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Motivation
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Geometric Constraint Problem
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A geometric constraint problem (GCP) consists

of

• A set of geometric elements {A, · · · , LAB, · · · }.

• A set of values {d, α, h}

• A set of dimensional variables {x, y}.

• A set of external variables {v}.

• A set of valuated and symbolic constraints.

• A set of equations.
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Representation:
Geometric Constraint Graph

The geometric constraints of a GCP can be

represented by a constraint graph G = (E, V ).

C

BA

LBC

LAB

D

LAC

d

α

h

x

y

The vertices in V are two-dimensional geo-

metric elements with two degrees of freedom.

The edges in E are constraints that reduce

by one the degrees of freedom.
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Representation:
First-order Logic
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A geometric constraint problem can be rep-

resented by a formula in first-order logic.

ϕ(A,B,C,D,LAB, LAC, LBC , x, y, v)

≡ d(A,B) = d ∧ on(A,LAB) ∧ on(B,LAB) ∧

on(A,LAC) ∧ on(C,LAC) ∧ on(D,LAC) ∧

on(B,LBC) ∧ on(C,LBC) ∧

h(C,LAB) = h ∧ a(LAB, LBC) = α ∧

d(A,C) = x ∧ d(C,D) = y ∧

y = x · v ∧ v = 0.5
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Geometric Constraint Solving

Geometric constraint solving (GCS) consists

in proving the truth of the formula

∃A∃B ∃C ∃D ∃LAB ∃LAC ∃LBC ∃x∃y ∃v

ϕ(A,B,C,D,LAB, LAC, LBC , x, y, v)

by finding the position of the geometric el-

ements and the values of tags and external

variables that satisfy the constraints.
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Over-constrained Geometric
Constraint Problem

Theorem 1 (Laman, 1970)

Let G = (P,D) a geometric constraint graph

where the vertices in P are points in the two

dimensional Euclidean space and the edges

D ⊆ P × P are distance constraints. G is

generically well constrained if and only if for

all G′ = (P ′, D′), subgraph of G induced by

P ′ ⊆ P ,

1.
∣

∣D′
∣

∣ ≤ 2
∣

∣P ′
∣

∣ − 3 , and

2. |D| = 2 |P | − 3.
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Structurally over-constrained
Geometric Constraint Problem

Definition 1 A geometric constraint graph

is structurally over-constrained if and only if

exists an induced subgraph with n vertices

and m edges such that m > 2 · n− 3.

Definition 2 A geometric constraint graph

is structurally well-constrained if and only

if it is not structurally over-constrained and

|E| = 2 · |V | − 3.

Definition 3 A geometric constraint graph

is structurally under-constrained if and only

if it is not structurally over-constrained and

|E| ≤ 2 · |V | − 3.
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Approaches to Geometric
Constraint Solving

• Solving systems of equations

– Numerical Constraint Solvers

– Symbolic Constraint Solvers

– Propagation Methods

– Structural analysis

• Constructive Constraint Solvers

– Graph based

– Rule based

• Degrees of freedom analysis

• Geometric theorem proving
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Constructive technique:
Ruler-and-compass

constructibility

A point P is constructible if there exists a

finite sequence P0, P1, . . . , Pn = P of points

in the plane with the following property. Let

Sj = {P0, P1, . . . , Pj}, for 1 ≤ j ≤ n.

For each 2 ≤ j ≤ n is either

1. the intersection of two distinct straight

lines, each joining two points of Sj−1, or

2. a point of intersection of a straight line

joining two points of Sj−1 and a circle

with centre a point of Sj−1 and radius

the distance between two points of Sj−1,

or

3. a point of intersection of two distinct cir-

cles, each with centre a point of Sj−1 and

radius the distance between two points of

Sj−1.
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Constructive technique:
Constraints sets

• A CA set is a pair of oriented segments

which are mutually constrained in angle.

p3 p1 p2

p4

• A CD set is a set of points with mutually

constrained distances.
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• A CH set is a point and a segment con-
strained by the perpendicular distance from

the point to the segment.
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Constructive technique:
Geometric locus
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Constructive technique:
Set of rules
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Constructive technique:
Analysis and Construction phases

d(p3, p1) = d3

ϕ(p1, p2, p3) ≡
d(p1, p2) = d1∧
d(p2, p3) = d2∧

p1 = (0,0)∧

p3 = inter(circle(p1, d3), circle(p2, d2))
p2 = (d1,0)∧

ψ(p1, p2, p3) ≡

ψυ(p1, p2, p3) ≡
p1 = (0,0)∧
p2 = (200, 0)∧
p3 = (140, 169.706)

υ ≡
d1 = 200∧
d2 = 180∧
d3 = 220

p2
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p1 d1

Geometric Constraint Problem

Constructive Formula

Values

Valuated Formula

analysis
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Constructive technique:
Structure of the Analysis phase

translation
C2(cd1, p1, p2, d1)
C2(cd2, p2, p3, d2)
C2(cd3, p1, p3, d3)

p1 = (0,0)∧

p3 = inter(circle(p1, d3), circle(p2, d2))
p2 = (d1,0)∧

ψ(p1, p2, p3) ≡

analysis’ DDD(cd4, p1, p2, p3, cd1, cd2, cd3)

Ef ≡ cd4 = {p1, p2, p3}

d(p3, p1) = d3

d(p2, p3) = d2∧
d(p1, p2) = d1∧

ϕ(p1, p2, p3) ≡

E0 ≡

cd2 = {p2, p3}∧
cd3 = {p1, p3}

cd1 = {p1, p2}∧

generation
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Constructive technique:
Correctness (1)

• Let R be a set of tuples (D,X) where

• D is a set of CD sets, and

• X is a set of CA sets and CH sets.

• Let −→ρ=−→DDD ∪ −→DDX ∪ −→DXX

be a reduction relation.

• We define the abstract reduction system

R = 〈R,−→ρ〉.

• We proof termination and confluence that

implies canonicity and unique normal form

property.
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Constructive technique:
Correctness (2)
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Constructive technique:
Reduction rules (1)

(D,X) −→DDD ((D − {d1, d2, d3}) ∪ {d1 ∪ d2 ∪ d3} , X)

if
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p1 6= p2 6= p3
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Constructive technique:
Reduction rules (2)

(D,X) −→DDX ((D − {d1, d2}) ∪ {d1 ∪ d2 ∪ punts(x1)} , X − {x1})

if
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p 6= p1
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Constructive technique:
Reduction rules (3)

(D,X) −→DXX ((D − {d1}) ∪ {d1 ∪ punts(x1) ∪ punts(x2)} , X − {x1, x2})

if
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d1 ∈ D∧
{x1, x2} ⊆ X∧
punts(x1) − d1 = {p}∧
punts(x2) − d1 = {p}
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Hybrid technique:
Introduction

Goal Solve symbolic constraints keeping the

two phases of the constructive technique

for valuated constraints.

Idea Federate a constructive solver and an

equational solver.

Required A technique of analysis of systems

of equations.
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Hybrid technique:
Analysis of systems of equations

1. Represent the structure of the systems of

equations by a bipartite graph (bigraph).

x = 5 u = w − v3t = uyt = u2y = zx = yx = 2y

v wutzx y

2. Compute the Dulmage-Mendelsohn de-

composition of the bigraph. V0 is the

over-determined part, V∞ is the under-

determined part. V1, · · · , Vn are the con-

sistent part.

x = 5 u = w − v3t = uyt = u2y = zx = yx = 2y

v wutzx y

V1

V2 V∞

V0
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Hybrid technique:
Motivation (1)

A geometric constraint problem that can not

be solved without considering geometric vari-

ables.
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ϕ(a, b, c, d, g, l,m, n, r)

≡ d(a, b) = d1 ∧ d(b, c) = d2 ∧

on(a, l) ∧ on(b, l) ∧ on(b, n) ∧

on(c, n) ∧ on(c,m) ∧ on(d,m) ∧

a(l, n) = α1 ∧ a(l,m) = α2 ∧

d(g, c) = r ∧ h(g, l) = r ∧

h(g,m) = r ∧ d(g, d) = r
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Hybrid technique:
Motivation (2)

Final state of the geometric analyzer.
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d(g, a) = r h(g, l) = r h(g,m) = r d(g, d) = r
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Hybrid technique:
Technique (1)

1. Represent geometric variables in the bi-

graph (B).

d(g, a) = r

gx

h(g, l) = r h(g,m) = r d(g, d) = r

dxdxrgy lx rayax ly nx ny

2. Compute R(B,C1), the restriction of bi-

graph B by CD set C1. The equations

are analyzed with respect to a coordinate

system (CD set).

gx

d(g, a) = r h(g, l) = r h(g,m) = r d(g, d) = r

gy r dx dx

V1 V∞
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Hybrid technique:
Technique (2)

3. For each solved dimensional variable, add

a new constraint set to the state of the

geometric analyzer.

4. For each pair of solved geometric vari-

ables (vx, vy), add the geometric element

v to the projection CD set C1.

5. Remove solved variables and equations

from the bigraph B.
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Hybrid technique:
Correctness (1)

• Let S be a set of tuples (D,X,B) where

• D is a set of CD sets,

• X is a set of CA sets and CH sets, and

• B is a bigraf representing symbolic geo-
metric constraints and equations.

• Let −→ρ′ be the constructive reduction

relation.

• Let −→κ be the equational analysis re-

duction relation.

• We define the abstract reduction system

S = 〈S,−→ρ′ ∪ −→κ〉.

• We proof termination and confluence

that implies canonicity and unique nor-

mal form property.
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Conclusions

• A correct ruler-and-compass constructive

method.

• A clean phase structure.

• A correct hybrid method combining a

constructive method and an equation

analysis method.

• A prototype implementation.
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Future work

• Study the domain of constructive meth-

ods.

• Extending the domain of our constructive

method.

• Selection of the solution.

• Determine the range of values of a con-

straint.
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