SAT Modulo Theories:
Can we get the best of two worlds?

CP 2010 - St Andrews

Robert Nieuwenhuis
(+ Albert Oliveras, Enric Rodríguez, Roberto Asín, Javier Larrosa, ...)

Barcelogic Research Group, Tech. Univ. Catalonia, Barcelona
The objective of this talk is to explain:

- What SAT Modulo Theories (SMT) is.

- Our current aim: bring SMT from verification applications to other more typical CP ones: scheduling, timetabling...

- Can we use SMT trying to get the best of two worlds?:

 - From SAT: efficiency, robustness, no need for tuning.

 - From general complete methods in CP (note: CP ⊃ SAT): expressiveness, rich modeling languages, special-purpose algorithms for arithmetic, for global constraints....
Outline of this talk
Outline of this talk

- Good vs Bad
Outline of this talk

- Good vs Bad in SAT and other complete CP search methods.
Outline of this talk

- Good vs Bad in SAT and other complete CP search methods.
- SAT Solvers. Why do they work so well? Three basic ideas.
Outline of this talk

- Good vs Bad in SAT and other complete CP search methods.
- SAT Solvers. Why do they work so well? Three basic ideas.
- Same ideas not as successful in general complete CP search?
Outline of this talk

- Good vs Bad in SAT and other complete CP search methods.
- SAT Solvers. Why do they work so well? Three basic ideas.
- Same ideas not as successful in general complete CP search?
- What is SAT Modulo Theories (SMT)?
Outline of this talk

- Good vs Bad in SAT and other complete CP search methods.
- SAT Solvers. Why do they work so well? Three basic ideas.
- Same ideas not as successful in general complete CP search?
- What is SAT Modulo Theories (SMT)?
- Lazy approach, improved Lazy approach.
Outline of this talk

- **Good vs Bad** in SAT and other complete CP search methods.
- SAT Solvers. Why do they work so well? Three basic ideas.
- Same ideas not as successful in general complete CP search?
- What is **SAT Modulo Theories (SMT)**?
- **Lazy** approach, improved Lazy approach.
- Our **DPLL(T)** approach: $\text{DPLL}(T) = \text{DPLL}(X) + T$-Solver.
Outline of this talk

- Good vs Bad in SAT and other complete CP search methods.
- SAT Solvers. Why do they work so well? Three basic ideas.
- Same ideas not as successful in general complete CP search?
- What is SAT Modulo Theories (SMT)?
- Lazy approach, improved Lazy approach.
- Our DPLL(T) approach: DPLL(T) = DPLL(X) + T-Solver.
- The Barcelogic SMT solver. Theories and T-Solvers
Outline of this talk

- **Good vs Bad** in SAT and other complete CP search methods.
- SAT Solvers. Why do they work so well? Three basic ideas.
- Same ideas not as successful in general complete CP search?
- What is SAT Modulo Theories (SMT)?
- **Lazy** approach, improved Lazy approach.
- Our \textit{DPLL}(T) approach: \textit{DPLL}(T) = \textit{DPLL}(X) + T-Solver.
- The \textit{Barcelogic} SMT solver. Theories and \textit{T-Solvers}
- CP-like theories and \textit{T}-solvers. Examples.
Outline of this talk

- Good vs Bad in SAT and other complete CP search methods.
- SAT Solvers. Why do they work so well? Three basic ideas.
- Same ideas not as successful in general complete CP search?
- What is SAT Modulo Theories (SMT)?
- Lazy approach, improved Lazy approach.
- Our DPLL(T) approach: DPLL(T) = DPLL(X) + T-Solver.
- The Barcelogic SMT solver. Theories and T-Solvers
- CP-like theories and T-solvers. Examples.
- Proof complexity and other insights
Outline of this talk

- **Good vs Bad** in SAT and other complete CP search methods.
- SAT Solvers. Why do they work so well? Three basic ideas.
- Same ideas not as successful in general complete CP search?
- What is **SAT Modulo Theories (SMT)**?
- **Lazy** approach, improved Lazy approach.
- Our **DPLL(T)** approach: $\text{DPLL}(T) = \text{DPLL}(X) + T$-Solver.
- The **Barcelogic** SMT solver. Theories and T-Solvers
- CP-like theories and T-solvers. Examples.
- Proof complexity and other insights
- Concluding remarks
What is meant by CP solver in this talk?

“Typical” state-of-the-art solver with:

- complete systematic search
- backtracking (no backjumping)
- no learning
- rich modeling languages
- sophisticated:
 - heuristics for branching variable selection (e.g., first-fail)
 - heuristics for branching value selection
 - special-purpose global constraint propagation algorithms

NB: for some problems, complete CP/SAT/SMT all inadequate!
Good vs Bad in SAT Solvers

Decades of academic and industrial efforts in SAT
Lots of $$$ from, e.g., EDA (Electronic Design Automation)
Good vs Bad in SAT Solvers

Decades of academic and industrial efforts in SAT
Lots of $$$ from, e.g., EDA (Electronic Design Automation)

Lesson: Real-world problems ≠ random or artificial ones!
Good vs Bad in SAT Solvers

Decades of academic and industrial efforts in SAT
Lots of $$$ from, e.g., EDA (Electronic Design Automation)

Lesson: Real-world problems ≠ random or artificial ones!

What’s GOOD? Complete solvers:
- outperforming by far the other methods (see later why)
- on real-world problems from many sources, with a
- single, fully automatic, push-button, var selection strategy!
- Hence modeling is essentially declarative.
Good vs Bad in SAT Solvers

Decades of academic and industrial efforts in SAT
Lots of $$$ from, e.g., EDA (Electronic Design Automation)
Lesson: Real-world problems \(\neq\) random or artificial ones!

What’s GOOD? Complete solvers:
- outperforming by far the other methods (see later why)
- on real-world problems from many sources, with a
- single, fully automatic, push-button, var selection strategy!
- Hence modeling is essentially declarative.

++ SAT in CP’10 Procs! E.g., pg 398, Petke&Jeavons’ abstract ends:
“We (...) show that, without being explicitly designed to do so,
current clause-learning SAT solvers efficiently simulate
\(k\)-consistency techniques, for all values of \(k\) [and] (...)
efficiently solve certain families of CSP instances which are
challenging for conventional CP solvers”.

Barcelogic - Tech. Univ. Catalonia (UPC)
Good vs Bad in SAT Solvers

Decades of academic and industrial efforts in SAT
Lots of $$$ from, e.g., EDA (Electronic Design Automation)
Lesson: Real-world problems ≠ random or artificial ones!

What’s GOOD? Complete solvers:
- outperforming by far the other methods (see later why)
- on real-world problems from many sources, with a
- single, fully automatic, push-button, var selection strategy!
- Hence modeling is essentially declarative.

What’s BAD?
- very low-level language: need modeling and encoding tools
- no good encodings for many aspects: arithmetic...
- Answers “unsat” or model. Optimization not as well studied.
Good vs Bad in general CP Solvers
Good vs Bad in general CP Solvers

What’s GOOD?

- Expressive modeling constructs and languages
- Specialized algorithms for many (global) constraints
- Optimization aspects better studied
Good vs Bad in general CP Solvers

What’s GOOD?

- Expressive modeling constructs and languages
- Specialized algorithms for many (global) constraints
- Optimization aspects better studied

What’s BAD or, well, not so good?

- Performance(?)
- Not quite automatic or push-button
 Heuristics tuning per problem (or even per instance)
- In CP Procs, sometimes only “academic” experiments:
 – on random or artificial problems (sometimes not realistic)
 – no big database of real-world/industrial instances
DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL
DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form $A \parallel F$ (see [NOT], JACM’06):

Assignment A : **Clause set** F :

$\emptyset \parallel \overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor 6, 6 \lor \overline{5} \lor \overline{2} \implies$
DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form $A \Vert F$ (see [NOT], JACM’06):

Assignment $A :$ **Clause set** $F :$

| \emptyset | $\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor 5 \lor \overline{2}$ | \Rightarrow (Decide) |
| 1 | $\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2}$ | \Rightarrow (UnitPropagate) |
here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form \(A \parallel F \) (see [NOT], JACM’06):

<table>
<thead>
<tr>
<th>Assignment (A)</th>
<th>Clause set (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor 6, 6 \lor \overline{5} \lor \overline{2}) (\Rightarrow) (Decide)</td>
</tr>
<tr>
<td>1</td>
<td>(\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor 6, 6 \lor \overline{5} \lor \overline{2}) (\Rightarrow) (UnitPropagate)</td>
</tr>
<tr>
<td>1 2</td>
<td>(\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor 6, 6 \lor \overline{5} \lor \overline{2}) (\Rightarrow) (Decide)</td>
</tr>
</tbody>
</table>
DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form $A \parallel F$ (see [NOT], JACM’06):

<table>
<thead>
<tr>
<th>Assignment A</th>
<th>Clause set F</th>
<th>(Decide)</th>
<th>(UnitPropagate)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>$\overline{1} \lor 2$, $\overline{3} \lor 4$, $\overline{5} \lor \overline{6}$, $6 \lor \overline{5} \lor 2$</td>
<td>\Rightarrow</td>
<td>\Rightarrow</td>
</tr>
<tr>
<td>1</td>
<td>$\overline{1} \lor 2$, $\overline{3} \lor 4$, $\overline{5} \lor \overline{6}$, $6 \lor \overline{5} \lor 2$</td>
<td>\Rightarrow</td>
<td>(UnitPropagate)</td>
</tr>
<tr>
<td>1 2</td>
<td>$\overline{1} \lor 2$, $\overline{3} \lor 4$, $\overline{5} \lor \overline{6}$, $6 \lor \overline{5} \lor 2$</td>
<td>\Rightarrow</td>
<td>(Decide)</td>
</tr>
<tr>
<td>1 2 3</td>
<td>$\overline{1} \lor 2$, $\overline{3} \lor 4$, $\overline{5} \lor \overline{6}$, $6 \lor \overline{5} \lor 2$</td>
<td>\Rightarrow</td>
<td>(UnitPropagate)</td>
</tr>
</tbody>
</table>
DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form \(A \parallel F \) (see [NOT], JACM’06):

<table>
<thead>
<tr>
<th>Assignment (A)</th>
<th>Clause set (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor 6, 6 \lor 5 \lor 2) ⇒ (Decide)</td>
</tr>
<tr>
<td>1</td>
<td>(\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor 6, 6 \lor 5 \lor 2) ⇒ (UnitPropagate)</td>
</tr>
<tr>
<td>1 2</td>
<td>(\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor 6, 6 \lor 5 \lor 2) ⇒ (Decide)</td>
</tr>
<tr>
<td>1 2 3</td>
<td>(\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor 6, 6 \lor 5 \lor 2) ⇒ (UnitPropagate)</td>
</tr>
<tr>
<td>1 2 3 4</td>
<td>(\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor 6, 6 \lor 5 \lor 2) ⇒ (Decide)</td>
</tr>
</tbody>
</table>
DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form $A \parallel F$ (see [NOT], JACM’06):

<table>
<thead>
<tr>
<th>Assignment A</th>
<th>Clause set F</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>$\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor 2$</td>
<td>(Decide)</td>
</tr>
<tr>
<td>1</td>
<td>$\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor 2$</td>
<td>(UnitPropagate)</td>
</tr>
<tr>
<td>$1 2$</td>
<td>$\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor 2$</td>
<td>(Decide)</td>
</tr>
<tr>
<td>$1 2 3$</td>
<td>$\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor 2$</td>
<td>(UnitPropagate)</td>
</tr>
<tr>
<td>$1 2 3 4$</td>
<td>$\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor 2$</td>
<td>(Decide)</td>
</tr>
<tr>
<td>$1 2 3 4 5$</td>
<td>$\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor 2$</td>
<td>(UnitPropagate)</td>
</tr>
</tbody>
</table>
DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form \(A \parallel F \) (see [NOT], JACM’06):

<table>
<thead>
<tr>
<th>Assignment (A)</th>
<th>Clause set (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\emptyset)</td>
<td>(\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor 6, 6 \lor \overline{5} \lor \overline{2})</td>
</tr>
<tr>
<td>1</td>
<td>(\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor 6, 6 \lor \overline{5} \lor \overline{2})</td>
</tr>
<tr>
<td>1 2</td>
<td>(\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor 6, 6 \lor \overline{5} \lor \overline{2})</td>
</tr>
<tr>
<td>1 2 3</td>
<td>(\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor 6, 6 \lor \overline{5} \lor \overline{2})</td>
</tr>
<tr>
<td>1 2 3 4</td>
<td>(\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor 6, 6 \lor \overline{5} \lor \overline{2})</td>
</tr>
<tr>
<td>1 2 3 4 5</td>
<td>(\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor 6, 6 \lor \overline{5} \lor \overline{2})</td>
</tr>
<tr>
<td>1 2 3 4 5 6</td>
<td>(\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor 6, 6 \lor \overline{5} \lor \overline{2})</td>
</tr>
</tbody>
</table>
here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An **Abstract DPLL state** has the form $A \parallel F$ (see [NOT], JACM’06):

<table>
<thead>
<tr>
<th>Assignment A</th>
<th>Clause set F</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>$\bar{1} \lor 2$, $\bar{3} \lor 4$, $\bar{5} \lor \bar{6}$, $6 \lor \bar{5} \lor \bar{2}$</td>
<td>(Decide)</td>
</tr>
<tr>
<td>1</td>
<td>$\bar{1} \lor 2$, $\bar{3} \lor 4$, $\bar{5} \lor \bar{6}$, $6 \lor \bar{5} \lor \bar{2}$</td>
<td>(UnitPropagate)</td>
</tr>
<tr>
<td>1 2</td>
<td>$\bar{1} \lor 2$, $\bar{3} \lor 4$, $\bar{5} \lor \bar{6}$, $6 \lor \bar{5} \lor \bar{2}$</td>
<td>(Decide)</td>
</tr>
<tr>
<td>1 2 3</td>
<td>$\bar{1} \lor 2$, $\bar{3} \lor 4$, $\bar{5} \lor \bar{6}$, $6 \lor \bar{5} \lor \bar{2}$</td>
<td>(UnitPropagate)</td>
</tr>
<tr>
<td>1 2 3 4</td>
<td>$\bar{1} \lor 2$, $\bar{3} \lor 4$, $\bar{5} \lor \bar{6}$, $6 \lor \bar{5} \lor \bar{2}$</td>
<td>(Decide)</td>
</tr>
<tr>
<td>1 2 3 4 5</td>
<td>$\bar{1} \lor 2$, $\bar{3} \lor 4$, $\bar{5} \lor \bar{6}$, $6 \lor \bar{5} \lor \bar{2}$</td>
<td>(UnitPropagate)</td>
</tr>
<tr>
<td>1 2 3 4 5 6</td>
<td>$\bar{1} \lor 2$, $\bar{3} \lor 4$, $\bar{5} \lor \bar{6}$, $6 \lor \bar{5} \lor \bar{2}$</td>
<td>(Backtrack)</td>
</tr>
</tbody>
</table>
DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form $A \| F$ (see [NOT], JACM’06):

Assignment $A : \quad \text{Clause set} \quad F :$

<table>
<thead>
<tr>
<th>A</th>
<th>F</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>$\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2}$</td>
<td>Decide</td>
</tr>
<tr>
<td>1</td>
<td>$\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2}$</td>
<td>UnitPropagate</td>
</tr>
<tr>
<td>$1, 2$</td>
<td>$\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2}$</td>
<td>Decide</td>
</tr>
<tr>
<td>$1, 2, 3$</td>
<td>$\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2}$</td>
<td>UnitPropagate</td>
</tr>
<tr>
<td>$1, 2, 3, 4$</td>
<td>$\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2}$</td>
<td>Decide</td>
</tr>
<tr>
<td>$1, 2, 3, 4, 5$</td>
<td>$\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2}$</td>
<td>UnitPropagate</td>
</tr>
<tr>
<td>$1, 2, 3, 4, 5, \overline{6}$</td>
<td>$\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2}$</td>
<td>Backtrack</td>
</tr>
<tr>
<td>$1, 2, 3, 4, \overline{5}$</td>
<td>$\overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor \overline{6}, 6 \lor \overline{5} \lor \overline{2}$</td>
<td></td>
</tr>
</tbody>
</table>
DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form $A \parallel F$ (see [NOT], JACM’06):

<table>
<thead>
<tr>
<th>Assignment $A :$</th>
<th>Clause set $F :$</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>$\overline{1} \lor 2$, $\overline{3} \lor 4$, $\overline{5} \lor \overline{6}$, $6 \lor 5 \lor 2$</td>
<td>(Decide)</td>
</tr>
<tr>
<td>1</td>
<td>$\overline{1} \lor 2$, $\overline{3} \lor 4$, $\overline{5} \lor \overline{6}$, $6 \lor 5 \lor 2$</td>
<td>(UnitPropagate)</td>
</tr>
<tr>
<td>$1 \ 2$</td>
<td>$\overline{1} \lor 2$, $\overline{3} \lor 4$, $\overline{5} \lor \overline{6}$, $6 \lor 5 \lor 2$</td>
<td>(Decide)</td>
</tr>
<tr>
<td>$1 \ 2 \ 3$</td>
<td>$\overline{1} \lor 2$, $\overline{3} \lor 4$, $\overline{5} \lor \overline{6}$, $6 \lor 5 \lor 2$</td>
<td>(UnitPropagate)</td>
</tr>
<tr>
<td>$1 \ 2 \ 3 \ 4$</td>
<td>$\overline{1} \lor 2$, $\overline{3} \lor 4$, $\overline{5} \lor \overline{6}$, $6 \lor 5 \lor 2$</td>
<td>(Decide)</td>
</tr>
<tr>
<td>$1 \ 2 \ 3 \ 4 \ 5$</td>
<td>$\overline{1} \lor 2$, $\overline{3} \lor 4$, $\overline{5} \lor \overline{6}$, $6 \lor 5 \lor 2$</td>
<td>(UnitPropagate)</td>
</tr>
<tr>
<td>$1 \ 2 \ 3 \ 4 \ 5 \ \overline{6}$</td>
<td>$\overline{1} \lor 2$, $\overline{3} \lor 4$, $\overline{5} \lor \overline{6}$, $6 \lor 5 \lor 2$</td>
<td>(Backtrack)</td>
</tr>
<tr>
<td>$1 \ 2 \ 3 \ 4 \ \overline{5}$</td>
<td>$\overline{1} \lor 2$, $\overline{3} \lor 4$, $\overline{5} \lor \overline{6}$, $6 \lor 5 \lor 2$</td>
<td>model found!</td>
</tr>
</tbody>
</table>
DPLL (or CDCL) SAT Solvers

here: DPLL (= Davis-Putnam-Loveland-Logemann) = CDCL

An Abstract DPLL state has the form $A \| F$ (see [NOT], JACM’06):

<table>
<thead>
<tr>
<th>Assignment A</th>
<th>Clause set F</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>$\bar{1} \lor 2, \bar{3} \lor 4, \bar{5} \lor \bar{6}, 6 \lor \bar{5} \lor \bar{2}$</td>
<td>Decide</td>
</tr>
<tr>
<td>1</td>
<td>$\bar{1} \lor 2, \bar{3} \lor 4, \bar{5} \lor \bar{6}, 6 \lor \bar{5} \lor \bar{2}$</td>
<td>UnitPropagate</td>
</tr>
<tr>
<td>$1 2$</td>
<td>$\bar{1} \lor 2, \bar{3} \lor 4, \bar{5} \lor \bar{6}, 6 \lor \bar{5} \lor \bar{2}$</td>
<td>Decide</td>
</tr>
<tr>
<td>$1 2 3$</td>
<td>$\bar{1} \lor 2, \bar{3} \lor 4, \bar{5} \lor \bar{6}, 6 \lor \bar{5} \lor \bar{2}$</td>
<td>UnitPropagate</td>
</tr>
<tr>
<td>$1 2 3 4$</td>
<td>$\bar{1} \lor 2, \bar{3} \lor 4, \bar{5} \lor \bar{6}, 6 \lor \bar{5} \lor \bar{2}$</td>
<td>Decide</td>
</tr>
<tr>
<td>$1 2 3 4 5$</td>
<td>$\bar{1} \lor 2, \bar{3} \lor 4, \bar{5} \lor \bar{6}, 6 \lor \bar{5} \lor \bar{2}$</td>
<td>UnitPropagate</td>
</tr>
<tr>
<td>$1 2 3 4 5 \bar{6}$</td>
<td>$\bar{1} \lor 2, \bar{3} \lor 4, \bar{5} \lor \bar{6}, 6 \lor \bar{5} \lor \bar{2}$</td>
<td>Backtrack</td>
</tr>
<tr>
<td>$1 2 3 4 \bar{5}$</td>
<td>$\bar{1} \lor 2, \bar{3} \lor 4, \bar{5} \lor \bar{6}, 6 \lor \bar{5} \lor \bar{2}$</td>
<td>model found!</td>
</tr>
</tbody>
</table>

More rules: Backjump, Learn, Forget, Restart $[M-S,S,M,...]$!
Backtrack vs. Backjump

Same example as before. Remember: Backtrack gave 1 2 3 4 5.

But: decision level 3 4 is irrelevant for the conflict 6 ∨ 5 ∨ 2:

∅ \parallel \overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor 6, 6 \lor \overline{5} \lor \overline{2} \Rightarrow \text{(Decide)}

\vdots \quad \vdots \quad \vdots

1 2 3 4 5 6 \parallel \overline{1} \lor 2, \overline{3} \lor 4, \overline{5} \lor 6, 6 \lor \overline{5} \lor \overline{2} \Rightarrow \text{(Backjump)}
Same example as before. Remember: **Backtrack** gave \(1 2 3 4 5\).

But: **decision level** \(3 4\) is irrelevant for the conflict \(6 \lor \overline{5} \lor \overline{2}\):

\[
\emptyset \quad \| \quad \overline{1} \lor 2, \; \overline{3} \lor 4, \; \overline{5} \lor \overline{6}, \; 6 \lor \overline{5} \lor \overline{2} \quad \Rightarrow \quad (\text{Decide})
\]

\[
\vdots \quad \vdots \quad \vdots
\]

\[
1 \; 2 \; 3 \; 4 \; 5 \; 6 \quad \| \quad \overline{1} \lor 2, \; \overline{3} \lor 4, \; \overline{5} \lor \overline{6}, \; 6 \lor \overline{5} \lor \overline{2} \quad \Rightarrow \quad (\text{Backjump})
\]

\[
1 \; 2 \; 5 \quad \| \quad \overline{1} \lor 2, \; \overline{3} \lor 4, \; \overline{5} \lor \overline{6}, \; 6 \lor \overline{5} \lor \overline{2} \quad \Rightarrow \quad \ldots
\]
Backtrack vs. Backjump

Same example as before. Remember: Backtrack gave $1\ 2\ 3\ 4\ 5$.

But: decision level $3\ 4$ is irrelevant for the conflict $6\lor 5\lor 2$:

$\emptyset \ || \ 1\lor 2,\ 3\lor 4,\ 5\lor 6,\ 6\lor 5\lor 2 \ \Rightarrow \ (\text{Decide})$

$\vdash \ 1\lor 2,\ 3\lor 4,\ 5\lor 6,\ 6\lor 5\lor 2 \ \Rightarrow \ (\text{Backjump})$

Backjump =

1. **Conflict Analysis**: “Find” a backjump clause $C \lor l$ (here, $2\lor 5$)
 - that is a logical consequence of F
 - that reveals a unit propagation of l at earlier decision level d (i.e., where its part C is false)

2. Return to decision level d and do the propagation.
Conflict Analysis: find backjump clause

Example. Consider assignment: \(\ldots 6 \ldots \bar{7} \ldots 9 \) and let \(F \) contain:
\[
\bar{9} \lor 6 \lor 7 \lor \bar{8}, \quad 8 \lor 7 \lor 5, \quad 6 \lor 8 \lor 4, \quad 4 \lor \bar{1}, \quad 4 \lor 5 \lor 2, \quad 5 \lor 7 \lor \bar{3}, \quad 1 \lor \bar{2} \lor 3.
\]
UnitPropagate gives \(\ldots 6 \ldots \bar{7} \ldots 9 \bar{8} 5 4 \bar{1} 2 \bar{3} \). Conflict w/ \(1 \lor \bar{2} \lor 3 \)!

C.An. = do resolutions in reverse order backwards from conflict:

\[
\begin{align*}
5 \lor 7 \lor \bar{3} & \quad \overline{4 \lor \bar{1}} & \quad \overline{4 \lor 5 \lor 2} \\
\overline{4 \lor 5 \lor 2} & \quad 5 \lor 7 \lor 1 \lor \bar{2} \\
\overline{4 \lor 1} & \quad 4 \lor 5 \lor 7 \lor 1 \\
6 \lor 8 \lor 4 & \quad 5 \lor 7 \lor \bar{4} \\
8 \lor 7 \lor \bar{5} & \quad 6 \lor 8 \lor 7 \lor \bar{5} \\
8 \lor 7 \lor \bar{6}
\end{align*}
\]

until reaching clause with only 1 literal of last decision level.

Can use this backjump clause \(8 \lor 7 \lor \bar{6} \) for Backjump to \(\ldots 6 \ldots \bar{7} \ldots 8 \).
Yes, but why is DPLL really that good?

Three key ingredients that only work if used TOGETHER:
Yes, but why is DPLL really that good?

Three key ingredients that only work if used TOGETHER:

1. Learn at each conflict backjump clause as a lemma (“nogood”):
 - makes UnitPropagate more powerful
 - prevents EXP repeated work in future similar conflicts
Yes, but why is DPLL really **that** good?

Three **key** ingredients that **only** work if used **TOGETHER**:

1. **Learn** at each conflict **backjump clause** as a **lemma** ("nogood"):
 - makes **UnitPropagate** more powerful
 - prevents **EXP** repeated work in future **similar** conflicts

2. **Decide** on variables with **many occurrences in recent conflicts**:
 - **Dynamic activity-based** heuristics (former VSIDS implm.)
 - idea: **work off**, one by one, **clusters** of tightly related vars
 (try DPLL on two independent instances together...)
Yes, but why is DPLL really that good?

Three key ingredients that only work if used TOGETHER:

1. **Learn** at each conflict backjump clause as a **lemma** ("nogood"):
 - makes **UnitPropagate** more powerful
 - prevents **EXP** repeated work in future similar conflicts

2. **Decide** on variables with many occurrences in recent conflicts:
 - Dynamic **activity-based** heuristics (former VSIDS implm.)
 - idea: **work off**, one by one, **clusters** of tightly related vars
 (try DPLL on two independent instances together...)

3. **Forget** from time to time **low-activity lemmas**:
 - crucial to keep **UnitPropagate** fast and memory affordable
 - idea: lemmas from **worked-off clusters** no longer needed!
Not the same success doing this in CP...

It’s not easy to get everything together right. But also (I think):
Not the same success doing this in CP...

It’s not easy to get everything together right. But also (I think):

- Static (e.g., first-fail) heuristics used
 - effect: work simultaneously on too unrelated variables
 - would require storing too many nogoods at the same time
Not the same success doing this in CP...

It’s not easy to get everything together right. But also (I think):

- Static (e.g., first-fail) heuristics used
 – effect: work simultaneously on too unrelated variables
 – would require storing too many nogoods at the same time

- No simple uniform underlying language (as SAT’s clauses):
 – hard to express nogoods (in SAT, 1st-class citizens: clauses)
 – hard to understand conflict analysis
 – hard to implement things really efficiently
It’s not easy to get everything together right. But also (I think):

- Static (e.g., first-fail) heuristics used
 - effect: work simultaneously on too unrelated variables
 - would require storing too many nogoods at the same time

- No simple uniform underlying language (as SAT’s clauses):
 - hard to express nogoods (in SAT, 1st-class citizens: clauses)
 - hard to understand conflict analysis
 - hard to implement things really efficiently

- Learning nogoods not found very useful...
 - mislead by random/academic pbs?
 - Indeed, it is useless isolatedly, and also on random pbs!
It’s not easy to get everything together right. But also (I think):

- **Static (e.g., first-fail) heuristics used**
 - effect: work simultaneously on too unrelated variables
 - would require storing too many nogoods at the same time

- **No simple uniform underlying language** (as SAT’s clauses):
 - hard to express nogoods (in SAT, 1st-class citizens: clauses)
 - hard to understand conflict analysis
 - hard to implement things really efficiently

- Learning nogoods not found very useful...
 - mislead by random/academic pbs?
 - Indeed, it is useless isolatedly, and also on random pbs!

- Learning requires explaining filtering algs.! [KB’03,05, ...]
Not the same success doing this in CP...

It’s not easy to get everything together right. But also (I think):

- Static (e.g., first-fail) heuristics used
 - effect: work simultaneously on too unrelated variables
 - would require storing too many nogoods at the same time

- No simple uniform underlying language (as SAT’s clauses):
 - hard to express nogoods (in SAT, 1st-class citizens: clauses)
 - hard to understand conflict analysis
 - hard to implement things really efficiently

- Learning nogoods not found very useful...
 - mislead by random/academic pbs?
 - Indeed, it is useless isolatedly, and also on random pbs!

- Learning requires explaining filtering algs.! [KB’03,05, ...]

Towards a solution... see the next slide...
What is SAT Modulo Theories (SMT)?

Origin: Reasoning about equality, arithmetic, data structures such as arrays, etc., in Software/Hardware verification.

What is SMT? Deciding satisfiability of an (existential) SAT formula with atoms over a background theory T

Example 1: T is Equality with Uninterpreted Functions (EUF):
3 clauses: $f(g(a)) \neq f(c) \lor g(a) = d$, $g(a) = c$, $c \neq d$

Example 2: several (how many?) combined theories:
2 clauses: $A = write(B,i+1,x)$, $read(A,j+3) = y \lor f(i-1) \neq f(j+1)$

Typical verification examples, where SMT is method of choice.
The Lazy approach to SMT

Aka Lemmas on demand [dMR,2002].

Same EUF example:

\[f(g(a)) \neq f(c) \lor g(a) = d, \quad g(a) = c, \quad c \neq d \]

1. Send \(\{ \bar{1} \lor 2, \ 3, \ \bar{4} \} \) to SAT solver
The Lazy approach to SMT

Aka Lemmas on demand [dMR,2002].

Same EUF example:

\[
\begin{align*}
\neg f(g(a)) \neq f(c) & \lor g(a) = d, \\
2 & \\
\neg g(a) = c, \\
3 & \\
c \neq d \\
4 &
\end{align*}
\]

1. Send \(\{\neg 1 \lor 2, 3, \neg 4\}\) to SAT solver

SAT solver returns model \([\neg 1, 3, \neg 4]\)
The Lazy approach to SMT

Aka Lemmas on demand [dMR,2002].

Same EUF example:

\[
\begin{align*}
&f(g(a)) \neq f(c) \vee g(a) = d, \\
&g(a) = c, \\
&c \neq d
\end{align*}
\]

1. Send \(\{ 1 \vee 2, 3, 4 \} \) to SAT solver

SAT solver returns model \([1, 3, 4]\)

Theory solver says \([1, 3, 4]\) is \(T\)-inconsistent
The Lazy approach to SMT

Aka Lemmas on demand [dMR,2002].

Same EUF example:

\[
\begin{align*}
\underbrace{f(g(a)) \neq f(c)}_{\overline{1}} & \lor \underbrace{g(a) = d}_{2}, \\
\underbrace{g(a) = c}_{3}, \quad \underbrace{c \neq d}_{\overline{4}}
\end{align*}
\]

1. Send \(\{ \overline{1} \lor 2, \ 3, \ \overline{4} \} \) to SAT solver

SAT solver returns model \([\overline{1}, \ 3, \ \overline{4}]\)

Theory solver says \([\overline{1}, \ 3, \ \overline{4}]\) is \(T\)-inconsistent

2. Send \(\{ \overline{1} \lor 2, \ 3, \ \overline{4}, \ 1 \lor \overline{3} \lor 4 \} \) to SAT solver
The Lazy approach to SMT

Aka Lemmas on demand [dMR,2002].

Same EUF example:

\[
\begin{align*}
 f(g(a)) \neq f(c) \lor g(a) &= d, \quad \text{(1)} \\
 g(a) &= c, \quad \text{(2)} \\
 c \neq d \quad \text{(3)}
\end{align*}
\]

1. Send \(\{ \text{1} \lor 2, \ 3, \ 4 \} \) to SAT solver

 SAT solver returns model \([\text{1}, \ 3, \ 4]\)

 Theory solver says \([\text{1}, \ 3, \ 4]\) is \(T\)-inconsistent

2. Send \(\{ \text{1} \lor 2, \ 3, \ 4, \ 1 \lor 3 \lor 4 \} \) to SAT solver

 SAT solver returns model \([1, \ 2, \ 3, \ 4]\)
The Lazy approach to SMT

Aka Lemmas on demand [dMR,2002].

Same EUF example:

\[
\begin{align*}
\begin{aligned}
f(g(a)) & \neq f(c) \quad \text{or} \quad g(a) & = d, \\
\left(\frac{1}{1}\right) & \quad \quad \left(\frac{2}{2}\right) & \quad \left(\frac{3}{3}\right) \\
g(a) & = c, \\
\left(\frac{4}{4}\right)
c & \neq d
\end{aligned}
\end{align*}
\]

1. Send \(\{ \overline{1} \lor 2, \ 3, \ \overline{4} \} \) to SAT solver

 SAT solver returns model \([\overline{1}, \ 3, \ \overline{4}]\)

 Theory solver says \([\overline{1}, \ 3, \ \overline{4}]\) is T-inconsistent

2. Send \(\{ \overline{1} \lor 2, \ 3, \ \overline{4}, \ 1 \lor \overline{3} \lor 4 \} \) to SAT solver

 SAT solver returns model \([1, \ 2, \ 3, \ \overline{4}]\)

 Theory solver says \([1, \ 2, \ 3, \ \overline{4}]\) is T-inconsistent
Aka Lemmas on demand [dMR,2002].

Same EUF example:

\[f(g(a)) \neq f(c) \lor g(a) = d, \quad g(a) = c, \quad c \neq d \]

1. Send \(\{ \overline{1} \lor 2, \ 3, \ \overline{4} \} \) to SAT solver
 SAT solver returns model \([\overline{1}, \ 3, \ \overline{4}] \)
 Theory solver says \([\overline{1}, \ 3, \ \overline{4}] \) is \(T \)-inconsistent

2. Send \(\{ \overline{1} \lor 2, \ 3, \ \overline{4}, \ 1 \lor \overline{3} \lor 4 \} \) to SAT solver
 SAT solver returns model \([1, \ 2, \ 3, \ \overline{4}] \)
 Theory solver says \([1, \ 2, \ 3, \ \overline{4}] \) is \(T \)-inconsistent

3. Send \(\{ \overline{1} \lor 2, \ 3, \ \overline{4}, \ 1 \lor \overline{3} \lor 4, \ \overline{1} \lor \overline{2} \lor \overline{3} \lor 4 \} \) to SAT solver
The Lazy approach to SMT

Aka Lemmas on demand [dMR,2002].

Same EUF example:

\[
\begin{align*}
\neg f(g(a)) & \neq f(c) \lor g(a) = d, \\
& \text{(1)} \\
\forall g(a) = c, \\
& \text{(2)} \\
c & \neq d \\
& \text{(3)}
\end{align*}
\]

1. Send \{ \text{1} \lor \text{2}, \ 3, \ \overline{4} \} to SAT solver
 SAT solver returns model [\text{1}, \ 3, \ \overline{4}]
 Theory solver says [\text{1}, \ 3, \ \overline{4}] is T-inconsistent

2. Send \{ \text{1} \lor \text{2}, \ 3, \ \overline{4}, \ \text{1} \lor \overline{3} \lor \text{4} \} to SAT solver
 SAT solver returns model [\text{1}, \ 2, \ 3, \ \overline{4}]
 Theory solver says [\text{1}, \ 2, \ 3, \ \overline{4}] is T-inconsistent

3. Send \{ \text{1} \lor \text{2}, \ 3, \ \overline{4}, \ \text{1} \lor \overline{3} \lor \text{4}, \ \text{1} \lor \text{2} \lor \overline{3} \lor \text{4} \} to SAT solver
 SAT solver says UNSAT
Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

- Check T-consistency only of full propositional models
Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

- Check T-consistency only of full propositional models
- Check T-consistency of partial assignment while being built
Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

- Check T-consistency only of full propositional models—
- Check T-consistency of partial assignment while being built

- Given a T-inconsistent assignment M, add $\neg M$ as a clause
Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

- Check T-consistency only of full propositional models—
- Check T-consistency of partial assignment while being built

- Given a T-inconsistent assignment M, add $\neg M$ as a clause—
- Given a T-inconsistent assignment M, find an explanation (a small T-inconsistent subset of M) and add it as a clause
Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

- Check T-consistency only of full propositional models
- Check T-consistency of partial assignment while being built

- Given a T-inconsistent assignment M, add $\neg M$ as a clause
- Given a T-inconsistent assignment M, find an explanation (a small T-inconsistent subset of M) and add it as a clause

- Upon a T-inconsistency, add clause and restart
Improved Lazy approach

Since state-of-the-art SAT solvers are all DPLL-based...

- Check T-consistency only of full propositional models
- Check T-consistency of partial assignment while being built

- Given a T-inconsistent assignment M, add $\neg M$ as a clause
- Given a T-inconsistent assignment M, find an explanation (a small T-inconsistent subset of M) and add it as a clause

- Upon a T-inconsistency, add clause and restart
- Upon a T-inconsistency, do conflict analysis of the explanation and Backjump
DPLL(T) approach ('04) ([NOT], JACM Nov06)

\[\text{DPLL}(T) = \text{DPLL}(X) \text{ engine} + T-\text{Solvers} \]

- **Modular and flexible**: can plug in any T-Solvers into the DPLL(X) engine.

- **T-Solvers** specialized and fast in **Theory Propagation**:
 - Propagate input literals that are theory consequences
 - *more pruning* in improved lazy SMT
 - T-Solver also *guides* search, instead of only *validating* it
 - fully exploited in conflict analysis (non-trivial)

- **DPLL(T)** approach is being quite widely adopted (cf. Google).

Barcelogic - Tech. Univ. Catalonia (UPC)
DPLL(T) Example (the same EUF one)

Notation used: Abstract DPLL Modulo Theories:

\[
\begin{align*}
 f(g(a)) & \neq f(c) \lor g(a) = d, \\
 g(a) & = c, \\
 c & \neq d
\end{align*}
\]

\[\emptyset \parallel 1 \lor 2, 3, 4 \Rightarrow \text{(UnitPropagate)}\]
DPLL(\(T\)) Example (the same EUF one)

Notation used: \textit{Abstract DPLL Modulo Theories}:

\[
\begin{align*}
\begin{cases}
 f(g(a)) &\neq f(c) \\
g(a) &\equiv d
\end{cases}
\quad \lor
\begin{cases}
 g(a) &\equiv d
\end{cases}
\quad \begin{cases}
 g(a) &\equiv c \\
c &\neq d
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\emptyset \parallel \quad &1 \lor 2, \ 3, \ 4 \quad \Rightarrow \quad \text{(UnitPropagate)} \\
3 \parallel \quad &1 \lor 2, \ 3, \ 4 \quad \Rightarrow \quad \text{(T-Propagate)}
\end{align*}
\]
DPLL(\(T\)) Example (the same EUF one)

Notation used: Abstract DPLL Modulo Theories:

\[
\begin{align*}
\neg f(g(a)) & \neq f(c) \lor g(a) = d, & g(a) = c, & c \neq d \\
\text{1} & & \text{2} & \text{3} & \text{4} \\
\emptyset & \quad \Rightarrow & \top \lor 2, & 3, & 4 \quad \Rightarrow & \text{(UnitPropagate)} \\
3 & \quad \Rightarrow & \top \lor 2, & 3, & 4 \quad \Rightarrow & \text{(T-Propagate)} \\
3 \ 1 & \quad \Rightarrow & \top \lor 2, & 3, & 4 \quad \Rightarrow & \text{(UnitPropagate)}
\end{align*}
\]
DPLL(T) Example (the same EUF one)

Notation used: Abstract DPLL Modulo Theories:

\[
\begin{align*}
\{ \neg f(g(a)) \neq f(c) \} \lor \{ g(a) = d \} \\
\{ \emptyset \} \lor \{ \neg 1 \lor 2, 3, 4 \} \Rightarrow \text{(UnitPropagate)} \\
3 \lor \{ \neg 1 \lor 2, 3, 4 \} \Rightarrow \text{(T-Propagate)} \\
3 1 \lor \{ \neg 1 \lor 2, 3, 4 \} \Rightarrow \text{(UnitPropagate)} \\
3 1 2 \lor \{ \neg 1 \lor 2, 3, 4 \} \Rightarrow \text{(T-Propagate)}
\end{align*}
\]
DPLL(T) Example (the same EUF one)

Notation used: Abstract DPLL Modulo Theories:

\[
\begin{align*}
\begin{array}{c}
f(g(a)) \neq f(c) \\ \forall \\ \begin{array}{c}
1 \\ 2 \\ 3 \\ 4
\end{array}
\end{array}
\end{align*}
\]

\[
\begin{array}{c}
\emptyset \quad \mid \quad 1 \lor 2, \ 3, \ 4 \quad \Rightarrow \quad \text{(UnitPropagate)}
\end{array}
\]

\[
\begin{array}{c}
3 \quad \mid \quad 1 \lor 2, \ 3, \ 4 \quad \Rightarrow \quad \text{(T-Propagate)}
\end{array}
\]

\[
\begin{array}{c}
3 \ 1 \quad \mid \quad 1 \lor 2, \ 3, \ 4 \quad \Rightarrow \quad \text{(UnitPropagate)}
\end{array}
\]

\[
\begin{array}{c}
3 \ 1 \ 2 \quad \mid \quad 1 \lor 2, \ 3, \ 4 \quad \Rightarrow \quad \text{(T-Propagate)}
\end{array}
\]

\[
\begin{array}{c}
3 \ 1 \ 2 \ 4 \quad \mid \quad 1 \lor 2, \ 3, \ 4 \quad \Rightarrow \quad \text{(T-Propagate)}
\end{array}
\]
DPLL(T) Example (the same EUF one)

Notation used: Abstract DPLL Modulo Theories:

\[
\begin{align*}
 f(g(a)) &\neq f(c) \lor g(a) = d, \\
 g(a) &\neq c, \\
 c &\neq d
\end{align*}
\]

Conflict at decision level zero. No search in this example.
DPLL\((T)\) Example (the same EUF one)

Notation used: Abstract DPLL Modulo Theories:

\[
\begin{align*}
 f(g(a)) &\neq f(c) \quad \lor \quad g(a) = d, \\
 g(a) &= c, \\
 c &\neq d
\end{align*}
\]

\[
\begin{align*}
 \emptyset &\parallel 1 \lor 2, 3, 4 \Rightarrow (\text{UnitPropagate}) \\
 3 &\parallel 1 \lor 2, 3, 4 \Rightarrow (\text{T-Propagate}) \\
 3 1 &\parallel 1 \lor 2, 3, 4 \Rightarrow (\text{UnitPropagate}) \\
 3 1 2 &\parallel 1 \lor 2, 3, 4 \Rightarrow (\text{T-Propagate}) \\
 3 1 2 4 &\parallel 1 \lor 2, 3, 4 \Rightarrow \text{unsat}
\end{align*}
\]

Conflict at decision level zero. No search in this example.

Explanation for last T-Propagate:

\[
2 \land 3 \rightarrow 4 \quad \text{or, equivalently,} \quad 2 \lor 3 \lor 4
\]

Explanations are \(T\)-lemmas, i.e., tautologies (valid clauses) in \(T\)
Conflict analysis in DPLL(T)

Need to do backward resolution with two kinds of clauses:

- **UnitPropagate** with clause C: resolve with C (as in SAT)
- **T-Propagate** of lit: resolve with (small) explanation

 $$l_1 \land \ldots \land l_n \rightarrow lit$$

 provided by T-Solver

 Too new T-explanations are forbidden!

How should it be implemented? (see again [NOT], JACM’06)

- **UnitPropagate**: store a pointer to clause C, as in SAT solvers
- **T-Propagate**: (pre-)compute explanations at each T-Propagate?

 – **Better** only on demand, during conflict analysis

 – typically only one Explain per approx. 250 T-Propagates.

 – depends on T, etc.
What does DPLL(T) need from T-Solver?

- T-consistency check of a set of literals M, with:
 - Explain of T-inconsistency: find small T-inconsistent subset of M
 - Incrementality: if l is added to M, check for $M \cup l$ faster than reprocessing $M \cup l$ from scratch.

- Theory propagation: find input T-consequences of M, with:
 - Explain T-Propagate of l: find (small) subset of M that T-entails l (needed in conflict analysis).

- Backtrack n: undo last n literals added
The Barcelogic SMT solver

- **DPLL(X)** is a state-of-the-art DPLL-based SAT engine: the Barcelogic SAT solver.

- **T-Solvers** for:
 - Congruences (EUF)
 - Integer/Real Difference Logic
 - Linear Integer/Real Arithmetic
 - Arrays
 - ...

- New: typical CP filtering algorithms (next)
Example:
Quasi-Group Completion (QGC)
Each row and column must contain 1 ... n.

Good method: 3-D encoding in SAT
where \(p_{ijk} \) means "row i col j has value k":

- at least one \(k \) per \([i, j]\): clauses like \(p_{i1j} \lor \ldots \lor p_{ijn} \)
- at most one \(k \) per \([i, j]\): 2-lit clauses like \(\overline{p_{i1j}} \lor \overline{p_{ij2}} \)
- same for exactly one \(j \) per \([i, k]\) and \(i \) per \([j, k]\)
- 1 unit clause per filled-in value, e.g., \(p_{313} \)

In our 5x5 example, DPLL’s UnitPropagate infers no value but \textbf{alldifferent} does. Which one?
SMT for the theory of \texttt{alldifferent} \\

QGC Example continued: \\

\texttt{alldifferent} infers that x, y will consume 1, 2 and hence $z = 3$.

Idea:

- Use 3-D encoding + SMT where T is \texttt{alldifferent}.
 As usual in SMT, T-solver knows what p_{ijk}'s mean.

- From time to time invoke T-solver before \texttt{Decide}, but do always cheap SAT stuff first: \texttt{UnitPropagate}, \texttt{Backjump}, etc.

- T-solver e.g., incremental filtering [Regin'94] but with Explain: in our example, the literal p_{133} (meaning $z = 3$) is entailed by \\
 \{$p_{113}, \overline{p_{114}}, \ldots, \overline{p_{135}}$\} (meaning $x \neq 3, x \neq 4, \ldots, z \neq 5$).
SMT for the theory of \textit{alldifferent}

Get CP with special-purpose global filtering algorithms, learning, backjumping, automatic variable selection heuristics...

Application to real-world professional \textit{round-robin sports} scheduling

Sometimes better results with weaker alldiff propagation
Another example: \textsc{DPLL} (cumulative)

\(N \) tasks. Each one has a \textit{duration} and uses certain \textit{finite resources}.

\textbf{Pure SMT approach}, modeling with variables \(s_{t,h} \):

- \(s_{t,h} \) means \(\text{start}(t) \leq h \) (so \(s_{t,h-1} \land s_{t,h} \) means \(\text{start}(t) = h \)).
- \textit{T-solver} propagates resource capacities (using filtering algs.)

\textbf{Better “hybrid” approach}, adding variables \(a_{t,h} \):

- \(a_{t,h} \) means \textit{task} \(t \) is active at hour \(h \)
- Time-resource decomposition (AgounBel93, Schutt+09): quadratic no. of clauses like \(\overline{s_{t,h-\text{duration}(t)}} \land s_{t,h} \rightarrow a_{t,h} \)
- \textit{T-solver} handles, for each \textit{hour} \(h \) and each \textit{resource} \(r \), one Pseudo-Boolean constr. like \(3a_{t,h} + 4a_{t',h} + \ldots \leq \text{capacity}(r) \)

\textbf{Very} good results.
Why can SAT sometimes beat SMT? See below.
Proof complexity and other insights

SMT solvers can generate unsat proofs, which come in two parts:

- A resolution refutation from:
 - the clauses of the input CNF
 - the generated explanations (clauses)
- For each explanation clause, an independent proof in (its) T.

So, after all, SMT generates a SAT encoding, but lazily.

SMT solver runtime \geq size of smallest resolution proof.
How could SAT beat SMT?

In “artificial-like” problems:

- SMT’s lazy SAT encoding could end up being a full one
- And... this full encoding could be a rather naive one.

Example: \(T = \) cardinality constraints. \(T \)-solver is just a counter.

Unsat instance: \(x_1 + \ldots + x_n \geq k \) and \(x_1 + \ldots + x_n < k \)

Refutation requires all \(\binom{n}{k+1} \) explanations like, e.g.,

\[
x_1 \land \ldots \land x_k \rightarrow \overline{x_{k+1}}
\]

Here a good SAT encoding with auxiliary vars works better.
Splitting on aux vars can give expon. speedup: Extended Resol.

But... some constraints admit no P-size domain-consistent SAT encoding, e.g., alldiff [BessiereEtal’09].
Comparison with Lazy Clause Generation

LCG [OhrimenkoStuckeyCodish07] was the instance of SMT where:

- each time the **T-solver** detects that *lit* can be propagated, it **generates** and **adds** (forever) the explanation clause, so the SAT-solver can **UnitPropagate** *lit* with it.

But as we have seen in this talk, it is usually better to:

- Generate explanations only when needed: at conflict an. time.
- Never add explanations as clauses. Otherwise: die keeping too many explanations (or the whole SAT encoding).

Remember: **Forget** of the usual lemmas is already **Crucial** to keep **UnitPropagate** fast and memory affordable!

Since recently, with these improvements, LCG = SMT.
Concluding remarks

- Need more work on further filtering algorithms with explain.

- Progress (but need more) in optimization problems:
 - Branch and bound is just another SMT theory (SAT’06)
 - Framework for branch and bound w/ lower bounding and optimality proof certificates (SAT’09).
 - MAX-SMT.
Concluding remarks

- Need more work on further filtering algorithms with explain.

- Progress (but need more) in optimization problems:
 - Branch and bound is just another SMT theory (SAT’06)
 - Framework for branch and bound w/ lower bounding and optimality proof certificates (SAT’09).
 - MAX-SMT.

- Barcelogic is looking for industrial problems, partners, projects (e.g., EU)...

- Thank You!