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Abstract. It has been shown that prosody helps to improve voice spectrum 
based speaker recognition systems. Therefore, prosodic features can also be 
used in multimodal person verification in order to achieve better results. In this 
paper, a multimodal recognition system based on facial and vocal tract spectral 
features is improved by adding prosodic information. Matcher weighting 
method and support vector machines have been used as fusion techniques, and 
histogram equalization has been applied before SVM fusion as a normalization 
technique. The results show that the performance of a SVM multimodal 
verification system can be improved by using histogram equalization, especially 
when the equalization is applied to those scores giving the highest EER values. 
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1   Introduction 

Multimodal biometric systems, which involve the combination of two or more human 
traits, are used to achieve better results than the ones obtained in a monomodal 
recognition system [1]. In a multimodal recognition system, fusion is possible at three 
different levels: feature extraction level, matching score level and decision level. 
Fusion at the score level matches the monomodal scores of different recognition 
systems in order to obtain a single multimodal score, and it is the preferred method by 
most of the systems. 

Matching score level fusion is a two-step process which consists of a previous 
score normalization and the fusion itself [2-5]. The normalization process transforms 
the non homogeneous monomodal scores into a comparable range of values. Z-score 
is a conventional affine normalization technique which transforms the scores into a 
distribution with zero mean and unitary variance [3, 5]. Histogram equalization (HE) 
is used as a non linear normalization technique which makes equal the statistics of the 
monomodal scores. HE can be seen as an extension to the whole statistics of the mean 
and variance equalization performed by the z-score normalization. 

The fusion process is a combination of the previously normalized scores. In this 
paper, two fusion methods are used and compared: matcher weighting and support 
vector machines. In matcher weighting method, each monomodal score is weighted 
by a factor proportional to its recognition result. A support vector machine is a binary 



classifier based on a learning fusion technique, where scores are seen as input patterns 
to be labeled as accepted or rejected.  

The aim of this work is to improve the results obtained in our recent work based on 
the fusion of prosody, voice spectrum and face features where different step strategies 
were applied [6]. The improvement is achieved with previous histogram equalization 
as a normalization of the scores in a SVM based fusion. 

In the next section, the monomodal information sources used in this work are 
described. Z-score and histogram equalization are presented in section 3. Matcher 
weighting fusion technique and support vector machines are reviewed in section 4 
and, finally, experimental results are shown in section 5. 

2   Monomodal Sources 

2.1   Voice Information  

In multimodal person recognition only short-term spectral features are normally used 
as voice information. However, it has been demonstrated that voice spectrum based 
systems can be improved by adding prosodic information [7]. 

Spectral parameters are those which only take into account the acoustical level of 
the signal, like spectral magnitudes, formant frequencies, etc., and they are more 
related to the physical traits of the speaker. Cepstral coefficients are the usual way to 
represent the short-time spectral envelope of a speech frame in current speaker 
recognition systems. However, Frequency Filtering (FF) parameters, presented in [8] 
and used in this work, become an alternative to the use of cepstrum in order to 
overcome some of its disadvantages. 

Several linguistic levels like lexicon, prosody or phonetics are used by humans to 
recognize others with voice. These levels of information are more related to learned 
habits and style, and they are mainly manifested in the dialect, sociolect or idiolect of 
the speaker. Prosodic parameters, in particular, are manifested as sound duration, tone 
and intensity variation. Although these features don’t provide very good results when 
they are used alone, they give complementary information and improve the results 
when they are fused with vocal tract spectrum based systems. The prosodic 
recognition system used in this task consists of a total of 9 prosodic scores already 
used in [9]: 

• number of frames per word averaged over all words 
• average length of word-internal voiced segments 
• average length of word-internal unvoiced segments 
• mean F0 logarithm 
• maximum F0 logarithm 
• minimum F0 logarithm 
• F0 range (maximum F0 – minimum F0) logarithm 
• F0 “pseudo slope”: (last F0 – first F0) / (number of frames in word) 
• average slope over all segments of a piecewise linear stylization of F0 



2.1   Face Information 

Facial recognition systems are based on the conceptualization that a face can be 
represented as a collection of sparsely distributed parts: eyes, nose, cheeks, mouth, 
etc. Non negative matrix factorization (NMF), introduced in [10], is an appearance-
based face recognition technique based on the conventional component analysis 
techniques which does not use the information about how the various facial images 
are separated into different facial classes. The most straightforward way in order to 
exploit discriminant information in NMF is to try to discover discriminant projections 
for the facial image vectors after the projection. The face recognition scores used in 
this work have been calculated in this way with the NMF-faces method [11], in which 
the final basis images are closer to facial parts. 

3   Histogram Equalization 

Z-score (ZS) is one of the most conventional normalization methods, which 
transforms the scores into a distribution with zero mean and unitary variance  
Denoting as a the raw matching from the set A of all the original monomodal 
biometric scores, the z-score normalized biometric is computed as: 
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where mean(A) is the statistical mean of A and std(A) the standard deviation. 

Histogram equalization (HE) is a general non parametric method to match the 
cumulative distribution function (CDF) of some given data to a reference distribution. 
This technique can be seen as an extension of the statistical normalization made by 
the z-score to whole biometric statistics. 

Histogram equalization is a widely used non linear method designed for the 
enhancement of images. HE employs a monotonic, non linear mapping which re-
assigns the intensity values of pixels in the input image in order to control the shape 
of the output image intensity histogram to achieve a uniform distribution of intensities 
or to highlight certain intensity levels. 

This method has been also developed for the speech recognition adaptation 
approaches and the correction of non linear effects typically introduced by speech 
systems such as microphones, amplifiers, clipping and boosting circuits and automatic 
gain control circuits [12, 13]. 

The objective of HE is to find a non linear transformation to reduce the mismatch 
of the statistics of two signals. In [14, 15] this concept was applied to the acoustic 
features to improve the robustness of a speaker verification system. On the other 
hand, in this paper HE is applied to the scores. N intervals with the same probability 
are assigned in the distributions of both signals. Each interval in the reference 



distribution, [ [1,i ix q q +∈ , is represented by (xBiB, F(xBiB)). xBiB is the average of the scores 

and F(xBiB) is the maximum cumulative distribution value: 
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where xBijB are the scores in the interval, kBiB is the number of scores in the interval, KBiB is 
the number of data in the interval[ [10 , +iqq , and M is the total amount of data. 

All the scores in each interval of the source distributions are assigned to the 
corresponding interval in the reference distribution. F(xBiB) sets the boundaries 

[ [1' , 'i iq q + of the intervals in the distribution to be equalized. These boundaries limit 

the interval of values that fulfils the following condition: 1( ) ( ) ( )i iF q F y F q +≤ < , and 

all the values of the source signal lying in the interval [ [1' , 'i iq q +  will be transformed 

to their corresponding xBiB value.   

4   Fusion Techniques and Support Vector Machines 

One of the most conventional fusion techniques is the matcher weighting (MW) 
method, where each monomodal score is weighted by a factor proportional to each 
biometric recognition rate, so that the weights for more accurate matchers are higher 
than those of less accurate matchers. When using the Equal Error Rates (EER) the 
weighting factor for every biometric is proportional to the inverse of its EER. 
Denoting wBmB and eBmB the weighting factor and the EER for the m-th biometric xBmB and 
M the number of biometrics, the final fused score u is expressed as [1, 3]: 
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In contrast to the MW that is a linear and a data-driven fusion method, non linear 

and machine learning based methods may lead to a higher performance. Learning 
based fusion can be treated as a pattern classification problem in which the scores 
obtained with individual classifiers are seen as input patterns to be labeled as 
‘accepted’ or ‘rejected’. 

Recent works on statistical machine learning have shown the advantages of 
discriminative classifiers like SVM [16] in a range of applications. Support vector 
machine (SVM) is a state-of-the-art binary classifier. Given a linearly separable two-
class training data, SVM finds an optimal hyperplane that splits input data in two 



classes, maximizing the distance of the hyperplane to the nearest data points of each 
class. 

However, data are normally not linearly separable. In this case, non linear decision 
functions are needed, and an extension to non linear boundaries is achieved by using 
specific functions called kernel functions [17]. Kernel functions map the data of the 
input space to a higher dimensional space (feature space) by a non linear 
transformation. The optimal hyperplane for a non linearly separable data is defined 
by: 
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where tBiB are labels, K is a chosen kernel function and
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the support vectors, which determine the optimal separating hyperplane and 
correspond to the points of each class that are the closest to the separating hyperplane. 

5   Recognition Experiments 

In the next section, the monomodal recognition systems used in the fusion 
experiments are described. Experimental results by using different normalization and 
fusion techniques are shown in section 5.2. 

5.1   Experimental Setup 

Recognition experiments have been performed with the Switchboard-I speech 
database [18] and the video and speech XM2VTS database of the University of 
Surrey [19]. Switchboard-I database, which is a collection of 2430 two-sided 
telephone conversations among 543 speakers from all areas of the United States, has 
been used for the speaker recognition experiments. Speaker scores have been obtained 
by using two different systems: a voice spectrum based recognition system and a 
prosody based recognition system. 

The spectrum based speaker recognition system used is a 32-component GMM 
system with diagonal covariance matrices; 20 Frequency Filtering parameters were 
generated with a frame size of 30 ms and a shift of 10 ms, and 20 corresponding delta 
and acceleration coefficients were included. 

In the prosody based recognition system a 9-feature vector was extracted for each 
conversation side. The mean and standard deviation over all words were computed for 
each individual feature. The system was tested using the k-Nearest Neighbor classifier 
(with k=3), comparing the distance of the test feature vector to the k closest vectors of 
the claimed speakers and the distance of the test vector to the k closest vectors of the 
cohort speakers, and using the symmetrized Kullback-Leibler divergence as a distance 
measure. 



In both spectral and prosodic systems, each speaker model was trained with 8 
conversation sides. Training was performed using splits 1-3 of the Switchboard-I 
database, and splits 4-6 were provided the cohort speakers and the UBM. Both 
systems were tested with one conversation-side according to NIST’s 2001 Extended 
Data task.  

Face recognition experiments were performed with the XM2VTS database, which 
is a multimodal database consisting of face images, video sequences and speech 
recordings of 295 subjects. Only the face images have been used in our experiments. 
In order to evaluate the verification algorithms on the database, the evaluation 
protocol described in [19] was followed. The well-known Fisher discriminant 
criterion was constructed as [20] in order to discover discriminant linear projections 
and to obtain the facial scores. 

Fusion experiments have been done at the matching score level. Since both 
databases contain biometric characteristics belonging to different users, a chimerical 
database has been created to perform the experiments. A chimerical database is an 
artificial database created using two or more monomodal biometric characteristics 
from different individuals to form artificial (or chimerical) users. In this paper, the 
chimerical database consists of 30661 users created by combining 179 different 
voices of the Switchboard-I database with 270 different faces of the XM2VTS 
database. The scores were then split in two equal sets (development and test) for each 
recognition system, obtaining a total amount of 46500 scores for each set (16800 
clients and 29700 impostors). 

The kernel function used in the SVM was a Gaussian radial basis function. Scores 
are always equalized to the histogram corresponding to the best scores involved in the 
fusion; i.e. those scores that provided the lowest EER. A 1000-interval histogram was 
applied before each SVM fusion, and both SVM and HE-SVM techniques are 
compared to a baseline system which uses MW fusion and z-score normalization. 

5.2   Verification Results 

TMonomodal systems.T Table 1 shows the EER obtained for each prosodic feature in 
the prosody based recognition system. As it can be seen in the table, features based on 
fundamental frequency measurements achieve the lowest EER. 

Table 1.  EER for each prosodic feature 

Features EER (%) 
Log (#frames/word) 30.3 
Average length of word-internal voiced segments 31.5 
Average length of word-internal unvoiced segments 31.5 
Log(mean_F0) 19.2 
Log(max_F0) 21.3 
Log(min_F0) 21.5 
Log(range_F0) 26.6 
F0 ‘pseudo-slope’ 38.3 
Average slope over all segments of PWL stylization of F0 28.7 



The EER obtained in each monomodal recognition system are shown in Table 2. 
Note that fusion is only used in the prosodic system, where there are 9 prosodic scores 
to be combined. In this case, fusion is carried out in one single step, and the results of 
the three types of fusion mentioned above are presented: (1) matching score fusion 
with z-score normalization, (2) support vector machines and (3) support vector 
machines with a previous histogram equalization. 

Table 2.  EER (%) for each monomodal recognition system 

Source  EER (%) 
ZS-MW 15.66 
SVM 14.65 

Prosody 

HE-SVM 13.39 
Voice spectrum 10.10 
Face  2.06 

TBimodal systems. Table 3 shows the fusion results for two bimodal systems: a 
prosody based system fused with the voice spectral recognition system, and a voice 
spectrum based system fused with the face recognition system, using the same fusion 
methods as above. As in the monomodal systems (Table 2), matcher weighting fusion 
is slightly worse than the support vector machines. 

Table 3.  EER (%) for each bimodal recognition system 

Source ZS-MW SVM HE-SVM 
Prosody + voice spectrum 7.44 6.84 6.25 
Voice spectrum + face  1.83 0.99 1.02 

Trimodal system. In [6] several strategies were proposed by fusing the monomodal 
scores in one, two and three steps. In those experiments the best results were achieved 
in a two-step configuration, where the 9 prosodic scores were fused in the first step 
and the obtained scores were then fused in the second step with voice spectral and 
facial scores (Fig. 1). 
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Fig. 1. Two-step fusion 

 
The EER for the selected two-step fusion are presented in Table 4. Once again, 

matcher weighting fusion method is clearly outperformed by support vector machines. 



Table 4.  EER (%) for the trimodal system 

Fusion technique EER (%) 
ZS-MW 1.493 
SVM 0.647 

 
 
In our trimodal system, equalization has been applied in all the possible 

combinations:  
 

(1) HE before the first fusion (equalization of the prosodic scores) 
(2) HE before the second fusion (equalization of the three modalities) 

 (3) HE before both fusions F1and F2 
  
The results are shown in Table 5 and they are compared to the non equalized SVM 

fusion. 

Table 5.  EER (%) applying HE before SVM fusion 

Fusion technique F1 F2 EER (%) 
SVM - - 0.647 

HE - 0.630 
- HE 0.649 

 

HE HE 0.613 

As it can be seen in the table, the best result is achieved when histogram 
equalization is used before F1 and F2. By equalizing only the prosodic scores, the 
performance of the system is also improved. On the other hand, equalization before 
the second fusion does not improve the performance of the system. 

6   Conclusions 

In this work, the use of prosody improves the performance of a bimodal system 
based on vocal tract spectrum and face features. The experiments show that support 
vector machines based fusion is clearly better than matcher weighting fusion method. 
In addition, results are improved by applying histogram equalization as a 
normalization technique before SVM fusion. The best verification results are achieved 
when the histogram of the scores with the highest values of EER (the prosodic scores 
in our experiments) are equalized to the distribution of the scores that provide the 
lowest EER.  
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