A Named Entity Recognition System based on a Finite Automata
Acquidgition Algorithm

Muntsa Padr6 and Lluis Padré
TALP Research Center
Universitat Politécnica de Catalunya
{npadr o, padro}@si . upc. edu

Resumen: En este articulo presentamos un nuevo sistema para el reconocimiento de nom-
bres propios en espafiol. Este sistema esta basado en el algoritmo CSSR (Causal-States
Splitting Reconstruction) (Shalizi and Shalizi, 2004) que aprende un automata de estados
finitos partiendo de datos sequenciales. Los resultados obtenidos son ligeramente peores
que los mejores sistemas presentados en la “shared task” del CoNLL 2002, pero dada la sim-
plicidad de los atributos utilizados, estos resultados son realmente prometedores y creemos
que pueden ser facilmente mejorados introduciendo mas informacion al sistema.

Palabras clave: Reconocimiento de Nombres Propios, Automatas de Estados Finitos,
Aprendizaje Automatico

Abstract: In this work, a new Named Entity Recognition system for Spanish is presented.
This system is based on Causal-State Splitting Reconstruction algorithm (Shalizi and Sha-
lizi, 2004), which learns a finite automaton from data sequences. The obtained results are
slightly below the best systems presented in CoNLL 2002 shared task, though given the
simplicity of the used features, they are really promising. Furthermore, we think that these

results can be easily improved by introducing more information in the system.
Keywords: Named Entity Recognition, Finite State Automaton, Machine Learning

1 Introduction

Named Entity Extraction (NEE) task consists of
detecting lexical units in a word sequence, re-
ferring to concrete entities and of determining
which kind of entity the unit is referring to (per-
sons, locations, organizations, etc.). This infor-
mation is used in many NLP applications such
as Question Answering, Information Retrieval,
Summarization, Machine Translation, Topic De-
tection and Tracking, etc., and the more accurate
the extraction of Named Entities (NE) is, the bet-
ter the performance of the system will be.

NEE consists of two steps that could be ap-
proached either sequentially or in parallel. The
first step is Named Entity Recognition (NER)
which consists of detecting which parts of a text
belong to a NE. The second step is Named Entity
Classification (NEC) that consists of classifying
the NEs into a set of predefined classes (person,
location, organization, etc). This work presents a
system to perform the first step (NER) using an
algorithm that learns finite state automata from
data.

There are several approaches to Named Entity
Extraction task. Message Understanding Con-
ferences (MUC), devoted to Information Extrac-
tion, included a NEE task that leaded to diffe-
rent approaches to the task. Some of them were

hand-made, knowledge-based, such as (Black,
Rinaldi, and Mowatt, 1998; Appelt et al., 1995;
Weischedel, 1995; Krupka and Hausman, 1998).
There were also data-driven approaches, (Bikel
et al., 1997; Aberdeen et al., 1995) and hybrid
approaches combining machine learning tech-
niques with gazetteer information or hand-made
rules (Yu, Bai, and Wu, 1998; Borthwick et al.,
1998; Mikheev, Grover, and Moens, 1998). More
recent machine learning approaches to NEE task
are framed in CoNLL-2002 (Tjong Kim Sang,
2002) and CoNLL-2003 (Tjong Kim Sang and
De Meulder, 2003) shared tasks. Both tasks con-
sisted of detecting and classifying NEs, using
different languages

In this paper, a new method to perform NER is
presented. This method is applied to detect NEs
in Spanish texts. It is based on CSSR (Causal
State Splitting Reconstruction) algorithm, which
learns a finite state automaton given sequential
data. Since NEs present some regular-expression
patterns, it is expected that this kind of algorithm
can learn this structure and use it for the detection
of NEs

The results presented in this paper are pre-
liminary, since the performed experiments take
into account few features. Nevertheless, the ob-
tained results are quite promising since they are

not far from those of the state-of-the-art systems
and there is still a large margin for improvement
to the presented preliminary results. At the sight
of which it can be said that NER task can be suc-
cessfully approached using this automaton learn-
ing algorithm.

Next section presents the CSSR algorithm and
its theoretical basis. Section 3 studies how the
algorithm learns automata from text sequences.
Section 4 defines our approach to apply the algo-
rithm to NER task. In section 5 the performed ex-
periments with the obtained results are discussed
and section 6 states some conclusions and future
work.

2 CSSR algorithm

The CSSR algorithm (Shalizi and Shalizi, 2004)
performs the blind construction of asymptoti-
cally optimal nonlinear predictors of discrete se-
quences. It inferres the causal states from data,
searching for optimal predictors for discrete ran-
dom processes, in the form of Markov Models.

Given a discrete alphabet >3, consider a se-
quence z~ (history) and a future Z*. Z* can be
observed after z~ with a probability P(Z*|z™).
Two histories, z— and y—, are equivalent when
P(Z*|z~) = P(ZT|y), i.e. when they have
the same probability distribution for the future.

The different future distributions build the
equivalence classes which are named causal
states of the process. Each causal state is a set
of suffixes (sequences of symbols drawn from al-
phabet) that represent histories (up to a preestab-
lished maximum length) with the same probabi-
lity distribution for the future. The causal states
of a process form a deterministic machine and are
recursively calculable.

2.1 The algorithm

Causal-State Splitting Reconstruction (CSSR)
estimates an HMM inferring the causal states
from sequence data. The main parameter of this
algorithm is the maximum length (I,,,45) the suf-
fixes can reach. That is, the maximum length
of the considered histories. In terms of HMMs,
lmaz Would be the potential maximum order of
the model (the HMM would have [,,,, order if
all the suffixes belonged to different states).

The algorithm starts by assuming the process
is an identically-distributed and independent se-
guence with a single causal state, and then iterati-
vely adds new states when it is shown by statisti-
cal tests that the current states set is not sufficient.
The causal state machine is built in three phases
(see (Shalizi and Shalizi, 2004) for details):

1. Initialize:

Create a state set with only one state con-
taining only the null suffix. Setl = 0
(length of the longest suffix so far).

. Sufficiency:

Iteratively build new states depending on
the future probability distribution of each
possible suffix extension (suffix sons). Be-
fore doing so it is necessary to estimate
the probability distribution P(X;|S = s)
(where X; is the random variable for the
next alphabet symbol in the sequence) for
each state s. This is necessary because
this probability can change at each itera-
tion when the new suffixes are added to a
given state. This probability distribution is
estimated (via maximum likelihood, for in-
stance) using the data.

At this phase, the suffix sons (ax) for each
longest suffix (x) are created adding each al-
phabet symbol (a) at the beginning of each
suffix. The future distribution P(X;| X'}
(probability of each alphabet symbol given
the last [symbols) for each son is computed
and a hypothesis test with the following null
hypothesis is performed,

P(X;| X7} =az)=P(X;|S=5); Ya€X

This hypothesis is true if the new distribu-
tion is equal (with a certain confidence de-
gree) to the distribution of an existing state
(s). In this case, the suffix son is added
to this state. If the hypothesis is rejected
for all states, a new state for the suffix son
is created. To check the null hypothesis
we can use an statistical test such as x? or
Kolmogorov-Smirnov.

As the suffix length grows, [is increased by
one at each iteration. This phase goes on
until 7 reaches some fixed maximum value
lmaz, the maximum length to be conside-
red for a suffix, which represents the longest
histories taken into account. The results
of the system will be significantly different
depending on the chosen I,,,, value, since
the larger this value is, the more training
data will be necessary to learn a correct au-
tomaton with statistical reliability. Also, the
time needed to learn the automaton grows
linearly with [,,,,.. S0 it is necessary to tune
the best maximum length for the amount
of available data (or viceversa, the amount
of necessary data for the required suffix
length).

3. Recursion:

Since CSSR models stationary processes,
first of all the transcient states are removed.
Then the states are splitted until a deter-
ministic machine is reached. To do so,
the transitions for each suffix in each state
are computed and if two suffixes in one
state have different transitions for the same
symbol, they are splitted into two different
states.

At the end of this recursion phase, a deter-
ministic automaton is obtained.

For extended details about CSSR algorithm
see (Shalizi and Shalizi, 2004).

3 Studying the Algorithm Behaviour

Before applying CSSR algorithm to NER task,
some experiments to study the algorithm be-
haviour were performed. The goal of these ex-
periments was to prove that this method is able to
capture sentence patterns, as well as studying the
different automata learned using different CSSR
parametritzation. The CSSR input was CoNLL-
2002 training corpus for Spanish encoded as a
token sequence in a given alphabet. In our exper-
iments, the following feature-sets were mapped
to the alphabet symbols:

e G: Beginning of the sentence, capitalized,
not containing numbers, not in the dictio-
nary?..

e S: Beginning of the sentence, capitalized,
not containing numbers, one of its possible
analysis being a common noun.

e M: Not at the beginning of the sentence, ca-
pitalized.

e a: Not at the beginning of the sentence, non-
capitalized, functional word 2.

e w: Other.

Note that these features encoded in this al-
phabet are quite oriented to NER task, since it is
the same alphabet that will be used later in NER
experiments (Section 5). This alphabet is based
on the FreeLing analyzer (Carreras et al., 2004)
which has a NER system that uses a simple hand-
built automaton of four states. The alphabet pre-
sented above is the same —and encode the same
features— than the one used by FreeLing analyzer
NE detection module. The automata learned via

The used dictionary is the one provided by Freeling
(Carreras et d., 2004)

2Functional words are articles or preposition that are of-
ten found inside aNE

CSSR are expected to capture the pattern of a
sentence in terms of the features presented above.

Once the alphabet was set, the training corpus
used in CoNLL-2002 was translated into this al-
phabet and then, different automata were learned
using CSSR with different maximum lengths.

The obtained results show that CSSR is able
to reproduce sentence patterns with this kind of
alphabets. As CSSR algorithm builds probabilis-
tic automata, some states that would be melted
by a minimizing algorithm are maintained sepa-
rately because they have different probability dis-
tributions. If the probabilities are ignored and the
automata are minimized, the automata shown in
figures 1 and 2 are obtained. It can be seen that
they are logical automata that reproduce the intu-
itive pattern of sentences containing NEs.

Figure 2: Learned automata with ,,,,, = 3

These obtained automata can be compared
with the hand-built automaton used by FreeLing
NE detection module. In fact, the FreeLing au-
tomaton is the same that the obtained by CSSR
using I,,qz = 2 (but with the information about a
state being inside or outside a NE). It can be ob-
served that the difference between the obtained
automata with different maximum lengths is that
as the length grows, the automata become more
informed and tend to commit less over general-
ization. For example, for I,,.,, = 3, there is an
extra state that prevents the existence of the com-
bination "awG” or "awS” . In fact, this combi-
nation (which is accepted by the I,,,, = 2 au-
tomaton) is never seen in the data, because G and

S are symbols that only appear at the beginning
of the sentence, so the w symbol preceding a G
or a S will be the punctuation mark that ends the
previous sentence and it couldn’t be preceded by
a preposition or an article (a) because a sentence
never finishes with such a word.

Note that in these minimized automata there
is no difference between the symbols G and S.
In fact, the only difference is observed whit the
not-minimized automata, where G and S present
different future probabilities so produce in diffe-
rent transitions. Furthermore, this distinction be-
tween G and S is maintained because it may be
useful when performing NER.

4 Applying CSSR to Named Entity
Recognition task

Following CoNLL 2002 and 2003 shared task,
we worked with the “B-1-O” approach (Ramshaw
and Marcus, 1995) to tag Named Entities. Each
word has a B, | or O tag, being B the tag for a
word where a NE begins, | the tag if the word is
part of a NE but not the beginning, and O the tag
for the words not belonging to any NE. There are
other possible approaches to tagging NEs (Tjong
Kim Sang and Veenstra, 1999) but this is one of
the most widely used.

The general idea of our approach is to use
CSSR to learn an automaton for NE structure.
Once the automaton is learned, it can be applied
to detect NEs in untagged text.

4.1 Learning the automaton

To learn the automaton that must reproduce NE
structure, different information about the words
is used. This information can be orthographic,
morpho-syntactic, about the position in the sen-
tence, etc. Using these features, the words in a
sentence are translated to a closed set of sym-
bols, that will be the alphabet of the automaton.
The sentence translated in such a way will be the
sequence that we use to learn the automaton via
CSSR.

A problem of using that algorithm for this task
is that it is conceived to model stationary pro-
cesses, but NE patterns are not in this category.
So, what we did was to regard a text sequence as
a stationary process in which NEs occur once a
while. Doing so implies the automaton is model-
ing the pattern of the sequence (the text), not the
pattern of a NE.

To allow CSSR to learn the pattern of the NEs,
we introduce in the alphabet the information of
the NE-tag (B, |1 or O) available in the supervised
training corpus. To do so, each symbol in the ba-

sic alphabet (G, S, M...) is splitted into three
symbols, one for each NE-tag (the hidden infor-
mation). So the correct NE-tag is taken into ac-
count for each kind of word when building the
automaton.

In this way, although we obtain an automaton
modeling the entire text sequence as an station-
ary process, we have information encoded in the
transitions about B-1-O tags for NEs in the text.
Thus, we can later use this information to com-
pute the best path for a sequence and use it to tag
NES in a new text.

4.1.1 An Example

For instance, let’s suppose an approach where
the features taken into account are the same pre-
sented in section 3. In this case, the alphabet will
consist of fifteen symbols, which are the possi-
ble combinations of each feature and a B-1-O tag
(G, G1, Go, SB, S1, So, Mg, My, Mo, ap,
ar, o, wg, wy, wo). Each word will be trans-
lated into sequences of these symbols depending
on whether it is capitalized and on its NE-tag.

Figure 3 shows an example of a possible trai-
ning sentence and its translation into this alpha-
bet. The first two columns would be the sen-
tences as they are in the training corpus: a word
and its right B-1-O tag. Last column is its transla-
tion into the alphabet, which will be used as input
for the CSSR algorithm.

Word Correct Tag Alphabet Symbol
Fuentes [¢] So
del (0] ao
Vaticano B Mg
comentaron 0] wo
la (0] aop
salud 0] wo
del (0] aop
Papa B Mp
de | ar
Roma | My
. (0] wo
Navarro-Valls B Gg
afirma (0] wo
que O wo
esta (0] wo
estable 0] wo
. (0] wo
El (0] wo
portavoz (0] wo

Figure 3: Example of a training sentence and its
translation to the chosen alphabet

Once the data are properly translated into the
alphabet, the automaton is built using CSSR.

4.2 Tagging NEs with the learned
automaton

When a sentence has to be tagged, the informa-
tion about the correct NE tag is not available, so
there are several possible alphabet symbols for
that word. It is only possible to know the part of
the translation that depends on the word or sen-
tence features. In our example, it would be pos-
sible to translate each word to a “G”, “S™, “M”,
“a” or “w”, but not to know the part of the sym-
bol that depends on the NE-tag, which is, in fact,
what we want to know.

To find this most likely tag for each word in
a sentence —that is, to find the most likely sym-
bol of the alphabet (e.g. G, Gy, Go fora G
word), a Viterbi algorithm is applied. That is, for
each word in a sentence, the possible states the
automaton could reach if the current word had
the tag B, I, or O, and the probabilities of these
paths are computed. Then, only the highest pro-
bability for each tag is recorded. That means that
for each word, the best path for this word having
each tag is stored. At the end of the sentence, the
best probability is chosen and the optimal path
is backwards recovered. In this way, the most
likely sequence of B-1-O tags for each word in
the sentence is obtained. There are some forbid-
den paths, which are those that lead to the OI
tag-combination. The paths including this com-
bination are pruned out.

4.3 Managing Unseen Transitions

When performing the tagging of NEs given a
text, it is possible to find symbol sequences that
haven’t been seen in the training corpus. This
will cause the automaton to fall in a sink state,
which receives all the unseen transitions. This
state can be seen as the state that contains all the
unseen suffixes. All unseen transitions probabil-
ities are smoothed to have a small probability of
arriving to the sink state. Actually, the only se-
guences that have zero probability are those that
have a forbidden combination of tags or of states
being the beginning or the end of a NE.

When the automaton falls in the sink state, it
can not follow the input sequence using transition
information because, as the transitions weren’t
seen, they are not defined. To allow the system
to continue tagging the text, when the automaton
falls into sink state, the suffix of length I, iS
built using the last /,,,, — 1 symbols and the next
symbol from the input. A state containing this
new suffix is searched over the automaton and, if
found, the automaton goes to this state and con-
tinues its normal functioning. If not, the process

is repeated, getting more symbols from the input
sequence, until a state containing the new suffix
is found.

This may cause skipping some part of the
input, and is caused by the fact that the text
sequence is considered as an stationary pro-
cess, and so, when the CSSR-acquired automa-
ton fails, we have to resynchronize it with the in-
put data.

5 Experiments and Results

For the performed experiments, the data for
the CoNLL-2002 shared task (Tjong Kim Sang,
2002) for Spanish were used. These data contain
three corpora: one for the train and two for the
test: one for the development of the system and
the other one for the final test. The amount of
data in each corpus is shown in table 1.

Corpus | # of words | # of NEs
Train 264,715 18,797
Testa 52,923 4,351
Testb 51,533 3,558

Table 1: Number of words/NEs in each corpus

With these data, some experiments were per-
formed using CSSR as a NER system, in order to
evaluate the accuracy of this system and to study
the influence of the different parameters in its be-
haviour.

CSSR algorithm has three important parame-
ters. One is the chosen maximum length (/,,4),
which is the most significant parameter. The
other two are the test used to check the null
hypothesis and the parameter «, controlling the
test significance degree. We made several ex-
periments for different /,,,,, values and with two
different statistical test: x? and Kolmogorov-
Smirnov. For each test, the experiments were
performed with several « values. The used al-
phabet was the same one presented before.

For the discussion of the results we will focus
on those obtained using Kolmogorov-Smirnov
test. The results obtained with x? test have a sim-
ilar behaviour but are slightly worse and lead to
bigger automata.

Figure 4 shows how the parametritzation of
the model affects to the size of the generated au-
tomaton.

As it was expected, the « value not only af-
fects the performance of the system, but also
changes the number of states of the generated au-
tomata. The larger « is, the greater the number
of states will be. I,,,4, also is very influent on the

Number of Generated States
4000

3500 -

3000 -

2500 -

2000 -

Number of States

1500 -

1000 -

500

0 L L L L
le-10 1e-08 1e-06 0.0001 0.01 1

Figure 4. Number of states of the different
learned automata using different ,,,,, and « va-
lues

size of the automaton, growing rapidly the num-
ber of generated states with the chosen maximum
length.

Figure 5 shows the obtained F results with
the different learned automata depending on the
CSSR parametritzation.

Development Corpus

F1(%)
3

F1 (%)
M
3

86 L L L
le-10 1le-08 1e-06 0.0001 0.01 1

Figure 5: Obtained results with different /,,..
and « values for both test corpora

In this figure it can be seen that the signifi-
cance degree value is not as influent as the 1,44
value. In fact, for o under 0.01 the reached re-
sults and the size of the built automata don’t vary
significantly with .

About the influence of [,,,4,, the results show

that best performance is obtained with small
Imaz» likely caused by the limited size of the trai-
ning corpus, which seems not to allow statisti-
cally reliable acquisition of automata with too
long histories.

The best performance is obtained with /,,,,, =
3 and o = 1le — 5. With these values, the system
reaches a precision of 89.81%, a recall of 88.22%
and F; = 89.01% for the development corpus
(test a) and a 90.03% precision, 88.81% recall
and F; = 89.42% for the test corpus (test b).

These results can be compared with the win-
ner system of CoNLL-2002 shared task (Car-
reras, Marquez, and Padrd, 2002). This system
was developed with the same training and testing
data and performs the NE recognition and classi-
fication separately , so it is possible to compare
our system with the part that performs the NE
recognition.

That system obtained a F of 91.66% for the
Spanish development corpus and a 92.91% for
the test corpus. This results are higher than the
results presented in this work, which was ex-
pected since the feature set used by that system
is much richer (bag of words, disambiguated PoS
tag, many orthographic features, etc.) than the
used in our experiments.

Furthermore, it is possible to apply the NEC
system used by (Carreras, Marquez, and Padro,
2002) to the output of our NE detector. Doing so
over our best results yields to a F; = 76.30%,
which would situate our system in the fifth posi-
tion in CoNLL-2002 ranking table for complete
NER systems in Spanish as shown in table 2
(Tjong Kim Sang, 2002).

| System | Precision | Recall | F,
Carreras et.al. 81.38% | 81.40% | 81.39%
Florian 78.70% | 79.40% | 79.05%
Cucerzan et.al. 78.19% | 76.14% | 77.15%
Wu et.al. 75.85% | 77.38% | 76.61%
CSSR 76.82% | 75.78% | 76.30%
Tjong Kim Sang | 76.00% | 75.55% | 75.78 %
Patrick et.al. 74.32% | 73.52% | 73.92 %
Jansche 74.03% | 73.76% | 73.89%
Malouf 73.93% | 73.39% | 73.66%
Tsukamoto 69.04% | 74.12% | 71.49%
Black et.al. 68.78% | 66.24% | 67.49%
McNamee et.al. 56.28% | 66.51% | 60.97%
baseline 26.27% | 56.48% | 35.86%

Table 2: Results presented by the participants of
the CoNLL-2002 shared task compared to the re-
sults obtained by CSSR NER-system

6 Conclusions and Further Work

In this work, a new Named Entity Recognition
system for Spanish has been presented. This sys-
tem is based on a finite automata acquisition al-
gorithm.

Firstly, the behaviour of the algorithm has
been studied and it has been seen that the algo-
rithm is able to learn the expected automata given
word sequences translated into an adequate al-
phabet.

Secondly, our approach to use this algorithm
to detect the NEs in a text and the performed
experiments over the CoNLL-2002 corpora have
been presented. It has been shown that this algo-
rithm can build automata that give pretty good re-
sults when applied to recognize the NEs of a text.
In fact, the system results are not too far from
those obtained by the winner system on CoNLL
2002 shared task and they may be expected to
improve by introducing more information in the
system, since we use a much simpler knowledge
than all CoNLL 2002 participants.

The main conclusion of this work, is that
CSSR algorithm can be satisfactorily applied to
NER tasks, which opens a door to applying it to
other basic NLP tasks which need to learn se-
quential pattern information from data (PoS tag-
ging, chunking, etc.)

The further work to be developed is focused
on improving this NER system by introducing
more orthographic and morpho-syntactic infor-
mation in the alphabet in order to build more ac-
curate automata. Similarly, external information
such as trigger word lists or gazetteers could be
also used.

Other future directions consist of applying
CSSR algorithm to other NLP tasks such as
chunking, PoS tagging or subcategorization pat-
tern acquisition.

Acknowledgments

This research is being funded by the Catalan
Government Research Department (DURSI), by
the Spanish Ministry of Science and Technology
(ALIADO TI1C2002-04447-C02) and by the Eu-
ropean Comission projects: Meaning (IST-2001-
34460) and CHIL (I1ST-2004-506909). Our re-
search group, TALP Research Center, is recog-
nized as a Quality Research Group (2001 SGR
00254) by DURSI.

References

Aberdeen, John, John D. Burger, David Day,
Lynette Hirschman, Patricia Robinson, and

Marc Vil ain, 1995. MITRE: Description
of the ALEMBIC System Used for MUC-
6, pages 141-155. Proceedings of the 6th
Messsage Understanding Conference. Mor-
gan Kaufmann Publishers, Inc., Columbia,
Maryland.

Appelt, Douglas E., Jerry R. Hobbs, John Bear,
David Israel, Megumi Kameyama, Andy
Kehler, David Martin, Karen Myers, and
Mabry Tyson, 1995. SRI International FAS-
TUS System MUC-6 Test Results and Analy-
sis, pages 237-248. Proceedings of the 6th
Messsage Understanding Conference. Mor-
gan Kaufmann Publishers, Inc., Columbia,
Maryland.

Bikel, Daniel M., Scott Miller, Richard
Schwartz, and Ralph Weischedel. 1997.
Nymble: A high performance learning name-
finder. In Proceedings of the 5th Conference
on Applied Natural Language Processing,
ANLP, Washington DC. ACL.

Black, William J., Fabio Rinaldi, and David
Mowatt. 1998. FAcILE: Description of the
ne system used for muc-7. In Proceedings of
the 7th Message Understanding Conference.

Borthwick, A., J. Sterling, E. Agichtein, and
R. Grishman. 1998. Nyu: Description of the
MENE hamed entity system as used in muc-
7. In Proceedings of the 7th Message Under-
standing Conference.

Carreras, Xavier, Isaac Chao, Lluis Padro, and
Muntsa Padr6. 2004. Freeling: An open-
source suite of language analyzers. In Pro-
ceedings of the 4th International Confer-
ence on Language Resources and Evaluation
(LREC’04), Lisbon, Portugal.

Carreras, Xavier, Lluis Marquez, and Lluis
Padr6. 2002. Named entity extraction using
adaboost. In Proceedings of CoNLL Shared
Task, pages 167-170, Taipei, Taiwan.

Krupka, George R. and Kevin Hausman. 1998.
Isoquest, inc.: Description of the netowl”™
extractor system as used for muc-7. In Pro-
ceedings of the 7th Message Understanding
Conference.

Mikheev, Andrei, Claire Grover, and Marc
Moens. 1998. Description of the LTG sys-
tem used for muc-7. In Proceedings of the
7th Message Understanding Conference.

Ramshaw, L. and M. P. Marcus. 1995. Text
chunking using transformation-based learn-

ing. In Proceedings of the Third ACL Work-
shop on Very Large Corpora.

Shalizi, Cosma and Kristina Shalizi. 2004. Blind
construction of optimal nonlinear recursive
predictors for discrete sequences. Uncer-
tainty in Artificial Intelligence: Proceedings
of the Twentieth Conference.

Tjong Kim Sang, Erik F. 2002. Introduc-
tion to the conll-2002 shared task: Language-
independent named entity recognition. In
Proceedings of CoNLL-2002, pages 155-158.
Taipei, Taiwan.

Tjong Kim Sang, Erik F. and Fien De Meulder.
2003. Introduction to the conll-2003 shared
task: Language-independent named entity
recognition. In Walter Daelemans and Miles
Osborne, editors, Proceedings of CoNLL-
2003, pages 142-147. Edmonton, Canada.

Tjong Kim Sang, Erik F. and Jorn \eenstra.
1999. Representing text chunks. In Proceed-
ings of EACL’99, pages 173-179. Bergen,
Norway.

Weischedel, Ralph, 1995. BBN: Description of
the PLUM System as Used for MUC-6, pages
55-69. Proceedings of the 6th Messsage Un-
derstanding Conference. Morgan Kaufmann
Publishers, Inc., Columbia, Maryland.

Yu, Shihong, Shuanhu Bai, and Paul Wu. 1998.
Description of the kent ridge digital labs sys-
tem used for muc-7. In Proceedings of the 7th
Message Understanding Conference.

