
Higher-order Linear Logic Programming ofCategorial DeductionGlyn MorrillSecci�o d'Intel�lig�encia Arti�cialDepartament de Llenguatges i Sistemes Inform�aticsUniversitat Polit�ecnica de CatalunyaPau Gargallo, 508028 Barcelonamorrill@lsi.upc.esAbstractWe show how categorial deduction can be implemented in (higher-order) linear logic programming, thereby realising parsing as deduc-tion for the associative and non-associative Lambek calculi. This pro-vides a method of solution to the parsing problem of Lambek catego-rial grammar applicable to a variety of its extensions. We illustratecategorial calculi of discontinuity, and calculi with unary `bracket' op-erators.
1

2Higher-order Linear Logic Programming ofCategorial DeductionThe present work deals with the parsing problem for Lambek calculus andits extensions as developed in, for example, Moortgat (1988), van Benthem(1991), Moortgat and Morrill (1991), Morrill (1994a), Hepple (1993) andMoortgat and Oehrle (1993). Some previous approaches for Lambek calculussuch as K�onig (1989), Hepple (1990) and Hendriks (1993) have concentatedon the possibilities of sequent proof normalisation. In Roorda (1991), Moort-gat (1992), Hendriks (1993), Oehrle (1994) and Morrill (1994b) a strategy ofunfolding and labelling for proof net construction is considered. We aim toshow here how such unfolding allows compilation into programs executableby a version of SLD resolution, implementing categorial deduction in dy-namic linear clauses. The linearity resides in the use exactly once of each ofthe clauses compiled from lexical categorisations. By dynamic, it is meantthat clauses may be higher-order (they are hereditary Harrop Horn clauses)so that clausal resolution involves insertion in, as well as retraction from, theresolution database; see e.g. Nadathur and Miller (1990), Miller et al. (1991),and Hodas and Miller (1994).It is shown how a range of calculi can be treated by dealing with the high-est common factor of connectives as linear logical validity. The prosodic (i.e.sublinear) aspects of word order and hierarchical structure are encoded inlabels, in e�ect the term structure of quanti�ed linear logic. Morrill (1994b)shows how compiling labels according to interpretations in groupoids pro-vides a general method for calculi with various structural properties and alsofor multimodal hybrid formulations; uni�cation must be carried out accord-ing to the structural axioms but is limited to one-way matching, i.e. oneterm is always ground. The present paper improves on this by moving from�rst-order to higher-order clauses which initiate hypothetical reasoning as itbecomes germane at execution time rather than by inating the resolutiondatabase with a �rst-order precompilation. Furthermore, for the particularcase of associative Lambek calculus an additional perspective of binary rela-tional interpretation allows an especially e�cient coding in which the spanof expressions is represented in such a way as to avoid the computation ofuni�ers under associativity, and this can also be exploited for non-associative

3calculus. The method is extended to include unary categorial operators pro-jecting vertical structure and thereby specifying constraints (Morrill 1992,1994a, c; Moortgat 1994), and also to include discontinuity operators suitedto the characterisation of wrapping functors and in situ binders such as quan-ti�er phrases (Moortgat 1988, 1990; Morrill and Solias 1993; Morrill 1993,1994a).Higher-order linear logic programming has already been applied to natu-ral language processing in, for example, Hodas (1992) and Hodas and Miller(1994), in work deriving from Pareschi (1989) and Pareschi and Miller (1990).What we show here is that such implementation can be realised systemat-ically, indeed by a mechanical compilation, while grammars themselves arewritten in higher level categorial grammar formalism.Automated deduction for Lambek calculi is of interest in its own rightbut solution of the parsing problem for categorial logic allowing signi�cantlinguistic coverage demands automated deduction for more than just individ-ual calculi. There is a need for methods applying to whole classes of systemsin ways which are principled and powerful enough to support the furthergeneralisations that grammar development will demand. We aim to indicatehere how linear logic programming can provide for such a need.After reviewing the \standard" approach, via sequent proof normalisa-tion, we outline the relevant features of (linear) logic programming andexplain compilation for associative and non-associative calculi in terms ofgroupoid and binary relational interpretations of categorial connectives. Wethen go on to consider multimodal calculi for the binary connectives andaddress in particular discontinuity calculus. Finally we treat structural inhi-bition in partially associative calculus with unary operators.1 Parsing as deduction in Lambek calculusThe parsing problem is usually construed as the recovery of structural de-scriptions assigned to strings by a grammar. In practice the interest is incomputing semantic forms implicit in the structural descriptions, which arethemselves usually implicit in the history of a derivation recognising well-formedness of a string. This is true in particular of compositional categorialarchitectures and we shall focus on algorithms for showing well-formedness.

41.1 Non-associative sequent calculusFor the non-associative Lambek calculus NL of Lambek (1961) we assumetypes freely generated from a set P of primitive types by binary (in�x) oper-ators n, / and �. A sequent comprises a succedent type A and a con�guration� which is a binary bracketed list of one or more types; we write �) A.The notation �(�) here refers to a con�guration � with a distinguished sub-con�guration �.(1) a. A) A id �) A �(A)) BCut�(�)) Bb. �) A �(B)) CnL�([�; AnB])) C [A;�]) BnR�) AnBc. �) A �(B)) C/L�([B=A;�])) C [�; A]) B/R�) B=Ad. �([A;B])) C�L�(A�B)) C �) A �) B�R�; �) A�B1.2 Associative sequent calculusFor the associative Lambek calculus L of Lambek (1958) let us again assumetypes freely generated from a set P of primitive types by binary (in�x) oper-ators n, / and �. A sequent comprises a succedent type A and a con�guration� which is a list of one or more types; we write �) A.(2) a. A) A id �) A �(A)) BCut�(�)) Bb. �) A �(B)) CnL�(�; AnB)) C A;�) BnR�) AnB

5c. �) A �(B)) C/L�(B=A;�)) C �; A) B/R�) B=Ad. �(A;B)) C�L�(A�B)) C �) A �) B�R�;�) A�BLambek showed Cut-elimination for both calculi, i.e. every theorem has aCut-free proof. Of the remaining rules each instance of premises has exactlyone connective occurrence less than the corresponding conclusion so Cut-elimination shows decidability through �nite space Cut-free sequent proofsearch from conclusions to premises.1.3 Examples: lifting and compositionLifting is derivable in NL as follows:(3) A) A B) BnL[A, AnB]) B/RA) B/(AnB)It is also derivable in L; indeed all NL derivations are converted to L deriva-tions by simply erasing the brackets. But L-derivable composition dependsessentially on associativity and is not NL-derivable:(4) A) A B) B C) CnLB, BnC) CnLA, AnB, BnC) CnRAnB, BnC) AnCEven amongst the Cut-free proofs however there is still semantic equiv-alence under the Curry-Howard rendering (van Benthem 1983) and in thisrespect redundancy in parsing as exhaustive proof search since the samereadings will be found repeatedly. This derivational equivalence (or: \spu-

6rious ambiguity") betrays the permutability of certain rule applications (bothleft/left e.g. N/CN, CN, NnS) S, and left/right, e.g. N/CN, CN) S/(NnS));the non-determinism in partitioning by binary rules is semantically signi�-cant, but still a source of ine�ciency in its backward chaining \generate-and-test" incarnation.Another source of derivational equivalence is that a complex id axiom in-stance such as NnS) NnS can be proved either by a direct matching againstthe axiom scheme, or by two rule applications. This is easily solved by re-stricting id to atomic formulas. More problematic are the permutability ofrule applications, the non-determinism of rules requiring splitting of con�g-urations in L, and the need in NL to hypothesise con�guration structure apriori (such hierarchical structure is not given by the input to the parsingproblem). It seems that only the �rst of these di�culties can be overcomefrom a Gentzen sequent perspective.2 Uniform proof methodsThe situation regarding equivalence and rule ordering is solved, at least forL�f�Lg, by proof normalisation (K�onig 1989, Hepple 1990, Hendriks 1993).This involves �rstly ordering right rules before left rules reading from endsequent to axiom leaves (so left rules only apply to sequents with atomicsuccedents; this e�ects uniform proof; see Miller et al. 1991), and secondlyfurther demanding successive unfolding of the same con�guration type (sothat a necessary condition for success is that a left rule is only tried on a typewhich eventually yields the succedent atom as its range). The latter strategybreaks down for �L: (VP/PP)/N, N�PP) VP requires switching betweencon�guration types. It happens that left occurrences of product are not mo-tivated in grammar, but more critically proof normalisation leaves the non-determinism of partitioning, and o�ers no general method for multimodalextensions which may have complex and interacting structural properties.To eliminate the splitting problem we need some kind of representation ofcon�gurations such that the domain of functors need not be hypothesisedand then checked, but rather discovered by constraint propagation. Such isthe character of our treatment, whereby partitioning is explored by uni�ca-tion in the term structure of higher-order linear logic programming, to whichwe now turn.

73 Logic programmingBy way of orientation let us review the (propositional) features of clausalprogramming.The �rst order case, naturally, corresponds to Prolog. Let us assumea set AT OM of atomic formulas, 0-ary, 1-ary, etc., formula constructorsf� ^ : : : ^ �gn2f0;1;:::g and a binary (in�x) formula constructor . A se-quent comprises an agenda formula A and a bag (or: multiset) database� = fB1; : : : ; Bngm; n � 0 of program clauses; we write �) A. The setAGENDA of agendas is de�ned by:AGENDA ::= GOAL^ : : : ^ GOAL(5)The set PCLS of program clauses is de�ned by:PCLS ::= AT OM AGENDA(6)For �rst order programming the set GOAL of goals is de�ned by:GOAL ::=AT OM(7)Then program execution is guided by the following rules.(8) ax�)I.e. the empty agenda is a consequence of any database.(9) �; A B1 ^ : : : ^Bn) B1 ^ : : : ^Bn ^ C1 ^ : : : ^ CmRES�; A B1 ^ : : : ^ Bn) A ^ C1 ^ : : : ^ CmI.e. we can resolve the �rst goal on the agenda with the head of a programclause and then continue with the program as before and a new agenda givenby pre�xing the program clause subagenda to the rest of the original agenda(depth-�rst search).For the higher-order case agendas and program clauses are de�ned asabove, but the notion of GOAL on which they depend is generalised toinclude implications:GOAL ::=AT OM j GOAL PCLS(10)

8And a \deduction theorem" rule of inference is added:(11) �; B) A �) C1 ^ : : : ^ CmDT�) (A B) ^ C1 ^ : : : ^ CmI.e. we solve a higher-order goal �rst on the agenda by adding its antecedentto the database.In linear logic programming all is as before, but the axiom and resolutionrule become resource conscious; in this context we write
 for the conjunc-tion and �� for the implication:(12) ax)I.e. the empty agenda is a consequence of the empty database; all programclauses must be \used up" by the resolution rule:(13) �) B1
 : : :
Bn
C1
 : : :
Cm RES�; A ��B1
 : : :
Bn) A
C1
 : : :
CmI.e. a program clause disappears from the database once it is resolved upon:each is used exactly once. The deduction theorem rule for higher-orderclauses also becomes sensitised to the employment of antecedent contexts:(14) �; B) A �) C1
 : : :
CmDT�;�) (A ��B)
C1
 : : :
Cm4 Groupoid compilationWe shall motivate compilation into linear clauses directly from algebraic mod-els for the calculi. In the case of L we have �rst interpretation in semigroupshL;+i (i.e. sets L closed under associative binary operations +). Relative toa model each type A has an interpretation as a subset D(A) of L. Given thatprimitive types are interpreted as some such subsets, complex types receive

9their denotations by residuation as follows (cf. e.g. Lambek 1988):D(A�B) = fs1+s2js1 2 D(A) ^ s2 2 D(B)gD(AnB) = fsj8s0 2 D(A); s0+s 2 D(B)gD(B=A) = fsj8s0 2 D(A); s+s0 2 D(B)g(15)For the non-associative calculus we drop the condition of associativity andinterpret in arbitary groupoids.Categorial type assignment statements comprise a groupoid term � anda type A; we write �: A. Given a set of lexical assignments, a phrasal assign-ment is projected if and only if in every model satisfying the lexical assign-ments the phrasal assignment is also satis�ed. Categorial type assignmentstatements are translated into linear logic according to the interpretation oftypes. A categorial sequent has a translation given by j � j into a linear se-quent in which type assignments can be safely read as predications. For L wehave the following (NL preserves input antecedent con�guration in outputsuccedent term structure):jB0; : : : ; Bn) Aj = k0: B+0 ; : : : ;kn: B+n) k0+ : : :+kn: A�(16)The polar translation functions are identity functions on atomic assigne-ments; on complex category predicates they are de�ned mutually as follows(for related unfolding, but for proof nets, see Roorda 1991, Moortgat 1992,Hendriks 1993 and Oehrle 1994); p indicates the polarity complementary top:(17) a. �+: Bp �� �: Ap� new variable/constant as p +=�: AnBpb. +�: Bp �� �: Ap� new variable/constant as p +=�: B=ApThe unfolding transformations have the same general form for the positive(con�guration/database) and negative (succedent/agenda) occurrences; thepolarity is used to indicate whether new symbols introduced for quanti�edvariables in the interpretation clauses are metavariables or Skolem constants.The program clauses and agenda are read directly o� the unfoldings, with the

10only manipulation being a attening of positive implications into uncurriedform: ((X+ ��Y �1) �� : : :) ��Y �n > X+ ��Y �1
 : : :
Y �n(18)We shall also allow unit program clauses X �� to be abbreviated X.5 ExamplesStarting from the initial database and agenda, a proof will be representedas a list of agendas, avoiding the context repetition of sequent proofs byindicating where the resolution rule retracts from the database (superscriptcoindexed overline), and where the deduction theorem rule adds to it (sub-script coindexation):database �; A ��B1
 : : :
Bniagendai: A
C1
 : : :
Cn RESi+1: B1
 : : :
Bn
C1
 : : :
Cm(19) database �; Biagendai: (A ��B)
C1
 : : :
Cm DTi+1: A
C1
 : : :
Cm(20)The sharing of a Skolem constant between A and B in (20) ensures that Bcan and must be used to prove A so that a mechanism for the lazy splittingof contexts is e�ected. The termination condition is an empty agenda andempty database.5.1 Associative caseComposition:jAnB, BnC) AnCj=k: AnB+, l: BnC+) k+l: AnC�(21)

11a+k: B �� a: Ak: AnB+ b+l: C �� b: Bl: BnC+m+k+l: C �� m: Ak+l: AnC�database a+k: B �� a: A3,b+l: C �� b: B2,m: A14agenda1. m+k+l: C ��m: A DT2. m+k+l: C RES b =m+k3. m+k: B RES a =m4. m: A RES(22)
Note that uni�cations are all one-way, but even one-way associative (=string)uni�cation has expensive worst cases.5.2 Non-associative caseModels are provided as with the semigroups for L�f�g, but with groupoidshL;+i. Then the term labelling provides a clausal implementation ofNL�f�gwith uni�cation now being non-associative.Lifting:jA) B/(AnB)j=k: A) k: B/(AnB)(23)k+l: B �� a+l: B �� a: Al: AnBk: B/(AnB)

12database k: A3;a+l: B �� a: A11agenda1. k+l: B �� (a+l: B ��a: A) DT2. k+l: B RES a = k3. k: A RES(24)The simple one-way term uni�cation is very fast but it is unnatural fromthe point of view of parsing that, as for the sequent approach, a hierarchicalbinary structure on the input string needs to be posited before inferencebegins, and exhaustive search would require all possibilities to be tried.5.3 Further exampleBy way of further example consider the following in L, with terms and typesas indicated.(a book from which) the references are missing(25)(26) the referencesr: N are missingm: ((S/(NnS))nS)/PP) r+m: S/PPClearly `the references' yields the unit clause r: N. In addition we have:b+(m+a): S+ �� b+k: S� �� c+k: S+ �� c: N� �� a: PP�k: NnS+b: S/(NnS)�m+a: (S/(NnS))nS+ m: ((S/(NnS))nS)/PP+(27) > b+(m+a): S �� (b+k: S �� (c+k: S �� c: N))
 a: PP(28)

13(29) (r+m)+l: S� �� l: PP+r+m: S/PP� > (r+m)+l: S �� l: PPDerivation is thus:database r: N5,b+(m+a): S �� (b+k: S �� (c+k: S �� c: N))
 a: PP 2,l: PP16,c+k: S �� c: N34,agenda1. (r+m)+l: S �� l: PP DT2. (r+m)+l: S RES3. (r+k: S �� (c+k: S �� c: N))
 l: PP DT4. r+k: S
 l: PP RES5. r: N
 l: PP RES6. l: PP RES
(30)
The uni�cation in passing from 3 to 4 relies on the associativity of + and asalways atomic goals on the agenda are ground. But we have to try subproofsfor di�erent uni�ers. We shall see shortly that this is not necessary, and thatassociative uni�cation can be avoided.6 ProductThere is a further problem which we shall solve in the same move. Unfoldingof left occurrences of product would create two positive subformulas andthus fall outside the scope of Horn clause programming. However, the term-labelled implementation as it has been given also fails for right products:(31) �: A�
 �: B� = �+�?: A�B�The problem is that � and � are not deterministically given by at the\compile time" of unfolding. The best we could manage seems to be to trydi�erent partitionings of at execution time; but even if this could work itwould still amount to trying di�erent partitionings for �R as in the sequent

14calculus: a source of non-determinism we seek to reduce. This limitationcombines with the other di�culties with groupoid labelling of worst caseof (even) one-way associative uni�cation for L, and the need for a priorihypothesis of non-associative structure for NL.7 Relational compilationThe associative calculus has also relational algebraic models (van Benthem1991) which interpret types as relations on some set V , i.e. as sets of orderedpairs. Given denotations for primitive types, those of compound types are�xed as subsets of V � V by:D(AnB) = fhv2; v3ij8hv1; v2i 2 D(A); hv1; v3i 2 D(B)gD(B=A) = fhv1; v2ij8hv2; v3i 2 D(A); hv1; v3i 2 D(B)gD(A�B) = fhv1; v3ij9v2; hv1; v2i 2 D(A) & hv2; v3i 2 D(B)g(32)This induces unfolding as follows:(33) a. i { k: Bp �� i { j: Api new variable/constant as p +=�j { k: AnBpb. i { k: Bp �� j { k: Apk new variable/constant as p +=�i { j: B=ApFurthermore right product (though still not non-Horn left product) unfoldingcan be expressed:(34) i { j: A�
 j { k: B�j new variablei { k: A�B�Composition is now treated thus:jAnB, BnC) AnCj=0 { 1: AnB+, 1 { 2: BnC+) 0 { 2: AnC�(35)i { 1: B �� i { 0: A0 { 1: AnB+ j { 2: C �� j { 1: B1 { 2: BnC+

153 { 2: C �� 3 { 0: A0 { 2 { AnC�database i { 1: B �� i { 0: A3,j { 2: C �� j { 1: B2,3 { 0: A14agenda1. 3 { 2: C �� 3 { 0: A DT2. 3 { 2: C RES j = 33. 3 { 1: B RES i = 34. 3 { 0: A RES(36)
In this way associative uni�cation is avoided; indeed the only matching istrivial uni�cation between constants and variables.7.1 Non-associativity via simultaneous groupoid andrelational compilationAlthough the (one-way) term uni�cation for groupoid compilation of thenon-associative calculus is very fast we want to get round the fact that ahierarchical binary structure on the input string needs to be posited beforeinference begins, and exhaustive search would require all possibilities to betried. We can do this through observation of the following:� All non-associative theorems are associative theorems (ignore brackets)� Interpret non-associative operators in the product algebra of its owngroupoid algebra and the associative relational algebra, and performlabelled compilation accordingly� Use the (e�cient) relational labelling to check associative validity� Use the groupoid labelling tocheck non-associative validitycompute the prosodic form induced

16I.e. the end sequent succedent groupoid term can be left as a variable andthe groupoid uni�cation performed on the return trip from axiom leaves afterassociative validity has been assured. The groupoid uni�cation will now beone-way in the opposite direction.The simultaneous compilation separates horizontal structure (word or-der) represented by interval segments, and vertical structure (hierarchicalorganisation) represented by groupoid terms, and uses the e�cient segmentlabelling to compute L-validity, and then the term labelling both to check thestricter NL-validity, and to calculate the hierarchical structure. In this waywe use the fact that models for NL are given by intersection in the productof relational and groupoid models. Each type A has an interpretation D(A)as a subset of L� V � V :D(AnB) = fhs; v2; v3ij8hs0; v1; v2i 2 D(A); hs0+s; v1; v3i 2 D(B)gD(B=A) = fhs; v1; v2ij8hs0; v2; v3i 2 D(A); hs+s0; v1; v3i 2 D(B)gD(A�B) = fhs1+s2; v1; v3ij9v2; hs1; v1; v2i 2 D(A) & hs2; v2; v3i 2 D(B)g(37)Unfolding is thus:�+ { i { k: Bp �� � { i { j: Ap�; i new variables/constants as p +=� { j { k: AnBp(38) +� { i { k: Bp �� � { j { k: Ap�; k new variables/constants as p +=� { i { j: B=Ap� { i { j: A�
 � { j { k: B��; �; j new variables�+� { i { k: A�B�(39)By way of example consider the following:the referencesr { 0 { 1: N are missingm { 1 { 2: ((S/(NnS))nS)/PP from this bookf { 2 { 3: PP) d { 0 { 3: S(40)b+(m+a)-i-k1: S+ �� b+k-i-4: S� �� c+k-l-4: S+ �� c-l-1: N� �� a-2-k1: PP�k-1-4: NnS+b-i-1: S/(NnS)�m+a-1-k1: (S/(NnS))nS+ m-1-2: ((S/(NnS))nS)/PP+> b+(m+a) { i { k1: S �� (b+k { i { 4: S �� (c+k { l { 4: S �� c { l { 1: N))
 a { 2 { k1: PP(41)

17database r-0-1: N4,b+(m+a)-i-k1: S �� (b+k-i-4: S �� (c+k-l-4: S �� c-l-1: N))
 a-2-k1: PP1,c+k-l-4: S �� c-l-1: N23,f -2-3: PP5agenda1. d-0-3: S RES d = b+(m+a)2. (b+k-0-4: S �� (c+k-l-4: S �� c-l-1: N))
 a-2-3: PP DT3. b+k-0-4: S
 a { 2 { 3: PP RES b = c4. c { 0 { 1: N
 a { 2 { 3: PP RES c = r5. a-2-3: PP RES a = f(42)
Note how the term uni�cation computing the hierarchical structure can becarried out one-way in the reverse order to the forward segment matchings.d = b+(m+a) = c+(m+a) = r+(m+a) = r+(m+f)(43)In the case of NL-invalidity the term uni�cation would fail.8 Multimodal Lambek calculiIn mulimodal calculi families of connectives f=i; ni; �igi2f1;:::;ng are each de-�ned by residuation with respect to their adjunction in a \polygroupoid"hL; f+igi2f1;:::;ngi (Moortgat and Morrill 1991):D(A�iB) = fs1+is2js1 2 D(A) ^ s2 2 D(B)gD(AniB) = fsj8s0 2 D(A); s0+is 2 D(B)gD(B=iA) = fsj8s0 2 D(A); s+is0 2 D(B)g(44)Multimodal groupoid compilation is immediate:(45) a. �+i: Bp �� �: Ap� new variable/constant as p +=�: AniBpb. +i�: Bp �� �: Ap� new variable/constant as p +=�: B=iApThis is entirely general. Any multimodal calculus can be implemented thisway provided we have a (one-way) uni�cation algorithm specialised according

18to the structural communication axioms. By way of example we shall dealwith mulimodality for discontinuity which involves varying internal struc-tural properties (associativity vs. non-associativity) as well as \split/wrap"interaction between modes. We shall also consider unary operators projectingbracketed string structure. In both cases simultaneous compilation includingbinary relational labelling provides additional advantages.8.1 DiscontinuityCalculi of discontinuity for discontinuous functors, quanti�er phrases, gap-ping, subject and object oriented reexives etc. are developed in Solias (1992),Morrill and Solias (1993) and Morrill (1993), surmounting technical di�cul-ties with Moortgat (1988, 1990, 1991). The treatment of Morrill (1993) isa pure multimodal residuation calculus with three families of connectives,f=; n; �g; f<;>; �g and f"; #;�g each de�ned with respect to their adjunc-tion in a total algebra: + (associative, \surface"), (�; �) (non-associative,\split"), and W (non-associative, \interpolate") with the structural interac-tion s1+s2+s3 = (s1; s3)Ws2. In Morrill (1994b) the product-free fragmentis implemented using groupoid labelling in (�rst order) linear clauses. Theunidirectionality of uni�cation makes it managable through normalisation ofand recursive decent through ground terms.The following example illustrates with a quanti�er in subject position.The higher type allows quanti�er phrases to occur in situ while taking se-mantic scope at superordinate S nodes.k: (S"N)#S, l: NnS) k+l: S(46)(47) aWk: S �� aWm: S �� m: Na: S"N�k: (S"N)#S+ b+l: S �� b: Nl: NnS+

19database aWk: S �� (aWm: S ��m: N)1;b+l: S �� b: N3;m: N24agenda1. k+l: S RES aWk = k+l) a = (�; l)2. m+l: S ��m: N DT3. m+l: S RES b = m4. m: N RES(48)
8.2 Sorted discontinuityThe calculus of Morrill (1993) just treated provides a natural space withinwhich to work, but it includes abstractions which are not required, and whileit is conceptually harmless, computationally such unwanted abstraction cre-ates unwarrented complexity. Intuitively we want to work more concretelywith strings and split strings rather than with a homogenous total algebra.Quite generally, when this situation arises it is normal to impose a disciplineof typing or sorting on a formalism.We implement a formulation of discontinuity which is a variant and re-�nement of that of Solias (1992) and Morrill and Solias (1993) with prosodicdata types (or: sorts). This sorting restricts the class of types available, whilestill including all those of linguistic signi�cance, and in so doing reduces thecomplexity of computation involved in what is otherwise associative and par-tially commutative uni�cation.Rather than deal with a total algebra hL;+; (:; :);W; �i we take a two-sorted algebra hL;L�L;+; (:; :);W; �i with domains or sorts L (strings) andL�L (split strings) and operations, with the following functionalities, whichobey the same association, identity and interpolation laws that they do inthe unsorted algebra: + : L;L ! L, (:; :) : L;L ! L � L; (s; s0) = hs; s0i;W : L � L;L! L; sWs0 = �1s+s0+�2s, � 2 L. Interpretation of formulas isby residuation with respect to +; (:; :) and W as before but they now come intwo sorts: string (F ; prosodically interpreted as subsets of L) and split string(G; prosodically interpreted as subsets of L�L), and some previous formulaswill be lost. Let us assume that atomic formulas A are of sort string. Then

20the sorted formulas are de�ned by mutual recursion as follows:F ::= A j F=F j FnF j F�F j G<F j F>G j G#F j G�FG ::= F"F j F�F(49)Groupoid interpretation of sorted discontinuity is thus:D(A�B) = fs1+s2js1 2 D(A) ^ s2 2 D(B)gD(AnB) = fsj8s0 2 D(A); s0+s 2 D(B)gD(B=A) = fsj8s0 2 D(A); s+s0 2 D(B)gD(A�B) = fhs1; s2ijs1 2 D(A) ^ s2 2 D(B)gD(A>B) = fsj8s0 2 D(A); hs0; si 2 D(B)gD(B<A) = fsj8s0 2 D(A); hs; s0i 2 D(B)gD(A�B) = fs1+s+s2jhs1; s2i 2 D(A) ^ s 2 D(B)gD(A#B) = fsj8hs1; s2i 2 D(A); s1+s+s2 2 D(B)gD(B"A) = fhs1; s2ij8s 2 D(A); s1+s+s2 2 D(B)g
(50)
The main advantage however depends on the possibility of a relational in-terpretation of sorted discontinuity. In this formulas of sort F (strings) areinterpreted as subsets of V � V ; formulas of sort G (split strings) subsets ofV � V � V � V .D(AnB) = fhv2; v3ij8hv1; v2i 2 D(A); hv1; v3i 2 D(B)gD(B=A) = fhv1; v2ij8hv2; v3i 2 D(A); hv1; v3i 2 D(B)gD(A�B) = fhv1; v3ij9v2; hv1; v2i 2 D(A) & hv2; v3i 2 D(B)gD(A>B) = fhv3; v4ij8hv1; v2i 2 D(A); hv1; v2; v3; v4i 2 D(B)gD(B<A) = fhv1; v2ij8hv3; v4i 2 D(A); hv1; v2; v3; v4i 2 D(B)gD(A�B) = fhv1; v2; v3; v4ijhv1; v2i 2 D(A) & hv3; v4i 2 D(B)gD(A#B) = fhv2; v3ij8hv1; v2; v3; v4i 2 D(A); hv1; v4i 2 D(B)gD(B"A) = fhv1; v2; v3; v4ij8hv2; v3i 2 D(A); hv1; v4i 2 D(B)gD(A�B) = fhv1; v4ij9hv2; v3i 2 D(B) & hv1; v2; v3; v4i 2 D(A)g
(51)
Neither scheme on its own is fully satisfactory as a basis for compilation. Thegroupoid labelling cannot express left or right products as before (succedentsubstring product is needed for gapping). But relational labelling alone en-counters a new problem with succedent ":

21(52) hi; li: B� �� hj; ki: A+??hi; j; k; li: B"A�The problem is that there is no place for Skolemisation in the term, and thehypothetical reasoning is therefore not properly controlled.However matters falls into place through simultaneous groupoid and rela-tional interpretation for discontinuity, wherein the groupoid term is skolemised.As before the computational problems are solved by labelling accordingto interpretation in the product of the two algebras. This allows (succe-dent) products and all the divisions. Formulas of sort F (strings) are inter-preted as subsets of L� V � V ; formulas of sort G (split strings) subsets ofL� V � V � L � V � V .D(AnB) = fhs; v2; v3ij8hs0; v1; v2i 2 D(A); hs0+s; v1; v3i 2 D(B)gD(B=A) = fhs; v1; v2ij8hs0; v2; v3i 2 D(A); hs+s0; v1; v3i 2 D(B)gD(A�B) = fhs1+s2; v1; v3ij9v2; hs1; v1; v2i 2 D(A) & hs2; v2; v3i 2 D(B)gD(A>B) = fhs; v3; v4ij8hs0; v1; v2i 2 D(A); hs0; v1; v2; s; v3; v4i 2 D(B)gD(B<A) = fhs; v1; v2ij8hs0; v3; v4i 2 D(A); hs; v1; v2; s0; v3; v4i 2 D(B)gD(A�B) = fhs1; v1; v2; s2; v3; v4ijhs1; v1; v2i 2 D(A) & hs2; v3; v4i 2 D(B)gD(A#B) = fhs; v2; v3ij8hs1; v1; v2; s2; v3; v4i 2 D(A); hs1+s+s2; v1; v4i 2 D(B)gD(B"A) = fhs1; v1; v2; s2; v3; v4ij8hs; v2; v3i 2 D(A); hs1+s+s2; v1; v4i 2 D(B)gD(A�B) = fhs1+s+s2; v1; v4ij9hs; v2; v3i 2 D(B) & hs1; v1; v2; s2; v3; v4i 2 D(A)g(53)
For the sake of completeness we spell out all the unfoldings in all their detail.�+ { i { k: Bp �� � { i { j: Ap�; i new variables/constants as p +=� { j { k: AnBp(54) +� { i { k: Bp �� � { j { k: Ap�; k new variables/constants as p +=� { i { j: B=Ap� { i { j: A�
 � { j { k: B��; �; j new variables�+� { i { k: A�B�(55)

22� { i { j; { k { l: Bp �� � { i { j: Ap�; i; j new variables/constants as p +=� { k { l: A>Bp(56) { i { j; � { k { l: Bp �� � { k { l: Ap�; k; l new variables/constants as p +=� { i { j: B<Ap� { i { j: A�
 � { k { l: B��; � new variables� { i { j; � { k { l: A�B�(57) �++�0 { i { k: Bp �� � { i { j; �0 { k { l: Ap�; �0; i; l new variables/constants as p +=� { j { k: A#Bp(58) +�+0 { i { l: Bp �� � { j { k: Ap� new variable/constant as p +=� { i { j; 0 { k { l: B"Ap� { j { k: A�
 � { i { j; �0 { k { l: B��; �; �0; j; k new variables�+�+�0 { i { l: A�B�(59)The previous subject quanti�er example is now as follows.k { 0 { 1: (S"N)#S, l { 1 { 2: NnS) k+l { 0 { 2: S(60)(61) a+k+a0 { i { j: S �� a+m+a0 { i { j: S �� m { 0 { 1: Na { i { 0; a0 { 1 { j: S"N�k { 0 { 1: (S"N)#S+

23b+l { q { 2: S �� b { q { 1: Nl { 1 { 2: NnS+database a+k+a0 { i { j: S �� (a+m+a0 { i { j: S ��m { 0 { 1: N)1;b+l { q { 2: S �� b { q { 1: N3;m { 0 { 1: N24agenda1. c { 0 { 2: S RES i = 0; j = 2; c = a+k+a0)c = k+l2. a+m+a0 { 0 { 2: S ��m { 0 { 1: N DT3. a+m+a0 { 0 { 2: S RES q = 0; b+l = a+m+a0)a = �; a0 = l4. b { 0 { 1: N RES b = m(62)
9 Bracket OperatorsAs �nal illustration of the present methods generality we consider unaryresiduation operators which can project structure blocking associativity andthereby e�ect island constraints such as the sentential subject constraint andcoordinate structure constraint.The inability of associative calculus to represent hierarchical structure,and its inability to express constraints with respect to such structure is ad-dressed in Morrill (1992, 1994a, c) (see also Moortgat 1994) by addition of\bracket" operators. In addition to the binary operators, types are gener-ated by unary (pre�x) operators [] (\bracket") and []�1 (\antibracket").Functional models are obtained by interpretation in hL;+; [.]i where [.] isa unary operation; for symmetric proof theory we require that this is a 1-1function (permutation) so that its inverse [.]�1 is total.[[s]�1] = [[s]]�1 = s(63) D([]A) = f[s]js 2 D(A)gD([]�1A) = fsj[s] 2 D(A)g = f[s]�1js 2 D(A)g(64)Intuitively []A is the result of appointing or crystalising prosodic objectsas domains or constituents, and []�1A the result of annulling or dissolving

24appointment as a domain. Groupoid and groupoid plus interval unfolding isthus:(65) [�]�1: Ap�: []Ap [�]: Ap�: []�1Ap(66) [�]�1 { i { j: Ap� { i { j: []Ap [�] { i { j: Ap� { i { j: []�1ApThe advantages of including segments are the same as those for NL: hori-zontal structure is factored out and corresponds to parsing input; dominancestructure is computed. The following example shows how vertical structureis projected over a sentencial subject by assignment of a sentential comple-ment verb phrase to []SPnS, and over a coordinate structure by assignmentof a coordinator to (Sn[]�1S)/S.m { 0 { 1: SP, k { 1 { 2: []SPnS, l { 2 { 3: Sn[]�1S)[[m]+k+l]: S(67)a+k { i { 2: S �� [a]�1 { i { 1: SPa { i { 1: []SP�k { 1 { 2: []SPnS+ [b+l] { j { 3: Sb+l { j { 3: []�1S+ �� b { j { 2: Sl { 2 { 3: Sn[]�1Sdatabase m { 0 { 1: SP3;a+k { i { 2: S �� [a]�1 { i { 1: SP2;[b+l] { j { 3: S �� b { j { 2: S1agenda1. c { 0 { 3: S RES j = 0; c = [b+l]) c = [[m]+k+l]2. b { 0 { 2: S RES i = 0; b = a+k) b = [m]+k3. [a]�1 { 0 { 1: SP RES [a]�1 = m) a = [m](68)

2510 SummaryLabelled unfolding of categorial formulas has been invoked in the referencescited as a way of checking well-formedness of proof nets for categorial cal-culi by uni�cation of labels on linked formulas. This o�ers improvementsover sequent formulations but raises alternative problems; for example asso-ciative uni�cation in general can have in�nite solutions and is undecidable.Taking linear validity as the highest common factor of sublinear categorialcalculi we have been able to show a strategy based on resolution in whichthe ow of information is such that one term in uni�cation is always ground.Furthermore binary relational labelling propagates constraints in such a waythat computation of uni�ers may be reduced to a subset of cases or avoidedaltogether. Higher-order coding allows emission of hypotheticals to be post-poned until they are germane. Simultaneous compilation allows a factoringout of horizontal and vertical structure within the sublinear space in sucha way that the partial information of word order can drive computation ofhierarchical structure for the categorial parsing problem in the presence ofnon-associativity. The treatments for the calculi above and their multimodalgeneralisations have been implemented in Prolog.Referencesvan Benthem, Johan: 1983, `The Semantics of Variety in Categorial Gram-mar', Report 83-29, Department of Mathematics, Simon Fraser Univer-sity, also in Buszkowski, W., W. Marciszewski, and J. van Benthem(eds.): 1988, Categorial Grammar, Linguistic & Literary Studies in East-ern Europe Volume 25, John Benjamins, Amsterdam, 37{55.van Benthem, J.: 1991, Language in Action: Categories, Lambdas and Dy-namic Logic, Studies in Logic and the Foundations of Mathematics Vol-ume 130, North-Holland, Amsterdam.Hendriks, Herman: 1993, Studied Flexibility: Categories and Types in Syntaxand Semantics, Ph.D dissertation, Institute for Logic, Language andComputation, Universiteit van Amsterdam.Hepple, Mark: 1990, `Normal form theorem proving for the Lambek calcu-lus', in H. Karlgren (ed.), Proceedings of COLING 1990, Stockholm.

26Hepple, Mark: 1993, `Labelled deduction and discontinuous constituency',ms. University of Pennsylvania.Hodas, J.: 1992, `Specifying Filler-Gap Dependency Parsers in a Linear-Logic Programming Language', in Proceedings of the Joint InternationalConference and Symposium on Logic Programming, 622{636.Hodas, Joshua and Dale Miller: 1994, `Logic Programming in a Fragmentof Intuitionistic Linear Logic', to appear in Journal of Information andComputation.K�onig, E.: 1989, `Parsing as natural deduction', in Proceedings of the AnnualMeeting of the Association for Computational Linguistics, Vancouver.Lambek, J.: 1958, `The mathematics of sentence structure', American Math-ematical Monthly 65, 154{170, also in Buszkowski,W., W. Marciszewski,and J. van Benthem (eds.): 1988, Categorial Grammar, Linguistic & Lit-erary Studies in Eastern Europe Volume 25, John Benjamins, Amster-dam, 153{172.Lambek, J.: 1961, `On the calculus of syntactic types', in R. Jakobson (ed.)Structure of language and its mathematical aspects, Proceedings of theSymposia in Applied MathematicsXII, AmericanMathematical Society,166{178.Lambek, J.: 1988, `Categorial and Categorical Grammars', in Richard T.Oehrle, Emmon Bach, and Deidre Wheeler (eds.) Categorial Grammarsand Natural Language Structures, Studies in Linguistics and PhilosophyVolume 32, D. Reidel, Dordrecht, 297{317.Miller, D., G. Nadathur, F. Pfenning, and A. Scedrov: 1991, `Uniform Proofsas a Foundation for Logic Programming', Annals of Pure and AppliedLogic 51, 125{157.Moortgat, Michael: 1988, Categorial Investigations: Logical and LinguisticAspects of the Lambek Calculus, Foris, Dordrecht.Moortgat, Michael: 1990, `The Quanti�cation Calculus: Questions of Ax-iomatisation', in Deliverable R1.2.A of DYANA Dynamic Interpretationof Natural Language, ESPRIT Basic Research Action BR3175.Moortgat, Michael: 1991, `Generalised Quanti�cation and Discontinuoustype constructors', to appear in Sijtsma and Van Horck (eds.) Pro-ceedings Tilburg Symposium on Discontinuous Constituency, Walter deGruyter, Berlin.

27Moortgat, Michael: 1992, `Labelled Deductive Systems for categorial theo-rem proving', OTS Working Paper OTS{WP{CL{92{003, Rijksuniver-siteit Utrecht, also in Proceedings of the Eighth Amsterdam Colloquium,Institute for Language, Logic and Information, Universiteit van Amster-dam.Moortgat, Michael: 1994, `Residuation in mixed Lambek systems', ms.OTS, Rijksuniversiteit Utrecht.Moortgat, Michael and Glyn Morrill: 1991, `Heads and Phrases: Type Cal-culus for Dependency and Constituent Structure', to appear in Journalof Language, Logic, and Information.Moortgat, Michael and Dick Oehrle: 1994, `Adjacency, dependency andorder', in Proceedings of the Ninth Amsterdam Colloquium, 447{466.Morrill, Glyn: 1992, `Categorial Formalisation of Relativisation: Pied Pip-ing, Islands, and Extraction Sites', Report de Recerca LSI{92{23{R, De-partament de Llenguatges i Sistemes Inform�atics, Universitat Polit�ecnicade Catalunya.Morrill, Glyn: 1993, `Discontinuity and Pied-Piping in Categorial Gram-mar', Report de Recerca LSI{93{18{R, Departament de Llenguatges iSistemes Inform�atics, Universitat Polit�ecnica de Catalunya.Morrill, Glyn: 1994a, Type Logical Grammar: Categorial Logic of Signs,Kluwer Academic Publishers, Dordrecht.Morrill, Glyn: 1994b, `Clausal Proof Nets and Discontinuity', Report de Re-cerca LSI{94{21{R, Departament de Llenguatges i Sistemes Inform�atics,Universitat Polit�ecnica de Catalunya, to appear in .Morrill, Glyn: 1994c, `Structural Facilitation and Structural Inhibition',Report de Recerca LSI{94{26{R, Departament de Llenguatges i SistemesInform�atics, Universitat Polit�ecnica de Catalunya.Morrill, Glyn and Teresa Solias: 1993, `Tuples, Discontinuity and Gapping',in Proceedings of the Sixth Conference of the European Chapter of theAssociation for Computational Linguistics, Utrecht, 287{297.Nadathur, D, and D. Miller: 1990, `Higher-order Horn Clauses, Journal ofthe ACM37(4), 777{814.Oehrle, Dick: 1994, `Term labelled categorial type systems', to appear inLinguistics and Philosophy.Pareschi, R.: 1989, Type-driven Natural Language Analysis, Ph.D. thesis,University of Edinburgh.

28Pareschi, R. and D, Miller: 1990, `Extending De�nite Clause Grammarswith Scoping Constructs', in D.H.D. Warren and P. Szeredi (eds.) 1990International Conference in Logic Programming, MIT Press, 373{389.Roorda, Dirk: 1991, Resource Logics: proof-theoretical investigations, Ph.D.dissertation, Universiteit van Amsterdam.Solias, Teresa: 1992, Gram�aticas Categoriales, Coordinaci�on Generalizada yElisi�on, Ph.D. dissertation, Universidad Aut�onoma de Madrid.Program Listing/*Operators for lexical assignments Alpha - Phi := Aand assignments Alpha - Phi: A*/:- op(500, xfx, :).:- op(500, xfx, :=).:- op(450, xfy, -)./*Operators over, under, product, to, from, wrap, infix,discontinuous product, and antibracket*/:- op(400, xfx, /).:- op(400, xfx, \).:- op(400, xfx, >).:- op(400, xfx, <).:- op(400, xfx, wr).:- op(400, xfx, in).:- op(400, xfx, pr).:- op(400, xfx, dp).:- op(300, fx, #).% Surface adjunction

29:- op(400, xfy, +).% Lexical assignmentsabout - about:= pp/n.and - [lmd, X, [lmd, Y, [and, Y, X]]]:= (s\ #s)/s.and - [lmd, X, [lmd, Y, [and, [app, [fst, Y], [snd, Y]],[app, [app, [snd, Y], [snd, X]], [fst, X]]]]]:= (((s wr ((n\s)/n)) dp ((n\s)/n))\s)/(n pr n).believes- believe:= (n\s)/s.bill - b:= n.book - book:= cn.dog - dog:= cn.for - [lmd, X, X]:= pp/n.(gives, the+cold+shoulder)- shun:= (n\s)wr n.(either, or)- [lmd, X, [lmd, Y, [or, X, Y]]]:= (s/s)wr s.everyone- [lmd, X, [all, Y, [app, X, Y]]]:= (s wr n)in s.herself - [lmd, U, [lmd,X,[lmd,Y,[app,[app,X,Y],[app, U, Y]]]]]:= (X wr n)in((((n\s)/X)/n)>((n\s)wr n)):- X=n; X=pp. % obj. antec. n and pp pied-pipinghimself - [lmd,X,[lmd,Y,[app,[app,X,Y],Y]]]:= ((n\s)wr n)in(n\s). % Sbj. antec.him - [lmd, Y, [lmd, X, [app, [app, [fst, X], [snd, X]],[app, Y, [snd, X]]]]]:= (s wr n) in ((((s/s) wr n) dp n)\s).itself - [lmd, X, [app, [app, [fst, X], [snd, X]], [snd, X]]]:= (((s/n) wr n) dp n)\s.kicks+the+bucket- die:= n\s.john - j

30:= n.likes - like:= (n\s)/n.man - man:= cn.mary - m:= n.(neither, nor)- [lmd, X, [lmd, Y, [lmd, Z, [not, [or, [app, X, Z], [app, Y, Z]]]]]]:= ((n\s)/(n\s))wr (n\s).of - of:= (cn\cn)/n.or - [lmd, X, [lmd, Y, [lmd, Z, [or, [app, Z, Y], [app, Z, X]]]]]:= (n\((s wr n)in s))/n. % "wide-scope 'or'" assignmentpicture - picture:= cn.(rings, up)- phone:= (n\s)wr n.seeks - seek:= (n\s)/(((n\s)/n)\(n\s)).sings - sing:= n\s.shows - show:= ((n\s)/n)/n.shows - [lmd, X, [lmd, Y, [[app, show, Y], X]]]:= ((n\s)/pp)/n.some - [lmd,Z,[lmd,X,[xst,Y,[and,[app,Z,Y],[app,X,Y]]]]]:= ((s wr n)in s)/cn.someone - [lmd,X,[xst,Y,[app,X,Y]]]:= (s wr n)in s.talks - talk:= ((n\s)/pp)/pp.that - [lmd, X, [lmd, Y, [lmd, Z, [app, [app, and, [app, Y, Z]],[app, X, Z]]]]]:= #(cn\cn)/(s/n). % non-pied-piping relative pronounthe - [lmd, X, [iota, Y, [app, X, Y]]]:= n/cn.thinks - think:= (n\s)/s.to - to:= pp/n.votes - vote:= (n\s)/pp.

31walks - walk:= n\s.whom - [lmd, X, [lmd, Y, [lmd, Z, [lmd, W, [and, [app, Z, W],[app, Y,[app, X, W]]]]]]] % pied-piping assignment:= (n wr n) in (#(cn\cn)/(s/n)).whose - [lmd, U, [lmd, X, [lmd, Y, [lmd, Z, [lmd, W, [and, [app, Z, W],[app, Y,[app, X, [iota, V, [and, [app, U, V],[app, poss, W, V]]]]]]]]]]]:= ((n wr n) in (#(cn\cn)/(s/n)))/cn. % pied-piping assignmentwoman - woman:= cn.% reset resets the gensymb record to 0reset :-clear,assert(rec(0)), !.% clear removes any gensymb recordsclear :-retract(rec(_)),clear, !.clear :- !.% gensymb(-N1) generates a new symbol (integer) N1gensymb(N) :-retract(rec(N)),N1 is N+1,assert(rec(N1)), !.unfposlist([], []).unfposlist([X|Xs], [Y|Ys]) :-unfpos([X], Y),unfposlist(Xs, Ys).unfpos([S: A|Gs], [S: A|G1s]) :-atom(A),unfneglist(Gs, G1s).unfpos([(I-J)-Gamma-Chi: B/A|Gs], Pcls) :-

32unfpos([(I-K)-Gamma+Alpha-[app, Chi, Phi]: B,(J-K)-Alpha-Phi: A|Gs], Pcls).unfpos([(J-K)-Gamma-Chi: A\B|Gs], Pcls) :-unfpos([(I-K)-Alpha+Gamma-[app, Chi, Phi]: B,(I-J)-Alpha-Phi: A|Gs], Pcls).unfpos([(I-J)-Gamma-Chi: B<A|Gs], Pcls) :-unfpos([(I-J, K-L)-(Gamma, Alpha)-[app, Chi, Phi]: B,(K-L)-Alpha-Phi: A|Gs], Pcls).unfpos([(K-L)-Gamma-Chi: A>B|Gs], Pcls) :-unfpos([(I-J, K-L)-(Alpha, Gamma)-[app, Chi, Phi]: B,(I-J)-Alpha-Phi: A|Gs], Pcls).unfpos([(I-J, K-L)-(Gamma1, Gamma2)-Chi: B wr A|Gs], Pcls) :-unfpos([(I-L)-Gamma1+Alpha+Gamma2-[app, Chi, Phi]: B,(J-K)-Alpha-Phi: A|Gs], Pcls).unfpos([(J-K)-Gamma-Chi: A in B|Gs], Pcls) :-unfpos([(I-L)-Alpha1+Gamma+Alpha2-[app, Chi, Phi]: B,(I-J, K-L)-(Alpha1, Alpha2)-Phi: A|Gs], Pcls).unfpos([(I-J)-Alpha-Phi: #A| Gs], Pcls) :-unfpos([(I-J)-b(Alpha)-Phi: A|Gs], Pcls).unfneglist([], []).unfneglist([X|Xs], ZsWs) :-unfneg(X, Zs),unfneglist(Xs, Ws),append(Zs, Ws, ZsWs).unfneg(S: A, [S: A]) :-atom(A).unfneg((I-J)-Gamma-[lmd, X, Psi]: B/A, [[Goal|Pcls]]) :-gensymb(K), gensymb(Alpha),unfneg((I-K)-Gamma+Alpha-Psi: B, Goal),unfpos([(J-K)-Alpha-X: A], Pcls).unfneg((J-K)-Gamma-[lmd, X, Psi]: A\B, [[Goal|Pcls]]) :-gensymb(I), gensymb(Alpha),unfneg((I-K)-Alpha+Gamma-Psi: B, Goal),

33unfpos([(I-J)-Alpha-X: A], Pcls).unfneg((I-K)-Alpha+Beta-[pair, Phi, Psi]: A pr B, XsYs) :-unfneg((I-J)-Alpha-Phi: A, Xs),unfneg((J-K)-Beta-Psi: B, Ys),append(Xs, Ys, XsYs).unfneg((I-J)-Gamma-[lmd, X, Psi]: B<A, [[Goal|Pcls]]) :-gensymb(K), gensymb(L), gensymb(Alpha),unfneg((I-J, K-L)-(Gamma, Alpha)-Psi: B, Goal),unfpos([(K-L)-Alpha-X: A], Pcls).unfneg((K-L)-Gamma-[lmd, X, Psi]: A>B, [[Goal|Pcls]]) :-gensymb(I), gensymb(J), gensymb(Alpha),unfneg((I-J, K-L)-(Alpha, Gamma)-Psi: B, Goal),unfpos([(I-J)-Alpha-X: A], Pcls).unfneg((I-J, K-L)-(Gamma1, Gamma2)-[lmd, X, Psi]: B wr A, [[Goal|Pcls]]) :-gensymb(Alpha),unfneg((I-L)-Gamma1+Alpha+Gamma2-Psi: B, Goal),unfpos([(J-K)-Alpha-X: A], Pcls).unfneg((J-K)-Gamma-[lmd, X, Psi]: A in B, [[Goal|Pcls]]) :-gensymb(I), gensymb(L),gensymb(Alpha1), gensymb(Alpha2),unfneg((I-L)-Alpha1+Gamma+Alpha2-Psi: B, Goal),unfpos([(I-J, K-L)-(Alpha1, Alpha2)-X: A], Pcls).unfneg((I-L)-Alpha1+Beta+Alpha2-[pair, Phi, Psi]: A dp B, YsXs) :-unfneg((I-J, K-L)-(Alpha1, Alpha2)-Phi: A, Xs),unfneg((J-K)-Beta-Psi: B, Ys),append(Ys, Xs, YsXs).prove([], []).prove(Database, [[X|Pcls]|Goals]) :- append(X, Goals, XGoals),prove([Pcls|Database], XGoals), !.prove(DB1XGsDB2, [(I-J)-Alpha-Phi: A|Goals]) :-append(DB1, [[(I-J)-Alpha1-Phi: A|Gs]|DB2], DB1XGsDB2),append(DB1, DB2, DB1DB2),append(Gs, Goals, GsGoals),prove(DB1DB2, GsGoals),eq1(Alpha1, Alpha).

34/*eq(Alpha, Alpha1) means that the normal form ground prosodic termAlpha is unifiable with the prosodic term Alpha1, which on exitis itself grounded accordingly*/eq(Alpha, V) :-var(V), !, V = Alpha.eq(Alpha, X) :-integer(X), !, Alpha = X.eq(b(Alpha), b(Beta)) :-eq(Alpha, Beta).eq(Alpha, Beta+0) :-eq(Alpha, Beta).eq(Alpha, 0+Beta) :-eq(Alpha, Beta).eq(AlphaBeta, Gamma+Delta) :-eq2(AlphaBeta, Alpha, Beta),eq(Alpha, Gamma),eq(Beta, Delta)./*eq1(Alpha, Alpha1) means that the ground prosodic term Alphais unifiable with the prosodic term Alpha1, which on exit isitself grounded accordingly*/eq1(Alpha, Alpha1) :-pnorm(Alpha, AlphaN),eq(AlphaN, Alpha1)./*eq2(+AlphaBeta, -Alpha, -Beta) means that (ground, normal form)prosodic term AlphaBeta is equal to the result of associativesurface adjunction of Alpha and Beta*/eq2(Alpha+Beta, Alpha, Beta).

35eq2(Alpha+Beta, Alpha1, Alpha2+Beta) :-eq2(Alpha, Alpha1, Alpha2).eq2(Alpha+Beta, Alpha+Beta1, Beta2) :-eq2(Beta, Beta1, Beta2)./*pnorm(+Alpha, -Gamma) means that Gamma is the result of normalisingthe ground prosodic term Alpha*/pnorm(Alpha, Gamma) :-pcontract(Alpha, Beta), !,pnorm(Beta, Gamma).pnorm(Alpha, Alpha)./*pcontract(Alpha, Gamma) means that Gamma is the result of performingone contraction step on the ground prosodic term Alpha*/pcontract(Alpha+0, Alpha).pcontract(0+Alpha, Alpha).pcontract(Alpha+Beta, AlphaN+Beta) :-pcontract(Alpha, AlphaN).pcontract(Alpha+Beta, Alpha+BetaN) :-pcontract(Beta, BetaN).pcontract(b(Alpha), b(AlphaN)) :-pcontract(Alpha, AlphaN).show(An, Su) :-unfposlist(An, An1),unfneg(Su, Su1),prove(An1, Su1).lookup([], [], N, N).lookup([W|L], [(I-J)-W-Phi: C|Cs], I, K) :-

36W - Phi := C,lookup(L, Cs, J, K),gensymb(I).lookup([W|L], [(I-J)-(W+Alpha)-Phi: C|Cs], I, K) :-(W+Alpha) - Phi := C,checkoff(L, Alpha, L1),lookup(L1, Cs, J, K),gensymb(I).lookup(L, [(I-J, K-M)-(Alpha, Beta)-Phi: C|C1sC2s], I, N) :-(Alpha, Beta)-Phi := C,checkoff(L, Alpha, L1L2),append(L1, L2, L1L2),checkoff(L2, Beta, L3),lookup(L1, C1s, J, K),lookup(L3, C2s, M, N),gensymb(I), gensymb(K),append(C1s, C2s, C1sC2s).checkoff([W|L], W, L).checkoff([W|L], W+Alpha, L1) :-checkoff(L, Alpha, L1).t(N) :- reset,str(N, L, C),nl, nl, write(N), write('. '), write(L: C),gensymb(K),lookup(L, Cs, I, K),show(Cs, (I-K)-Alpha-Phi: C),nl, nl, write(Alpha), write(' - '), nl,eval(Phi, NF), write(NF), fail./*eval(+Phi, -NF) means that NF is the result of normalising thesemantic form Phi*/eval(Phi, NF) :-numbervars(Phi, 0, _),eval1(Phi, NF).

37/*eval1(+Phi, -NF) means that NF is the result of normalisingthe frozen semantic form Phi*/eval1(Phi, NF) :-contract(Phi, Phi1), !,eval1(Phi1, NF).eval1(Phi, Phi)./*contract(+Phi, -Phi1) means that Phi1 is the result of applying onecontraction step to the frozen semantic form Phi*/contract([app, [lmd, X, Phi], Psi], Chi) :-subst(Psi, X, Phi, Chi).contract([fst, [pair, X, _]], X).contract([snd, [pair, _, Y]], Y).contract([H|T], [H|T1]) :-contractlist(T, T1).contractlist([Phi|Phis], [Phi1|Phis]) :-contract(Phi, Phi1).contractlist([Phi|Phis], [Phi|Phis1]) :-contractlist(Phis, Phis1)./*subst(+Phi, +X, +Psi, -NPsi) means that NPsi is the result of replacingby Phi all Xs in the frozen semantic form Psi*/subst(Phi, X, X, Phi).subst(_, _, C, C) :-atom(C).subst(_, _, X, X) :-X = '$VAR'(_).

38subst(Phi, X, [H|T], [H1|T1]) :-subst(Phi, X, H, H1),subst(Phi, X, T, T1).% Test strings% Simple sentencesstr(1, [john, walks], s).str(2, [john, likes, mary], s).str(3, [john, seeks, mary], s).str(4, [mary, shows, the, woman, the, book], s).str(a4, [john, kicks, the, bucket], s).% Discontinous functorsstr(5, [john, rings, mary, up], s).str(6, [john, gives, mary, the, cold, shoulder], s).str(7, [either, john, walks, or, mary, sings], s).str(8, [john, neither, walks, nor, sings], s).% Relativisationstr(9, [the, man, that, mary, likes, walks], s).str(10, [the, man, that, john, thinks, mary, likes, walks], s).str(11, [the, man, that, john, thinks, bill, believes, mary, likes, walks], s).% Coordinate Structure Constraintstr(12, [john, walks, and, mary, sings], s).str(13, [that, john, walks, and, mary, likes], cn\cn).str(a13, [that, john, thinks, bill, likes, the, man, that, shows], cn\cn).% Partee/Rooth "wide-scope 'or'"str(14, [john, thinks, bill, or, mary, walks], s).% Subject-antecedent reflexivisationstr(15, [john, likes, himself], s).str(16, [john, votes, for, himself], s).str(17, [john, shows, himself, the, book], s).

39% Object antecedent reflexivisationstr(18, [john, shows, mary, herself], s).str(19, [john, shows, herself, mary], s).% Pied-Piping object antecedent reflexivisationstr(20, [john, shows, mary, the, picture, of, herself], s).% Non-c-command pied-piping object antecedent reflexivisationstr(21, [john, talks, to, mary, about, herself], s).% Quantificationstr(22, [someone, walks], s).str(23, [some, man, walks], s).str(24, [everyone, likes, someone], s).str(25, [john, seeks, someone], s).str(26, [everyone, seeks, someone], s).str(27, [bill, thinks, someone, walks], s).str(28, [bill, thinks, some, man, shows, everyone, john], s).str(29, [the, book, that, john, shows, everyone], n).% Pied-Pipingstr(30, [the, man, whom, john, likes, the, picture, of], n).str(31, [the, man, the, picture, of, whom, john, likes], n).str(32, [the, man, whose, book, john, likes, the, picture, of], n).str(33, [the, man, the, picture, of, whose, book, john, likes], n).str(34, [john, likes, mary, and, mary, bill], s).str(35, [mary, shows, the, dog, itself], s).str(36, [mary, shows, john, to, himself], s).str(37, [mary, talks, to, john, about, himself], s).str(38, [john, thinks, bill, likes, him], s).str(39, [john, likes, him], s).str(40, [john, seeks, him], s).

40Log?- t(_).1. [john,walks]:sjohn+walks -[app,walk,j]2. [john,likes,mary]:sjohn+likes+mary -[app,[app,like,m],j]3. [john,seeks,mary]:sjohn+seeks+mary -[app,[app,seek,[lmd,$VAR(1),[lmd,$VAR(0),[app,[app,$VAR(1),m],$VAR(0)]]]],j]4. [mary,shows,the,woman,the,book]:smary+ (shows+the+woman)+the+book -[app,[app,[app,show,[iota,$VAR(2),[app,woman,$VAR(2)]]],[iota,$VAR(0),[app,book,$VAR(0)]]],m]a4. [john,kicks,the,bucket]:sjohn+kicks+the+bucket -[app,die,j]5. [john,rings,mary,up]:sjohn+rings+mary+up -[app,[app,phone,m],j]6. [john,gives,mary,the,cold,shoulder]:sjohn+gives+mary+the+cold+shoulder -[app,[app,shun,m],j]7. [either,john,walks,or,mary,sings]:s

41(either+ (john+walks)+or)+mary+sings -[or,[app,walk,j],[app,sing,m]]8. [john,neither,walks,nor,sings]:sjohn+ (neither+walks+nor)+sings -[not,[or,[app,walk,j],[app,sing,j]]]9. [the,man,that,mary,likes,walks]:s(the+man+b(that+mary+likes))+walks -[app,walk,[iota,$VAR(4),[app,[app,and,[app,man,$VAR(4)]],[app,[app,like,$VAR(4)],m]]]]10. [the,man,that,john,thinks,mary,likes,walks]:s(the+man+b(that+john+thinks+mary+likes))+walks -[app,walk,[iota,$VAR(4),[app,[app,and,[app,man,$VAR(4)]],[app,[app,think,[app,[app,like,$VAR(4)],m]],j]]]]11. [the,man,that,john,thinks,bill,believes,mary,likes,walks]:s(the+man+b(that+john+thinks+bill+believes+mary+likes))+walks -[app,walk,[iota,$VAR(4),[app,[app,and,[app,man,$VAR(4)]],[app,[app,think,[app,[app,believe,[app,[app,like,$VAR(4)],m]],b]],j]]]]12. [john,walks,and,mary,sings]:sb((john+walks)+and+mary+sings) -[and,[app,walk,j],[app,sing,m]]13. [that,john,walks,and,mary,likes]:cn\cna13. [that,john,thinks,bill,likes,the,man,that,shows]:cn\cn14. [john,thinks,bill,or,mary,walks]:sjohn+thinks+ (bill+or+mary)+walks -[app,[app,think,[or,[app,walk,b],[app,walk,m]]],j](john+thinks)+ (bill+or+mary)+walks -[or,[app,[app,think,[app,walk,b]],j],[app,[app,think,[app,walk,m]],j]]15. [john,likes,himself]:s

42john+likes+himself -[app,[app,like,j],j]16. [john,votes,for,himself]:sjohn+ (votes+for)+himself -[app,[app,vote,j],j]17. [john,shows,himself,the,book]:sjohn+shows+himself+the+book -[app,[app,[app,show,j],[iota,$VAR(1),[app,book,$VAR(1)]]],j]18. [john,shows,mary,herself]:sjohn+shows+mary+herself -[app,[app,[app,show,m],m],j]19. [john,shows,herself,mary]:s20. [john,shows,mary,the,picture,of,herself]:sjohn+shows+mary+ (the+picture+of)+herself -[app,[app,[app,show,m],[iota,$VAR(4),[app,[app,[app,of,m],picture],$VAR(4)]]],j]21. [john,talks,to,mary,about,herself]:sjohn+ (talks+to)+mary+about+herself -[app,[app,[app,talk,[app,to,m]],[app,about,m]],j]22. [someone,walks]:ssomeone+walks -[xst,$VAR(1),[app,walk,$VAR(1)]]23. [some,man,walks]:s(some+man)+walks -[xst,$VAR(1),[and,[app,man,$VAR(1)],[app,walk,$VAR(1)]]]24. [everyone,likes,someone]:s

43everyone+likes+someone -[all,$VAR(4),[xst,$VAR(2),[app,[app,like,$VAR(2)],$VAR(4)]]](everyone+likes)+someone -[xst,$VAR(4),[all,$VAR(2),[app,[app,like,$VAR(4)],$VAR(2)]]]25. [john,seeks,someone]:sjohn+seeks+someone -[app,[app,seek,[lmd,$VAR(2),[lmd,$VAR(0),[xst,$VAR(3),[app,[app,$VAR(2),$VAR(3)],$VAR(0)]]]]],j](john+seeks)+someone -[xst,$VAR(3),[app,[app,seek,[lmd,$VAR(2),[lmd,$VAR(0),[app,[app,$VAR(2),$VAR(3)],$VAR(0)]]]],j]]26. [everyone,seeks,someone]:severyone+seeks+someone -[all,$VAR(6),[app,[app,seek,[lmd,$VAR(3),[lmd,$VAR(1),[xst,$VAR(4),[app,[app,$VAR(3),$VAR(4)],$VAR(1)]]]]],$VAR(6)]](everyone+seeks)+someone -[xst,$VAR(6),[all,$VAR(4),[app,[app,seek,[lmd,$VAR(3),[lmd,$VAR(1),[app,[app,$VAR(3),$VAR(6)],$VAR(1)]]]],$VAR(4)]]]27. [bill,thinks,someone,walks]:sbill+thinks+someone+walks -[app,[app,think,[xst,$VAR(1),[app,walk,$VAR(1)]]],b](bill+thinks)+someone+walks -[xst,$VAR(1),[app,[app,think,[app,walk,$VAR(1)]],b]]28. [bill,thinks,some,man,shows,everyone,john]:sbill+thinks+ (some+man)+shows+everyone+john -[app,[app,think,[xst,$VAR(4),[and,[app,man,$VAR(4)],[all,$VAR(2),[app,[app,[app,show,$VAR(2)],j],$VAR(4)]]]]],b]bill+thinks+ ((some+man)+shows)+everyone+john -[app,[app,think,[all,$VAR(5),[xst,$VAR(2),[and,[app,man,$VAR(2)],[app,[app,[app,show,$VAR(5)],j],$VAR(2)]]]]],b]

44(bill+thinks)+ (some+man)+shows+everyone+john -[xst,$VAR(4),[and,[app,man,$VAR(4)],[app,[app,think,[all,$VAR(2),[app,[app,[app,show,$VAR(2)],j],$VAR(4)]]],b]]](bill+thinks+ (some+man)+shows)+everyone+john -[all,$VAR(5),[app,[app,think,[xst,$VAR(2),[and,[app,man,$VAR(2)],[app,[app,[app,show,$VAR(5)],j],$VAR(2)]]]],b]]29. [the,book,that,john,shows,everyone]:nthe+book+b(that+ (john+shows)+everyone) -[iota,$VAR(7),[app,[app,and,[app,book,$VAR(7)]],[all,$VAR(2),[app,[app,[app,show,$VAR(2)],$VAR(7)],j]]]]30. [the,man,whom,john,likes,the,picture,of]:nthe+man+b(whom+john+likes+the+picture+of) -[iota,$VAR(8),[and,[app,man,$VAR(8)],[app,[app,like,[iota,$VAR(1),[app,[app,[app,of,$VAR(8)],picture],$VAR(1)]]],j]]]31. [the,man,the,picture,of,whom,john,likes]:nthe+man+b(((the+picture+of)+whom)+john+likes) -[iota,$VAR(8),[and,[app,man,$VAR(8)],[app,[app,like,[iota,$VAR(2),[app,[app,[app,of,$VAR(8)],picture],$VAR(2)]]],j]]]32. [the,man,whose,book,john,likes,the,picture,of]:nthe+man+b((whose+book)+john+likes+the+picture+of) -[iota,$VAR(10),[and,[app,man,$VAR(10)],[app,[app,like,[iota,$VAR(1),[app,[app,[app,of,[iota,$VAR(4),[and,[app,book,$VAR(4)],[app,poss,$VAR(10),$VAR(4)]]]],picture],$VAR(1)]]],j]]]33. [the,man,the,picture,of,whose,book,john,likes]:nthe+man+b(((the+picture+of)+whose+book)+john+likes) -[iota,$VAR(10),[and,[app,man,$VAR(10)],[app,[app,like,[iota,$VAR(2),[app,[app,[app,of,[iota,$VAR(4),[and,[app,book,$VAR(4)],[app,poss,$VAR(10),$VAR(4)]]]],picture],$VAR(2)]]],j]]]34. [john,likes,mary,and,mary,bill]:s(john+likes+mary)+and+mary+bill -[and,[app,[app,like,m],j],[app,[app,like,b],m]]

4535. [mary,shows,the,dog,itself]:s(mary+shows+the+dog)+itself -[app,[app,[app,show,[iota,$VAR(2),[app,dog,$VAR(2)]]],m],m]((mary+shows)+the+dog)+itself -[app,[app,[app,show,[iota,$VAR(0),[app,dog,$VAR(0)]]],[iota,$VAR(0),[app,dog,$VAR(0)]]],m]36. [mary,shows,john,to,himself]:smary+ ((shows+john)+to)+himself -[app,[[app,show,[app,to,m]],j],m]37. [mary,talks,to,john,about,himself]:smary+ ((talks+to+john)+about)+himself -[app,[app,[app,talk,[app,to,j]],[app,about,m]],m]38. [john,thinks,bill,likes,him]:s(john+thinks)+ (bill+likes)+him -[app,[app,think,[app,[app,like,j],b]],j]39. [john,likes,him]:s40. [john,seeks,him]:sno?-

