
A GPU Sub-pixel Algorithm for Autostereoscopic Virtual Reality 
 

Robert L. Kooima1, Tom Peterka1, Javier I. Girado1, Jinghua Ge1, Daniel J. Sandin2, Thomas A. DeFanti2 

 
1 Electronic Visualization Laboratory 

University of Illinois at Chicago 

2 California Institute for Telecommunications and 
Information Technology 

University of California at San Diego 

ABSTRACT 
Autostereoscopic displays enable unencumbered immersive 
virtual reality, but at a significant computational expense. This 
expense impacts the feasibility of autostereo displays in high-
performance real-time interactive applications. A new autostereo 
rendering algorithm named Autostereo Combiner addresses this 
problem using the programmable vertex and fragment pipelines of 
modern graphics processing units (GPUs). This algorithm is 
applied to the Varrier, a large-scale, head-tracked, parallax barrier 
autostereo virtual reality platform. In this capacity, the Combiner 
algorithm has shown performance gains of 4x over traditional 
parallax barrier rendering algorithms. It has enabled high-
performance rendering at sub-pixel scales, affording a 2x increase 
in resolution and showing a 1.4x improvement in visual acuity. 
 

CR categories: I.3.7 [Computer Graphics]: Three-Dimensional 
Graphics and Realism --- virtual reality 

Keywords: autostereoscopic display, 3D display, virtual 
reality, Varrier, parallax barrier 

1 INTRODUCTION 
Unencumbered immersive stereo display is a clear goal of virtual 
reality research. Autostereoscopic displays achieve the goal of 
removing encumbrances, but the application of autostereo to 
virtual reality is not yet widespread. Existing autostereo displays 
are limited in performance and resolution. Our work seeks to 
improve upon the current state of autostereo displays in these 
areas in order to enhance the use of autostereo in the context of 
virtual reality. 

We define virtual reality by four criteria: tracked first-person 
perspective, orthostereo display, immersive field of view, and 
real-time interactivity. The working platform for our research is 
the Varrier (Figure 1), a display satisfying all four of these 
criteria, first introduced to the IEEE VR community at the IEEE 
Virtual Reality Conference 2004 [8].  

From this platform we develop a new approach to the 
computational problem of autostereo display, a GPU-based 
algorithm named Autostereo Combiner. The Combiner algorithm 
is a high-performance generalized rendering solution applicable to 
a large class of autostereo displays. In support of this claim, we 
begin by laying out a brief taxonomy of autostereo technologies. 

 
 
 
 
 
 
 
 
 
 

 

Figure 1. The Cylindrical Varrier, a high-resolution parallax-barrier 
autostereo VR display. 

2 BACKGROUND 
Autostereoscopic displays fall largely into two categories: time-
multiplexed and spatially-multiplexed. Time-multiplexed displays 
function by rapidly alternating between multiple images. They use 
a synchronous mechanism to ensure that a user’s views of these 
images are correspondingly occluded or clear. Such systems 
require delicate timing and rapidly responding displays. Time 
multiplexed displays include the Cambridge display [1] and the 
NYU display [6]. We focus here on the other category. 

Spatial-multiplexing is an autostereo approach involving image 
interleaving. In its simplest form, image interleaving entails 
cutting source images into strips and merging these strips into a 
single displayed image. A trivial example is shown in Figure 2. A 
significant issue with spatially-multiplexed autostereo is clearly 
seen in this figure. At most half of the pixels of each source image 
appear in the final interleaving. Consequently, at least half of the 
resolution of these images is lost. 

The spatially-multiplexed category of displays is further 
divided into two functionally equivalent display types, 
distinguished by the means with which they direct interleaved 
images toward the eye. These are lenticular and parallax barrier 
displays. A lenticular display (Figure 3, right) uses a fine array of 
lenses to focus distinct portions of each image toward the user’s 
eyes. A parallax barrier display (Figure 3, left) uses a screen of 
opaque lines mounted a small distance from the surface of the 
display. This line screen occludes or reveals distinct portions of 
the image to each of the user’s eyes. 
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Figure 2. Spatial multiplexing of two views 

Lenticular displays include the SynthaGram [5] and the Phillips 
3D-LCD [10]. Parallax barrier displays include the 4D-Vision [9] 
and the Varrier [8]. Being equivalent, we choose to focus this 
discussion on parallax barriers, with the understanding that these 
concepts are universal to the category of spacially-multiplexed 
displays.  

 

Figure 3. Interleaved images displayed on parallax barrier (left) 
and lenticular (right) autostereoscopic displays 

Autostereo displays in general can be further categorized as 
tracked and untracked. A tracked display has the advantage of 
providing a true first-person VR perspective and requires the 
integration of only two viewpoints. An untracked multi-image 
display generally provides some 3D look-around, but must render 
a large number of views to do so. An untracked 2-image display 
requires that the viewer remain motionless at a precise location. 
With our emphasis on VR, we focus strictly on tracked autostereo 
display, though a simple untracked modification to the work 
discussed here is touched upon below. 

Autostereo image interleaving is seldom as simple as depicted 
in Figure 2. The precise nature of the image interleaving is 
determined by the configuration of the line screen. A variety of 
algorithms of varying power, complexity, and performance have 
been documented. Most autostereo hardware literature includes 
discussion of the software methods appropriate to it. Examples 
include the computer-combining method of phscologram creation 
[7], the “punch texture” method of the 4D-Vision [9], and the 
“Interzig” process of rendering to the SynthaGram [5].  

2.1 Line screen parameters 
A line screen configuration for a head-tracked parallax barrier 
display consists of five constants: pitch, duty cycle, optical 
thickness, angle, and shift. These values, along with the varying 

values of the user’s eye positions relative to the display, fully 
determine the state of the image interleaving at any given 
moment.  

The pitch (p) parameter gives the spatial frequency or period of 
the parallax barrier. Referring to Figure 4, p = 1 / (wo + wt). The 
duty cycle (c) parameter gives the barrier’s ratio of opacity to 
transparency. Below, c = wo / (wo + wt). 

On a head-tracked two-view system we use a duty cycle around 
¾. Our system displays bands of image pixels separated by guard 
band pixels, areas of black that reduce crosstalk and “ghosting” 
between stereo channels, enabling orthostereo and mitigating the 
occurrence of pseudostereo on tracker lag. A two-image 
interleaving consists of 4 bands in this order: a band of left-eye 
image, a guard band, a band of right-eye image, and another guard 
band. Given that exactly one of these should be visible from any 
given viewpoint, the ¾ opaque duty cycle follows.  

The optical thickness (t) parameter gives the distance from the 
parallax barrier to the display, adjusted to account for the index of 
refraction of the material to which the barrier is applied. The 
angle (a) parameter gives the physical barrier’s degree of rotation 
from vertical. On the Varrier [8], as on the SynthaGram [5] and 
the Philips 3D-LCD [10], image bands are non-vertical. The angle 
is selected empirically to maximize image quality and reduce 
moiré interference. The final line screen parameter, shift (s), gives 
the horizontal offset of the parallax barrier relative to the display. 

 

Figure 4. Line screen parameters 

2.2 Traditional image-interleaving algorithms 
To render to a parallax barrier display, an application uses the line 
screen configuration and eye positions to determine which on-
screen pixels are visible to each eye, and interleaves rendered 
views of the scene according to each pixel’s visibility.  

Many parallax barrier display algorithms and implementations 
exist. Three general approaches are common. The deferred-
rendering approach proceeds in two passes. First each view of the 
scene is rendered and stored off-screen, and second the image 
pixels are sorted and transferred to the final interleaved image. 
The alternative direct approach selectively writes each image to 
the interleaved image as it is generated. A hybrid approach 
alternates off-screen and on-screen passes, rendering each view to 
an off-screen buffer and selectively transferring it to the final 
image interleaving before proceeding with the next view. 

Static image and untracked displays, such as phscolograms [7] 
and the Synthagram [5], are obviously amenable to the deferred 
approach. The NYU display requires the deferred approach in 
order to satisfy a difficult timing requirement in the hardware 
implementation [6]. The 4D-Vision implements the deferred 
approach, but suggests the hybrid [9]. The Varrier traditionally 
uses the direct approach [8]. 
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2.3 Varrier image-interleaving algorithms 
The Combiner algorithm builds upon the history of the Varrier. 
Three previous Varrier algorithms have been devised. The issues 
encountered and resolved by each of these show a clear 
progression, and a review of each algorithm, its rationale, and its 
limitations provides the context in which the Combiner algorithm 
can be described. 

Traditional Varrier rendering algorithms take the direct 
approach to the image-interleaving problem, drawing directly to 
the on-screen frame buffer. They exploit the depth buffer to this 
effect. All of these algorithms draw the line screen as geometry, 
so the five configuration parameters defined above map onto 3D 
transformations in a straightforward fashion. These algorithms are 
distinguished from one another by the number of rendering passes 
made for each eye’s line screen and scene view. Thus they are 
named “1/1”, “3/3”, and “4/1”. 

The 1-line screen/1-scene pass (1/1) algorithm proceeds as 
follows. 

 
1. Clear the color and depth buffers. 
2. Draw the line screen from the left eye’s perspective to 

the depth buffer at the near plane. 
3. Draw the scene from the left eye’s perspective to the 

color and depth buffers. 
4. Clear the depth buffer. 
5. Draw the line screen from the right eye’s perspective 

to the depth buffer at the near plane. 
6. Draw the scene from the right eye’s perspective to the 

color and depth buffers. 
 
In effect, the pre-rendering of the line screen allows the depth 

buffer to protect those pixels of the color buffer that cannot be 
seen by the corresponding eye. 

The 1/1 algorithm either accepts or rejects each pixel entirely, 
potentially allowing errant un-occluded sub-pixels to remain 
visible, resulting in color shift. In addition, the one-pixel scale of 
the interleaving limits the pitch of the line screen to 4 times the 
size of a single pixel. To resolve either of these issues we must 
determine visibility at the sub-pixel level. 

The 3-line screen/3-scene pass (3/3) algorithm does this by 
rendering each color channel separately with the line screen 
shifted left or right by one third of a pixel. 

 
1. Clear the color and depth buffers. 
2. From the left eye’s perspective, draw the line screen 

shifted left 1/3rd of a pixel to the depth buffer and 
draw the scene to the depth buffer and the red channel 
of the color buffer. 

3. From the left eye’s perspective, draw the line screen 
to the depth buffer normally and draw the scene to the 
depth buffer and the green channel of the color buffer. 

4. From the left eye’s perspective, draw the line screen 
shifted right 1/3rd of a pixel to the depth buffer and 
draw the scene to the depth buffer and the blue 
channel of the color buffer. 

5. Clear the depth buffer. 
6. Repeat steps 2 through 4 using the right eye’s 

perspective.  
 
This algorithm works by simply repeating the action of the 1/1 

algorithm 3 times, once for each channel of the destination frame 
buffer. The RGB sub-pixel centers are displaced by 1/3rd of a 
pixel from the pixel centers, so a virtual line screen behaves as 
desired when its shift parameter is displaced ±1/3rd of a pixel. The 
3/3 algorithm correctly determines sub-pixels visibility, but it 
does so at significant cost. It makes one scene pass per channel 

per eye, so it consumes 3 times the fill rate of the 1/1 algorithm 
and requires a total of 6 passes over the scene’s geometry. 

The 4/1 algorithm attempts to resolve some of the performance 
issues of the 3/3 algorithm while retaining its quality. It works by 
rendering the left-eye view of the scene normally and selectively 
clearing the depth and color buffers in preparation for rendering 
the right-eye view. The rendering of the right eye view proceeds 
with the left-eye view protected by the depth buffer. Finally, the 
right-eye view of the line screen is drawn to the color buffer to 
carve out the guard bands between the views. The left-eye and 
right-eye views of the scene are protected by the depth buffer, 
which by this time contains both the left-eye and right-eye views 
of the line screen. 

In summary, the 1/1 algorithm interleaves views giving 
autostereo, the 3/3 algorithm resolves the color issue, and the 4/1 
algorithm minimizes the geometry expense and mitigates the pixel 
fill cost. 

We are left with a significant pixel fill cost due to the ¾ duty 
cycle. In effect, only 25% of all scene pixels processed are 
actually displayed. The remaining pixels comprise the line 
screens, which are touched once per channel per eye. This 
amounts to 75% of the pixel cost of touching every pixel on the 
screen 6 times per frame. 

While it is true that pixel fill rate continues to increase 
dramatically with each new generation of video hardware, a 6x 
overdraw penalty is a clear disadvantage to autostereo display, 
and is an obvious target for optimization. 

2.4 OpenGL and GLSL 
As the complexity of graphics hardware increases, graphics 
software APIs become unwieldy. The fixed-function OpenGL API 
is not sufficiently rich to describe the extended capability 
provided. User-programmable functionality has evolved to replace 
fixed functionality in areas of deep complexity. In particular, the 
OpenGL Shading Language (GLSL) has arisen as a standard, 
widespread, high-level mechanism enabling the expression of 
specialized vertex and fragment processing [2]. 

This generalized processing capability enables a highly 
optimized solution to the problem of autostereo view interleaving. 
Both the programmable vertex pipeline and the programmable 
fragment pipeline are exploited. The vertex pipeline maps real-
world spatial coordinates onto the parallax barrier, while the 
fragment pipeline determines each pixel’s status within the image 
interleaving relative to that barrier. All of this processing is 
performed by the GPU, freeing the CPU to attend to the needs of 
the application while ignoring the details of the display. 

3 THE COMBINER ALGORITHM 

3.1 Concept 
The Combiner algorithm differs from previous Varrier algorithms 
in that it chooses the deferred rendering approach over the direct. 
Rather than carefully composing all scene views to a single frame 
buffer, Combiner renders each view to a separate off-screen buffer 
and combines them to the display in a single final pass. Rather 
than explicitly drawing the virtual barrier, it computes the opacity 
of the virtual barrier as viewed by each eye and modulates each 
image accordingly. This has a number of advantages. 

First, the distinction between the off-screen render buffer and 
the on-screen display buffer affords the opportunity to render the 
scene at a resolution different than that of the display. For 
example, given a ¾ duty cycle, on average only one of every four 
scene-pixels is ultimately visible. The other three need not be 
rendered. To enable this, the off-screen render buffers are 
allocated at a reduced resolution more-closely matching the real 
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output resolution of each image. This optimization is fairly 
obvious, and is used by other autostereo implementations, 
including [9], but it integrates particularly well with the use of 
GLSL. A simple texture coordinate scaling stretches off-screen 
buffers up to the full size of the display while they are combined 
to form the final on-screen interleaving. In general, this scaling 
factor need not be related to the display’s duty cycle, and it need 
not be applied only along the axis of the line screen. It represents 
a smoothly varying two-dimensional quality coefficient that 
directly balances pixel fill-rate consumption versus visual fidelity. 
Due to the resolution-degrading nature of parallax barrier 
autostereo, these quality coefficients rarely need to be set to their 
maximum values to achieve optimal output quality. 

Second, the Combiner algorithm performs the final image 
interleaving for the entire frame in a single pass, touching each 
on-screen pixel exactly once. This, along with the reduction in 
pixel fill consumption reclaimed using the scaled off-screen 
buffers, reduces the total fill rate cost of autostereo display to its 
minimum. The overall performance is equivalent to quad-
buffered, passive, or anaglyphic stereo on the same hardware. 
This significant reduction in the cost of sub-pixel autostereo 
image interleaving has lead to a potential increase in Varrier line 
screen pitch and, correspondingly, display resolution, with an 
associated increase in visual acuity. 

Third, the Combiner algorithm requires very little OpenGL 
state to be in effect during the execution of the application’s 
display function. Traditional algorithms have specific 
requirements with respect to the state of the depth and color 
buffers. This deprives the application of the freedom to exploit 
this OpenGL state as needed. The Combiner algorithm requires 
only that application render to an off-screen buffer. While the 
Combiner’s final pass does require GLSL state, this need not be in 
effect during the execution of the application’s display function, 
and the application is free to use GLSL state as needed. This 
reduced set of requirements significantly eases the porting of 
existing OpenGL applications to the Varrier display. 

3.2 Line screen transform 
The line screen configuration with the positions of the user’s eyes 
fully determines the state of the image interleaving at any given 
moment. During the final combination of each frame, the eye 
positions are received from the tracking mechanism and a pair of 
matrices is constructed. These matrices transform a point in space 
to a position in the line screen, one matrix giving the line screen 
position as viewed by the left eye, and the other as viewed by the 
right eye. 

 

Figure 5. Display space, a real-world coordinate system centered 
upon and oriented with the display. 

We define display space (Figure 5) as the coordinate system 
with its origin at the center of the display, oriented with the x and 
y axes of the display, using the same real-world unit of measure as 
the tracking system. We define line screen space (Figure 6) as a 
one-dimensional coordinate system where the axis maps onto 
position across the line screen. Using the line screen pitch as 
unity, this becomes the coordinate system of the line screen duty 
cycle parameter. In this space, the line screen appears as a 
rectangular wave and position within the line screen maps onto 
the phase of that wave. 

 

 

Figure 6. Line screen space 

The matrix construction is performed once for each eye. To 
begin, we compute a few intermediate values. These values 
require division by the z coordinate of the eye position. As such, 
they are akin to perspective projection. 

Let v be the 3D position of an eye in display space. We first 
compute the parallax offsets along the x and y axes due to optical 
thickness. 

! 

dx = tv x /v z  

! 

dy = tv y /v z  
We also compute the reduction in line screen pitch and shift due 

to optical thickness. In effect, these are the apparent pitch and 
shift of the line screen after being displaced by the optical 
thickness along the normal of the display. 

! 

" p = p(v z # t) /v z  

! 

" s = s(v z # t) /v z
 

The line screen transform involves a scaling, a rotation, and a 
translation. The scaling accounts for the line screen pitch. The 
rotation accounts for the line screen angle. The translation 
accounts for the line screen shift and the parallax due to eye 
position. The line screen transform is the composition of these. 
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3.3 Render setup 
Applications transmit input to GLSL shaders via uniform 
variables. Generally this involves naming the variable in the 
shader text and acquiring a descriptor locating said named 
variable via the OpenGL shader objects API [4]. When 
transmitting matrix uniforms such as the line screen transform we 
are afforded a shortcut. We exploit OpenGL texture matrices to 
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communicate line screen transforms to the vertex shader. OpenGL 
transform functions act on these matrices directly, performing the 
necessary matrix multiplication. The resulting matrix values are 
transmitted automatically to an array of predefined uniform 
variables named “gl_TextureMatrix” in GLSL, eliminating the 
need to acquire and assign the value in code [2]. 

The left-eye off-screen buffer is bound to texture unit 0 and the 
left-eye transformation is composed on the TU0 texture matrix 
stack. Similarly, the right-eye image and transformation are bound 
to TU1. An orthogonal projection matrix is configured to map 
display space onto normalized device coordinates and the final 
image interleaving is drawn as a single screen-filling rectangle. 

3.4 Vertex shader 
The vertex shader executes once for each of the four vertices of 
this rectangle. In so doing, it computes the line screen phase of 
each corner of each RGB channel of the display for both eyes. 

The shader receives a uniform constant giving the offset 
between sub-pixel centers. The output is a pair of phase values for 
each channel, stored in varying vector values for use by the 
fragment shader. The full source of the vertex shader follows. 
Shader source is shown here in order to emphasize the simplicity 
and compactness of the technique, and the straightforwardness of 
its application using GLSL. 

 

uniform vec3 offset; 

varying vec3 L_phase; 

varying vec3 R_phase; 

 

void main() 

{ 

   vec4 dr = gl_Vertex + vec4(offset.r, 0.0, 0.0, 0.0); 

   vec4 dg = gl_Vertex + vec4(offset.g, 0.0, 0.0, 0.0); 

   vec4 db = gl_Vertex + vec4(offset.b, 0.0, 0.0, 0.0); 

 

   L_phase.r = (gl_TextureMatrix[0] * dr).x; 

   R_phase.r = (gl_TextureMatrix[1] * dr).x; 

 

   L_phase.g = (gl_TextureMatrix[0] * dg).x; 

   R_phase.g = (gl_TextureMatrix[1] * dg).x; 

 

   L_phase.b = (gl_TextureMatrix[0] * db).x; 

   R_phase.b = (gl_TextureMatrix[1] * db).x; 

 

   gl_Position = ftransform(); 

} 

 

Note that the incoming vertex position attribute is used in two 
different ways. First, the line screen transform gives the line 
screen phase need for image interleaving. And second, the 
orthogonal projection, evaluated by the ftransform function, gives 
the normalized device coordinates needed for rasterization. By 
specifying vertex positions in display coordinates, both of these 
requirements are satisfied. 

3.5 Fragment shader 
GLSL varying variables form the means of communication from 
vertex to fragment shaders. Values written by the vertex shader 
are linearly interpolated across the primitive being rasterized, and 
the resulting interpolated value is read by the fragment shader. 
This mechanism interpolates the left-eye and right-eye line screen 
phases for each channel across the screen-filling rectangle, giving 
a left-eye and right-eye line screen phase for each channel of each 
on-screen pixel. 

Left-eye and right-eye image pixels are sampled from off-
screen render buffers bound as textures. Texture coordinates are 

given by the current fragment coordinate scaled by the quality 
factor to account for the difference in the sizes of the off-screen 
and on-screen buffers. 

The visibility of each channel of the left-eye and right-eye 
images is determined simply by comparing the fraction of the 
phase of the line screen of each channel with the duty cycle 
fraction. The step function maps the result of this comparison onto 
0 or 1 per channel. The resulting RGB vectors modulate the left-
eye and right-eye pixels, and the final interleaved image is a 
combination of these. 

 

uniform samplerRect L_map; 

uniform samplerRect R_map; 

uniform float       c; 

uniform vec2        q; 

 

varying vec3 L_phase; 

varying vec3 R_phase; 

 

void main() 

{ 

   vec4 L = textureRect(L_map, gl_FragCoord.xy * q); 

   vec4 R = textureRect(R_map, gl_FragCoord.xy * q); 

 

   vec3 Lk = step(vec3(c), fract(L_phase)); 

   vec3 Rk = step(vec3(c), fract(R_phase)); 

   vec3 Ik = max(L.rgb * Lk, R.rgb * Rk); 

 

   gl_FragColor = vec4(Ik, 1.0); 

} 

 

The final pixel is taken to be the maximum of the modulated 
left-eye and right-eye pixels. Under normal circumstances the sum 
of these pixels produces the same result. The use of the maximum 
function in this case is motivated by an edge-case behavior of 
parallax barrier displays. The pitch of the line screen limits the 
usable area of a display [8]. When the user moves outside of this 
area a clean separation of left-eye and right-eye visibility becomes 
impossible, and the image bands overlap. The sum of a pair of 
overlapping images tends to saturate to white, while their 
maximum preserves the color of the scene. The autostereo effect 
is necessarily lost under these circumstances, but the maximum 
function at least mitigates the jarring visual discontinuity. 

4 RESULTS 

4.1 Performance 
Real-time update is necessary for immersion, so graphics 
performance is critical to virtual reality applications. Head-tracked 
autostereo in particular degrades at low update rates due to the 
occurrence of psuedostereo when the image interleaving lags the 
user position. The Combiner algorithm makes significant 
improvements in performance. To quantify this, the update rates 
of a variety of applications are tested using a number of autostereo 
modes. 

“Puget Sound” (Figure 7, top-left) renders a 4K-by-4K terrain 
using a relief-mapping shader, which is pixel-fill-limited. “Crater 
Lake” (Figure 7, top-right) renders terrain as triangles, and is 
geometry-limited. Two versions of the Crater Lake data set are 
used, one with 172K vertices and another with 306K. “4D Julia” 
(Figure 7, bottom-left) plays a 1024-by-512 stereo video, a 
common application of non-VR autostereo systems. Finally, 
“Cow” (Figure 7, bottom-right) displays a model with 3K 
vertices, an easy task to be performed as fast as possible. All of 
these demos are implemented in Electro, a VR application 
scripting system supporting a wide variety of display types [3]. 
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Figure 7. Performance test applications: relief-mapped terrain, 

polygonal terrain, stereo video playback, and basic 3D. 

The six display modes evaluated here allow a number of 
comparisons to be made. Monoscopic mode gives a baseline 
performance for each application. Anaglyphic mode is basic 
stereo, representing performance on active and passive stereo 
systems common today. 1/1 and 3/3 are the traditional Varrier 
algorithms described above. Finally, the Combiner algorithm is 
run at 40% quality, a subjective “good enough” setting with an 
off-screen render buffer resolution of 1024 by 640, and 100% 
quality at 2560 by 1600. 

All of these tests are run on a single-panel Varrier based on a 
30-inch LCD with a resolution of 2560 by 1600. Each test is run 
on both an NVIDIA Quadro FX3000 and an NVIDIA GeForce 
7900GTX. The 7900GTX represents modern hardware with 
mature GLSL support while the FX3000 indicates performance on 
previous generation hardware.  

The results using the FX3000 are shown in Table 1. The 
immature GLSL implementation struggles. The Combiner mode 
tests of the easy applications (Cow and 4D Julia) peak at only 
24fps. This is due to the cost of executing the Combiner fragment 
program for each of the 2560-by-1600 pixels of the final on-
screen composite. Traditional Varrier algorithms perform nearly 
as well because they utilize the depth buffer, taking advantage of 
mature early-Z-culling optimization. 

Table 1. Performance test results run on an NVIDIA 
Quadro FX3000. All numbers in frames per second. 

  
Mono 

 
Ana 

 
1/1 

 
3/3 

Comb 
40% 

Comb 
100% 

Crater Lake 
172K 

15 8 7 2 6 6 

Crater Lake 
306K 

9 4 4 1 4 4 

Puget Sound <1 <1 <1 <1 <1 <1 

4D Julia 110 72 41 16 24 20 

Cow 174 95 46 18 24 20 

 
The results using the 7900GTX presented in Table 2 are in line 

with expectations. This hardware is more than capable of 
executing the Combiner for each pixel of the display with little 
penalty. This is made apparent by the parity in performance 
between the anaglyphic and 40% Combiner modes on the Cow 
and 4D Julia applications. The performance of the geometry-
limited Crater Lake application is directly related to the number of 
passes made over the scene, which can be no fewer than 2 for 

stereo display. The performance of the pixel-fill-limited Puget 
Sound application is directly related to the total number of 
application pixels drawn, as the relief-mapping pixel shader is 
very expensive. Both the anaglyphic and 100% quality Combiner 
modes require every pixel of both views to be processed, while 
the reduced-quality Combiner mode processes far fewer, showing 
huge gains on pixel-stressing applications. Traditional Varrier 
algorithms suffer pixel-fill penalties due to the overhead of 
drawing the line screen. 

Table 2. Performance test results run on an NVIDIA 
GeForce 7900GTX. All numbers in frames per second. 

  
Mono 

 
Ana 

 
1/1 

 
3/3 

Comb 
40% 

Comb 
100% 

Crater Lake 
172K 

111 57 47 16 62 52 

Crater Lake 
306K 

18 9 9 3 9 9 

Puget Sound 7 3 4 2 21 4 

4D Julia 503 288 122 47 284 184 

Cow 590 331 137 53 296 214 

 
The highest quality traditional Varrier algorithm is the 3/3, and 

the fundamental goal of the Combiner algorithm is to improve 
upon it, so the interesting performance results lie in the 
comparison between the 3/3 and the Combiner. The 100% quality 
results show an increase by a factor of 4, on average, with further 
gains optionally traded for quality. Sub-pixel-scale performance is 
as high as the pixel-scale performance of the 1/1 algorithm, 
indicating that the cost of sub-pixel image interleaving over pixel 
interleaving has been eliminated. The comparison between the 
current and previous generations of hardware underscores the 
recent emergence of the opportunity to exploit GLSL for 
autostereo. 

4.2 Resolution and visual acuity 
Given the resulting parity in performance of pixel-scale image 
interleaving with sub-pixel-scale image interleaving, the usage of 
a sub-pixel-scale line screen becomes feasible for many 
applications. This has motivated the construction and testing of a 
Varrier system with a double pitch line screen. 

The pixel-scale Varrier line screen has a pitch of 280 lines per 
foot (Figure 8). At a distance of 5 feet each line subtends 2.45 
minutes of arc. A double-scale line screen with 560 lines per foot 
subtends 1.23 minutes of arc. These values correspond to visual 
acuities of 20/50 and 20/25 respectively. 

 

Figure 8. Pixel-scale (left) and sub-pixel-scale (right) line screens 

The authors used a set of Snellen charts to evaluate the useful 
resolution and visual acuity of each line screen. These charts were 
placed in a virtual environment at distances of 5, 10, and 20 feet 
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from the viewpoint, with the user positioned 5 feet from the 
display panel (Figure 9). A Snellen chart is preferred to a standard 
resolution chart such as an ISO 12233 due to the nature of 
spatially multiplexed autostereo. A resolution chart displays line 
grids of various pitches. This conflicts with the parallax barrier 
line screen, resulting in heavy moiré, and rendering the chart 
useless. In addition, a Snellen chart is a human-centric means of 
evaluating resolution, giving useful acuity rather than theoretical 
acuity. 

Average measured visual acuities are 20/40 on the 280 line 
screen and 20/28 on the 560 line screen at 5 feet, 20/40 and 20/30 
at 10 feet, and 20/40 and 20/30 at 20 feet. In general, the 560 line 
screen enabled one extra line on the chart to be discerned. On 
average, acuity values on the 560-pitch line screen show a 1.4x 
increase over the 280. 

 

Figure 9. A Snellen chart displayed in a virtual environment. 

5 CONCLUSIONS 
We believe autostereoscopic rendering to be the future of virtual 
reality. The simplicity and low cost of parallax barrier displays 
make them ideal for VR installations. The relatively recent 
availability of consumer-grade video hardware with highly 
optimized GLSL support enables such displays to be driven by 
off-the-shelf PCs. 

The Combiner algorithm is a straightforward and compact 
solution to the autostereo image-interleaving problem that maps 
elegantly on to modern video hardware. It is applicable to a wide 
variety of existing spatially multiplexed displays. A factor of 4 
increase in performance indicates the Combiner eliminates the 
algorithmic overhead of rendering to such systems. It enables a 
line screen pitch increase leading to visual acuity improvement by 
a factor of 1.4, and giving acuity approaching that of human 
vision. As a result, the resolution loss normally associated with 
spatially multiplexed autostereo can be easily countered using 
commodity high-resolution panels.  

A straightforward extension to the Combiner implementation 
enables non-head-tracked multi-view autostereo. Such a display 
provides non-VR stereo viewing with a limited degree of look-
around by interleaving several viewpoints. A correspondingly 
narrow duty cycle and reduction in resolution is required. 
Combiner views are bound to OpenGL textures, so the number of 
possible views is limited to the number of texture units supported 
by the hardware, 16 on modern hardware. A multi-view Combiner 
implementation would simply increase the number of texture 
matrix uniforms, phase variables, and texture references from 2. 

The Combiner algorithm is, in effect, a complex blending 
function. GLSL does not expose the blending stage of the 
OpenGL pipeline, but a more elegant expression of the algorithm 
might use a future programmable blend stage to perform sub-pixel 
modulation, combining scene views directly to the frame buffer. 
This would undermine the pixel fill savings made using scaled-
down off-screen render buffers, but would be suitable for 

applications that require maximum image quality or minimal 
video RAM consumption. 
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