can be in one of two states:

- *infective* (I), or
- *susceptible* (S)

The parameters of the SIS model are

- β infection rate: probability of contagion after contact per unit time
- γ recovery rate: probability of recovery from infection per unit time
The SIS model

Dynamics

\[
\frac{ds}{dt} = \gamma x - \beta sx \quad \frac{dx}{dt} = \beta sx - \gamma x
\]

Using \(s + x = 1 \), we can solve the system analytically obtaining

\[
x(t) = x_0 \frac{(\beta - \gamma)e^{(\beta - \gamma)t}}{\beta - \gamma + \beta x_0 e^{(\beta - \gamma)t}}
\]

Intuition: The SIS models the *flu* while the SIR models the *mumps*
The SIS model

Examples

\(\beta = 0.8, \gamma = 0.4 \)

\(\beta = 0.4, \gamma = 0.8 \)

- logistic growth curve
- exponential decay
- steady state at \(x = \frac{\beta - \gamma}{\beta} \)
The SIS model

The basic reproduction number R_0

- The point $\beta = \gamma$ marks the epidemic transition
- In the SIS model, $R_0 = \frac{\beta}{\gamma}$
In today’s lecture

Classic epidemic models (full mixing)
- The SI model
- The SIR model
- The SIS model

Epidemic models over networks
- Homogeneous models
- Scale-free network model for SIS
- A general network model for SIS
Homogeneous network models
All nodes have degree very close to $\langle k \rangle$ (e.g. Erdős-Rényi networks or regular lattices)

We can re-write the equation of the epidemic models taking into account that individuals have approximately $\langle k \rangle$ possibilities of contagion from neighbors
Homogeneous SIS model

Equations of dynamics

\[
\frac{dx}{dt} = \beta \langle k \rangle x (1 - x)
\]

\[
\frac{ds}{dt} = -\beta \langle k \rangle s (1 - s)
\]

Solution

\[
x(t) = \frac{x_0 e^{\beta \langle k \rangle t}}{1 - x_0 + x_0 e^{\beta \langle k \rangle t}}
\]

Observations

- Same behavior as in the non-networked model
- Growth of infecteds depends on \(\langle k \rangle \) as well as \(\beta \)
Homogeneous SIR model

Equations of dynamics

\[
\begin{align*}
\frac{ds}{dt} &= -\beta \langle k \rangle sx \\
\frac{dx}{dt} &= \beta \langle k \rangle sx - \gamma x \\
\frac{dr}{dt} &= \gamma x
\end{align*}
\]

Epidemic threshold

- if \(\frac{\beta}{\gamma} \leq \frac{1}{\langle k \rangle} \) then no epidemic occurs
- if \(\frac{\beta}{\gamma} > \frac{1}{\langle k \rangle} \) then epidemic occurs

Observations

- Same behavior as in the non-networked model
Homogeneous SIS model

Equations of dynamics

\[
\frac{ds}{dt} = \gamma x - \beta \langle k \rangle sx \\
\frac{dx}{dt} = \beta \langle k \rangle sx - \gamma x
\]

Solution

\[
x(t) = x_0 \frac{(\beta \langle k \rangle - \gamma)e^{(\beta \langle k \rangle - \gamma)t}}{\beta \langle k \rangle - \gamma + \beta \langle k \rangle x_0 e^{(\beta \langle k \rangle - \gamma)t}}
\]

Observations

- Same behavior as in the non-networked model
- Epidemic threshold at \(\beta \langle k \rangle - \gamma = 1\)
 - Equivalent to \(\frac{\beta}{\gamma} \leq \frac{1}{\langle k \rangle}\), same as SIR
The scale-free model of epidemics for SIS I
From [Pastor-Satorras and Vespignani, 2001]

Instead of assuming homogeneous mixing, have a different equation for all nodes of same degree k:

$$\frac{dx_k}{dt} = \beta k(1 - x_k)\Theta(\beta) - \gamma x_k$$

where

- $(1 - x_k)$ is the probability that a node of degree k is not infected
- $\Theta(\beta)$ is the probability that a neighbor is infected
- $\beta k\Theta(\beta)$ is the probability of contagion of a k-degree node from an infected neighbor
The scale-free model of epidemics for SIS II
From [Pastor-Satorras and Vespignani, 2001]

Imposing stationarity ($\frac{dx_k}{dt} = 0$, for all k), we obtain

$$x_k = \frac{k \beta \Theta(\beta)}{\gamma + k \beta \Theta(\beta)}$$

and so nodes with higher degree are more susceptible to being infected.

The probability that any edge points to an s-degree node is proportional to $sP(s)$. Therefore

$$\Theta(\beta) = \frac{\sum_k kP(k)x_k}{\sum_s sP(s)}$$
The final proportion of infecteds (in the steady state) is given by

\[x = \sum_k P(k)x_k \]

In the scale-free model of [Barabasi and Albert, 1999] we have \(P(k) = 2m^2/k^3 \) and so we obtain in this case (w.l.o.g. \(\gamma = 1 \))

\[\Theta(\beta) = \frac{e^{-\frac{1}{m\beta}}}{\beta m} \quad \text{and} \quad x \approx 2e^{-\frac{1}{m\beta}} \]

Finally, we can observe that there is no epidemic threshold for (infinite) scale-free networks. In practice, the epidemic threshold in scale-free networks is going to be very small.
Now we need to consider that infection can be through existing connections

- \(A \) is the adjacency matrix of the underlying contact network, and \(A_{ij} \) is the entry corresponding to the potential edge between nodes \(i \) and \(j \)
- Assume \(A \) is symmetric (contagion goes in both ways) and has dimension \(n \times n \) (\(n \) is the population size)
- \(s_i(t) \) is the probability of node \(i \) being susceptible to disease at time \(t \)
- \(x_i(t) \) is the probability of node \(i \) being infected at time \(t \)
Model dynamics I

From [Chakrabarti et al., 2008]

“During each time interval Δt, an infected node i tries to infect its neighbors with probability β. At the same time, i may be cured with probability γ.”
Notation

- Let $x_i(t)$ be the probability that node i is infected at time t
- Let $\zeta_i(t)$ be the probability that a node i will not receive infections from its neighbors in the next time step

\[
\zeta_i(t) = \prod_{j:i \neq j} \left(x_j(t-1)(1-\beta) + (1-x_j(t-1)) \right)
\]
\[
= \prod_{j:i \neq j} 1 - x_j(t-1)\beta
\]
Then, the probability that a node i is uninfected is:

$$1 - x_i(t) = \underbrace{\zeta_i(t)}_{\text{neighbors fail to infect}} \underbrace{(1 - x_i(t - 1))}_{\text{node is healthy}} + \underbrace{\gamma x_i(t - 1)}_{\text{node is infected and cures}}$$

Finally, the fraction of infecteds is computed as:

$$x(t) = \sum_i x_i(t)$$
Threshold phenomenon I

Theorem

The epidemic threshold of the SIS model over arbitrary networks is
\[
\frac{1}{\lambda_1},
\]
where \(\lambda_1\) is the largest eigenvalue of the underlying contact network, that is:

- If \(\frac{\beta}{\gamma} > \frac{1}{\lambda_1}\) then epidemic occurs
- If \(\frac{\beta}{\gamma} < \frac{1}{\lambda_1}\) then no epidemic occurs
Threshold phenomenon II

\[
\zeta_i(t) = \prod_{j:i\rightarrow j} 1 - x_j(t-1)\beta \\
\geq 1 - \beta \sum_{j:i\rightarrow j} x_j(t-1) \\
= 1 - \beta \sum_j A_{ij} x_j(t-1)
\]
Threshold phenomenon III

\[x_i(t) = 1 - (1 - (1 - \gamma)x_i(t - 1))\zeta_i(t) \]
\[\leq 1 - (1 - (1 - \gamma)x_i(t - 1))(1 - \beta \sum_j A_{ij}x_j(t - 1)) \]
\[= 1 - (1 - (1 - \gamma)x_i)(1 - \beta \sum_j A_{ij}x_j(t - 1)) \]
\[= 1 - \left(1 - (1 - \gamma)x_i - \beta \sum_j A_{ij}x_j + (1 - \gamma)x_i \beta \sum_j A_{ij}x_j\right) \]
\[= (1 - \gamma)x_i + \beta \sum_j A_{ij}x_j - (1 - \gamma)x_i \beta \sum_j A_{ij}x_j \]
\[\leq (1 - \gamma)x_i + \beta \sum_j A_{ij}x_j(t - 1) \]
Threshold phenomenon IV

In matrix notation:

\[x(t) \leq ((1 - \gamma)I + \beta A)x(t - 1) \]

Define \(S = \beta A + (1 - \gamma)I \), then

\[x(t) \leq Sx(t - 1) \leq S^2x(t - 2) \leq \ldots \leq S^tx(0) \]

Assuming that \(x(0) = \sum_r a_r v_r \), where \(v_r \) are the eigenvectors of \(S \)

\[x(t) \leq S^t \sum_r a_r v_r = \sum_r (\lambda_r)^t a_r v_r \]

From linear algebra we know that \(\lambda_1 > 0 \) (matrix \(S \) is symmetric and real) and also \(\lambda_1 > \lambda_2 > \ldots > \lambda_r \). For \(t \to \infty \), the sum is dominated by the first eigenvalue and so...
Threshold phenomenon V

\[\mathbf{x}(t) \leq (\lambda_1)^t a_1 \mathbf{v}_1 \]

If \(\lambda_1 < 1 \), then the epidemic must vanish (the other direction also holds, check [Chakrabarti et al., 2008]). Finally, the relation between the eigenvalues of \(\mathbf{S} = (1 - \gamma) \mathbf{I} + \beta \mathbf{A} \) matrix and the ones of \(\mathbf{A} \) matrix is, for all \(r \):

\[\lambda_r^S = 1 - \gamma + \beta \lambda_r^A \]
So the final threshold (w.r.t. leading eigenvalue of A)
References I

