
An Integer Linear Programming Representation for
DataCenter Power-Aware Management

Josep Ll. Berral, Ricard Gavaldà, Jordi Torres
Universitat Politècnica de Catalunya and Barcelona Supercomputing Center

berral@ac.upc.edu, gavalda@lsi.upc.edu, torres@ac.upc.edu

November 12, 2010

Abstract

Nowadays energy-related costs have become one of the major economical
factors in IT data-centers, and companies and the research community are cur-
rently working in new efficient power-aware resource management strategies,
also known as “Green IT”. But despite power awareness, the classical factors
like economical benefit and quality of service are still essentials for the correct
performing of the Cloud businesses. So efficiency must meet power saving,
economic benefit and client satisfaction, points often all-three incompatible.

This work exposes how to represent a grid data-center based scheduling
problem, taking the advantages of the virtualization and consolidation tech-
niques, as a linear integer programming problem including all three mentioned
factors. Although being integer linear programming (ILP) a computationally
hard problem, specifying correctly its constraints and optimization function
can contribute to find integer optimal solutions in relative short time. So ILP
solutions can help designers and system managers not only to apply them
to schedulers but also to create new heuristics and holistic functions that
approximate well to the optimal solutions in a quicker way.

The proposed model is evaluated comparing the optimization results in
an only power-aware scheduling, where the system minimizes the power con-
sumption via consolidation; a revenue-based scheduling, where the system
maximizes the benefit of running machines against the power consumption;
and a quality of service oriented scheduling, where some relaxation towards
QoS is tolerated in exchange of avoiding expensive operations. Results demon-
strate that ILP is useful in order to find good schedules and the lower bounds
for the scheduling optimization, so new heuristics and policies can be obtained
by weighting the involved elements (revenue, power, quality of service) and
observing the system behavior.

1 Introduction

Nowadays the concept of the Cloud has become a hot topic in the externalization
of information and IT resources for people and enterprises. The introduction of

1

new IT infrastructures and kinds of services into the business world, the Internet
population has grown enough to make the need for computing resources an impor-
tant matter to be handled. The possibility of offering “everything” as a service
(platform-as-a-service, infrastructure-as-a-service, services-as-a-service) has allowed
that enterprises that had all their IT in private owned data-centers to look for outside
hosting and computing companies to trust their data or IT needs. As a consequence,
the Cloud and its opportunities have brought lots of computing resources companies
to start a data-center race offering computing and storage resources at low prices.

These new Cloud data-centers respond to the demands of the people around the
world using them, having single web applications easily used by millions of persons,
and data to be available from everywhere. I.e. services offered by Google and
Youtube must be replicated around the globe, or just be efficient enough to move
data, jobs or applications among the data-center farms spread along the planet,
in order to serve their services with a desired Quality of Service (QoS). So given
the amount of applications running now and in the next future on the Cloud, the
task of administrating its resources and services in an efficient way becomes a hard
optimization problem.

For this optimization there are several factors to keep in mind. Economic factors
are basics for an enterprise, as obtaining high revenues are the principal goal. Further
bringing an adequate service to the clients trying to grant the maximum client
satisfaction is another goal to meet, that often enters in conflict with obtaining the
maximum revenue as requires some cost. Finally one of the principal costs and
almost important element to keep in mind is the power consumption. Having a
powerful data-center in order to satisfy the demand is not enough. Energy-related
costs have become a major economical factor for IT infrastructures and data-centers,
as this energetic cost is reflected in the electric consumption, growing not necessarily
linear with the capacity of that data-centers (powering machines, powering coolers,
energy transport, energy production), also with the natural environment [?] and
the social and government pressures. Enterprises dedicated to data-center services
and also the research community is today being challenged to find efficient ways to
manage all this growing IT systems keeping in mind not only the “traditional” goals
but also power consumption.

Finding the optimal solutions, or the best solution given an adequate computing
time, passes through an intelligent management. Modeling the Cloud and each
involved element, the architects and designers can obtain new ways to understand
the system and find algorithms and methods able to manage the Cloud in a more
accurate way. Also this management is tending to be automated, as having system
operators keeping an eye over the system constantly and reacting in advance to any
incident is often not possible. Autonomic Computing is the research field responsible
of automating the management of systems by observing them, collecting knowledge,
and make decisions towards system goals, letting the systems manage themselves
(self-healing, self-protection, self-optimization and self-configuring).

This work presents a data-center modeling focused on the three main goals:
economic revenue, power saving and quality of service. This model represents a
data-center as a set of elements (machines, processors and jobs) to be scheduled in
an optimal way, setting for each element a set of constraints to be accomplished,

2

representing the capabilities of each one and its requirements.
Thanks to technologies like virtualization, data-centers are able to reunite several

jobs in physical machines isolating them, sharing resources, and the most important,
being able to migrate running the jobs from a machine to another. The proposed
scheduling model uses the advantages of this technology in order to dynamically
allocate jobs in the optimal places while consolidating. Consolidation is a power-
saving method consisting in reducing the number of wasted resources by allocating
the most number of jobs in the lowest number of machines as possible without
compromising things like QoS or performance. A consequence of consolidating is
take the most advantage as possible of the physical machines resources, and being
able to shut down all those emptied resources. One of the goals of the model is to
shut down as many machines as possible by consolidating its jobs in order to avoid
powering idle machines.

The proposed methodology models a grid based data-center as a set of resources
and as a set of jobs, each one with its energetic or resource requirements, involving
a consumption cost and a rewarded execution. The problem to be solved at each
scheduling round is to decide what resources are assigned to each job, while max-
imizing a function result of the benefit obtained by the jobs revenues, the power
costs and how much loss of QoS can be tolerated in order to save energy. For this
reason, this approach represents the model as an Integer Linear program (as some
of the elements cannot be split), solving each scheduling using well known linear
programming techniques and integer optimizers.

It is well known that solving an integer linear program can become a hard com-
putational problem, also the integer optimization is often fitted within a time func-
tion, but having good constraints and a well defined problem can help to find, in a
short time, solutions very close to the lower bounds of the problem. This lets the
middleware specialists to understand better the system and be able to create good
heuristics close to the optimal/sub-optimal solutions found with ILP solvers. In
fact, this work will be really useful in order to obtain data and information towards
analyze the behavior of grid data-centers and learn new management rules.

2 Related Work

In this section some related work on the key techniques used in this approach are
explained. This key techniques are consolidation, virtualization, and turning on and
off machines,

2.1 Virtualization and Consolidation

Virtualization is one of the key technologies in the Cloud, which has enabled cost
reduction and easier resource management in service providers. As virtualization
allows to run several processes, jobs, guest OS, and also virtual machines in one or
several physical machines or platforms, it allows the consolidation of applications,
multiplexing them onto physical resources, and supporting isolation from other ap-
plications sharing the same physical resource. Tasks can be run everywhere and be

3

migrated without many handicaps on the base systems, but also virtual machines
can perform optimizations over the host OS and physical machine.

This virtualization technology has become a hot research topic for maximizing
benefits, but it has added another layer of abstraction to the management systems,
preventing or making more complex the conventional energy management for per-
forming efficiently or correctly in virtual environments. During the last past years,
works like the ones presented by W. Vogels [17] studied the consolidation advantages
using virtualization while other works, like the ones from R. Nathuji et al.[14] have
widely explored its advantages from a power efficiency point of view.

Recent works by V. Petrucci et al. [15] proposed a dynamic configuration ap-
proach for power optimization in virtualized server clusters and outlines an algorithm
to dynamically manage it. All these techniques, applying consolidation policies, are
mainly focused on a power efficiency strategy taking into account the cost of turning
on and off resources, as it is explained in next subsection. Also VM migration and
VM placement optimization is aimed in the works of L. Liu et al. [13], in order to
improve the VM placement and consolidate in a better way. Based on these works,
I. Goiri et al. introduces the SLA-factor into the self-managing virtualized resource
policies [7, 8]. The SLA-driven policies look for facilitating resource management in
service providers, allowing the cost reduction and at the same time the SLA agreed
QoS fulfillment.

2.2 Turn on-off machines

Another key technique, related with virtualization and consolidation in to determine
when to turn on and off physical machines. Works like the presented by I. Goiri,
O.Fito et al. [8, 5] show that decrease the number of on-line machines obviously
assure a decrease of consumed power, but also the system is often unable to bring
service given an increase of load, so a compromise between on-line machines and
energy saving must be found. In their works this decision is driven by means of two
thresholds: the minimum Working nodes threshold λmin, which determines when the
provider can start to turn off nodes, and the maximum Working nodes threshold
λmax, which determines when the provider must turn on new nodes. After modeling
specific loads and machine consumptions, using different kinds of scheduling and
consolidation techniques, the influence of the turning on/off thresholds by showing
the SLA and the power consumption can be evaluated. An adequate thresholds can
be obtained (this time empirically) in order to decide how many physical machines
are needed on-line, and shut down the rest of them.

Based on the same works, J.Ll. Berral et al. [3] proposes a framework that
provides an intelligent consolidation methodology using different techniques like the
turning on/off machines, power-aware consolidation algorithms, and machine learn-
ing techniques to deal with uncertain information while maximizing performance.
Using the information from system behaviors, the machine learning approach uses
a learned model in order to predict power consumption levels, CPU loads, and SLA
timings, and improve scheduling decisions. The experiments realized using Grid
workloads and a Cloud environment demonstrate how consolidation aware policies
give a better energy efficiency in front of non-consolidating ones, an also the machine

4

learning model responses much better with respect to power consumption when the
information obtained from users and tasks is not uniformly accurate.

This technique is also applied in an approach by I. Kamitsos et al. [12], which sets
unused hosts in a low consumption state in order to save energy. In this technique
a Bellman’s function, based in dynamic programming and recursive methodology,
is used to decide when to set into sleeping status those hosts that are not needed
maintaining the other submitted jobs into the on-line hosts.

But turning on and off is not limited to machines, also components and resources
can be started up and shut down. Policies can decide whether set on or off the full
machine or a specific component, and works like the exposed by Y. Tan et al. [16]
show a framework for controlling the system power manager using reinforcement
learning algorithms. In this case, the learner uses a Q-learning algorithm, a popular
reinforcement learning algorithm originally designed to find policies in Markovian
Decision Processes.

3 Integer linear programming approach

A grid based data-center can be modeled as a set of resources, each one with a
consumption cost, and a set of jobs to be executed with a set of resource require-
ments and a set of benefits and execution penalties. The problem to solve at each
scheduling round is to decide what resources are assigned to each job, depending
always in its requirements and conditions established by the agreement between the
provider and the client submitting the job (Service Level Agreement or SLA). The
best solution will be that one that maximizes or minimizes a target function, usually
a function describing the benefit of the solution.

In the proposed situation, the three elements to maximize or minimize are the
power consumption, the economic benefit and the client satisfaction, so a good
solution is that one assigning resources to jobs (or jobs to resources) saving the
most electrical power while granting a good quality of service and having a positive
benefit value by serving that clients. So the problem can be represented by a function
to maximize the optimal balance between the three elements, and a set of conditions
and rules in order to set jobs and resources without overloading the resources and
granting viable and real solutions.

At this time we consider that a job can not be split between two or more hosts.
When scheduling a job into a host, the job remains completely in that host. this
makes the problem to turn into a Integer problem, so the elements conforming the
solution must remain integers and a linear real programming solution can not be
applied here as a valid solution.

3.1 Scheduling Approach

The solution for the problem defined here is a scheduling integer binary matrix
Hosts×Jobs, where each position [h, j] indicates whether the job j is or not in host
h. A valid solution must accomplish the condition that a job must be run entirely
in a unique host, so it can not be split in different hosts at this time.

5

Each job needs determined resources to run properly at each moment, like CPU
quota, memory space and I/O access. At this time, as an example and case of
study we focus on CPU resources, understanding that memory and I/O can also
be represented following the same model and expanding it. With this purpose, the
system must be able to observe the CPU consumption of each task, and also the
available CPU for each host. A solution looking for assuring the jobs requirements
must allocate jobs in hosts in a way that each job has its CPU quota, and the host
is able to give that required CPU. So the sum of the jobs CPU demands in a given
host must not surpass the CPU capabilities.

These conditions are the basic constraints in the problem solving process. So a
consistent solution consists in a schedule where jobs are in one host only, the load
of a host does not surpass the capabilities of it:

Variables: schedule[Hosts, Jobs], as Integer Binary ; representing the Schedule

Parameters: cpus(h), as CPUs existing in host h

cons(j), as the CPU consumption of job j

Constraints: Unique{j ∈ Jobs} :=
∑

h∈Hosts

schedule[h, j] = 1

Capacity{h ∈ Hosts} :=
∑

j∈Jobs

schedule[h, j] · cons(j) ≤ cpus(h)

Note: Consider that a job CPU consumption can be a positive real value instead
of a positive integer value. When a job enters in CPU keeps the CPU for itself during
its time quantum, but as jobs tend to block themselves waiting for I/O or resting
in IDLE/sleeping/nice status, given a determined amount of time the expectation
of CPU consumption can differ from rounded values.

3.2 Minimizing the power cost

The main goal of this article is to schedule properly data-centers while minimizing
the power consumption. At this first stage, the search problem focuses on reduc-
ing the number of CPUs used to run the data-center jobs by consolidating them.
The idea of consolidation consists in running the commended jobs using the least
resources as possible, and in our case it means running as more jobs as possible in
as less hosts as possible. As shown in our previous work [8], given a host the power
curve grows in a logarithmically alike way, understanding that two machines with
many processors running only one each of them consumes more power that only one
of those machines running two processors, keeping the second one in a low-power
state or just shut down.

In order to model the CPU power consumption of a given host, the CPUs of
it can be considered as On-Line or Off-Line depending on the required load. New
technologies and architectures not only allow to maintain multi-processor in IDLE
states but also shut down processors and components on demand. I.e. a load of
2.50 CPU should make a host to run 3 CPUs, leaving a 0.5 CPU in IDLE state
(consuming power) and letting a job with a demand of 0.5 CPU to enter and take

6

profit of this CPU waste. And when CPU load goes beyond 2.0 the host is allowed
to shut down a CPU reducing the consumption waste.

This brings new conditions to be accomplished: the solution will consider that
the number of CPUs given a host is a natural value, so the schedule will also consider
separately the processors (CPUs) of a given host. Also, the number of active CPUs
in a host will not surpass the maximum number of CPUs available on that host (this
condition looks silly at first time, but must be considered when having a model with
different shaped hosts in the data-center).

In order to keep the representation of the problem as much linear and clear as
possible, the value to minimize is the sum of all the power consumed by the scheduled
solution and its active CPUs. This is, for each host, look at how much CPUs are
running, and check the power consumption according to the host characteristic power
curve. I.e. the function to minimize for the host represented, consisting in a 4 CPUs
Xeon machine following its power curve, would be pr1 · 267.8 + pr2 · 17.7 + pr3 ·
17.0 + pr4 · 15.4 (In this case coefficients are kWatts/hour). Then, the sum of the
power consumption of all the data-center is the sum of all power measures. This
representation of the problem requires a last condition in order to make it reliable,
as CPUs will be started up and shut down in order, so the first CPU to be active
in the representation model will be pr1, then pr2 and successively.

The resulting model brings as a solution a scheduler minimizing the consumed
power taking into account the consolidation goals, like i.e. that filling a half-empty
host is better that starting a stopped one:

Variables: schedule[Hosts, Jobs], as Integer Binary ; representing the Schedule

pri[Hosts], as Integer Binary ; representing the use for each host of its i-essim CPU

Parameters: pwri, as the power consumed by an i-essim CPU

cpus(h), as CPUs existing in host h

cons(j), as the CPU consumption of job j

Minimize:
∑

h∈Hosts,i∈cpus(h)

pri[h] · pwri

Constraints: Procesors{h ∈ Hosts, i ∈ cpus(h)} := pri[h] ≥ pri+1[h]

Unique{j ∈ Jobs} :=
∑

h∈Hosts

schedule[h, j] = 1

MaxCPU{h ∈ hosts} :=
∑

i∈cpus(h)

pri[h] ≤ cpus(h)

Capacity{h ∈ Hosts} :=
∑

j∈Jobs

schedule[h, j] · cons(j) ≤
∑

i∈cpus(h)

pri[h]

Note that constraints corresponding to the previous section are modified accord-
ing to the new introduced variables.

3.3 Maximize economic benefit

Once having modeled system from a power consumption point of view, the eco-
nomic factor can be introduced. Successfully accomplished jobs are rewarded with

7

revenue, so clients pay the data-center provider for running their applications on it.
Given this obvious fact, jobs can be translated to money according the data-center
pricing or Service Level Agreements (SLA). Power consumption can be represented
as kWatt/hour, tons of CO2, or also money per kWatt/hour, evaluating the power
consumption by the cost of buying the required electricity. In this manner, revenues
and power costs can be included in the same equation: Benefit = Revenue−Costs.

When jobs and power have a fixed value, and job revenue is above power cost,
benefit will always imply running the most applications as possible while consoli-
dating, so power waste is minimized. Unfortunately, consolidation strategies have a
great handicap: migration costs. Changing a job from a host to another implies that
during this process the job is stopped or replicated, and this can make the SLA fail
due to broken deadlines or interruptions of service, and also extra CPU load while
moving the job. For this reason, migration is penalized with an economical cost
referring to agreements between client-provider or to time and resource wasting [7].

At this time, the model attempts to maximize the benefit of the data-center,
as the revenue for all tasks minus the power cost, and minus a penalty for each
migration done towards the previous schedule (excluding finished and new-coming
jobs). That penalty can be considered, i.e., as the nonpayment for the migration
time, an insurance for the unaccomplishment of the SLA, or predict the risk of an
SLA failure and its consequences. As an example, we will consider the nonpayment
for that migration time, but keeping in mind all the other options:

Variables: schedule[Hosts, Jobs], as Integer Binary ; representing the Schedule

pri[Hosts], as Integer Binary ; representing the use for each host of its i-essim CPU

Parameters: pwri, as the power consumed by an i-essim CPU

cpus(h), as CPUs existing in host h

cons(j), as the CPU consumption of job j

Functions: migr(scheduleold, schedule), as
1

2
· (scheduleold ⊕ schedule) (w.o. leaving or new jobs)

Maximize: +
∑

h∈Hosts,j∈Jobs

schedule[h, j] · Revenue Job/Hour

−
∑

h∈Hosts,i∈cpus(h)

(pri[h] · pwri) · power price

− migr(scheduleold, schedule) · timemigration · Revenue Job/Hour

Constraints: Procesors{h ∈ Hosts, i ∈ cpus(h)} := pri[h] ≥ pri+1[h]

Unique{j ∈ Jobs} :=
∑

h∈Hosts

schedule[h, j] ≤ 1

MaxCPU{h ∈ hosts} :=
∑

i∈cpus(h)

pri[h] ≤ cpus(h)

Capacity{h ∈ Hosts} :=
∑

j∈Jobs

schedule[h, j] · cons(j) ≤
∑

i∈cpus(h)

pri[h]

Note that the impact of migration can affect CPU loads and many other relevant
factors on the system, depending on the relation of the migration time and re-
scheduling time.

8

3.4 Quality of Service as a factor

Often systems can be enough flexible to allow some tolerance to Quality of Service,
and that means that jobs are not strictly tight to a fixed QoS, and sometimes this
QoS can be relaxed letting the system to certain overload in order to improve con-
solidation and reduce power consumption. By relaxing the QoS, some penalization
can be applied specified in the SLA, so the schedule is able to alter the demands of
each job by attending at the economic consequences.

In order to define the level of accomplishment of the job goals and SLA condi-
tions, the concept Health is defined. The health is an index indicating how well is
performing a job, and often depends on the amount of the required resources are
received. A value of 1 means that the job is performing optimally, and 0 means that
the job is not running or not progressing in its execution.

When turning the jobs CPU requirement into variables, in a range between a
maximum CPU (original required) and minimum CPU (SLA failure assured), we can
estimate the health level using knowledge from the system, heuristics, or prediction
[3] comparing the offered CPU with the maximum required CPU. This health value
can be used to establish the penalty to be applied or subtracted to the revenue, or
by default use a fixed value explicitly indicated in the SLA.

The function to be optimized includes now the new factor, by scaling the revenue
with the health function, adding the before fixed job requirements as variables, and
establishing a range for that variable. Changes to be introduced are reflected in the
following parts of the problem:

Variables: jcpu[Jobs], as Integer ; representing the CPU usage of job j

Parameters: consmin(j), as the minimum required CPU consumption of job j

consmax(j), as the maximum required CPU consumption of job j

Functions: health(j), level of QoS of the job j result of jcpu[j] ∼ 〈consmin(j), consmax(j)〉

Constraints: MarginCPU{j ∈ Jobs} := 0 < consmin(j) ≤ jcpu[j] ≤ consmax(j)

Capacity{h ∈ Hosts} :=
∑

j∈Jobs

schedule[h, j] · jcpu[j] ≤
∑

i∈cpus(h)

pri[h]

Maximize: +
∑

h∈Hosts,j∈Jobs

(schedule[h, j]) · Revenue Job/Hour

−
∑

j∈jobs

(1− health(j)) ·QoS agreed penalty

−
∑

h∈Hosts,i∈cpus(h)

(pri[h] · pwri) · power price

− migr(scheduleold, schedule) · timemigration · Revenue Job/Hour

At this moment, note that the problem as written as shown loses its linearity
as scheduling and jcpu are being multiplied as being both variables of the same
problem, and this requires to re-write some details in order to obtain again a linear
problem.

Having the variable schedule as a binary values matrix, the Capacity constraint

9

can be understood as

Capacity{h ∈ Hosts} :=
∑

j∈Jobs

[if (schedule[h, j] = 1) jcpu[j] else 0] ≤
∑

i∈cpus(h)

pri[h]

For this, a change of variables can be performed and rewrite the constraint as

Capacity{h ∈ Hosts} :=
∑

j∈Jobs

quota[h, j] ≤
∑

i∈cpus(h)

pri[h]

quota[h, j] = if (schedule[h, j] = 1) jcpu[j] else 0

This quota condition formulated as a set of linear constraints in the following way

quota[h, j] ≥ schedule[h, j]

quota[h, j] ≤ schedule[h, j] ·BigConst1

quota[h, j]− jcpu[j] ≤ (1− schedule[h, j])

jcpu[j]− quota[h, j] ≤ (1− schedule[h, j]) ·BigConst2

being BigConsti constant values always big enough to surpass the sum of the job
requirement ranges, just assuring that the inequalities of conditions always are valid
letting the model to perform the target condition. Also remember that jcpu[j] is an
integer greater than zero.

10

The final integer linear program stays as follows:

Variables: schedule[Hosts, Jobs], as Integer Binary ; representing the Schedule

quota[Hosts, Jobs], as Integer ; representing CPU quota for each job in each host

pri[Hosts], as Integer Binary ; representing the use for each host of its i-essim CPU

jcpu[Jobs], as Integer ; representing the CPU usage of job j

Parameters: pwri, as the power consumed by an i-essim CPU

cpus(h), as CPUs existing in host h

consmin(j), as the minimum required CPU consumption of job j

consmax(j), as the maximum required CPU consumption of job j

Functions: migr(scheduleold, schedule), as
1

2
· (scheduleold ⊕ schedule) (w.o. leaving or new jobs)

health(j), level of QoS of the job j result of jcpu[j] ∼ 〈consmin(j), consmax(j)〉

Maximize: +
∑

h∈Hosts,j∈Jobs

(schedule[h, j]) · Revenue Job/Hour

−
∑

j∈jobs

(1− health(j)) ·QoS agreed penalty

−
∑

h∈Hosts,i∈cpus(h)

(pri[h] · pwri) · power price

− migr(scheduleold, schedule) · timemigration · Revenue Job/Hour

Constraints: Procesors{h ∈ Hosts, i ∈ cpus(h)} := pri[h] ≥ pri+1[h]

Unique{j ∈ Jobs} :=
∑

h∈Hosts

schedule[h, j] ≤ 1

MaxCPU{h ∈ hosts} :=
∑

i∈cpus(h)

pri[h] ≤ cpus(h)

Capacity{h ∈ Hosts} :=
∑

j∈Jobs

quota[h, j] ≤
∑

i∈cpus(h)

pri[h]

MarginCPU{j ∈ Jobs} := 0 < consmin(j) ≤ jcpu[j] ≤ consmax(j)

QoSAux1{h ∈ hosts, j ∈ Jobs} := quota[h, j] ≥ schedule[h, j]

QoSAux2{h ∈ hosts, j ∈ Jobs} := quota[h, j] ≤ schedule[h, j] ·BigConst1

QoSAux3{h ∈ hosts, j ∈ Jobs} := quota[h, j]− jcpu[j] ≤ (1− schedule[h, j])

QoSAux4{h ∈ hosts, j ∈ Jobs} := jcpu[j]− quota[h, j] ≤ (1− schedule[h, j]) ·BigConst2

4 Evaluation of the Method

In this section the method is evaluated, exposing the scenario used in order to
test the approach. Also all the decisions taken in order to set up a representative
testbed are exposed, building a good scenario to focus on the method while letting
the addition of new elements, variables, or ideas.

11

4.1 Programming and Simulation Environment

The experiments done in order to test this approach have been performed simulating
a real workload and also simulating a data-center formed by different sized testbed
machines. In this occasion, as the important thing to be evaluated and tested is the
methodology and algorithms for scheduling and making decisions, a real data-center
and a scheduling mechanisms have been recreated in R [9], extracting the behavior
formulas and data-center working modules directly from the cloud simulator EEF-
SIM [6, 11] made by R.Nou, F.Julia, O.Fito and I.Goiri. The EEFSIM is a cloud
simulator oriented to power and performance experimentation, with capabilities of
simulating multiple data-center clouds (or single data-center), with heterogeneous
physical and virtual machines, also heterogeneous resources and network connec-
tions.

For this approach, the modules and formulas have been implemented in R, using
workloads and data-center configurations generated from real loads and examples.
The example simulated data-center is presented in Table 4.1.

Number of Hosts CPU Memory

20 4 @ 3GHz 4 GB
10 2 @ 3GHz 4 GB
10 1 @ 3GHz 4 GB

The used workload corresponds to a transactional workload on application web-
servers, obtained from a real web-applications workload. These web-applications
simulate customers who wants to run their services on top of the the provider. The
behavior of these applications deployed corresponds with the one of SPECweb2009
e-Commerce application [2] which is used as web-based application and its model
has been obtained by stressing this application (deployed on a Tomcat v5.5 with an
hybrid architecture) with different input loads and with different processing units.
The details of the workload are shown in Table 1. This modeling, as proposed in

Type SLA type #VMs Description Mean duration

Web Performance 10 Monday 86400”
Web Performance 10 Tuesday 86400”
Web Performance 10 Wednesday 86400”
Web Performance 10 Thursday 86400”
Web Performance 10 Friday 86400”
Web Performance 5 Saturday 86400”
Web Performance 5 Sunday 86400”
Web Performance 20 One week 604800”

Table 1: Workload details

[11], is focused on the response time high-level metric and, relating this metric with
both incoming users load and CPU usage of the server. The modeling details include
an stationary response time (RT), when the incoming load causes a CPU utilization
less than 60%; a slightly increased RT when this CPU utilization is between 60%
and 80%; and a polynomial behaved RT when the server is overloaded.

12

The power consumption is also determined in EEFSIM, where the real power
consumption is measured using different workloads in a 4-CPU computer whose
kernel includes some energy efficiency policies. As seen in previously the wattage
increases with the CPU requirements on a physical machine, but this increment
is lower with each extra processor used on a machine. This is the reason why
consolidation optimizes the power consumption. Also, in the experiments of this
approach the turning on and off of used and idle machines is considered to reduce
the consumption, as seen in works like [8, 3].

In order to set the economic values of each involved element, the EEFSIM and its
related works (as seen below) established that providers behave as a cloud provider
similar to Amazon EC2, where users will rent some VMs in order to run their
tasks. The pricing system for the VMs is similar to the one EC2 uses and medium
instances with high CPU load are assumed, which have a cost of 0.17 euro/hour
(EC2 pricing in Europe). Also the electricity pricing used is the Spanish one, that
is 0.09 euro/KWh [1]. The VM migration process can be performed in several ways:
as stopping the service and resuming it after full VM data is copied, or creating
a copy into the physical destination before deleting the original and then change
the load flow. Anyway, this process may cause in some occasions a interruption of
service or just degrade the user experience for a short period of time, and as example
of a simple valid SLA in this model is proposed a migration penalty consisting in a
economic compensation to the client (i.e. the execution during a migration period
becomes for free). For the present approach, the maximum migration time is set to
5 minutes, while each scheduling round is set to 1 hour, according to the variability
of the performed workloads.

As a parameter defining the Quality of Service at low level, the concept health
is defined as the ratio between obtained CPU and the required CPU in function of
the client load. The maximum loss of QoS permitted can be determined in each job
SLA, but as an example and case of study here a range [0.8, 1.0] is determined as

acceptable offered CPU, and a penalization of (1 − CPUjob

OfferedCPUjob
) ∗ 0.17euro/hour

(price of job per hour) is applied in order to add a benefit factor. Obviously these
parameters can vary in function of each job SLA adjusting the minimum accepted
health factor, the way of calculating the health factor, and the price of the job.

Finally, in order to find good scheduling results implementing the Integer Linear
Programs, different popular implementations of the simplex algorithm [4] have been
used. For the exposed results shown in next subsections the GNU Linear Program-
ming Kit (glpk) has been used, but other options have been run in order to find
enhanced simplex algorithms like lpsolver or CPLEX [10]. Here we will not discuss a
comparison between them, as lpsolver often find better solutions than glpk with the
same running time and CPLEX is able to find optimal solutions in seconds instead
of minutes like the other ones. The glpk has been selected just because is the easiest
to apply and experiment with, without a license requirement (i.e. CPLEX requires
a limited payment license to be run).

13

4.2 Experimentation

In this subsection the method is tested on each of its factors (power, economic, qos).
The integer linear program can be compared in an only-power version, looking for
minimize the power consumption; in an economic versus power version, looking
for increase the revenue minus the power economic cost; and in the full version,
including the tolerance to some loss of QoS in favor to the power saving.

As expected, the experimentations reveal that the power model is the one that
performs the maximum number of migrations as its priority is to reduce the con-
sumption and in a natural way the scheduler consolidates the jobs at each round.
This model only contemplates options that reduce the number of processors used
and machine on-line, and this brings the policy of migrating jobs as many times as
required. Without any restriction referring to migration penalization, this model is
the one that performs best in an energetic way. Economic and QoS loss tolerated
models do not optimize as good in energy, mainly because they include restrictions
at applying this migration policy. The power consumption is shown in Figure 1.

Figure 1: Power consumption in for each model

Economic only and QoS loss tolerated models include the policy of reducing the
number of migrations by penalizing them. This makes that their power saving is
reduced compared with the power only model, but here the schedule is reducing
the number of times a job can be temporally “out of service”. As Figure 1 shows,
economic model and QoS loss tolerance model power consumption is similar, also
QoS tends to improve the economic only model, as lets the reduction of resource
quotas to improve power saving.

14

When introducing the explained migration penalty the optimization changes as
the economic based models improve the revenue brought by maintaining machines
running without being migrated. As seen in Figure 2, power model degrades in
revenue as migrations are done without restrictions. The model tolerating some
QoS loss maintains similar revenues than the economic model reducing the number
of migrations by reducing the quota of resources, also penalized by the explained
health rule. This temporary reduction of resources in order to reduce the migration
needs is shown in Figure 3, where clearly QoS loss tolerated model nearly avoids
migration.

Figure 2: Benefit obtained from each model

It is important to remark the fact that the reason of penalizing the migrations is
that each migration brings a chance of interrupting the service during a brief period
of time or any other drawback of this technology like having duplicated services or
jobs. For this reason economic and QoS models should be preferred than power-only
models, as they attempt to reduce the number of chances of service interruption. For
future models, whether knowing the exact migration specifications, this chances and
exact SLA penalization could be added to the optimization model, so the decision
of migrating a job versus do not do it would be better weighted assuming a more
accurate probability of interruption of service.

As said before, applying a reduction of resources in order to avoid migrating
supposes a loss of quality of service. As shown in Figure 4 the loss of QoS while
compressing jobs in machines usually do not imply a great loss of QoS, translated
in response time for the current case of study workload. The average health found
is 0.998, and in very few cases the health of the jobs in a physical machine reaches

15

Figure 3: Number of migrations for each model

the minimum threshold.

Figure 4: Levels of Health in tolerated QoS loss model

Table 2 summarizes the consumption, benefit and number of migrations per-
formed by each model. In the table a Round Robbin scheduling algorithm has been
added in order to compare with a naive scheduler. This Round Robbin algorithm
performs a “random” allocation always assuring that the job fits into the target
machine.

The coefficients applied in the problem weighting each task execution, the power
price, the migration penalty and the QoS penalty define the policy to be followed in

16

Model Power cons. (watts) Benefit (euro) Migrations (#)

Round Robbin 1687717.0 598.1375 4712
Power Only 236398.3 794.5513 3944

Economic Oriented 419813.1 782.7054 100
QoS relaxation 376801.8 780.8093 35

Table 2: Comparative between models

order to optimize. This case of study assumed a policy that obviously can change
when prices change, and when technology changes. If migration technology is im-
proved reducing the maximum migration time, the penalty of migration can be
reduced so in some occasions moving jobs will be better than sacrificing jobs perfor-
mance. Furthermore, a modeling of each kind of job could provide a characterization
of the probability of “out of service” when migrating a specific job and adjust the
migration penalty depending on the job to be moved. This also would provide an
accurate selection of which jobs are more candidates to be moved when the situation
requires it. The same occurs with the QoS threshold, being modified for each job
and circumstance, so some jobs are more or less able to be economized depending
on their execution time. Here a job migration vs job compression situation is faced,
depending entirely of the policy applied at each moment.

Integer Linear Programming can be used directly as a scheduling algorithm in
some occasions, when engineers and designers know that the situations to control will
be solvable in short time (seconds or minutes). But unfortunately, simplex algorithm
can become exponential, and the integer optimization usually is exhaustive, and in
some situations finding a good enough solution requires excessive search time. For
this case of study the average time in order to find a good solution: an average of
0.2447% difference respect the simplex lower bound [min 0.0%, mean 0.2447%, max
7.0530%], with a mean of 14 seconds time search for scheduling often 30 jobs x 40
machines (with a maximum search time of 2 minutes, not often reached), as seen in
Figures 5(a) and 5(b). So, this ILP can be used to find and discover new heuristics,
comparing them to the best (or sub-optimal) solutions found with ILP.

4.3 Impact of Policies

Finally by looking at the proposed model, each element included in the benefit
function can be seen as an element of a policy system. Having Benefit B, Revenue
R, Migrations M , Loss of QoS Q and Power P as: B = R−M−Q−P , the elements
M and Q represent the policy of the system in front of the possibility of migrations
and task resources compression. The impact of each policy can be measured by
testing them using multipliers in order to check how much vary the power and real
benefit while varying the enforcement of the migration penalty or the loss of QoS
penalty. Setting B̃ = R − (λM + εQ) − P and a policy Π = 〈λ, ε〉 indicating how
each element will be weighted in the ILP solver, some tests are run to obtain the
relation between each migration and loss of QoS for each power saving unit. A first
set of executions test the migration policy by varying its weight (λ) and forbidding
the loss of QoS (ε = ∞), while other set of executions test the tolerance to QoS

17

(a) (b)

Figure 5: Measures of performance of the ILP solver

loss by forbidding the migrations (λ =∞) and varying the weights of the QoS loss
penalty (ε) and letting no minimum bound to the QoS loss.

In the case of the migration policy test, it is obvious that the migration technique
is always applied in order to reduce the number of running processors in the whole
system, so as shown in Figure 6(a) the number of migrations is reversely related to
the consumed power. This can be understood as “migrations relief power consump-
tion, while paying a price”, and it is the relation between the cost per kWh and
the penalty for each migration. If the price of the amount of power a migration can
save is bigger than the cost of performing this migration, do it is better. So policies
based in migration can modify the migration penalty in order to adjust the number
of migrations to be performed in front of a determined amount of power to be saved,
as seen in Figure 6(b).

(a) Power vs Number of Migrations (b) Power vs Migration Restriction

Figure 6: Power versus migrations and migration restriction policy

Finding the best fitting linear regression from the power vs. migration results,

18

the generated model matches with the form: ˆPower 'MinimumRequiredPower+
(maxPossibleMigrations−#Migrations)∗MachineBasePower. This means that
in average for each migration performed, the power of having on-line one machine is
saved, demonstrating that the method performs first that migrations that improve
most the power saving. In this case, performing a migration that allows to shut
down a machine is preferred to perform a migration that just saves a few watts.
From Figure 6(a) we can distinguish three parts, the first one where the policy
optimizes only with migrations that directly shut-down machines (0-200 migrations),
the second one where migrations shut-down machines and reduce the number of
running processors (200-800 migrations), and the third part where saturation comes
and no for more migrations done the power will be easily reduced due to reaching
the minimum required power.

In the case of Power versus Loss of QoS it can be observed that the power is
related to the level of Quality of Service (in terms of resource occupation) and the
restrictions to be applied on QoS loss, as seen in Figures 7(a) and 7(b).

(a) Power vs QoS (health) level (b) Power vs QoS Loss Restriction

Figure 7: Power versus QoS (health) and QoS Loss restriction policy

Note that the policy values λ and ε are directly related to the number of mi-
grations and QoS respectively. So in tunning the model establishing the weight of
each condition (or policy or price), a trade-off between the provider revenue per ap-
plication and the penalizations for each migration and loss of QoS. The ILP model
presented here is complemented by finding these penalization weights by applying
the policy that minimizes the power consumption while granting a good QoS level
and reducing the possibilities of service outage caused by migrations. Also with this
information the model can be adjusted if business policies decide not to allow more
than X migrations per time unit, or not to set a determined average of QoS allowed
(or also a minimum QoS level without restricting it in the ILP constraints).

19

5 Conclusions

In order to optimize the scheduling and management of data-centers several factors
to keep in mind, like the economic ones (obtaining revenues from task executions
and resource usage), bringing good service quality to the customers and clients, and
also the energy-related factors in order to run the infrastructures. This optimization
problem can be modeled as an integer linear program, so ILP methods can help in
order to solve it in a relative good time, or also help to find accurate models in order
to test other methods.

Taking the advantages of virtualization and consolidation techniques, this model
can address policies that focuses on energy-saving goals, like using migration to
turn-off unnecessary machines, or lend tasks fewer resources in order to save power.
The results obtained demonstrate that the ILP model allows to find optimal (or
near-optimal) solutions in fast times bringing good QoS levels (by giving tasks the
required resources), and each new technique introduced in form of rules and con-
straints allows the scheduler new options to improve the results.

Also, from the obtained results a common sense fact can be observed: in order
to maximize economic benefit the usually most “sacrificed” factor is the cheapest
one. In this case it is power consumption. When the schedules attempts to make a
decision that maximizes revenue while not degrading QoS, migrating as minimum
as possible and consuming low power, as power consumption is economically weaker
than the revenue obtained by the rest of the system, it receives less attention and
so benefit increasings response to higher power consumptions.

A way to adjust this power spending is to play with policies, adjusting weight to
power-saving techniques in order to relax their usage penalties, so here the system
would risk some economical benefit or QoS in order to save some energy. Also
policies decide which kind of risks are to be taken between chances of service outage
caused by migrations or chances of QoS loss by reducing the given resources to tasks.
Future work is addressed to research in the way of decision makers and modeling the
kind of risks to be taken at each moment, so static policies can turn into dynamic
depending on the context, the load and the interests of providers and clients.

References

[1] Europe’s energy portal. http://www.energy.eu.

[2] SPECweb2009 E-commerce workload, 2009. http://www.spec.org/web2009/.

[3] J. Berral, Í. Goiri, R. Nou, F. Julià, J. Guitart, R. Gavalda, and J. Torres. To-
wards energy-aware scheduling in data centers using machine learning. In 1st
International Conference on Energy-Efficient Computing and Networking (eEn-
ergy’10), University of Passau, Germany, April 13-15, pages 215–224, 2010.

[4] G. B. Dantzig and M. N. Thapa. Linear programming 1: introduction. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1997.

[5] J. O. Fitó, Í. Goiri, and J. Guitart. SLA-driven Elastic Cloud Hosting Provider.
In Proceedings of the 18th Euromicro Conference on Parallel, Distributed and

20

Network-based Processing (PDP’10), Pisa, Italy, February 17-19, pages 111–
118, 2010.

[6] Í. Goiri, J. Guitart, and J. Torres. Characterizing Cloud Federation for En-
hancing Providers Profit. In Proceedings of the 3rd International conference
on Cloud Computing (CLOUD 2010), Miami, Florida, USA, July 5-10, pages
123–130, 2010.

[7] Í. Goiri, F. Julià, J. Ejarque, M. De Palol, R. M. Badia, J. Guitart, and J. Tor-
res. Introducing Virtual Execution Environments for Application Lifecycle
Management and SLA-Driven Resource Distribution within Service Providers.
In Proceedings of the 8th IEEE International Symposium on Network Comput-
ing and Applications (NCA’09), Cambridge, Massachusetts, USA, July 9-11,
pages 211–218, 2009.

[8] Í. Goiri, F. Julià, R. Nou, J. Berral, J. Guitart, and J. Torres. Energy-aware
Scheduling in Virtualized Datacenters. In Proceedings of the 12th IEEE Inter-
national Conference on Cluster Computing (Cluster 2010), Heraklion, Crete,
Greece, September 20-24, 2010.

[9] K. Hornik. The R FAQ, 2010. ISBN 3-900051-08-9.

[10] IBM. Solver cplex, 2003. http://www-
01.ibm.com/software/integration/optimization/cplex-optimization-studio/
(accessed 17 September 2010).

[11] F. Julià, J. Roldàn, R. Nou, O. Fitó, Vaquè, G. Í., and J. Berral. EEFSim:
Energy Efficency Simulator, 2010.

[12] I. Kamitsos, L. Andrew, H. Kim, and M. Chiang. Optimal Sleep Patterns
for Serving Delay-Tolerant Jobs. In 1st International Conference on Energy-
Efficient Computing and Networking (eEnergy’10), University of Passau, Ger-
many, April 13-15, 2010.

[13] L. Liu, H. Wang, X. Liu, X. Jin, W. He, Q. Wang, and Y. Chen. GreenCloud:
a New Architecture for Green Data Center. In 6th International Conference
on Autonomic Computing and Communications, Industry Session, Barcelona,
Spain, June 15-19, pages 29–38. ACM, 2009.

[14] R. Nathuji, K. Schwan, A. Somani, and Y. Joshi. Vpm tokens: virtual machine-
aware power budgeting in datacenters. Cluster Computing, 12(2):189–203, 2009.

[15] V. Petrucci, O. Loques, and D. Mossé. A Dynamic Configuration Model for
Power-efficient Virtualized Server Clusters. In 11th Brazillian Workshop on
Real-Time and Embedded Systems (WTR), Recife, Brazil, May 25, 2009.

[16] Y. Tan, W. Liu, and Q. Qiu. Adaptive power management using reinforcement
learning. In ICCAD ’09: Proceedings of the 2009 International Conference on
Computer-Aided Design, pages 461–467, New York, NY, USA, 2009. ACM.

[17] W. Vogels. Beyond server consolidation. Queue, 6(1):20–26, 2008.

21

