
A GPU Sub-pixel Algorithm for Autostereoscopic Virtual Reality

Robert L. Kooima1, Tom Peterka1, Javier I. Girado1, Jinghua Ge1, Daniel J. Sandin2, Thomas A. DeFanti2

1 Electronic Visualization Laboratory

University of Illinois at Chicago

2 California Institute for Telecommunications and
Information Technology

University of California at San Diego

ABSTRACT
Autostereoscopic displays enable unencumbered immersive
virtual reality, but at a significant computational expense. This
expense impacts the feasibility of autostereo displays in high-
performance real-time interactive applications. A new autostereo
rendering algorithm named Autostereo Combiner addresses this
problem using the programmable vertex and fragment pipelines of
modern graphics processing units (GPUs). This algorithm is
applied to the Varrier, a large-scale, head-tracked, parallax barrier
autostereo virtual reality platform. In this capacity, the Combiner
algorithm has shown performance gains of 4x over traditional
parallax barrier rendering algorithms. It has enabled high-
performance rendering at sub-pixel scales, affording a 2x increase
in resolution and showing a 1.4x improvement in visual acuity.

CR categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism --- virtual reality

Keywords: autostereoscopic display, 3D display, virtual
reality, Varrier, parallax barrier

1 INTRODUCTION
Unencumbered immersive stereo display is a clear goal of virtual
reality research. Autostereoscopic displays achieve the goal of
removing encumbrances, but the application of autostereo to
virtual reality is not yet widespread. Existing autostereo displays
are limited in performance and resolution. Our work seeks to
improve upon the current state of autostereo displays in these
areas in order to enhance the use of autostereo in the context of
virtual reality.

We define virtual reality by four criteria: tracked first-person
perspective, orthostereo display, immersive field of view, and
real-time interactivity. The working platform for our research is
the Varrier (Figure 1), a display satisfying all four of these
criteria, first introduced to the IEEE VR community at the IEEE
Virtual Reality Conference 2004 [8].

From this platform we develop a new approach to the
computational problem of autostereo display, a GPU-based
algorithm named Autostereo Combiner. The Combiner algorithm
is a high-performance generalized rendering solution applicable to
a large class of autostereo displays. In support of this claim, we
begin by laying out a brief taxonomy of autostereo technologies.

Figure 1. The Cylindrical Varrier, a high-resolution parallax-barrier
autostereo VR display.

2 BACKGROUND
Autostereoscopic displays fall largely into two categories: time-
multiplexed and spatially-multiplexed. Time-multiplexed displays
function by rapidly alternating between multiple images. They use
a synchronous mechanism to ensure that a user’s views of these
images are correspondingly occluded or clear. Such systems
require delicate timing and rapidly responding displays. Time
multiplexed displays include the Cambridge display [1] and the
NYU display [6]. We focus here on the other category.

Spatial-multiplexing is an autostereo approach involving image
interleaving. In its simplest form, image interleaving entails
cutting source images into strips and merging these strips into a
single displayed image. A trivial example is shown in Figure 2. A
significant issue with spatially-multiplexed autostereo is clearly
seen in this figure. At most half of the pixels of each source image
appear in the final interleaving. Consequently, at least half of the
resolution of these images is lost.

The spatially-multiplexed category of displays is further
divided into two functionally equivalent display types,
distinguished by the means with which they direct interleaved
images toward the eye. These are lenticular and parallax barrier
displays. A lenticular display (Figure 3, right) uses a fine array of
lenses to focus distinct portions of each image toward the user’s
eyes. A parallax barrier display (Figure 3, left) uses a screen of
opaque lines mounted a small distance from the surface of the
display. This line screen occludes or reveals distinct portions of
the image to each of the user’s eyes.

131

IEEE Virtual Reality Conference 2007
March 10 - 14, Charlotte, North Carolina, USA
1-4244-0906-3/07/$20.00 ©2007 IEEE

Figure 2. Spatial multiplexing of two views

Lenticular displays include the SynthaGram [5] and the Phillips
3D-LCD [10]. Parallax barrier displays include the 4D-Vision [9]
and the Varrier [8]. Being equivalent, we choose to focus this
discussion on parallax barriers, with the understanding that these
concepts are universal to the category of spacially-multiplexed
displays.

Figure 3. Interleaved images displayed on parallax barrier (left)
and lenticular (right) autostereoscopic displays

Autostereo displays in general can be further categorized as
tracked and untracked. A tracked display has the advantage of
providing a true first-person VR perspective and requires the
integration of only two viewpoints. An untracked multi-image
display generally provides some 3D look-around, but must render
a large number of views to do so. An untracked 2-image display
requires that the viewer remain motionless at a precise location.
With our emphasis on VR, we focus strictly on tracked autostereo
display, though a simple untracked modification to the work
discussed here is touched upon below.

Autostereo image interleaving is seldom as simple as depicted
in Figure 2. The precise nature of the image interleaving is
determined by the configuration of the line screen. A variety of
algorithms of varying power, complexity, and performance have
been documented. Most autostereo hardware literature includes
discussion of the software methods appropriate to it. Examples
include the computer-combining method of phscologram creation
[7], the “punch texture” method of the 4D-Vision [9], and the
“Interzig” process of rendering to the SynthaGram [5].

2.1 Line screen parameters
A line screen configuration for a head-tracked parallax barrier
display consists of five constants: pitch, duty cycle, optical
thickness, angle, and shift. These values, along with the varying

values of the user’s eye positions relative to the display, fully
determine the state of the image interleaving at any given
moment.

The pitch (p) parameter gives the spatial frequency or period of
the parallax barrier. Referring to Figure 4, p = 1 / (wo + wt). The
duty cycle (c) parameter gives the barrier’s ratio of opacity to
transparency. Below, c = wo / (wo + wt).

On a head-tracked two-view system we use a duty cycle around
¾. Our system displays bands of image pixels separated by guard
band pixels, areas of black that reduce crosstalk and “ghosting”
between stereo channels, enabling orthostereo and mitigating the
occurrence of pseudostereo on tracker lag. A two-image
interleaving consists of 4 bands in this order: a band of left-eye
image, a guard band, a band of right-eye image, and another guard
band. Given that exactly one of these should be visible from any
given viewpoint, the ¾ opaque duty cycle follows.

The optical thickness (t) parameter gives the distance from the
parallax barrier to the display, adjusted to account for the index of
refraction of the material to which the barrier is applied. The
angle (a) parameter gives the physical barrier’s degree of rotation
from vertical. On the Varrier [8], as on the SynthaGram [5] and
the Philips 3D-LCD [10], image bands are non-vertical. The angle
is selected empirically to maximize image quality and reduce
moiré interference. The final line screen parameter, shift (s), gives
the horizontal offset of the parallax barrier relative to the display.

Figure 4. Line screen parameters

2.2 Traditional image-interleaving algorithms
To render to a parallax barrier display, an application uses the line
screen configuration and eye positions to determine which on-
screen pixels are visible to each eye, and interleaves rendered
views of the scene according to each pixel’s visibility.

Many parallax barrier display algorithms and implementations
exist. Three general approaches are common. The deferred-
rendering approach proceeds in two passes. First each view of the
scene is rendered and stored off-screen, and second the image
pixels are sorted and transferred to the final interleaved image.
The alternative direct approach selectively writes each image to
the interleaved image as it is generated. A hybrid approach
alternates off-screen and on-screen passes, rendering each view to
an off-screen buffer and selectively transferring it to the final
image interleaving before proceeding with the next view.

Static image and untracked displays, such as phscolograms [7]
and the Synthagram [5], are obviously amenable to the deferred
approach. The NYU display requires the deferred approach in
order to satisfy a difficult timing requirement in the hardware
implementation [6]. The 4D-Vision implements the deferred
approach, but suggests the hybrid [9]. The Varrier traditionally
uses the direct approach [8].

132

2.3 Varrier image-interleaving algorithms
The Combiner algorithm builds upon the history of the Varrier.
Three previous Varrier algorithms have been devised. The issues
encountered and resolved by each of these show a clear
progression, and a review of each algorithm, its rationale, and its
limitations provides the context in which the Combiner algorithm
can be described.

Traditional Varrier rendering algorithms take the direct
approach to the image-interleaving problem, drawing directly to
the on-screen frame buffer. They exploit the depth buffer to this
effect. All of these algorithms draw the line screen as geometry,
so the five configuration parameters defined above map onto 3D
transformations in a straightforward fashion. These algorithms are
distinguished from one another by the number of rendering passes
made for each eye’s line screen and scene view. Thus they are
named “1/1”, “3/3”, and “4/1”.

The 1-line screen/1-scene pass (1/1) algorithm proceeds as
follows.

1. Clear the color and depth buffers.
2. Draw the line screen from the left eye’s perspective to

the depth buffer at the near plane.
3. Draw the scene from the left eye’s perspective to the

color and depth buffers.
4. Clear the depth buffer.
5. Draw the line screen from the right eye’s perspective

to the depth buffer at the near plane.
6. Draw the scene from the right eye’s perspective to the

color and depth buffers.

In effect, the pre-rendering of the line screen allows the depth

buffer to protect those pixels of the color buffer that cannot be
seen by the corresponding eye.

The 1/1 algorithm either accepts or rejects each pixel entirely,
potentially allowing errant un-occluded sub-pixels to remain
visible, resulting in color shift. In addition, the one-pixel scale of
the interleaving limits the pitch of the line screen to 4 times the
size of a single pixel. To resolve either of these issues we must
determine visibility at the sub-pixel level.

The 3-line screen/3-scene pass (3/3) algorithm does this by
rendering each color channel separately with the line screen
shifted left or right by one third of a pixel.

1. Clear the color and depth buffers.
2. From the left eye’s perspective, draw the line screen

shifted left 1/3rd of a pixel to the depth buffer and
draw the scene to the depth buffer and the red channel
of the color buffer.

3. From the left eye’s perspective, draw the line screen
to the depth buffer normally and draw the scene to the
depth buffer and the green channel of the color buffer.

4. From the left eye’s perspective, draw the line screen
shifted right 1/3rd of a pixel to the depth buffer and
draw the scene to the depth buffer and the blue
channel of the color buffer.

5. Clear the depth buffer.
6. Repeat steps 2 through 4 using the right eye’s

perspective.

This algorithm works by simply repeating the action of the 1/1

algorithm 3 times, once for each channel of the destination frame
buffer. The RGB sub-pixel centers are displaced by 1/3rd of a
pixel from the pixel centers, so a virtual line screen behaves as
desired when its shift parameter is displaced ±1/3rd of a pixel. The
3/3 algorithm correctly determines sub-pixels visibility, but it
does so at significant cost. It makes one scene pass per channel

per eye, so it consumes 3 times the fill rate of the 1/1 algorithm
and requires a total of 6 passes over the scene’s geometry.

The 4/1 algorithm attempts to resolve some of the performance
issues of the 3/3 algorithm while retaining its quality. It works by
rendering the left-eye view of the scene normally and selectively
clearing the depth and color buffers in preparation for rendering
the right-eye view. The rendering of the right eye view proceeds
with the left-eye view protected by the depth buffer. Finally, the
right-eye view of the line screen is drawn to the color buffer to
carve out the guard bands between the views. The left-eye and
right-eye views of the scene are protected by the depth buffer,
which by this time contains both the left-eye and right-eye views
of the line screen.

In summary, the 1/1 algorithm interleaves views giving
autostereo, the 3/3 algorithm resolves the color issue, and the 4/1
algorithm minimizes the geometry expense and mitigates the pixel
fill cost.

We are left with a significant pixel fill cost due to the ¾ duty
cycle. In effect, only 25% of all scene pixels processed are
actually displayed. The remaining pixels comprise the line
screens, which are touched once per channel per eye. This
amounts to 75% of the pixel cost of touching every pixel on the
screen 6 times per frame.

While it is true that pixel fill rate continues to increase
dramatically with each new generation of video hardware, a 6x
overdraw penalty is a clear disadvantage to autostereo display,
and is an obvious target for optimization.

2.4 OpenGL and GLSL
As the complexity of graphics hardware increases, graphics
software APIs become unwieldy. The fixed-function OpenGL API
is not sufficiently rich to describe the extended capability
provided. User-programmable functionality has evolved to replace
fixed functionality in areas of deep complexity. In particular, the
OpenGL Shading Language (GLSL) has arisen as a standard,
widespread, high-level mechanism enabling the expression of
specialized vertex and fragment processing [2].

This generalized processing capability enables a highly
optimized solution to the problem of autostereo view interleaving.
Both the programmable vertex pipeline and the programmable
fragment pipeline are exploited. The vertex pipeline maps real-
world spatial coordinates onto the parallax barrier, while the
fragment pipeline determines each pixel’s status within the image
interleaving relative to that barrier. All of this processing is
performed by the GPU, freeing the CPU to attend to the needs of
the application while ignoring the details of the display.

3 THE COMBINER ALGORITHM

3.1 Concept
The Combiner algorithm differs from previous Varrier algorithms
in that it chooses the deferred rendering approach over the direct.
Rather than carefully composing all scene views to a single frame
buffer, Combiner renders each view to a separate off-screen buffer
and combines them to the display in a single final pass. Rather
than explicitly drawing the virtual barrier, it computes the opacity
of the virtual barrier as viewed by each eye and modulates each
image accordingly. This has a number of advantages.

First, the distinction between the off-screen render buffer and
the on-screen display buffer affords the opportunity to render the
scene at a resolution different than that of the display. For
example, given a ¾ duty cycle, on average only one of every four
scene-pixels is ultimately visible. The other three need not be
rendered. To enable this, the off-screen render buffers are
allocated at a reduced resolution more-closely matching the real

133

output resolution of each image. This optimization is fairly
obvious, and is used by other autostereo implementations,
including [9], but it integrates particularly well with the use of
GLSL. A simple texture coordinate scaling stretches off-screen
buffers up to the full size of the display while they are combined
to form the final on-screen interleaving. In general, this scaling
factor need not be related to the display’s duty cycle, and it need
not be applied only along the axis of the line screen. It represents
a smoothly varying two-dimensional quality coefficient that
directly balances pixel fill-rate consumption versus visual fidelity.
Due to the resolution-degrading nature of parallax barrier
autostereo, these quality coefficients rarely need to be set to their
maximum values to achieve optimal output quality.

Second, the Combiner algorithm performs the final image
interleaving for the entire frame in a single pass, touching each
on-screen pixel exactly once. This, along with the reduction in
pixel fill consumption reclaimed using the scaled off-screen
buffers, reduces the total fill rate cost of autostereo display to its
minimum. The overall performance is equivalent to quad-
buffered, passive, or anaglyphic stereo on the same hardware.
This significant reduction in the cost of sub-pixel autostereo
image interleaving has lead to a potential increase in Varrier line
screen pitch and, correspondingly, display resolution, with an
associated increase in visual acuity.

Third, the Combiner algorithm requires very little OpenGL
state to be in effect during the execution of the application’s
display function. Traditional algorithms have specific
requirements with respect to the state of the depth and color
buffers. This deprives the application of the freedom to exploit
this OpenGL state as needed. The Combiner algorithm requires
only that application render to an off-screen buffer. While the
Combiner’s final pass does require GLSL state, this need not be in
effect during the execution of the application’s display function,
and the application is free to use GLSL state as needed. This
reduced set of requirements significantly eases the porting of
existing OpenGL applications to the Varrier display.

3.2 Line screen transform
The line screen configuration with the positions of the user’s eyes
fully determines the state of the image interleaving at any given
moment. During the final combination of each frame, the eye
positions are received from the tracking mechanism and a pair of
matrices is constructed. These matrices transform a point in space
to a position in the line screen, one matrix giving the line screen
position as viewed by the left eye, and the other as viewed by the
right eye.

Figure 5. Display space, a real-world coordinate system centered
upon and oriented with the display.

We define display space (Figure 5) as the coordinate system
with its origin at the center of the display, oriented with the x and
y axes of the display, using the same real-world unit of measure as
the tracking system. We define line screen space (Figure 6) as a
one-dimensional coordinate system where the axis maps onto
position across the line screen. Using the line screen pitch as
unity, this becomes the coordinate system of the line screen duty
cycle parameter. In this space, the line screen appears as a
rectangular wave and position within the line screen maps onto
the phase of that wave.

Figure 6. Line screen space

The matrix construction is performed once for each eye. To
begin, we compute a few intermediate values. These values
require division by the z coordinate of the eye position. As such,
they are akin to perspective projection.

Let v be the 3D position of an eye in display space. We first
compute the parallax offsets along the x and y axes due to optical
thickness.

!

dx = tv x /v z

!

dy = tv y /v z
We also compute the reduction in line screen pitch and shift due

to optical thickness. In effect, these are the apparent pitch and
shift of the line screen after being displaced by the optical
thickness along the normal of the display.

!

" p = p(v z # t) /v z

!

" s = s(v z # t) /v z

The line screen transform involves a scaling, a rotation, and a
translation. The scaling accounts for the line screen pitch. The
rotation accounts for the line screen angle. The translation
accounts for the line screen shift and the parallax due to eye
position. The line screen transform is the composition of these.

!

M =

" p 0 0 0

0 " p 0 0

0 0 1 0

0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

)

cos a *sina 0 0

sina cos a 0 0

0 0 1 0

0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

)

1 0 0 dx * " s

0 1 0 dy

0 0 1 0

0 0 0 1

$

%
%
%
%

&

'

(
(
(
(

3.3 Render setup
Applications transmit input to GLSL shaders via uniform
variables. Generally this involves naming the variable in the
shader text and acquiring a descriptor locating said named
variable via the OpenGL shader objects API [4]. When
transmitting matrix uniforms such as the line screen transform we
are afforded a shortcut. We exploit OpenGL texture matrices to

134

communicate line screen transforms to the vertex shader. OpenGL
transform functions act on these matrices directly, performing the
necessary matrix multiplication. The resulting matrix values are
transmitted automatically to an array of predefined uniform
variables named “gl_TextureMatrix” in GLSL, eliminating the
need to acquire and assign the value in code [2].

The left-eye off-screen buffer is bound to texture unit 0 and the
left-eye transformation is composed on the TU0 texture matrix
stack. Similarly, the right-eye image and transformation are bound
to TU1. An orthogonal projection matrix is configured to map
display space onto normalized device coordinates and the final
image interleaving is drawn as a single screen-filling rectangle.

3.4 Vertex shader
The vertex shader executes once for each of the four vertices of
this rectangle. In so doing, it computes the line screen phase of
each corner of each RGB channel of the display for both eyes.

The shader receives a uniform constant giving the offset
between sub-pixel centers. The output is a pair of phase values for
each channel, stored in varying vector values for use by the
fragment shader. The full source of the vertex shader follows.
Shader source is shown here in order to emphasize the simplicity
and compactness of the technique, and the straightforwardness of
its application using GLSL.

uniform vec3 offset;

varying vec3 L_phase;

varying vec3 R_phase;

void main()

{

 vec4 dr = gl_Vertex + vec4(offset.r, 0.0, 0.0, 0.0);

 vec4 dg = gl_Vertex + vec4(offset.g, 0.0, 0.0, 0.0);

 vec4 db = gl_Vertex + vec4(offset.b, 0.0, 0.0, 0.0);

 L_phase.r = (gl_TextureMatrix[0] * dr).x;

 R_phase.r = (gl_TextureMatrix[1] * dr).x;

 L_phase.g = (gl_TextureMatrix[0] * dg).x;

 R_phase.g = (gl_TextureMatrix[1] * dg).x;

 L_phase.b = (gl_TextureMatrix[0] * db).x;

 R_phase.b = (gl_TextureMatrix[1] * db).x;

 gl_Position = ftransform();

}

Note that the incoming vertex position attribute is used in two
different ways. First, the line screen transform gives the line
screen phase need for image interleaving. And second, the
orthogonal projection, evaluated by the ftransform function, gives
the normalized device coordinates needed for rasterization. By
specifying vertex positions in display coordinates, both of these
requirements are satisfied.

3.5 Fragment shader
GLSL varying variables form the means of communication from
vertex to fragment shaders. Values written by the vertex shader
are linearly interpolated across the primitive being rasterized, and
the resulting interpolated value is read by the fragment shader.
This mechanism interpolates the left-eye and right-eye line screen
phases for each channel across the screen-filling rectangle, giving
a left-eye and right-eye line screen phase for each channel of each
on-screen pixel.

Left-eye and right-eye image pixels are sampled from off-
screen render buffers bound as textures. Texture coordinates are

given by the current fragment coordinate scaled by the quality
factor to account for the difference in the sizes of the off-screen
and on-screen buffers.

The visibility of each channel of the left-eye and right-eye
images is determined simply by comparing the fraction of the
phase of the line screen of each channel with the duty cycle
fraction. The step function maps the result of this comparison onto
0 or 1 per channel. The resulting RGB vectors modulate the left-
eye and right-eye pixels, and the final interleaved image is a
combination of these.

uniform samplerRect L_map;

uniform samplerRect R_map;

uniform float c;

uniform vec2 q;

varying vec3 L_phase;

varying vec3 R_phase;

void main()

{

 vec4 L = textureRect(L_map, gl_FragCoord.xy * q);

 vec4 R = textureRect(R_map, gl_FragCoord.xy * q);

 vec3 Lk = step(vec3(c), fract(L_phase));

 vec3 Rk = step(vec3(c), fract(R_phase));

 vec3 Ik = max(L.rgb * Lk, R.rgb * Rk);

 gl_FragColor = vec4(Ik, 1.0);

}

The final pixel is taken to be the maximum of the modulated
left-eye and right-eye pixels. Under normal circumstances the sum
of these pixels produces the same result. The use of the maximum
function in this case is motivated by an edge-case behavior of
parallax barrier displays. The pitch of the line screen limits the
usable area of a display [8]. When the user moves outside of this
area a clean separation of left-eye and right-eye visibility becomes
impossible, and the image bands overlap. The sum of a pair of
overlapping images tends to saturate to white, while their
maximum preserves the color of the scene. The autostereo effect
is necessarily lost under these circumstances, but the maximum
function at least mitigates the jarring visual discontinuity.

4 RESULTS

4.1 Performance
Real-time update is necessary for immersion, so graphics
performance is critical to virtual reality applications. Head-tracked
autostereo in particular degrades at low update rates due to the
occurrence of psuedostereo when the image interleaving lags the
user position. The Combiner algorithm makes significant
improvements in performance. To quantify this, the update rates
of a variety of applications are tested using a number of autostereo
modes.

“Puget Sound” (Figure 7, top-left) renders a 4K-by-4K terrain
using a relief-mapping shader, which is pixel-fill-limited. “Crater
Lake” (Figure 7, top-right) renders terrain as triangles, and is
geometry-limited. Two versions of the Crater Lake data set are
used, one with 172K vertices and another with 306K. “4D Julia”
(Figure 7, bottom-left) plays a 1024-by-512 stereo video, a
common application of non-VR autostereo systems. Finally,
“Cow” (Figure 7, bottom-right) displays a model with 3K
vertices, an easy task to be performed as fast as possible. All of
these demos are implemented in Electro, a VR application
scripting system supporting a wide variety of display types [3].

135

Figure 7. Performance test applications: relief-mapped terrain,

polygonal terrain, stereo video playback, and basic 3D.

The six display modes evaluated here allow a number of
comparisons to be made. Monoscopic mode gives a baseline
performance for each application. Anaglyphic mode is basic
stereo, representing performance on active and passive stereo
systems common today. 1/1 and 3/3 are the traditional Varrier
algorithms described above. Finally, the Combiner algorithm is
run at 40% quality, a subjective “good enough” setting with an
off-screen render buffer resolution of 1024 by 640, and 100%
quality at 2560 by 1600.

All of these tests are run on a single-panel Varrier based on a
30-inch LCD with a resolution of 2560 by 1600. Each test is run
on both an NVIDIA Quadro FX3000 and an NVIDIA GeForce
7900GTX. The 7900GTX represents modern hardware with
mature GLSL support while the FX3000 indicates performance on
previous generation hardware.

The results using the FX3000 are shown in Table 1. The
immature GLSL implementation struggles. The Combiner mode
tests of the easy applications (Cow and 4D Julia) peak at only
24fps. This is due to the cost of executing the Combiner fragment
program for each of the 2560-by-1600 pixels of the final on-
screen composite. Traditional Varrier algorithms perform nearly
as well because they utilize the depth buffer, taking advantage of
mature early-Z-culling optimization.

Table 1. Performance test results run on an NVIDIA
Quadro FX3000. All numbers in frames per second.

Mono

Ana

1/1

3/3

Comb
40%

Comb
100%

Crater Lake
172K

15 8 7 2 6 6

Crater Lake
306K

9 4 4 1 4 4

Puget Sound <1 <1 <1 <1 <1 <1

4D Julia 110 72 41 16 24 20

Cow 174 95 46 18 24 20

The results using the 7900GTX presented in Table 2 are in line

with expectations. This hardware is more than capable of
executing the Combiner for each pixel of the display with little
penalty. This is made apparent by the parity in performance
between the anaglyphic and 40% Combiner modes on the Cow
and 4D Julia applications. The performance of the geometry-
limited Crater Lake application is directly related to the number of
passes made over the scene, which can be no fewer than 2 for

stereo display. The performance of the pixel-fill-limited Puget
Sound application is directly related to the total number of
application pixels drawn, as the relief-mapping pixel shader is
very expensive. Both the anaglyphic and 100% quality Combiner
modes require every pixel of both views to be processed, while
the reduced-quality Combiner mode processes far fewer, showing
huge gains on pixel-stressing applications. Traditional Varrier
algorithms suffer pixel-fill penalties due to the overhead of
drawing the line screen.

Table 2. Performance test results run on an NVIDIA
GeForce 7900GTX. All numbers in frames per second.

Mono

Ana

1/1

3/3

Comb
40%

Comb
100%

Crater Lake
172K

111 57 47 16 62 52

Crater Lake
306K

18 9 9 3 9 9

Puget Sound 7 3 4 2 21 4

4D Julia 503 288 122 47 284 184

Cow 590 331 137 53 296 214

The highest quality traditional Varrier algorithm is the 3/3, and

the fundamental goal of the Combiner algorithm is to improve
upon it, so the interesting performance results lie in the
comparison between the 3/3 and the Combiner. The 100% quality
results show an increase by a factor of 4, on average, with further
gains optionally traded for quality. Sub-pixel-scale performance is
as high as the pixel-scale performance of the 1/1 algorithm,
indicating that the cost of sub-pixel image interleaving over pixel
interleaving has been eliminated. The comparison between the
current and previous generations of hardware underscores the
recent emergence of the opportunity to exploit GLSL for
autostereo.

4.2 Resolution and visual acuity
Given the resulting parity in performance of pixel-scale image
interleaving with sub-pixel-scale image interleaving, the usage of
a sub-pixel-scale line screen becomes feasible for many
applications. This has motivated the construction and testing of a
Varrier system with a double pitch line screen.

The pixel-scale Varrier line screen has a pitch of 280 lines per
foot (Figure 8). At a distance of 5 feet each line subtends 2.45
minutes of arc. A double-scale line screen with 560 lines per foot
subtends 1.23 minutes of arc. These values correspond to visual
acuities of 20/50 and 20/25 respectively.

Figure 8. Pixel-scale (left) and sub-pixel-scale (right) line screens

The authors used a set of Snellen charts to evaluate the useful
resolution and visual acuity of each line screen. These charts were
placed in a virtual environment at distances of 5, 10, and 20 feet

136

from the viewpoint, with the user positioned 5 feet from the
display panel (Figure 9). A Snellen chart is preferred to a standard
resolution chart such as an ISO 12233 due to the nature of
spatially multiplexed autostereo. A resolution chart displays line
grids of various pitches. This conflicts with the parallax barrier
line screen, resulting in heavy moiré, and rendering the chart
useless. In addition, a Snellen chart is a human-centric means of
evaluating resolution, giving useful acuity rather than theoretical
acuity.

Average measured visual acuities are 20/40 on the 280 line
screen and 20/28 on the 560 line screen at 5 feet, 20/40 and 20/30
at 10 feet, and 20/40 and 20/30 at 20 feet. In general, the 560 line
screen enabled one extra line on the chart to be discerned. On
average, acuity values on the 560-pitch line screen show a 1.4x
increase over the 280.

Figure 9. A Snellen chart displayed in a virtual environment.

5 CONCLUSIONS
We believe autostereoscopic rendering to be the future of virtual
reality. The simplicity and low cost of parallax barrier displays
make them ideal for VR installations. The relatively recent
availability of consumer-grade video hardware with highly
optimized GLSL support enables such displays to be driven by
off-the-shelf PCs.

The Combiner algorithm is a straightforward and compact
solution to the autostereo image-interleaving problem that maps
elegantly on to modern video hardware. It is applicable to a wide
variety of existing spatially multiplexed displays. A factor of 4
increase in performance indicates the Combiner eliminates the
algorithmic overhead of rendering to such systems. It enables a
line screen pitch increase leading to visual acuity improvement by
a factor of 1.4, and giving acuity approaching that of human
vision. As a result, the resolution loss normally associated with
spatially multiplexed autostereo can be easily countered using
commodity high-resolution panels.

A straightforward extension to the Combiner implementation
enables non-head-tracked multi-view autostereo. Such a display
provides non-VR stereo viewing with a limited degree of look-
around by interleaving several viewpoints. A correspondingly
narrow duty cycle and reduction in resolution is required.
Combiner views are bound to OpenGL textures, so the number of
possible views is limited to the number of texture units supported
by the hardware, 16 on modern hardware. A multi-view Combiner
implementation would simply increase the number of texture
matrix uniforms, phase variables, and texture references from 2.

The Combiner algorithm is, in effect, a complex blending
function. GLSL does not expose the blending stage of the
OpenGL pipeline, but a more elegant expression of the algorithm
might use a future programmable blend stage to perform sub-pixel
modulation, combining scene views directly to the frame buffer.
This would undermine the pixel fill savings made using scaled-
down off-screen render buffers, but would be suitable for

applications that require maximum image quality or minimal
video RAM consumption.

6 ACKNOWLEDGEMENTS
The Electronic Visualization Laboratory (EVL) at the University
of Illinois at Chicago specializes in the design and development of
high-resolution visualization and virtual-reality display systems,
collaboration software for use on multi-gigabit networks, and
advanced networking infrastructure. These projects are made
possible by major funding from the National Science Foundation
(NSF), awards CNS-0115809, CNS-0224306, CNS-0420477,
SCI-9980480, SCI-0229642, SCI-9730202, SCI-0123399, ANI
0129527 and EAR-0218918, as well as the NSF Information
Technology Research (ITR) cooperative agreement (SCI-
0225642) to the University of California San Diego (UCSD) for
"The OptIPuter" and the NSF Partnerships for Advanced
Computational Infrastructure (PACI) cooperative agreement (SCI
9619019) to the National Computational Science Alliance. EVL
also receives funding from the State of Illinois, General Motors
Research, the Office of Naval Research on behalf of the
Technology Research, Education, and Commercialization Center
(TRECC), and Pacific Interface Inc. on behalf of NTT Optical
Network Systems Laboratory in Japan. Varrier and CAVELib are
trademarks of the Board of Trustees of the University of Illinois

REFERENCE
[1] N. Dodgson, J. Moore, S. Lang, G. Martin, P. Canepa. A 50” time-

multiplexed autostereoscopic display. In Proceedings of SPIE,
Stereoscopic Displays & Applications. 2000.

[2] J. Kessenich, D. Baldwin, R. Rost. The OpenGL® Shading
Language. 2004. http://www.opengl.org/documentation/glsl/

[3] R. Kooima. Electro. 2005. http://www.evl.uic.edu/rlk/electro/
[4] B. Lichtenbelt, R. Rost, et al. ARB_shader_objects. 2004.

http://www.opengl.org/registry/specs/ARB/shader_objects.txt
[5] L. Lipton, M. Feldman. A New Autostereoscopic Display

Technology: The SynthaGram. In Proceedings of SPIE Photonics
West 2002: Electronic Imaging, San Jose, California, 2002.

[6] K. Perlin, S. Paxia, J. Kollin. An Autostereoscopic Display. In
Proceedings of ACM SIGGRAPH 2000, Computers Graphics
Proceedings, Annual Conference Series, pp. 319-326, 2000.

[7] D. Sandin, E. Sandor, W. Cunnally, M. Resch, T. DeFanti, M.
Brown. Computer-generated barrier-strip autostereography. In
Proceedings of SPIE, Three-Dimensional Visualization and Display
Technologies, vol. 1083, pp. 65-75.

[8] D. Sandin, T. Margolis, J. Ge, J. Girado, T. Peterka, T. Defanti. The
Varrier™ Autostereoscopic Virtual Reality Display. In ACM
Transactions on Graphics, Proceedings of ACM SIGGRAPH, 24, no.
3, 2005, pp. 894-903

[9] A. Schmidt, A. Grasnick. Multi-viewpoint Autostereoscopic
Displays from 4D-Vision. In Proceedings of SPIE Vol. 4660, 2002.

[10] C. van Berkel. Image Preparation for the 3D-LCD. In Proceedings of
SPIE, Stereoscopic Displays and Virtual Reality Systems. 1999.

137

