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Introduction
� Marching Cubes (MC) is a popular algorithm for isosurface

extraction (creating a polygonal mesh from a voxel model)

� Original version:

Lorensen, W.E. and Cline, H.E. (1987). Marching cubes: A high
resolution 3D surface construction algorithm. ACM Computer resolution 3D surface construction algorithm. ACM Computer 
Graphics, 21(4). (SIGGRAPH '87)

� Improved version (ensuring closed meshes):

Claudio Montani , Riccardo Scateni and Roberto Scopigno . A 
modified look-up table for implicit disambiguation of Marching 
Cubes. The Visual Computer, 10(6), 353-355
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Input data
� The input of the MC algorith is a voxelization

representing a scalar field v=f(x,y,z)

� The input scalar field might be binary (or not):
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Values in IR Binary values



Input data
� If the input data is non-binary, MC requires an additional

parameter (threshold value or isovalue) to classify

samples as inside/outside the surface. 
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Output surface
� If the input model is binary, we would like a surface

separating interior from exterior points. 

� If the input model is not binary, we would like the

isosurface joining all points with the choosen isovalue.isosurface joining all points with the choosen isovalue.
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Level curves and level surfaces
� A mapping IR2 → IR defines level curves

Function f(x,y)=sin(x)*cos(x)

Level curves
{(x,y) | f(x,y)=k}



Level curves and level surfaces
� A mapping IR3 → IR defines level surfaces:

{ (x,y,z) | f(x,y,z)=k }

Level surfaces of  f(x,y,z)= (3x)4 + (3y)4 + (3z)4 – 45x2 – 45y2 – 45z2



Varying the isovalue



Output surface
� The output surface always has to fulfill these conditions:

� It must separate interior points from interior points

� Thus it must be orientable and closed. 
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Basic idea
� The basic idea in MC is to traverse (“march”) all the cubes

formed by 2x2x2 neighboring samples.

� For each cube, MC generats a set of triangles 

corresponding to the output isosurface inside the cube corresponding to the output isosurface inside the cube 

(all triangles generated by MC belong to a unique cube).



Configurations & cases
� Each cube has 8 B/W vertices → 28 = 256 configs

� If we label the vertices, each configuration can be 

represented with one byte.

???

Config 7 = 0000 0111

Config 129 = 1000 0001

???



Configurations & cases
� Many configurations are symmetric and can be grouped. 

� Grouping symmetric configurations results in cases.

Config 1

…

Config 2 Config 4 Config 128

These 8+8 configs are grouped into a single case.



Cases in the original MC (14+1)



Marching Cubes algorithm
� For each cube being processed, we must generate:

� Geometry: vertices of the isosurface

� Topology: triangles connecting these vertices. 



Creating vertices
� Assuming that the field is continuous, then edges with a 

sign change must be intersected by the isosurface:



Creating vertices
� Marching Cubes creates a vertex for each grid edge with a 

sign change. 

� The exact position of the vertex along the edge is 

computed through linear interpolation:computed through linear interpolation:

P1=(x1,y1,z1)

P2=(x2,y2,z2)

v1=f(x1,y1,z1)

v2=f(x2,y2,z2)

P=(x,y,z)? v=f(x,y,z)
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Creating vertices
� Marching Cubes creates a vertex for each grid edge witha

sign change. 

� The exact position of the vertex along the edge is 

computed through linear interpolation:computed through linear interpolation:

P1=(0,1,0)

P2=(0,0,0)

v1=2

v2=8

P=(0,0.667,0) v=4
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Creating vertices
� Vertices can be created in any of the 12 grid edges.



Creating vertices
� We will used this edge numbering (≠ Lorensen,Cline)



Creating triangles
� Some cases are trivial...



Creating triangles
� Some cases are trivial...



Creating triangles
� Others are not...

?



Ambiguity
� Ambiguous cases:

� Having an ambiguous face (2 white vertices and 2 black

vertices in a diagonal ≈ all edges with a sign change)

� With two white vertices (or two black vertices) in any of the

cube diagonals



Ambiguous faces
� Support two types of reconstruction:



Ambiguous faces
� Sample cube with an ambiguous face

[Demo cas 3]; dosCubos*.avi



Ambiguous cubes

[Demo cas 4]



Ambiguous cases



Ambiguous cases
� Possible reconstructions for case 13 [demo]



Creating triangles
� Marching Cubes uses a LUT (look-up table) with 256 

entries (one per configuration), which indicates how to 

build the triangles inside the cube:

� Number of triangles

� For each triangle:

� Indices (a,b,c) of the vertices of the triangle. Each index is a value

0..11 indicating the edge of the cube containing the vertex.

0       Triangles for config 0

1       Triangles for config 1

2       Triangles for config 2

...

255  Triangles for config 255



Creating triangles
� Example:

0011 0011 � Config 51

0       Triangles config 0

1       Triangles config 1

...

51      { {8, 9, 10}, {9, 11, 10} }

...



LUT

� Case analysis (14+1 cases)

� For each ambiguous case, the

authors chose the simplest

reconstruction. reconstruction. 

� Each case � 1 - 4 triangles



Reconstruction case 1



Reconstruction case 2



Reconstruction case 3



Reconstruction case 4



Reconstruction case 5



Reconstruction case 6



Reconstruction case 7



Reconstruction case 8



Reconstruction case 9



Reconstruction case 10



Reconstruction case 11



Reconstruction case 12



Reconstruction case 13



Reconstruction case 14



Marching Cubes
For each sample (i,j,k)

config := get configuration of the cube (i,j,k) → (i+1, j+1, k+1)

recons := LUT[config] // query precomputed LUT

// recons is e.g. {{a,b,c}, {d,e,f}...}

create vertices through linear interpolationcreate vertices through linear interpolation

// creat a vertex for each edge in (a, b, c, d...) 

create the triangles as indicated by the LUT 

// create the triangles (a,b,c), (d,e,f),...

// We should replace the indices to edges (0..11) 

// to indices of the mesh vertices

fper

0       Triangles config 0

1       Triangles config 1

...

51      { {8, 9, 10}, {9, 11, 10} }

...



Reconstruction examples



Reconstruction examples
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Reconstruction examples



Reconstruction examples



Reconstruction examples



Reconstruction examples



Reconstruction examples



Limitations of original MC
� Number of triangles



Limitations of original MC
� Triangle quality. It might create edges with null length and 

triangles with null area.



Limitations of original MC
� One case is

duplicated



Limitations of original MC
� The output surface might include holes! Some ambiguous

faces are not reconstructed consistently.



Limitations of original MC
Ambiguous faces:

� Some cases separate black vertices (ex. case 3)

� Some other cases join black vertices (ex. case ~7)

Case 7 Case 7 complementat Case 3



Limitations of original MC

Cas 3
Cas 7 complementat



Consistent reconstructions



Examples

[Demo Cub; Demo bunny]



Modified LUT
� For any pair of configurations, the reconstruction of the

shared face must be consistent. 

��

�

�



Modified LUT
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Modified LUT



Modified LUT



Modified LUT



Another consistent LUT



Connection with pixel concept
� A digital image is a table with (color, intensity) values

� Each value has two possible interpretations, depending

on the pixel definition:

12 23 25

45 76 123

28 245 12

Imatge digital

Pixel = regió quadrada Pixel = mostra puntal



Connection with pixel concept
� A common interpolant in the plane is the bilinear 

interpolation



Bilinear interpolation



Bilinear interpolation



Connection with pixel concept
� Zoom

Pixel = regió quadrada Pixel = mostra puntal; interpolació bilinial



Marching Cubes
� Marching Cubes was a big improvement over cuberille:



Marching Cubes



Interpolation in MC
� MC uses:

� Linear interpolation to fix the position of vertices along

edges

� A linear surface (triangles) to join these vertices



Trilinear interpolation

[Demo Lewiner]


