
Carlos AndújarCarlos Andújar

April 2014

Introduction
� Marching Cubes (MC) is a popular algorithm for isosurface

extraction (creating a polygonal mesh from a voxel model)

� Original version:

Lorensen, W.E. and Cline, H.E. (1987). Marching cubes: A high
resolution 3D surface construction algorithm. ACM Computer resolution 3D surface construction algorithm. ACM Computer
Graphics, 21(4). (SIGGRAPH '87)

� Improved version (ensuring closed meshes):

Claudio Montani , Riccardo Scateni and Roberto Scopigno . A
modified look-up table for implicit disambiguation of Marching
Cubes. The Visual Computer, 10(6), 353-355

Introduction

Marching CubesVoxels
Triangle

mesh

Introduction

Marching CubesVoxels
Triangle

mesh

Input data
� The input of the MC algorith is a voxelization

representing a scalar field v=f(x,y,z)

� The input scalar field might be binary (or not):

53

8 6

Values in IR Binary values

Input data
� If the input data is non-binary, MC requires an additional

parameter (threshold value or isovalue) to classify

samples as inside/outside the surface.

53

8 6

Output surface
� If the input model is binary, we would like a surface

separating interior from exterior points.

� If the input model is not binary, we would like the

isosurface joining all points with the choosen isovalue.isosurface joining all points with the choosen isovalue.

53

8 6

3.5

5.5

7.2

Level curves and level surfaces
� A mapping IR2 → IR defines level curves

Function f(x,y)=sin(x)*cos(x)

Level curves
{(x,y) | f(x,y)=k}

Level curves and level surfaces
� A mapping IR3 → IR defines level surfaces:

{ (x,y,z) | f(x,y,z)=k }

Level surfaces of f(x,y,z)= (3x)4 + (3y)4 + (3z)4 – 45x2 – 45y2 – 45z2

Varying the isovalue

Output surface
� The output surface always has to fulfill these conditions:

� It must separate interior points from interior points

� Thus it must be orientable and closed.

Output surface
� The output surface always has to fulfill these conditions:

� It must separate interior points from interior points

� Thus it must be orientable and closed.

Basic idea
� The basic idea in MC is to traverse (“march”) all the cubes

formed by 2x2x2 neighboring samples.

� For each cube, MC generats a set of triangles

corresponding to the output isosurface inside the cube corresponding to the output isosurface inside the cube

(all triangles generated by MC belong to a unique cube).

Configurations & cases
� Each cube has 8 B/W vertices → 28 = 256 configs

� If we label the vertices, each configuration can be

represented with one byte.

???

Config 7 = 0000 0111

Config 129 = 1000 0001

???

Configurations & cases
� Many configurations are symmetric and can be grouped.

� Grouping symmetric configurations results in cases.

Config 1

…

Config 2 Config 4 Config 128

These 8+8 configs are grouped into a single case.

Cases in the original MC (14+1)

Marching Cubes algorithm
� For each cube being processed, we must generate:

� Geometry: vertices of the isosurface

� Topology: triangles connecting these vertices.

Creating vertices
� Assuming that the field is continuous, then edges with a

sign change must be intersected by the isosurface:

Creating vertices
� Marching Cubes creates a vertex for each grid edge with a

sign change.

� The exact position of the vertex along the edge is

computed through linear interpolation:computed through linear interpolation:

P1=(x1,y1,z1)

P2=(x2,y2,z2)

v1=f(x1,y1,z1)

v2=f(x2,y2,z2)

P=(x,y,z)? v=f(x,y,z)

12

1

2

12

2

1
vv

vv
P

vv

vv
PP

−
−

+
−
−

=

Creating vertices
� Marching Cubes creates a vertex for each grid edge witha

sign change.

� The exact position of the vertex along the edge is

computed through linear interpolation:computed through linear interpolation:

P1=(0,1,0)

P2=(0,0,0)

v1=2

v2=8

P=(0,0.667,0) v=4

)0,
3

2
,0(

28

24
)0,0,0(

28

84
)0,1,0(

=

−
−

+
−
−

=

P

P

Creating vertices
� Vertices can be created in any of the 12 grid edges.

Creating vertices
� We will used this edge numbering (≠ Lorensen,Cline)

Creating triangles
� Some cases are trivial...

Creating triangles
� Some cases are trivial...

Creating triangles
� Others are not...

?

Ambiguity
� Ambiguous cases:

� Having an ambiguous face (2 white vertices and 2 black

vertices in a diagonal ≈ all edges with a sign change)

� With two white vertices (or two black vertices) in any of the

cube diagonals

Ambiguous faces
� Support two types of reconstruction:

Ambiguous faces
� Sample cube with an ambiguous face

[Demo cas 3]; dosCubos*.avi

Ambiguous cubes

[Demo cas 4]

Ambiguous cases

Ambiguous cases
� Possible reconstructions for case 13 [demo]

Creating triangles
� Marching Cubes uses a LUT (look-up table) with 256

entries (one per configuration), which indicates how to

build the triangles inside the cube:

� Number of triangles

� For each triangle:

� Indices (a,b,c) of the vertices of the triangle. Each index is a value

0..11 indicating the edge of the cube containing the vertex.

0 Triangles for config 0

1 Triangles for config 1

2 Triangles for config 2

...

255 Triangles for config 255

Creating triangles
� Example:

0011 0011 � Config 51

0 Triangles config 0

1 Triangles config 1

...

51 { {8, 9, 10}, {9, 11, 10} }

...

LUT

� Case analysis (14+1 cases)

� For each ambiguous case, the

authors chose the simplest

reconstruction. reconstruction.

� Each case � 1 - 4 triangles

Reconstruction case 1

Reconstruction case 2

Reconstruction case 3

Reconstruction case 4

Reconstruction case 5

Reconstruction case 6

Reconstruction case 7

Reconstruction case 8

Reconstruction case 9

Reconstruction case 10

Reconstruction case 11

Reconstruction case 12

Reconstruction case 13

Reconstruction case 14

Marching Cubes
For each sample (i,j,k)

config := get configuration of the cube (i,j,k) → (i+1, j+1, k+1)

recons := LUT[config] // query precomputed LUT

// recons is e.g. {{a,b,c}, {d,e,f}...}

create vertices through linear interpolationcreate vertices through linear interpolation

// creat a vertex for each edge in (a, b, c, d...)

create the triangles as indicated by the LUT

// create the triangles (a,b,c), (d,e,f),...

// We should replace the indices to edges (0..11)

// to indices of the mesh vertices

fper

0 Triangles config 0

1 Triangles config 1

...

51 { {8, 9, 10}, {9, 11, 10} }

...

Reconstruction examples

Reconstruction examples

Reconstruction examples

Reconstruction examples

Reconstruction examples

Reconstruction examples

Reconstruction examples

Reconstruction examples

Limitations of original MC
� Number of triangles

Limitations of original MC
� Triangle quality. It might create edges with null length and

triangles with null area.

Limitations of original MC
� One case is

duplicated

Limitations of original MC
� The output surface might include holes! Some ambiguous

faces are not reconstructed consistently.

Limitations of original MC
Ambiguous faces:

� Some cases separate black vertices (ex. case 3)

� Some other cases join black vertices (ex. case ~7)

Case 7 Case 7 complementat Case 3

Limitations of original MC

Cas 3
Cas 7 complementat

Consistent reconstructions

Examples

[Demo Cub; Demo bunny]

Modified LUT
� For any pair of configurations, the reconstruction of the

shared face must be consistent.

��

�

�

Modified LUT

Modified LUT

Modified LUT

Modified LUT

Modified LUT

Modified LUT

Modified LUT

Modified LUT

Modified LUT

Modified LUT

Modified LUT

Modified LUT

Modified LUT

Another consistent LUT

Connection with pixel concept
� A digital image is a table with (color, intensity) values

� Each value has two possible interpretations, depending

on the pixel definition:

12 23 25

45 76 123

28 245 12

Imatge digital

Pixel = regió quadrada Pixel = mostra puntal

Connection with pixel concept
� A common interpolant in the plane is the bilinear

interpolation

Bilinear interpolation

Bilinear interpolation

Connection with pixel concept
� Zoom

Pixel = regió quadrada Pixel = mostra puntal; interpolació bilinial

Marching Cubes
� Marching Cubes was a big improvement over cuberille:

Marching Cubes

Interpolation in MC
� MC uses:

� Linear interpolation to fix the position of vertices along

edges

� A linear surface (triangles) to join these vertices

Trilinear interpolation

[Demo Lewiner]

