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Abstract. It has been shown that prosody helps to improvieevepectrum
based speaker recognition systems. Therefore, gimseatures can also be
used in multimodal person verification in orderatthieve better results. In this
paper, a multimodal recognition system based oialfacd vocal tract spectral
features is improved by adding prosodic informatidnatcher weighting
method and support vector machines have been sskgian techniques, and
histogram equalization has been applied before 3¥Vbn as a normalization
technique. The results show that the performancea d6VM multimodal
verification system can be improved by using histogequalization, especially
when the equalization is applied to those scoraagjithe highest EER values.
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1 Introduction

Multimodal biometric systems, which involve the daimation of two or more human
traits, are used to achieve better results thanoties obtained in a monomodal
recognition system [1]. In a multimodal recognitigystem, fusion is possible at three
different levels: feature extraction level, matghiacore level and decision level.
Fusion at the score level matches the monomodakscof different recognition
systems in order to obtain a single multimodal escand it is the preferred method by
most of the systems.

Matching score level fusion is a two-step proces$dckv consists of a previous
score normalization and the fusion itself [2-5] €Titormalization process transforms
the non homogeneous monomodal scores into a cobiparnge of values. Z-score
is a conventional affine normalization techniqueichhtransforms the scores into a
distribution with zero mean and unitary variance§B Histogram equalization (HE)
is used as a non linear normalization techniquelvhmakes equal the statistics of the
monomodal scores. HE can be seen as an extendiba tzhole statistics of the mean
and variance equalization performed by the z-snorenalization.

The fusion process is a combination of the preWjousrmalized scores. In this
paper, two fusion methods are used and comparettheraweighting and support
vector machines. In matcher weighting method, eachomodal score is weighted
by a factor proportional to its recognition reséltsupport vector machine is a binary



classifier based on a learning fusion techniquesrerlscores are seen as input patterns
to be labeled as accepted or rejected.

The aim of this work is to improve the results dtea in our recent work based on
the fusion of prosody, voice spectrum and faceufeatwhere different step strategies
were applied [6]. The improvement is achieved wpitbvious histogram equalization
as a normalization of the scores in a SVM baseidrius

In the next section, the monomodal information sesrused in this work are
described. Z-score and histogram equalization aesemted in section 3. Matcher
weighting fusion technique and support vector maehiare reviewed in section 4
and, finally, experimental results are shown irtisecs.

2 Monomodal Sources

2.1 Voicelnformation

In multimodal person recognition only short-ternesipal features are normally used
as voice information. However, it has been demateti that voice spectrum based
systems can be improved by adding prosodic infdond#].

Spectral parameters are those which only takedotmunt the acoustical level of
the signal, like spectral magnitudes, formant feewies, etc., and they are more
related to the physical traits of the speaker. €apsoefficients are the usual way to
represent the short-time spectral envelope of @adpdrame in current speaker
recognition systems. However, Frequency FilteriRg)(parameters, presented in [8]
and used in this work, become an alternative toubse of cepstrum in order to
overcome some of its disadvantages.

Several linguistic levels like lexicon, prosody pitonetics are used by humans to
recognize others with voice. These levels of infation are more related to learned
habits and style, and they are mainly manifestetiéndialect, sociolect or idiolect of
the speaker. Prosodic parameters, in particularmemifested as sound duration, tone
and intensity variation. Although these features'dprovide very good results when
they are used alone, they give complementary irdéion and improve the results
when they are fused with vocal tract spectrum basgstems. The prosodic
recognition system used in this task consists tftal of 9 prosodic scores already
used in [9]:

« number of frames per word averaged over all words

- average length of word-internal voiced segments

« average length of word-internal unvoiced segments

« mean FO logarithm

« maximum FO logarithm

« minimum FO logarithm

« FOrange (maximum FO — minimum FO) logarithm

« FO “pseudo slope”: (last FO — first FO) / (numb&frames in word)

- average slope over all segments of a piecewisarlistglization of FO



2.1 Facelnformation

Facial recognition systems are based on the comakégation that a face can be
represented as a collection of sparsely distribpds: eyes, nose, cheeks, mouth,
etc. Non negative matrix factorization (NMF), irdueced in [10], is an appearance-
based face recognition technique based on the otomal component analysis
techniques which does not use the information abowut the various facial images
are separated into different facial classes. Thetrawaightforward way in order to
exploit discriminant information in NMF is to trg tdiscover discriminant projections
for the facial image vectors after the projectidhe face recognition scores used in
this work have been calculated in this way with kidF-faces method [11], in which
the final basis images are closer to facial parts.

3 Histogram Equalization

Z-score (ZS) is one of the most conventional noizadibn methods, which
transforms the scores into a distribution with zenean and unitary variance
Denoting asa the raw matching from the sé of all the original monomodal
biometric scores, the z-score normalized biométraomputed as:

— a-mean(A)

s = gdh) ®

wheremean(A) is the statistical mean éf andstd(A) the standard deviation.

Histogram equalization (HE) is a general non patdmenethod to match the
cumulative distribution function (CDF) of some givdata to a reference distribution.
This technique can be seen as an extension oftdlistisal normalization made by
the z-score to whole biometric statistics.

Histogram equalization is a widely used non lineaethod designed for the
enhancement of images. HE employs a monotonic, lim@ar mapping which re-
assigns the intensity values of pixels in the inmage in order to control the shape
of the output image intensity histogram to achiavweniform distribution of intensities
or to highlight certain intensity levels.

This method has been also developed for the speecbgnition adaptation
approaches and the correction of non linear effggigally introduced by speech
systems such as microphones, amplifiers, clippimy@osting circuits and automatic
gain control circuits [12, 13].

The objective of HE is to find a non linear trangfiation to reduce the mismatch
of the statistics of two signals. In [14, 15] tliencept was applied to the acoustic
features to improve the robustness of a speakeficagion system. On the other
hand, in this paper HE is applied to the scokésitervals with the same probability
are assigned in the distributions of both sign&lach interval in the reference



distribution,xD[q,qﬂ[ , Is represented bfxi, F(x;)). X; is the average of the scores
andF(x;) is the maximum cumulative distribution value:
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wherex;; are the scores in the intervil,is the number of scores in the intervg,is
the number of data in the inter\{'q‘g,qm[, andM is the total amount of data.

All the scores in each interval of the source dhistions are assigned to the
corresponding interval in the reference distribmtid-(x;) sets the boundaries

[q'i ,q'iﬂ[ of the intervals in the distribution to be equatiz&hese boundaries limit
the interval of values that fulfils the followingedition:F(q ) < F(y) <F(q,,), and

all the values of the source signal lying in thteival [q'i ,q'iﬂ[ will be transformed
to their corresponding, value.

4 Fusion Techniques and Support Vector Machines

One of the most conventional fusion techniqueshis matcher weighting (MW)
method, where each monomodal score is weighted fagtar proportional to each
biometric recognition rate, so that the weightsrfwre accurate matchers are higher
than those of less accurate matchers. When usmd:¢fual Error Rates (EER) the
weighting factor for every biometric is proportiong the inverse of its EER.
Denotingw,, ande, the weighting factor and the EER for timeth biometricx,, and

M the number of biometrics, the final fused sooie expressed as [1, 3]:
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In contrast to the MW that is a linear and a dateeth fusion method, non linear
and machine learning based methods may lead tgleehiperformance. Learning
based fusion can be treated as a pattern classificaroblem in which the scores
obtained with individual classifiers are seen aputinpatterns to be labeled as
‘accepted’ or ‘rejected’.

Recent works on statistical machine learning hakews the advantages of
discriminative classifiers like SVM [16] in a rangé applications. Support vector
machine (SVM) is a state-of-the-art binary classifiGiven a linearly separable two-
class training data, SVM finds an optimal hyperplahat splits input data in two



classes, maximizing the distance of the hyperptartbe nearest data points of each
class.

However, data are normally not linearly separalighis case, non linear decision
functions are needed, and an extension to nonrlin@andaries is achieved by using
specific functions called kernel functions [17].rKel functions map the data of the
input space to a higher dimensional space (feaspace) by a non linear
transformation. The optimal hyperplane for a nowdirly separable data is defined

by:

f(x):iaitiK(x,be (4

wheret; are labels, K is a chosen kernel function Eﬁlaiti =0. The vectorx; are

the support vectors, which determine the optimapasating hyperplane and
correspond to the points of each class that areltsest to the separating hyperplane.

5 Recognition Experiments

In the next section, the monomodal recognition eayst used in the fusion
experiments are described. Experimental resultgdyg different normalization and
fusion techniques are shown in section 5.2.

5.1 Experimental Setup

Recognition experiments have been performed with 8Switchboard-l1 speech
database [18] and the video and speech XM2VTS datalof the University of
Surrey [19]. Switchboard-l database, which is alection of 2430 two-sided
telephone conversations among 543 speakers froaredk of the United States, has
been used for the speaker recognition experim8&pisaker scores have been obtained
by using two different systems: a voice spectruraedarecognition system and a
prosody based recognition system.

The spectrum based speaker recognition system igsad32-component GMM
system with diagonal covariance matrices; 20 Frequd-iltering parameters were
generated with a frame size of 30 ms and a shifi0afns, and 20 corresponding delta
and acceleration coefficients were included.

In the prosody based recognition system a 9-feateicéor was extracted for each
conversation side. The mean and standard deviatienall words were computed for
each individual feature. The system was testedgubi@ k-Nearest Neighbor classifier
(with k=3), comparing the distance of the testdeatvector to the k closest vectors of
the claimed speakers and the distance of the ¢éesbwto the k closest vectors of the
cohort speakers, and using the symmetrized Kullhagkler divergence as a distance
measure.



In both spectral and prosodic systems, each speabkeel was trained with 8
conversation sides. Training was performed usingssp-3 of the Switchboard-I
database, and splits 4-6 were provided the cohmetlsers and the UBM. Both
systems were tested with one conversation-siderdicgpto NIST's 2001 Extended
Data task.

Face recognition experiments were performed withXM2VTS database, which
is a multimodal database consisting of face imag&so sequences and speech
recordings of 295 subjects. Only the face image® leeen used in our experiments.
In order to evaluate the verification algorithms tre database, the evaluation
protocol described in [19] was followed. The wefldevn Fisher discriminant
criterion was constructed as [20] in order to digodiscriminant linear projections
and to obtain the facial scores.

Fusion experiments have been done at the matchinge devel. Since both
databases contain biometric characteristics behontp different users, a chimerical
database has been created to perform the expesm&rthimerical database is an
artificial database created using two or more maoaah biometric characteristics
from different individuals to form artificial (orhémerical) users. In this paper, the
chimerical database consists of 30661 users creagedombining 179 different
voices of the Switchboard-l database with 270 diffé faces of the XM2VTS
database. The scores were then split in two equsl(development and test) for each
recognition system, obtaining a total amount of @BScores for each set (16800
clients and 29700 impostors).

The kernel function used in the SVM was a Gaussaial basis function. Scores
are always equalized to the histogram corresponminige best scores involved in the
fusion; i.e. those scores that provided the loi&EsR. A 1000-interval histogram was
applied before each SVM fusion, and both SVM and-$BJ techniques are
compared to a baseline system which uses MW fusiolz-score normalization.

5.2 Verification Results
Monomodal systems. Table 1 shows the EER obtained for each prosaitufe in
the prosody based recognition system. As it caseled in the table, features based on

fundamental frequency measurements achieve thestdwR.

Tablel. EER for each prosodic feature

Features EER (%)
Log (#frames/word) 30.3
Average length of word-internal voiced segments 531.
Average length of word-internal unvoiced segments 1.53
Log(mean_FO0) 19.2
Log(max_FO0) 21.3
Log(min_FO0) 21.5
Log(range_FO0) 26.6

FO ‘pseudo-slope’ 38.3

Average slope over all segments of PWL stylizabbk0 28.7




The EER obtained in each monomodal recognitionesysire shown in Table 2.
Note that fusion is only used in the prosodic syst&here there are 9 prosodic scores
to be combined. In this case, fusion is carriedimwine single step, and the results of
the three types of fusion mentioned above are ptede (1) matching score fusion
with z-score normalization, (2) support vector maek and (3) support vector
machines with a previous histogram equalization.

Table2. EER (%) for each monomodal recognition system

Source EER (%)
Prosody ZS-MW 15.66
SVM 14.65
HE-SVM 13.39
Voice spectrum 10.10
Face 2.06

Bimodal systems. Table 3 shows the fusion results for two bimodadtems: a
prosody based system fused with the voice speacalgnition system, and a voice
spectrum based system fused with the face recogrsystem, using the same fusion
methods as above. As in the monomodal systems&T3bmatcher weighting fusion
is slightly worse than the support vector machines.

Table 3. EER (%) for each bimodal recognition system

Source ZS-MW  SVM HE-SVM
Prosody + voice spectrum 7.44 6.84 6.25
Voice spectrum + face 1.83 0.99 1.02

Trimodal system. In [6] several strategies were proposed by fusirggrhonomodal
scores in one, two and three steps. In those erpats the best results were achieved
in a two-step configuration, where the 9 prosodiores were fused in the first step
and the obtained scores were then fused in thendestep with voice spectral and

facial scores (Fig. 1).
s 7 H
F2

Fig. 1. Two-step fusion

The EER for the selected two-step fusion are pteseim Table 4. Once again,
matcher weighting fusion method is clearly outperfed by support vector machines.



Table4. EER (%) for the trimodal system

Fusion technigue EER (%)
ZS-MW 1.493
SVM 0.647

In our trimodal system, equalization has been applin all the possible
combinations:

(1) HE before the first fusion (equalization of f@sodic scores)
(2) HE before the second fusion (equalization efttiree modalities)
(3) HE before both fusions Fland F2

The results are shown in Table 5 and they are cedga the non equalized SVM
fusion.

Table5. EER (%) applying HE before SVM fusion

Fusion technique F1 F2 EER (%)
SVM - - 0.647

HE - 0.630

- HE 0.649

HE HE 0.613

As it can be seen in the table, the best resuladsieved when histogram
equalization is used before F1 and F2. By equaizinly the prosodic scores, the
performance of the system is also improved. Onather hand, equalization before
the second fusion does not improve the performahtee system.

6 Conclusions

In this work, the use of prosody improves the penfince of a bimodal system
based on vocal tract spectrum and face features.eXperiments show that support
vector machines based fusion is clearly better thatcher weighting fusion method.
In addition, results are improved by applying histon equalization as a
normalization technique before SVM fusion. The besification results are achieved
when the histogram of the scores with the highakies of EER (the prosodic scores
in our experiments) are equalized to the distrdoutof the scores that provide the
lowest EER.
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