
10�

Ray Tracing

Ray tracing is a method to produce realistic images; it determines visible sur-
faces in an image at the pixel level (Appel, 1968; Kay & Greenberg, 1979; Whit-
ted, 1980). Unlike the z-buffer and BSP tree, ray tracing operates pixel-by-pixel
rather than primitive-by-primitive. This tends to make ray tracing relatively slow
for scenes with large objects in screen space. However, it has a variety of nice
features which often make it the right choice for batch rendering and even for
some interactive applications.

Ray tracing’s primary benefit is that it is relatively straightforward to com-
pute shadows and reflections. In addition, ray tracing is well suited to “walk-
throughs” of extremely large models due to advanced ray tracing’s low asymptotic
time complexity which makes up for the required preprocessing of the model
(Snyder & Barr, 1987; Muuss, 1995; Parker et al., 1999; Wald, Slusallek, & Ben-
thin, 2001).

In an interactive 3D program implemented in a conventional z-buffer environ-
ment, it is often useful to be able to select an object using a mouse. The mouse is
clicked in pixel (i, j) and the “picked” object is whatever object is “seen” through
that pixel. If the rasterization process includes an object identification buffer, this
is just a matter of looking up the value in pixel (i, j) of that buffer. However,
if that buffer is not available, we can solve the problem of which object is vis-
ible via brute force geometrical computation using a “ray intersection test.” In
this way, ray tracing is useful also to programmers who use only standard
graphics APIs.

153

154 9. Ray Tracing

This chapter also discusses distribution ray tracing (Cook, Porter, & Carpen-
ter, 1984), where multiple random rays are sent through each pixel in an image to
simultaneously solve the antialiasing, soft shadow, fuzzy reflection, and depth-of-
field problems.

9.1 The Basic Ray Tracing Algorithm

The simplest use of ray tracing is to produce images similar to those produced
by the z-buffer and BSP-tree algorithms. Fundamentally, those methods make
sure the appropriate object is “seen” through each pixel,and that the pixel color is
shaded based on that object’s material properties, the surface normal seen through
that pixel, and the light geometry.

Figure 9.1. The 3D window we look through is the same as in Chapter 6. The borders of the window
have simple coordinates in the uvw coordinate system with respect to origin e.

Figure 9.1 shows the basic viewing geometry for ray tracing, which is the
same as we saw earlier in Chapter 6. The geometry is aligned to a uvw coordinate
system with the origin at the eye location e. The key idea in ray tracing is to
identify locations on the view plane at w = n that correspond to pixel centers, as
shown in Figure 9.2. A “ray,” really just a directed 3D line, is then sent from e to
that point. We then “gaze” in the direction of the ray to see the first object seen in
that direction. This is shown in Figure 9.3, where the ray intersects two triangles,
but only the first triangle hit, T2, is returned.

9.2. Computing Viewing Rays 155

Figure 9.2. The sample points on the screen are mapped to a similar array on the 3D window. A
viewing ray is sent to each of these locations.

The structure of the basic ray tracing program is:

Compute u, v, w basis vectors
for each pixel do

compute viewing ray
find first object hit by ray and its surface normal n
set pixel color to value based on material, light, and n

The pixel color can be computed using the shading equations of the last chapter.

Figure 9.3. The ray is “traced” into the scene and the first object hit is the one seen through the pixel.
In this case, the triangle T2 is returned.

9.2 Computing Viewing Rays

First we need to determine a mathematical representation for a ray. A ray is really
just an origin point and a propagation direction; a 3D parametric line is ideal for

156 9. Ray Tracing

this. As discussed in Section 2.8.1, the 3D parametric line from the eye e to a
point s on the screen (see Figure 9.4) is given by

Figure 9.4. The ray from the
eye to a point on the screen.

p(t) = e + t(s − e).

This should be interpreted as, “we advance from e along the vector (s − e) a
fractional distance t to find the point p.” So given t, we can determine a point p.
Note that p(0) = e, and p(1) = s. Also note that for positive t, if t1 < t2, then
p(t1) is closer to the eye than p(t2). Also, if t < 0, then p(t) is “behind” the eye.
These facts will be useful when we search for the closest object hit by the ray that
is not behind the eye. Note that we are overloading the variable t here which is
also used for the top of the screen’s v-coordinate.

To compute a viewing ray, we need to know e (which is given) and s. Finding
s may look somewhat difficult. In fact, it is relatively straightforward using the
same transform machinery we used for viewing in the context of projecting lines
and triangles.

First, we find the coordinates of s in the uvw-coordinate system with origin e.
For all points on the screen, ws = n as shown in Figure 9.2. The uv-coordinates
are found by the windowing transform that takes [−0.5, nx−0.5]×[−0.5, ny−0.5]
to [l, r] × [b, t]:

us = l + (r − l)
i + 0.5

nx
,

vs = b + (t − b)
j + 0.5

ny
,

where (i, j) are the pixel indices. This gives us s in uvw-coordinates. By defini-
tion, we can convert to canonical coordinates:

s = e + usu + vsv + wsw. (9.1)

Alternatively, we could use the matrix form (Equation 5.8):




xs

ys

zs

1


 =




1 0 0 xe

0 1 0 ye

0 0 1 ze

0 0 0 1







xu xv xw 0
yu yv yw 0
zu zv zw 0
0 0 0 1







us

vs

ws

1


 , (9.2)

which is just the matrix form of Equation 9.1. We can compose this with the
windowing transform in matrix form if we wished, but this is probably not worth
doing unless you like the matrix form of equations better.

9.3. Ray-Object Intersection 157

9.3 Ray-Object Intersection

Given a ray e + td, we want to find the first intersection with any object where
t > 0. It will later prove useful to solve a slightly more general problem of
finding the first intersection in the interval [t0, t1], and using [0,∞) for viewing
rays. We solve this for both spheres and triangles in this section. In the next
section, multiple objects are discussed.

9.3.1 Ray-Sphere Intersection

Given a ray p(t) = e + td and an implicit surface f(p) = 0, we’d like to know
where they intersect. The intersection points occur when points on the ray satisfy
the implicit equation

f(p(t)) = 0.

This is just
f(e + td) = 0.

A sphere with center c = (xc, yc, zc) and radius R can be represented by the
implicit equation

(x − xc)2 + (y − yc)2 + (z − zc)2 − R2 = 0.

We can write this same equation in vector form:

(p − c) · (p − c) − R2 = 0.

Any point p that satisfies this equation is on the sphere. If we plug points on the
ray p(t) = e + td into this equation, we can solve for the values of t on the ray
that yield points on the sphere:

(e + td − c) · (e + td − c) − R2 = 0.

Rearranging terms yields

(d · d)t2 + 2d · (e − c)t + (e − c) · (e − c) − R2 = 0.

Here, everything is known except the parameter t, so this is a classic quadratic
equation in t, meaning it has the form

At2 + Bt + C = 0.

The solution to this equation is discussed in Section 2.2. The term under the
square root sign in the quadratic solution, B2 − 4AC, is called the discriminant

158 9. Ray Tracing

and tells us how many real solutions there are. If the discriminant is negative, its
square root is imaginary and there are no intersections between the sphere and the
line. If the discriminant is positive, there are two solutions: one solution where
the ray enters the sphere and one where it leaves. If the discriminant is zero, the
ray grazes the sphere touching it at exactly one point. Plugging in the actual terms
for the sphere and eliminating the common factors of two, we get

t =
−d · (e − c) ±

√
(d · (e − c))2 − (d · d) ((e − c) · (e − c) − R2)

(d · d)
.

In an actual implementation, you should first check the value of the discriminant
before computing other terms. If the sphere is used only as a bounding object for
more complex objects, then we need only determine whether we hit it; checking
the discriminant suffices.

As discussed in Section 2.7.1, the normal vector at point p is given by the
gradient n = 2(p − c). The unit normal is (p − c)/R.

9.3.2 Ray-Triangle Intersection

There are many algorithms for computing ray-triangle intersections. We will use
the form that uses barycentric coordinates for the parametric plane containing the
triangle, because it requires no long-term storage other than the vertices of the
triangle (Snyder & Barr, 1987).

To intersect a ray with a parametric surface, we set up a system of equations
where the Cartesian coordinates all match:

xe + txd = f(u, v),

ye + tyd = g(u, v),

ze + tzd = h(u, v).

Here, we have three equations and three unknowns (t, u, and v), so we can solve
numerically for the unknowns. If we are lucky, we can solve for them analytically.

Figure 9.5. The ray hits the
plane containing the triangle at
point p.

In the case where the parametric surface is a parametric plane, the parametric
equation can be written in vector form as discussed in Section 2.11.2. If the
vertices of the triangle are a, b and c, then the intersection will occur when

e + td = a + β(b − a) + γ(c − a). (9.3)

The hitpoint p will be at e + td as shown in Figure 9.5. Again, from Sec-
tion 2.11.2, we know the hitpoint is in the triangle if and only if β > 0, γ > 0,

9.3. Ray-Object Intersection 159

and β + γ < 1. Otherwise, it hits the plane outside the triangle. If there are
no solutions, either the triangle is degenerate or the ray is parallel to the plane
containing the triangle.

To solve for t, β, and γ in Equation 9.3, we expand it from its vector form into
the three equations for the three coordinates:

xe + txd = xa + β(xb − xa) + γ(xc − xa),

ye + tyd = ya + β(yb − ya) + γ(yc − ya),

ze + tzd = za + β(zb − za) + γ(zc − za).

This can be rewritten as a standard linear equation:
xa − xb xa − xc xd

ya − yb ya − yc yd

za − zb za − zc zd





β

γ
t


 =


xa − xe

ya − ye

za − ze


 .

The fastest classic method to solve this 3×3 linear system is Cramer’s Rule. This
gives us the solutions

β =

∣∣∣∣∣∣
xa − xe xa − xc xd

ya − ye ya − yc yd

za − ze za − zc zd

∣∣∣∣∣∣
|A| ,

γ =

∣∣∣∣∣∣
xa − xb xa − xe xd

ya − yb ya − ye yd

za − zb za − ze zd

∣∣∣∣∣∣
|A| ,

t =

∣∣∣∣∣∣
xa − xb xa − xc xa − xe

ya − yb ya − yc ya − ye

za − zb za − zc za − ze

∣∣∣∣∣∣
|A| ,

where the matrix A is

A =


xa − xb xa − xc xd

ya − yb ya − yc yd

za − zb za − zc zd


 ,

and |A| denotes the determinant of A. The 3×3 determinants have common sub-
terms that can be exploited. Looking at the linear systems with dummy variables

a d g
b e h
c f i





β

γ
t


 =


j
k
l


 ,

160 9. Ray Tracing

Cramer’s rule gives us

β =
j(ei − hf) + k(gf − di) + l(dh − eg)

M
,

γ =
i(ak − jb) + h(jc − al) + g(bl − kc)

M
,

t = −f(ak − jb) + e(jc − al) + d(bl − kc)
M

,

where
M = a(ei − hf) + b(gf − di) + c(dh − eg).

We can reduce the number of operations by reusing numbers such as
“ei-minus-hf.”

The algorithm for the ray-triangle intersection for which we need the linear so-
lution can have some conditions for early termination. Thus, the function should
look something like:

boolean raytri (ray r, vector3 a, vector3 b, vector3 c, interval [t0, t1])
compute t

if (t < t0) or (t > t1) then
return false

compute γ

if (γ < 0) or (γ > 1) then
return false

compute β

if (β < 0) or (β > 1 − γ) then
return false

return true

9.3.3 Ray-Polygon Intersection

Given a polygon with m vertices p1 through pm and surface normal n, we first
compute the intersection points between the ray e + td and the plane containing
the polygon with implicit equation

(p − p1) · n = 0.

We do this by setting p = e + td and solving for t to get

t =
(p1 − e) · n

d · n .

9.4. A Ray Tracing Program 161

This allows us to compute p. If p is inside the polygon, then the ray hits it, and
otherwise it does not.

We can answer the question of whether p is inside the polygon by projecting
the point and polygon vertices to the xy plane and answering it there. The easiest
way to do this is to send any 2D ray out from p and to count the number of
intersections between that ray and the boundary of the polygon (Sutherland et al.,
1974; Glassner, 1989). If the number of intersections is odd, then the point is
inside the polygon, and otherwise it is not. This is true, because a ray that goes
in must go out, thus creating a pair of intersections. Only a ray that starts inside
will not create such a pair. To make computation simple, the 2D ray may as well
propagate along the x-axis:

[
x
y

]
=

[
xp

yp

]
+ s

[
1
0

]
.

It is straightforward to compute the intersection of that ray with the edges such as
(x1, y1, x2, y2) for s ∈ (0,∞).

A problem arises, however, for polygons whose projection into the xy plane
is a line. To get around this, we can choose among the xy, yz, or zx planes for
whichever is best. If we implement our points to allow an indexing operation,
e.g., p(0) = xp then this can be accomplished as follows:

if (abs(zn) > abs(xn)) and (abs(zn) > abs(xn)) then
index0 = 0
index1 = 1

else if (abs(yn) > abs (xn)) then
index0 = 0
index1 = 2

else
index0 = 1
index1 = 2

Now, all computations can use p(index0) rather than xp, and so on.

9.4 A Ray Tracing Program

We now know how to generate a viewing ray for a given pixel and how to find
the intersection with one object. This can be easily extended to a program that
produces images similar to the z-buffer or BSP-tree codes of earlier chapters:

162 9. Ray Tracing

for each pixel do
compute viewing ray
if (ray hits an object with t ∈ [0,∞)) then

Compute n
Evaluate lighting equation and set pixel to that color

else
set pixel color to background color

Here the statement “if ray hits an object...” can be implemented as a function that
tests for hits in the interval t ∈ [t0, t1]:

hit = false
for each object o do

if (object is hit at ray parameter t and t ∈ [t0, t1]) then
hit = true
hitobject = o
t1 = t

return hit

In an actual implementation, you will need to somehow return either a reference
to the object that is hit or at least its normal vector and material properties. This
is often done by passing a record/structure with such information. In an object-
oriented implementation, it is a good idea to have a class called something like
surface with derived classes triangle, sphere, surface-list, etc. Anything that a ray
can intersect would be under that class. The ray tracing program would then have
one reference to a “surface” for the whole model, and new types of objects and
efficiency structures can be added transparently.

9.4.1 Object-Oriented Design for a Ray Tracing Program

As mentioned earlier, the key class hierarchy in a ray tracer are the geometric
objects that make up the model. These should be subclasses of some geometric
object class, and they should support a hit function (Kirk & Arvo, 1988). To
avoid confusion from use of the word “object,” surface is the class name often
used. With such a class, you can create a ray tracer that has a general interface
that assumes little about modeling primitives and debug it using only spheres. An
important point is that anything that can be “hit” by a ray should be part of this
class hierarchy, e.g., even a collection of surfaces should be considered a subclass
of the surface class. This includes efficiency structures, such as bounding volume
hierarchies; they can be hit by a ray, so they are in the class.

9.5. Shadows 163

For example, the “abstract” or “base” class would specify the hit function as
well as a bounding box function that will prove useful later:

class surface
virtual bool hit(ray e + td, real t0, real t1, hit-record rec)
virtual box bounding-box()

Here (t0, t1) is the interval on the ray where hits will be returned, and rec is
a record that is passed by reference; it contains data such as the t at intersection
when hit returns true. The type box is a 3D “bounding box”, that is two points that
define an axis-aligned box that encloses the surface. For example, for a sphere,
the function would be implemented by:

box sphere::bounding-box()
vector3 min = center - vector3(radius,radius,radius)
vector3 max = center + vector3(radius,radius,radius)
return box(min, max)

Another class that is useful is material. This allows you to abstract the material
behavior and later add materials transparently. A simple way to link objects and
materials is to add a pointer to a material in the surface class, although more
programmable behavior might be desirable. A big question is what to do with
textures; are they part of the material class or do they live outside of the material
class? This will be discussed more in Chapter 10.

9.5 Shadows

Once you have a basic ray tracing program, shadows can be added very easily.
Recall from Chapter 8 that light comes from some direction l. If we imagine
ourselves at a point p on a surface being shaded, the point is in shadow if we
“look” in direction l and see an object. If there are no objects, then the light is not
blocked.

This is shown in Figure 9.6, where the ray p + tl does not hit any objects and
is thus not in shadow. The point q is in shadow because the ray q + tl does hit
an object. The vector l is the same for both points because the light is “far” away.
This assumption will later be relaxed. The rays that determine in or out of shadow
are called shadow rays to distinguish them from viewing rays.

Figure 9.6. The point p is
not in shadow while the point q
is in shadow.

To get the algorithm for shading, we add an if statement to determine whether
the point is in shadow. In a naive implementation, the shadow ray will check
for t ∈ [0,∞), but because of numerical imprecision, this can result in an inter-

164 9. Ray Tracing

section with the surface on which p lies. Instead, the usual adjustment to avoid
that problem is to test for t ∈ [ε,∞) where ε is some small positive constant
(Figure 9.7).

Figure 9.7. By testing in the
interval starting at ε, we avoid
numerical imprecision causing
the ray to hit the surface p is on.

If we implement shadow rays for Phong lighting with Equation 8.9 then we
have:

function raycolor(ray e + td, real t0, real t1)
hit-record rec, srec
if (scene→hit(e + td, t0, t1, rec)) then

p = e + rec.td
color c = rec.cr rec.ca

if (not scene→hit(p + sl, ε, ∞, srec)) then
vector3 h = normalized(normalized(l) + normalized(−d))
c = c + rec.cr clmax (0, rec.n · l) + clrec.cp(h · rec.n)rec.p

return c

else
return background-color

Note that the ambient color is added in either case. If there are multiple light
sources, we can send a shadow ray and evaluate the diffuse/phong terms for each
light. The code above assumes that d and l are not necessarily unit vectors. This
is crucial for d, in particular, if we wish to cleanly add instancing later.

9.6 Specular Reflection

It is straightforward to add specular reflection to a ray tracing program. The
key observation is shown in Figure 9.8 where a viewer looking from direction e
sees what is in direction r as seen from the surface. The vector r is found using
a variant of the Phong lighting reflection Equation 8.6. There are sign changes
because the vector d points toward the surface in this case, so,

r = d + 2(d · n)n, (9.4)

In the real world, some energy is lost when the light reflects from the surface, and
Figure 9.8. When looking
into a perfect mirror, the viewer
looking in direction d will see
whatever the viewer “below” the
surface would see in direction r.

this loss can be different for different colors. For example, gold reflects yellow
more efficiently than blue, so it shifts the colors of the objects it reflects. This can
be implemented by adding a recursive call in raycolor:

color c = c + csraycolor(p + sr, ε, ∞)

where cs is the specular RGB color. We need to make sure we test for s ∈ [ε,∞)

9.7. Refraction 165

for the same reason as we did with shadow rays; we don’t want the reflection ray
to hit the object that generates it.

The problem with the recursive call above is that it may never terminate. For
example, if a ray starts inside a room, it will bounce forever. This can be fixed by
adding a maximum recursion depth. The code will be more efficient if a reflection
ray is generated only if cs is not zero (black).

9.7 Refraction

Another type of specular object is a dielectric—a transparent material that refracts
light. Diamonds, glass, water, and air are dielectrics. Dielectrics also filter light;
some glass filters out more red and blue light than green light, so the glass takes
on a green tint. When a ray travels from a medium with refractive index n into
one with a refractive index nt, some of the light is transmitted, and it bends. This
is shown for nt > n in Figure 9.9. Snell’s law tells us that

n sin θ = nt sin φ.

Computing the sine of an angle between two vectors is usually not as convenient
as computing the cosine which is a simple dot product for the unit vectors such as
we have here. Using the trigonometric identity sin2 θ +cos2 θ = 1, we can derive
a refraction relationship for cosines:

cos2 φ = 1 − n2
(
1 − cos2 θ

)
n2

t

.

Note that if n and nt are reversed, then so are θ and φ as shown on the right of
Figure 9.9.

Figure 9.9. Snells’ Law describes how the angle φ depends on the angle θ and the refractive indices
of the object and the surrounding medium.

166 9. Ray Tracing

To convert sin φ and cos φ into a 3D vector, we can set up a 2D orthonormal
basis in the plane of n and d.

From Figure 9.10, we can see that n and b form an orthonormal basis for the
plane of refraction. By definition, we can describe t in terms of this basis:

t = sinφb − cos φn.

Since we can describe d in the same basis, and d is known, we can solve for b:

d = sin θb − cos θn,

b =
d + n cos θ

sin θ
.

This means that we can solve for t with known variables:
Figure 9.10. The vectors
n and b form a 2D orthonor-
mal basis that is parallel to the
transmission vector t.

t =
n (d + n cos θ))

nt
− n cos φ

=
n (d − n(d · n))

nt
− n

√
1 − n2 (1 − (d · n)2)

n2
t

.

Note that this equation works regardless of which of n and nt is larger. An im-
mediate question is, “What should you do if the number under the square root is
negative?” In this case, there is no refracted ray and all of the energy is reflected.
This is known as total internal reflection, and it is responsible for much of the
rich appearance of glass objects.

The reflectivity of a dielectric varies with the incident angle according to the
Fresnel Equations. A nice way to implement something close to the Fresnel Equa-
tions is to use the Schlick approximation,

R(θ) = R0 + (1 − R0) (1 − cos θ)5 ,

where R0 is the reflectance at normal incidence:

R0 =
(

nt − 1
nt + 1

)2

.

Note that the cos θ terms above are always for the angle in air (the larger of the
internal and external angles relative to the normal).

For homogeneous impurities, as is found in typical glass, a light-carrying ray’s
intensity will be attenuated according to Beer’s Law. As the ray travels through
the medium it loses intensity according to dI = −CI dx, where dx is distance.
Thus, dI/dx = −CI . We can solve this equation and get the exponential I =
k exp(−Cx)+k′. The degree of attenuation is described by the RGB attenuation

9.7. Refraction 167

Figure 9.11. The color of the glass is affected by total internal reflection and Beer’s Law. The amount
of light transmitted and reflected is determined by the Fresnel Equations. The complex lighting on the
ground plane was computed using particle tracing as described in Chapter ??. (See also Plate PLATE.)

constant a, which is the amount of attenuation after one unit of distance. Putting
in boundary conditions, we know that I(0) = I0, and I(1) = aI(0). The former
implies I(x) = I0 exp(−Cx). The latter implies I0a = I0 exp(−C), so −C =
ln(a). Thus, the final formula is

I(s) = I(0)e− ln(a)s,

where I(s) is the intensity of the beam at distance s from the interface. In practice,
we reverse-engineer a by eye, because such data is rarely easy to find. The effect
of Beer’s Law can be seen in Figure 9.11, where the glass takes on a green tint.

To add transparent materials to our code, we need a way to determine when
a ray is going “into” an object. The simplest way to do this is to assume that all
objects are embedded in air with refractive index very close to 1.0, and that surface
normals point “out” (toward the air). The code segment for rays and dielectrics
with these assumptions is:

if (p is on a dielectric) then
r = reflect(d, n)
if (d · n < 0) then

refract(d, n,n, t)

168 9. Ray Tracing

c = −d · n
kr = kg = kb = 1

else
kr = exp(−art)
kg = exp(−agt)
kb = exp(−abt)
if refract(d, -n,1/n, t) then

c = t · n
else

return k∗color(p + tr)
R0 = (n − 1)2/(n + 1)2

R = R0 + (1 − R0)(1 − c)5

return k(R color(p + tr) + (1 − R) color(p + tt))

The code above assumes that the natural log has been folded into the constants
(ar, ag, ab). The refract function returns false if there is total internal reflection,
and otherwise it fills in the last argument of the argument list.

9.8 Instancing

An elegant property of ray tracing is that it allows very natural instancing. The
basic idea of instancing is to distort all points on an object by a transformation
matrix before the object is displayed. For example, if we transform the unit circle
(in 2D) by a scale factor (2, 1) in x and y, respectively, then rotate it by 45◦, and
move one unit in the x-direction, the result is an ellipse with an eccentricity of 2
and a long axis along the x = −y-direction centered at (0, 1) (Figure 9.12). The
key thing that makes that entity an “instance” is that we store the circle and the
composite transform matrix. Thus, the explicit construction of the ellipse is left
as a future procedure operation at render time.

Figure 9.12. An instance
of a circle with a series of three
transforms is an ellipse.

The advantage of instancing in ray tracing is that we can choose the space
in which to do intersection. If the base object is composed of a set of points,
one of which is p, then the transformed object is composed of that set of points
transformed by matrix M, where the example point is transformed to Mp. If we
have a ray a + tb which we want to intersect with the transformed object, we can
instead intersect an inverse-transformed ray with the untransformed object (Fig-
ure 9.13). There are two potential advantages to computing in the untransformed
space (i.e., the right-hand side of Figure 9.13):

1. the untransformed object may have a simpler intersection routine, e.g., a
sphere versus an ellipsoid;

9.8. Instancing 169

Figure 9.13. The ray intersection problem in the two spaces are just simple transforms of each other.
The object is specified as a sphere plus matrix M. The ray is specified in the transformed (world) space
by location a and direction b.

2. many transformed objects can share the same untransformed object thus
reducing storage, e.g., a traffic jam of cars, where individual cars are just
transforms of a few base (untransformed) models.

As discussed in Section 5.2.2, surface normal vectors transform differently.
With this in mind and using the concepts illustrated in Figure 9.13, we can de-
termine the intersection of a ray and an object transformed by matrix M. If we
create an instance class of type surface, we need to create a hit function:

instance::hit(ray a + tb, real t0, real t1, hit-record rec)
ray r′ = M−1a + tM−1b
if (base-object→hit(r′, t0, t1, rec)) then

rec.n = (M−1)T rec.n
return true

else
return false

An elegant thing about this function is that the parameter rec.t does not need to
be changed, because it is the same in either space. Also note that we need not
compute or store the matrix M .

170 9. Ray Tracing

This brings up a very important point: the ray direction b must not be re-
stricted to a unit-length vector, or none of the infrastructure above works. For this
reason, it is useful not to restrict ray directions to unit vectors.

For the purpose of solid texturing, you may want to record the local coordi-
nates of the hitpoint and return this in the hit-record. This is just ray r′ advanced
by parameter rec.t.

To implement the bounding-box function of class instance, we can just take
the eight corners of the bounding box of the base object and transform all of
them by M, and then take the bounding box of those eight points. That will not
necessarily yield the tightest bounding box, but it is general and straightforward
to implement.

9.9 Sub-Linear Ray-Object Intersection

In the earlier ray-object intersection pseudocode, all objects are looped over,
checking for intersections. For N objects, this is an O(N) linear search and
is thus slow for large values of N . Like most search problems, the ray-object
intersection can be computed in sub-linear time using “divide and conquer” tech-
niques, provided we can create an ordered data structure as a preprocess. There
are many techniques to do this.

This section discusses three of these techniques in detail: bounding volume
hierarchies (Rubin & Whitted, 1980; Whitted, 1980; Goldsmith & Salmon, 1987),
uniform spatial subdivision (Cleary, Wyvill, Birtwistle, & Vatti, 1983; Fujimoto,
Tanaka, & Iwata, 1986; Amanatides & Woo, 1987), and binary-space partition-

Figure 9.14. Left: a uniform partitioning of space. Right: adaptive bounding-box hierarchy. Image
courtesy David DeMarle.

9.9. Sub-Linear Ray-Object Intersection 171

ing (Glassner, 1984; Jansen, 1986; Havran, 2000). An example of the first two
strategies is shown in Figure 9.14. References for other popular strategies are
given in the notes at the end of the chapter.

9.9.1 Bounding Boxes

A key operation in most intersection acceleration schemes is computing the inter-
section of a ray with a bounding box (Figure 9.15). This differs from conventional
intersection tests in that we do not need to know where the ray hits the box; we
only need to know whether it hits the box.

To build an algorithm for ray-box intersection, we begin by considering a 2D
ray whose direction vector has positive x and y components. We can generalize
this to arbitrary 3D rays later. The 2D bounding box is defined by two horizontal
and two vertical lines:

Figure 9.15. The ray is only
tested for intersection with the
surfaces if it hits the bounding
box.

x = xmin,

x = xmax,

y = ymin,

y = ymax.

The points bounded by these lines can be described in interval notation:

(x, y) ∈ [xmin, xmax] × [ymin, ymax].

As shown in Figure 9.16, the intersection test can be phrased in terms of these
intervals. First, we compute the ray parameter where the ray hits the line x =
xmin:

txmin =
xmin − xe

xd
.

We then make similar computations for txmax, tymin, and tymax. The ray hits the
box if and only if the intervals [txmin, txmax] and [tymin, tymax] overlap, i.e., their
intersection is non-empty. In pseudocode this algorithm is:

txmin = (xmin − xe)/xd

txmax = (xmax − xe)/xd

tymin = (ymin − ye)/xd

tymax = (ymax − ye)/xd

if (txmin > tymax) or (tymin > txmax) then
return false

else
return true

172 9. Ray Tracing

Figure 9.16. The ray will be inside the interval x ∈ [xmin, xmax] for some interval in its parameter
space t ∈ [txmin, txmax]. A similar interval exists for the y interval. The ray intersects the box if it is in both
the x interval and y interval at the same time, i.e., the intersection of the two one-dimensional intervals is
not empty.

The if statement may seem non-obvious. To see the logic of it, note that there is
no overlap if the first interval is either entirely to the right or entirely to the left of
the second interval.

The first thing we must address is the case when xd or yd is negative. If xd is
negative, then the ray will hit xmax before it hits xmin. Thus the code for computing
txmin and txmax expands to:

if (xd ≥ 0) then
txmin = (xmin − xe)/xd

txmax = (xmax − xe)/xd

else
txmin = (xmax − xe)/xd

txmax = (xmin − xe)/xd

A similar code expansion must be made for the y cases. A major concern is that
horizontal and vertical rays have a zero value for yd and xd, respectively. This
will cause divide by zero which may be a problem. However, before addressing
this directly, we check whether IEEE floating point computation handles these

9.9. Sub-Linear Ray-Object Intersection 173

cases gracefully for us. Recall from Section 1.6 the rules for divide by zero: for
any positive real number a,

+a/0 = +∞;

−a/0 = −∞.

Consider the case of a vertical ray where xd = 0 and yd > 0. We can then
calculate

txmin =
xmin − xe

0
;

txmax =
xmax − xe

0
.

There are three possibilities of interest:

1. xe ≤ xmin (no hit);

2. xmin < xe < xmax (hit);

3. xmax ≤ xe (no hit).

For the first case we have

txmin =
positive number

0
;

txmax =
positive number

0
.

This yields the interval (txmin, txmin) = (∞,∞). That interval will not overlap
with any interval, so there will be no hit, as desired. For the second case, we have

txmin =
negative number

0
;

txmax =
positive number

0
.

This yields the interval (txmin, txmin) = (−∞,∞) which will overlap with all
intervals and thus will yield a hit as desired. The third case results in the interval
(−∞,−∞) which yields no hit, as desired. Because these cases work as desired,
we need no special checks for them. As is often the case, IEEE floating point
conventions are our ally. However, there is still a problem with this approach.

� �

174 9. Ray Tracing

Consider the code segment:

if (xd ≥ 0) then
tmin = (xmin − xe)/xd

tmax = (xmax − xe)/xd

else
tmin = (xmax − xe)/xd

tmax = (xmin − xe)/xd

This code breaks down when xd = −0. This can be overcome by testing on the
reciprocal of xd (A. Williams, Barrus, Morley, & Shirley, 2005):

a = 1/xd

if (a ≥ 0) then
tmin = a(xmin − xe)
tmax = a(xmax − xe)

else
tmin = a(xmax − xe)
tmax = a(xmin − xe)

9.9.2 Hierarchical Bounding Boxes

The basic idea of hierarchical bounding boxes can be seen by the common tactic
of placing an axis-aligned 3D bounding box around all the objects as shown in
Figure 9.17. Rays that hit the bounding box will actually be more expensive to
compute than in a brute force search, because testing for intersection with the
box is not free. However, rays that miss the box are cheaper than the brute force
search. Such bounding boxes can be made hierarchical by partitioning the set of

Figure 9.17. A 2D ray e + t d
is tested against a 2D bounding
box.

Figure 9.18. The bounding
boxes can be nested by creat-
ing boxes around subsets of the
model.

objects in a box and placing a box around each partition as shown in Figure 9.18.
The data structure for the hierarchy shown in Figure 9.19 might be a tree with
the large bounding box at the root and the two smaller bounding boxes as left and
right subtrees. These would in turn each point to a list of three triangles. The
intersection of a ray with this particular hard-coded tree would be:

if (ray hits root box) then
if (ray hits left subtree box) then

check three triangles for intersection
if (ray intersects right subtree box) then

check other three triangles for intersection
if (an intersections returned from each subtree) then

return the closest of the two hits

�

9.9. Sub-Linear Ray-Object Intersection 175

else if (a intersection is returned from exactly one subtree) then
return that intersection

else
return false

else
return false

Some observations related to this algorithm are that there is no geometric ordering
between the two subtrees, and there is no reason a ray might not hit both subtrees.
Indeed, there is no reason that the two subtrees might not overlap.

A key point of such data hierarchies is that a box is guaranteed to bound all
objects that are below it in the hierarchy, but they are not guaranteed to contain
all objects that overlap it spatially, as shown in Figure 9.19. This makes this
geometric search somewhat more complicated than a traditional binary search on
strictly ordered one-dimensional data. The reader may note that several possible
optimizations present themselves. We defer optimizations until we have a full
hierarchical algorithm.

Figure 9.19. The grey
box is a tree node that points
to the three grey spheres, and
the thick black box points to
the three black spheres. Note
that not all spheres enclosed by
the box are guaranteed to be
pointed to by the corresponding
tree node.

If we restrict the tree to be binary and require that each node in the tree have a
bounding box, then this traversal code extends naturally. Further, assume that all
nodes are either leaves in the tree and contain a primitive, or that they contain one
or two subtrees.

The bvh-node class should be of type surface, so it should implement sur-
face::hit. The data it contains should be simple:

class bvh-node subclass of surface
virtual bool hit(ray e + td, real t0, real t1, hit-record rec)
virtual box bounding-box()
surface-pointer left
surface-pointer right
box bbox

The traversal code can then be called recursively in an object-oriented style:

bool bvh-node::hit(ray a + tb, real t0, real t1, hit-record rec)
if (bbox.hitbox(a + tb, t0, t1)) then

hit-record lrec, rrec
left-hit = (left �= NULL) and (left → hit(a + tb, t0, t1, lrec))
right-hit = (right �= NULL) and (right → hit(a + tb, t0, t1, rrec))
if (left-hit and right-hit) then

if (lrec.t < rrec.t) then
rec = lrec

176 9. Ray Tracing

else
rec = rrec

return true
else if (left-hit) then

rec = lrec
return true

else if (right-hit) then
rec = rrec
return true

else
return false

else
return false

Note that because left and right point to surfaces rather than bvh-nodes specifi-
cally, we can let the virtual functions take care of distinguishing between internal
and leaf nodes; the appropriate hit function will be called. Note, that if the tree
is built properly, we can eliminate the check for left being NULL. If we want to
eliminate the check for right being NULL, we can replace NULL right pointers
with a redundant pointer to left. This will end up checking left twice, but will
eliminate the check throughout the tree. Whether that is worth it will depend on
the details of tree construction.

There are many ways to build a tree for a bounding volume hierarchy. It is
convenient to make the tree binary, roughly balanced, and to have the boxes of
sibling subtrees not overlap too much. A heuristic to accomplish this is to sort
the surfaces along an axis before dividing them into two sublists. If the axes are
defined by an integer with x = 0, y = 1, and z = 2 we have:

bvh-node::bvh-node(object-array A, int AXIS)
N = A.length
if (N= 1) then

left = A[0]
right = NULL
bbox = bounding-box(A[0])

else if (N= 2) then
left-node = A[0]
right-node = A[1]
bbox = combine(bounding-box(A[0]), bounding-box(A[1]))

else
sort A by the object center along AXIS

9.9. Sub-Linear Ray-Object Intersection 177

left= new bvh-node(A[0..N/2 − 1], (AXIS +1) mod 3)
right = new bvh-node(A[N/2..N−1], (AXIS +1) mod 3)
bbox = combine(left-node → bbox, right-node → bbox)

The quality of the tree can be improved by carefully choosing AXIS each time.
One way to do this is to choose the axis such that the sum of the volumes of the
bounding boxes of the two subtrees is minimized. This change compared to ro-
tating through the axes will make little difference for scenes composed of isotopi-
cally distributed small objects, but it may help significantly in less well-behaved
scenes. This code can also be made more efficient by doing just a partition rather
than a full sort.

Another, and probably better, way to build the tree is to have the subtrees
contain about the same amount of space rather than the same number of objects.
To do this we partition the list based on space:

bvh-node::bvh-node(object-array A, int AXIS)
N = A.length
if (N = 1) then

left = A[0]
right = NULL
bbox = bounding-box(A[0])

else if (N = 2) then
left = A[0]
right = A[1]
bbox = combine(bounding-box(A[0]), bounding-box(A[1]))

else
find the midpoint m of the bounding box of A along AXIS
partition A into lists with lengths k and (N-k) surrounding m

left = new node(A[0..k], (AXIS +1) mod 3)
right = new node(A[k+1..N−1], (AXIS +1) mod 3)
bbox = combine(left-node → bbox, right-node → bbox)

Although this results in an unbalanced tree, it allows for easy traversal of empty
space and is cheaper to build because partitioning is cheaper than sorting.

9.9.3 Uniform Spatial Subdivision

Another strategy to reduce intersection tests is to divide space. This is funda-
mentally different from dividing objects as was done with hierarchical bounding
volumes:

178 9. Ray Tracing

Figure 9.20. In uniform spatial subdivision, the ray is tracked forward through cells until an object in
one of those cells is hit. In this example, only objects in the shaded cells are checked.

• In hierarchical bounding volumes, each object belongs to one of two sibling
nodes, whereas a point in space may be inside both sibling nodes.

• In spatial subdivision, each point in space belongs to exactly one node,
whereas objects may belong to many nodes.

The scene is partitioned into axis-aligned boxes. These boxes are all the same
size, although they are not necessarily cubes. The ray traverses these boxes as
shown in Figure 9.20. When an object is hit, the traversal ends.

Figure 9.21. Although the pattern of cell hits seems irregular (left), the hits on sets of parallel planes
are very even.

9.9. Sub-Linear Ray-Object Intersection 179

The grid itself should be a subclass of surface and should be implemented as
a 3D array of pointers to surface. For empty cells these pointers are NULL. For
cells with one object, the pointer points to that object. For cells with more than
one object, the pointer can point to a list, another grid, or another data structure,
such as a bounding volume hierarchy.

Figure 9.22. To decide
whether we advance right or
upwards, we keep track of the
intersections with the next ver-
tical and horizontal boundary of
the cell.

This traversal is done in an incremental fashion. The regularity comes from
the way that a ray hits each set of parallel planes, as shown in Figure 9.21. To
see how this traversal works, first consider the 2D case where the ray direction
has positive x and y components and starts outside the grid. Assume the grid is
bounded by points (xmin, ymin) and (xmax, ymax). The grid has nx by ny cells.

Our first order of business is to find the index (i, j) of the first cell hit by the
ray e + td. Then, we need to traverse the cells in an appropriate order. The key
parts to this algorithm are finding the initial cell (i, j) and deciding whether to
increment i or j (Figure 9.22). Note that when we check for an intersection with
objects in a cell, we restrict the range of t to be within the cell (Figure 9.23). Most
implementations make the 3D array of type “pointer to surface.” To improve the
locality of the traversal, the array can be tiled as discussed in Section 12.4.

9.9.4 Binary-Space Partitioning

Figure 9.23. Only hits
within the cell should be re-
ported. Otherwise the case
above would cause us to report
hitting object b rather than ob-
ject a.

We can also partition space in a hierarchical data structure such as a binary-space-
partioning tree (BSP tree). This is similar to the BSP tree used for a painter’s
algorithm in Chapter 7, but it usually uses axis-aligned cutting planes for easier
ray intersection. A node in this structure might contain a single cutting plane and
a left and right subtree. These subtrees would contain all objects on either side of
the cutting plane. Objects that pass through the plane would be in each subtree.
If we assume the cutting plane is parallel to the yz plane at x = D, then the node
class is:

class bsp-node subclass of surface
virtual bool hit(ray e + td, real t0, real t1, hit-record rec)
virtual box bounding-box()
surface-pointer left
surface-pointer right
real D

Figure 9.24. The
four cases of how a ray re-
lates to the BSP cutting plane
x = D.

We generalize this to y and z cutting planes later. The intersection code can then
be called recursively in an object-oriented style. The code considers the four
cases shown in Figure 9.24. For our purposes, the origin of these rays is a point
at parameter t0:

p = a + t0b.

180 9. Ray Tracing

The four cases are:

1. The ray only interacts with the left subtree, and we need not test it for
intersection with the cutting plane. It occurs for xp < D and xb < 0.

2. The ray is tested against the left subtree, and if there are no hits, it is then
tested against the right subtree. We need to find the ray parameter at x = D,
so we can make sure we only test for intersections within the subtree. This
case occurs for xp < D and xb > 0.

3. This case is analogous to case 1 and occurs for xp > D and xb > 0.

4. This case is analogous to case 2 and occurs for xp > D and xb < 0.

The resulting traversal code handling these cases in order is:

bool bsp-node::hit(ray a + tb, real t0, real t1, hit-record rec)
xp = xa + t0xb

if (xp < D) then
if (xb < 0) then

return (left �= NULL) and (left→hit(a + tb, t0, t1, rec))
t = (D − xa)/xb

if (t > t1) then
return (left �= NULL) and (left→hit(a + tb, t0, t1, rec))

if (left �= NULL) and (left→hit(a + tb, t0, t, rec)) then
return true

return (right �= NULL) and (right→hit(a + tb, t, t1, rec))
else

analogous code for cases 3 and 4

This is very clean code. However, to get it started, we need to hit some root object
that includes a bounding box so we can initialize the traversal, t0 and t1. An issue
we have to address is that the cutting plane may be along any axis. We can add
an interger index axis to the bsp-node class. If we allow an indexing operator
for points, this will result in some simple modifications to the code above, for
example,

xp = xa + t0xb

would become

up = a[axis] + t0b[axis]

which will result in some additional array indexing, but will not generate more
branches.

9.10. Constructive Solid Geometry 181

While the processing of a single bsp-node is faster than processing a bvh-node,
the fact that a single surface may exist in more than one subtree means there are
more nodes and, potentially, a higher memory use. How “well” the trees are built
determines which is faster. Building the tree is similar to building the BVH tree.
We can pick axes to split in a cycle, and we can split in half each time, or we can
try to be more sophisticated in how we divide.

9.10 Constructive Solid Geometry

Figure 9.25. The ba-
sic CSG operations on a 2D
circle and square.

One nice thing about ray tracing is that any geometric primitive whose intersection
with a 3D line can be computed can be seamlessly added to a ray tracer. It turns
out to also be straightforward to add constructive solid geometry (CSG) to a ray
tracer (Roth, 1982). The basic idea of CSG is to use set operations to combine
solid shapes. These basic operations are shown in Figure 9.25. The operations
can be viewed as set operations. For example, we can consider C the set of all
points in the circle, and S the set of all points in the square. The intersection
operation C ∩ S is the set of all points that are both members of C and S. The
other operations are analogous.

Although one can do CSG directly on the model, if all that is desired is an
image, we do not need to explicitly change the model. Instead, we perform the set
operations directly on the rays as they interact with a model. To make this natural,
we find all the intersections of a ray with a model rather than just the closest. For
example, a ray a + tb might hit a sphere at t = 1 and t = 2. In the context
of CSG, we think of this as the ray being inside the sphere for t ∈ [1, 2]. We
can compute these “inside intervals” for all of the surfaces and do set operations
on those intervals (recall Section 2.1.2). This is illustrated in Figure 9.26, where
the hit intervals are processed to indicate that there are two intervals inside the
difference object. The first hit for t > 0 is what the ray actually intersects.

In practice, the CSG intersection routine must maintain a list of intervals.
When the first hitpoint is determined, the material property and surface normal is
that associated with the hitpoint. In addition, you must pay attention to precision
issues because there is nothing to prevent the user from taking two objects that
abut and taking an intersection. This can be made robust by eliminating any
interval whose thickness is below a certain tolerance.

Figure 9.26. Intervals are
processed to indicate how the
ray hits the composite object.9.11 Distribution Ray Tracing

For some applications, ray-traced images are just too “clean.” This effect can be
mitigated using distribution ray tracing (Cook et al., 1984) . The conventionally

182 9. Ray Tracing

ray-traced images look clean, because everything is crisp; the shadows are per-
fectly sharp, the reflections have no fuzziness, and everything is in perfect focus.
Sometimes we would like to have the shadows be soft (as they are in real life), the
reflections be fuzzy as with brushed metal, and the image have variable degrees of
focus as in a photograph with a large aperture. While accomplishing these things
from first principles is somewhat involved (as is developed in Chapter ??), we
can get most of the visual impact with some fairly simple changes to the basic ray
tracing algorithm. In addition, the framework gives us a relatively simple way to
antialias (recall Section 3.7) the image.

9.11.1 Antialiasing

Recall that a simple way to antialias an image is to compute the average color
for the area of the pixel rather than the color at the center point. In ray tracing,
our computational primitive is to compute the color at a point on the screen. If
we average many of these points across the pixel, we are approximating the true
average. If the screen coordinates bounding the pixel are [i, i + 1] × [j, j + 1],
then we can replace the loop:

Figure 9.27. Sixteen regular
samples for a single pixel. for each pixel (i, j) do

cij = ray-color(i + 0.5, j + 0.5)

with code that samples on a regular n × n grid of samples within each pixel:

for each pixel (i, j) do
c = 0
for p = 0 to n − 1 do

for q = 0 to n − 1 do
c = c + ray-color(i + (p + 0.5)/n, j + (q + 0.5)/n)

cij = c/n2

This is usually called regular sampling. The 16 sample locations in a pixel for
n = 4 are shown in Figure 9.27. Note that this produces the same answer as
rendering a traditional ray-traced image with one sample per pixel at nxn by nyn

resolution and then averaging blocks of n by n pixels to get a nx by ny image.
Figure 9.28. Sixteen ran-
dom samples for a single pixel.

One potential problem with taking samples in a regular pattern within a pixel
is that regular artifacts such as Moire patterns can arise. These artifacts can be
turned into noise by taking samples in a random pattern within each pixel as
shown in Figure 9.28. This is usually called random sampling and involves just
a small change to the code:

9.11. Distribution Ray Tracing 183

for each pixel (i, j) do
c = 0
for p = 1 to n2 do

c = c + ray-color(i + ξ, j + ξ)
cij = c/n2

Here ξ is a call that returns a uniform random number in the range [0, 1). Unfor-
tunately, the noise can be quite objectionable unless many samples are taken. A
compromise is to make a hybrid strategy that randomly perturbs a regular grid:

Figure 9.29. Sixteen strati-
fied (jittered) samples for a sin-
gle pixel shown with and with-
out the bins highlighted. There
is exactly one random sample
taken within each bin.

for each pixel (i, j) do
c = 0
for p = 0 to n − 1 do

for q = 0 to n − 1 do
c = c + ray-color(i + (p + ξ)/n, j + (q + ξ)/n)

cij = c/n2

That method is usually called jittering or stratified sampling (Figure 9.29).

9.11.2 Soft Shadows

The reason shadows are hard to handle in standard ray tracing is that lights are
infinitesimal points or directions and are thus either visible or invisible. In real
life, lights have non-zero area and can thus be partially visible. This idea is shown
in 2D in Figure 9.30. The region where the light is entirely invisible is called
the umbra. The partially visible region is called the penumbra. There is not a
commonly used term for the region not in shadow, but it is sometimes called the
anti-umbra.

The key to implementing soft shadows is to somehow account for the light
being an area rather than a point. An easy way to do this is to approximate the
light with a distributed set of N point lights each with one N th of the intensity
of the base light. This concept is illustrated at the left of Figure 9.31 where nine

Figure 9.30. A soft shadow
has a gradual transition from
the unshadowed to shadowed
region. The transition zone is
the “penumbra” denoted by p in
the figure.

lights are used. You can do this in a standard ray tracer, and it is a common trick
to get soft shadows in an off-the-shelf renderer. There are two potential problems
with this technique. First, typically dozens of point lights are needed to achieve
visually smooth results, which slows down the program a great deal. The second
problem is that the shadows have sharp transitions inside the penumbra.

Distribution ray tracing introduces a small change in the shadowing code.
Instead of representing the area light at a discrete number of point sources, we
represent it as an infinite number and choose one at random for each viewing ray.

184 9. Ray Tracing

Figure 9.31. Left: an area light can be approximated by some number of point lights; four of the nine
points are visible to p so it is in the penumbra. Right: a random point on the light is chosen for the shadow
ray, and it has some chance of hitting the light or not.

This amounts to choosing a random point on the light for any surface point being
lit as is shown at the right of Figure 9.31.

If the light is a parallelogram specified by a corner point c and two edge
vectors a and b (Figure 9.32), then choosing a random point r is straightforward:

r = c + ξ1a + ξ2b,

where ξ1 and ξ2 are uniform random numbers in the range [0, 1).
We then send a shadow ray to this point as shown at the right in Figure 9.31.

Note that the direction of this ray is not unit length, which may require some
modification to your basic ray tracer depending upon its assumptions.

Figure 9.32. The geometry
of a parallelogram light speci-
fied by a corner point and two
edge vectors.

We would really like to jitter points on the light. However, it can be dangerous
to implement this without some thought. We would not want to always have the
ray in the upper left-hand corner of the pixel generate a shadow ray to the upper
left-hand corner of the light. Instead we would like to scramble the samples, such
that the pixel samples and the light samples are each themselves jittered, but so
that there is no correlation between pixel samples and light samples. A good way
to accomplish this is to generate two distinct sets of n2 jittered samples and pass
samples into the light source routine:

for each pixel (i, j) do
c = 0
generate N = n2 jittered 2D points and store in array r[]
generate N = n2 jittered 2D points and store in array s[]
shuffle the points in array s[]
for p = 0 to N − 1 do

c = c + ray-color(i + r[p].x(), j + r[p].y(), s[p])
cij = c/N

9.11. Distribution Ray Tracing 185

This shuffle routine eliminates any coherence between arrays r and s. The shadow
routine will just use the 2D random point stored in s[p] rather than calling the
random number generator. A shuffle routine for an array indexed from 0 to N −1
is:

for i = N − 1 downto 1 do
choose random integer j between 0 and i inclusive
swap array elements i and j

9.11.3 Depth of Field

The soft focus effects seen in most photos can be simulated by collecting light at
a non-zero size “lens” rather than at a point. This is called depth of field. The
lens collects light from a cone of directions that has its apex at a distance where
everything is in focus (Figure 9.33). We can place the “window” we are sampling
on the plane where everything is in focus (rather than at the z = n plane as we did
previously), and the lens at the eye. The distance to the plane where everything is
in focus we call the focus plane, and the distance to it is set by the user, just as the
distance to the focus plane in a real camera is set by the user or range finder.

Figure 9.33. The lens
averages over a cone of
directions that hit the pixel
location being sampled.

Figure 9.34. An example of depth of field. The caustic in the shadow of the wine glass is computed
using particle tracing (Chapter ??). (See also Plate PLATE.)

186 9. Ray Tracing

To be most faithful to a real camera, we should make the lens a disk. However,
we will get very similar effects with a square lens (Figure 9.35). So we choose the
side-length of the lens and take random samples on it. The origin of the view rays
will be these perturbed positions rather than the eye position. Again, a shuffling
routine is used to prevent correlation with the pixel sample positions. An example
using 25 samples per pixel and a large disk lens is shown in Figure 9.34.

Figure 9.35. To cre-
ate depth-of-field effects, the
eye is randomly selected from a
square region. 9.11.4 Glossy Reflection

Some surfaces, such as brushed metal, are somewhere between an ideal mirror
and a diffuse surface. Some discernible image is visible in the reflection but it
is blurred. We can simulate this by randomly perturbing ideal specular reflection
rays as shown in Figure 9.36.

Only two details need to be worked out: how to choose the vector r′, and what
to do when the resulting perturbed ray is below the surface from which the ray is
reflected. The latter detail is usually settled by returning a zero color when the
ray is below the surface.

Figure 9.36. The reflec-
tion ray is perturbed to a ran-
dom vector r ’.

To choose r′, we again sample a random square. This square is perpendicular
to r and has width a which controls the degree of blur. We can set up the square’s
orientation by creating an orthonormal basis with w = r using the techniques in
Section 2.4.6. Then, we create a random point in the 2D square with side length
a centered at the origin. If we have 2D sample points (ξ, ξ′) ∈ [0, 1]2, then the
analogous point on the desired square is

u = −a

2
+ ξa,

v = −a

2
+ ξ′a.

Because the square over which we will perturb is parallel to both the u and v
vectors, the ray r′ is just

r′ = r + uu + vv.

Note that r′ is not necessarily a unit vector and should be normalized if your code
requires that for ray directions.

9.11.5 Motion Blur

We can add a blurred appearance to objects as shown in Figure 9.37. This is
called motion blur and is the result of the image being formed over a non-zero

9.11. Distribution Ray Tracing 187

Figure 9.37. The bottom right sphere is in motion and a blurred appearance results. Image courtesy
Chad Barb.

span of time. In a real camera, the aperture is open for some time interval during
which objects move. We can simulate the open aperture by setting a time variable
ranging from T0 to T1. For each viewing ray we choose a random time,

T = T0 + ξ(T1 − T0).

We may also need to create some objects to move with time. For example, we
might have a moving sphere whose center travels from c0 to c1 during the interval.
Given T , we could compute the actual center and do a ray–intersection with that
sphere. Because each ray is sent at a different time, each will encounter the sphere
at a different position, and the final appearance will be blurred. Note that the
bounding box for the moving sphere should bound its entire path so an efficiency
structure can be built for the whole time interval (Glassner, 1988).

188 9. Ray Tracing

Frequently Asked Questions

• Why is there no perspective matrix in ray tracing?

The perspective matrix in a z-buffer exists so that we can turn the perspective pro-
jection into a parallel projection. This is not needed in ray tracing, because it is
easy to do the perspective projection implicitly by fanning the rays out from the
eye.

• What is the best ray-intersection efficiency structure?

The most popular structures are binary space partitioning trees (BSP trees), uni-
form subdivision grids, and bounding volume hierarchies. There is no clear-cut
answer for which is best, but all are much, much better than brute-force search
in practice. If I were to implement only one, it would be the bounding volume
hierarchy because of its simplicity and robustness.

• Why do people use bounding boxes rather than spheres or ellipsoids?

Sometimes spheres or ellipsoids are better. However, many models have polyg-
onal elements that are tightly bounded by boxes, but they would be difficult to
tightly bind with an ellipsoid.

• Can ray tracing be made interactive?

For sufficiently small models and images, any modern PC is sufficiently pow-
erful for ray tracing to be interactive. In practice, multiple CPUs with a shared
frame buffer are required for a full-screen implementation. Computer power is in-
creasing much faster than screen resolution, and it is just a matter of time before
conventional PCs can ray trace complex scenes at screen resolution.

• Is ray tracing useful in a hardware graphics program?

Ray tracing is frequently used for picking. When the user clicks the mouse on a
pixel in a 3D graphics program, the program needs to determine which object is
visible within that pixel. Ray tracing is an ideal way to determine that.

