Algebraic Necessary Condition for Tractability of Valued CSP

joint work with Marcin Kozik

Joanna Ochremiak

Highlights’15, Prague
18th September 2015
MAX-CUT

\[G = (V, E) \]

- a set of variables: \(V \)
- a set of their possible values: \(\{0, 1\} \)
- minimise: \(\sum_{(x,y) \in E} \varrho_{\text{XOR}}(x, y) \)

\[\varrho_{\text{XOR}}(x, y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{otherwise} \end{cases} \]
MAX-CUT

\[G = (V, E) \]

- a set of variables: \(V \)
- a set of their possible values: \(\{0, 1\} \)
- minimise: \(\sum_{(x,y) \in E} \varrho_{XOR}(x, y) \)

\(\varrho_{XOR}(x, y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{otherwise} \end{cases} \)

weighted relation
MAX-CUT

\[G = (V, E) \]

- a set of variables: \(V \)
- a set of their possible values: \(\{0, 1\} \)
- minimise: \(\sum_{(x,y) \in E} \varnothing_\text{XOR}(x, y) \)

\[\varnothing_\text{XOR}(x, y) = \begin{cases}
1 & \text{if } x = y \\
0 & \text{otherwise}
\end{cases} \]
2-coloring

\[G = (V, E) \]

- a set of variables: \(V \)
- a set of their possible values: \(\{0, 1\} \)
- minimise: \(\sum_{(x,y) \in E} \varrho \neq (x, y) \)

\[\varrho \neq (x, y) = \begin{cases} 0 & \text{if } x \neq y \\ \infty & \text{otherwise} \end{cases} \]
VCSP Instance

An instance of the VCSP:

- a finite set of variables: $V = \{x_1, \ldots, x_n\}$
- a finite set of their possible values: D
- an objective function:

$$\varrho_1(x_{1,1}, \ldots, x_{1,m_1}) + \ldots + \varrho_k(x_{k,1}, \ldots, x_{k,m_k}).$$

Goal: find an assignment that minimises the function
Complexity

\(\Gamma \) - a fixed set of weighted relations called a *language*

\(\text{VCSP}(\Gamma) \) - the objective function is a sum of functions from \(\Gamma \)

- \(\text{VCSP}(\{ \rho_{\text{XOR}} \}) \)
- \(\text{VCSP}(\{ \rho_{\neq} \}) \)
Complexity

Γ - a fixed set of weighted relations called a *language*

VCSP(Γ) - the objective function is a sum of functions from Γ

- VCSP(\{\varrho_{XOR}\}) - NP-hard (MAX-CUT)
- VCSP(\{\varrho_{\neq}\}) - PTime (2-coloring)
\[\Gamma \] - a fixed set of weighted relations called a *language*

\[\text{VCSP}(\Gamma) \] - the objective function is a sum of functions from \(\Gamma \)

- \(\text{VCSP}(\{ \varrho_{\text{XOR}} \}) \) - NP-hard (MAX-CUT)
- \(\text{VCSP}(\{ \varrho_{\neq} \}) \) - PTime (2-coloring)

Main goal: classify the complexity of problems \(\text{VCSP}(\Gamma) \)
Valued Constraint Satisfaction Problems

- MAX-CUT
- Minimum Vertex Cover
- 3-coloring
- 2-SAT
Valued Constraint Satisfaction Problems

- MAX-CUT
- Minimum Vertex Cover
- 3-coloring
- 2-SAT
Constraint Satisfaction Problems

3-coloring

2-SAT
every weighted relation: \(\rho: D^n \rightarrow \{0, \infty\} \)
every weighted relation: $\rho : D^n \rightarrow \{0, \infty\}$

objective function takes values 0 or ∞
every weighted relation: $\varrho : D^n \rightarrow \{0, \infty\}$

objective function takes values 0 or ∞

Goal: Is there an assignment with cost 0?
Constraint Satisfaction Problems

every weighted relation: \(\varrho : D^n \rightarrow \{0, \infty\} \)

objective function takes values 0 or \(\infty \)

goal: Is there an assignment with cost 0?

3-coloring

2-SAT

effectively a relation

a satisfying assignment

Joanna Ochremiak Algebraic Necessary Condition for Tractability of Valued CSP,
Constraint Satisfaction Problems

[Bulatov, Krokhin, Jeavons]

Algebraic necessary condition for tractability of valued CSP,
Constraint Satisfaction Problems

[Bulatov, Krokhin, Jeavons]

NP-complete

algebraic condition
Constraint Satisfaction Problems

[Bulatov, Krokhin, Jeavons]

algebraic condition

NP-complete

PTime?

Algebraic Dichotomy Conjecture
Valued Constraint Satisfaction Problems

- Maximum Cut (MAX-CUT)
- Minimum Vertex Cover
- 3-coloring
- 2-SAT

Algebraic condition
Valued Constraint Satisfaction Problems

NP-hard

algebraic condition
Valued Constraint Satisfaction Problems

NP-hard

PTime?

algebraic condition

Dichotomy Conjecture
Polymorphisms

\[\varrho : D^n \rightarrow \mathbb{Q} \cup \{\infty\} \quad \text{such that} \quad \varrho(x_1) < \infty \]

\[f : D^k \rightarrow D \quad \text{such that} \quad \varrho(f(x_1, \ldots, x_k), \ldots, f(x_1, \ldots, x_k)) < \infty \]
polymorphism of ϱ

$$\varrho : D^n \to \mathbb{Q} \cup \{\infty\}$$

$$f : D^k \to D$$

$x_1 = (x_1^1, \ldots, x_1^n)$ such that $\varrho(x_1) < \infty$

\vdots

$x_k = (x_k^1, \ldots, x_k^n)$ such that $\varrho(x_k) < \infty$

$$\varrho(f(x_1^1, \ldots, x_k^1), \ldots, f(x_1^n, \ldots, x_k^n)) < \infty$$
Weighted polymorphisms

Polymorphisms characterize the complexity of CSP.
Weighted polymorphisms

Polymorphisms characterize the complexity of CSP.

weighted polymorphism - probability distribution on the set of polymorphisms

Theorem [Cohen, Cooper, Creed, Jeavons, Živný]

Weighted polymorphisms characterize the complexity of VCSP.
Cyclic polymorphism

cyclic polymorphism - for every \(x_1, \ldots, x_k \in D \)

\[
f(x_1, x_2, \ldots, x_k) = f(x_2, \ldots, x_k, x_1)
\]
Constraint Satisfaction Problems

3-coloring

2-SAT

algebraic condition
Constraint Satisfaction Problems

[Barto, Kozik]

3-coloring

2-SAT

no cyclic polymorphism
Valued Constraint Satisfaction Problems

- MINIMUM VERTEX COVER
- MAX-CUT
- 3-COLOURING
- 2-SAT

algebraic condition
Valued Constraint Satisfaction Problems

- Minimum Vertex Cover
- MAX-CUT
- 3-coloring
- 2-SAT

- no cyclic polymorphism
- has positive probability

Joanna Ochremiak
Algebraic Necessary Condition for Tractability of Valued CSP,
Valued Constraint Satisfaction Problems

- NP-hard
- PTime?
- No cyclic polymorphism
- Has positive probability

Joanna Ochremiak

Algebraic Necessary Condition for Tractability of Valued CSP,
Thank you