Resolution in Propositional Logic

Albert Oliveras and Enric Rodríguez-Carbonell

Logic and Algebra in Computer Science
Session 3
Fall 2009, Barcelona
Overview of the session

- Inference rules
 - Resolution
 - Ordered resolution
 - Practical remarks
Inference rules

- They allow one to deduce new formulas from given ones.

- Given an inference rule R and a set of formulas S, we define:

 - The closure of S under R, denoted $R(S)$, is the set of all formulas that can be obtained in zero or more deduction steps from S using R.

 - More formally, for $i \geq 0$

 \[
 S_0 = S \\
 S_{i+1} = S_i \cup R_1(S_i)
 \]

 and $R(S) = \bigcup_{i=0}^{\infty} S_i$

 where $R_1(S_i)$ is the set of all formula obtained from S_i in exactly one application of R.

Resolution in Propositional Logic – p. 3
Inference rules - Closure

Resolution in Propositional Logic – p. 4
Inference rules - properties

- \(R \) is correct iff \(F \in R(S) \) implies \(S \models F \)
 - That is, the closure only contains logical consequences (but maybe not all of them)

- \(R \) is complete iff \(S \models F \) implies \(F \in R(S) \)
 - That is, the closure contains all logical consequences (but maybe something more)

- Ideally, we want correct and complete inference rules

- A weaker notion of completeness is refutational completeness:
 \[S \text{ unsatisfiable} \implies \square \in R(S) \]

- If \(R \) is correct and refutationally completely, then
 \[S \text{ unsatisfiable} \iff \square \in R(S) \]

EXERCISE: prove the last property
Overview of the session

- Inference rules
- Resolution
- Ordered resolution
- Practical remarks
The resolution inference rule is the following:

\[
p \lor C \quad \neg p \lor D \\
\hline
C \lor D
\]

We will see that:

- Resolution is **Correct**
- Not complete
- Refutationally complete

If \(S \) is a finite set of clauses, then \(Res(S) \) is also finite

Hence, given a set of clauses \(S \), its satisfiability is checked by:

1. Computing \(Res(S) \)
2. If \(\Box \in Res(S) \) Then UNSAT ; Else SAT
EXERCISE: prove that

- If S is finite, $Res(S)$ is also finite
- Resolution is not complete
- Resolution is correct
- Resolution is refutationally complete
Overview of the session

- Inference rules
- Resolution
- Ordered resolution
- Practical remarks
Ordered resolution

- The proof of refutational completeness introduces ordered resolution
- Given clauses S and a total ordering on the variables in S:
 \[p_1 < p_2 < p_3 < \ldots \]

 we can define ordered resolution:
 \[
 \frac{p \lor C}{C \lor D} \quad \frac{\neg p \lor D}{C \lor D}
 \]

 if $p > q$ for all var. $q \in C \lor D$

- It is easy to see that:
 - If S is finite, $ResOrd(S)$ is also finite
 - It is correct (because resolution is)
 - It is refutationally complete (same proof suffices)

- Hence, it is better from the practical point of view
Overview of the session

- Inference rules
- Resolution
- Ordered resolution
- Practical remarks
Practical Remarks

- In practice, even ordered resolution is not efficient enough
- SAT engines based on resolution not used in practice
- However, resolution plays a crucial role in DPLL