Grammar as Logic

Glyn Morrill
July 14, 1989

Abstract

The notion of ‘parsing as deduction’ appears to presuppose that of ‘grammar as logic’,
though in fact the former has largely involved embedding grammars in logics using a fragment
conducive to theorem-proving. It is well-known that categorial grammars take the form of
implicational logics; in this case the grammar is not embedded, but simply is is a logic. The
paper argues that many further operations may be added to such a grammar, the result hav-
ing close relations with linear logic. Thus categorial grammar emerges as the implicational
fragment of a much more general logical grammar. A Prolog implementation illustrates ap-
plications to polymorphism, optionality, intensionality, bounded and unbounded extraction,
and coordination reduction.

1 Implication

The notion of ‘parsing as deduction’ appears to presuppose that of ‘grammar as logic’, though
in fact the former has largely involved embedding grammars in powerful logics using a fragment
conducive to theorem-proving, e.g. embedding context-free grammars in the Horn clause fragment
of first order logic (cf. Pereira and Warren 1983 and references therein). In categorial grammars,
the slash connectives behave directly as implication. The terms of the language of categories are
defined starting from a set of basic categories as follows:

(1) a. If X is a basic category
then X is a category.
b. If X and Y are categories
then X/Y and X\Y are categories.

A term X/Y represents expressions which apply to expressions of category Y on their right to
form expressions of category X; a term X\Y represents expressions which apply to expressions of
category Y on their left to form expressions of category X. Thus the following will be valid:
(2) a. > X)Y Y =X

b.<:Y X\Y=X

Note that a uniform-orientation notation is used, with arguments appearing on the same side of
their value, irrespective of directionality.

The inference from X/Y and ¥ to X is analogous to the inference from ¥ — X and YV to
X. Consider in particular the (product-free) Associative Lambek Calculus (ALC), which has a
Gentzen-style sequent axiomatisation as follows (Lambek 1958):

(3) X=X

(4) N, X,In==7 A=Y r,X,Ihn=7 A=Y
L
I, X/Y,A\Ty= Z [, AX\Y, Ty = Z

L

2 Morrill, July 14, 1989

(5) Iy=X Y I=X
—— /R ———=\R

I'=s X/Y r=Xx\vy
(6) =X A XA,=Y
ALT, As=Y

ur

Cut elimination holds for the system, i.e. every theorem has a cut-free proof, so the cut rule (6)
can be omitted without effecting the theory. Because each rule introduces a connective, search-
ing backwards without cut reduces complexity at every stage and gives a decision procedure for
theoremhood. The theory defined corresponds to the implicational fragment of non-commutative
linear logic (for linear logic in general see Girard 1987; Girard 1988, p14 refers specifically to the
Lambek calculus). There are two entailments: one from the right and one from the left. When
directionality is ignored (i.e. premises are multisets as opposed to lists), the result is commutative
linear logic with one, nondirectional, implication and a structural rule of exchange. The absence of
structural rules appears appropriate for grammar, where the order of premises (word categories)
is crucial.
Terms of the ALC can be compositionally interpreted as string-sets thus:

(1) [[X/Ylsyn = {#|Vy € [Y]]syn; 2y € [X]))syn}
[X\Y]lsyn = {[Vy € [[Y]lsyn, y € [[X]lsyn}

A sequent Xi,..., X, = Xo means that every expression formed by concatenating expressions of
categories Xq,..., X, is an expression of category Xo.

Terms can also be interpreted as meaning-classes, e.g. by translating into types and interpreting
these as function spaces in the usual way:

(®) 7(X/Y)=7(X\Y) = (7(Y), 7(X))

) [[(ab)]Jsem = [[b]]{&Hksem

Van Benthem (1983) shows how to associate with each proof of a sequent X1, ..., X, = X in the
ALC a lambda-term mapping from meanings in categories Xi,..., X,, into meanings in category
Xo. The left rules are functional application, and the right rules, functional abstraction.

Purely applicative analyses give canonical word orders; the semantics of discontinuity is man-
aged by functional abstraction over the meaning of extracted elements.

2 Product

Lambek (1958) contains already a product connective representing juxtaposition. The clause (10)
is added to the definition of categories; (11) will be valid.

(10) If X and YV are categories
then X *Y is a category.

(1) x: X Y = XY
The sequent rules are as follows:
(12) T, X V,T2=> 27

I, XY, Ty= 7

I'=X A=Y

A= XxY

Morrill, July 14, 1989 3

These are the sequent rules for times/multiplicative conjunction/intensional conjunction/tensor
product in linear logic (Girard and Lafont 1986, p3). Product can be interpreted syntactically as
concatenation and semantically as pair formation:

(13) [[X*Y]lsyn = {zylz € [[X]lsyn and y € [[Y]]syn}
[(X*Y]]sem = [X]]sem x [Y]]sem

We will assume that product binds more tightly than implication: * < / = \. Products have
been invoked in relation to coordination. As an illustration of possible linguistic application here,
consider the small clauses posited in Government-Binding:

(14) Mary considers John lucky
NP S\NP/NP*(N/N) NP N/N
—x
NP*(N/N)
>
S\NP
S

3 Intersection and Union

Van Benthem (1989) suggests intersection and union as natural operations on string-sets; the
same is true as operations on function-spaces. The following clauses are added to the definition of
categories:

(15) If X and YV are categories
then X&Y and X 4+ Y are categories.

For intersection (boolean conjunction) & the following will be valid:
(16)a. N;: X&Y = X
b. Ny: X&Y =Y
We propose the following sequent rules:
17y T, X, T.=>Z %L I, Y,I'n=27
[, X&Y, Iy = 72 [, X&Y, I'y = 72

& Loy

I'=X I'=Y
I => X&Y

&R

These are the rules for with/extensional conjunction/direct product in linear logic (Girard and
Lafont 1986, p3). We will assume that intersection binds exactly as tightly as product: & = % <
/ = \. Intersection of categories expresses polymorphism. For example assigning an expression
to category NP&SP indicates that it is both a noun phrase and a complementized sentence.
Intersection in the value part of a category expresses value polymorphism. Thus if it is believed
that search is in fact the same when it takes a PP for complement to form an untensed verb phrase,
and when it takes a PPfor to form a noun, we might express this by assigning it to the category

(S\NP)&N/PP:

(18) a. Mary will search for John.

b. The search for John continued.

4
(19) Mary will search for John
NP S\NP/(S\NP) (S\NP)&N/PP PP
(S\NP)&N
—N
S\NP
>
S\NP
S
(20) the search for John continued
NP/N (S\NP)&N/PP PP S\NP
(S\NP)&N
N 2
>
NP
S

For union (boolean disjunction) +, (21) will be valid.

(2l)a. Up: X == X 4V
b. Uy Y = X+Y

The following sequent axiomatisation is proposed:

(22) T, X,To=2 T.,Y,Ty3=2Z
Fl,X—|—Y,F2:>Z

+L

I'=X I'=Y
—+R —+ R
I'=X+Y I'=X+Y

Morrill, July 14, 1989

This is plus/extensional disjunction/direct sum in linear logic (Girard and Lafont 1987, p3). Union
is assumed to bind exactly as tightly as intersection (and product): + = & = % < / = \. Union
in the argument part of a category expresses argument polymorphism. If it is assumed that it is
the same verb see which combines with noun phrases and small clauses, we may assign it to the

category S\NP/NP+(NP*(S\NP)):

(23) a. Mary saw the man.
b. Mary saw John yawn.

Morrill, July 14, 1989 5

(24) Mary saw the man
NP S\NP/NP+(NP*(S\NP)) NP
NPL(NPFS\NP)) !
S\NP ”
S <
(25) Mary saw John yawn
NP S\NP/NP+(NP*(S\NP)) NP S\NP
NPHS\NP) |
NP+ (NP*(S\NP))
S\NP ”
S

4 Exponentials

Linear logic contains unary operators ! (‘of-course!’) and 7 (‘why-not?’), sometimes compared to
the modalities necessity and possibility. They reintroduce in a controlled manner the structural
rules that are lost in the transition from intuitionistic logic to linear logic. From a linguistic
point of view, we may look to !X to mean ‘one or more Xs’, and in this way approach iterated
coordination: John, Bill, Mary, Suzy, and Fred; we may look to 7X to mean ‘one or no Xs’ and
so express optionality. For the latter (27) will be valid.

(26) If X is category
then !X and 7X are categories.

(27)a. ()1: X = 7X
b. ()02 =7X

There could be the following axiom and sequent rule:

(28) =7X
(29) I'=Y
R
=7y

The implementation in the appendix includes 7 but not !. A unary operator associates to the
right and is assumed to bind tighter than the binary operators: 7 < + = & =« < / = \. The
optionality of the object of e.g. eat is thus characterised by assignment to S\NP/?NP:

(30) John ate the cake
NP S\NP/?NP NP
!
S\NP

6 Morrill, July 14, 1989

(31) John ate .
NP S\NP/?NP NP
S\NP ”
S

5 Modality

In Morrill (1989) it is suggested that intensionality be represented in the language of categories
by means of a one-place operator, and it is observed that when this is done, the combinatorics of
intensional types is given by modal necessity; that is, the logic of intensional types is the logic of
necessity. Where X is a category, OX is the corresponding intensional category. Clause (32) is
added to the definition of terms; there is the type-mapping in (33), where s represents the set of
indices.

(32) If X is a category
then OX is a category.

(33) 7(BX) = (s,7(X))

The main part of that paper uses minimal modal logic, though addition of further axioms is
suggested at the end and there are reasons to believe that this is appropriate. Nevertheless, we
use just minimal modal logic here, axiomatised thus:

(34) I'=>X

———0
or = o0X

The O is again assumed to bind more tightly than the binary operators: O =7 < + = & = x <
/ = \. Morrill (1989) describes how at the same time as doing the book-keeping for an intensional
semantics, the modal apparatus specifies intensional domains in terms of which it is possible to
express boundedness of reflexivisation as contrasted with unboundedness of relativisation; these
points will not be repeated here, though they are illustrated in the appendix.

As remarked above, the linear logic exponentials are comparable to modals, though for the
current application the role of ! as representing Kleene plus iteration, and O as representing
intensionality, are quite different. This may indicate that a distinction is to be drawn in the context
of grammar; alternatively, the suitablity of O to intensionality may draw from its relatedness to
universal quantification, in which case the latter might be used.

6 Coordination

To assign a coordinator a category such as S\S/S presents it rather as a subordinator. We introduce
a compound connective /\ indicating simultaneous forward and backward application (cf. Geach
1972, p485). T am not aware of a logical analogue. There is the following sequent rule:

(35) Ti2, AT =Y 12, A9, T91 =Y 'y, X,y = 72
Li, Tios A, X/A\Y, A, T, Ty = 72

The /\ binds more loosely than all the other connectives: O =7 < + =& =< / =\ < /\.

Morrill, July 14, 1989 7

7 Discussion

The appendix contains an implementation which assumes cut-elimination, and which associates
a functional semantics with proofs (cf. also ‘formulae as types’, Howard 1980). It only seems
appropriate to require the cut rule to be valid, since it expresses the idea of consequence which
is fundamental to logic. A cut-elimination proof is then required to ensure the completeness of
cut-free analysis of the kind in the appendix. In this connection, the cut-elimination results from
linear logic should prove helpful, as should the method of proof-nets and normalisation developed
in that context. At this point, further logical operations may still be expected to be found, and
full work on their axiomatisation and semantics remains to be carried out.

That implication has been most central in grammar need come as no surprise, since entailment
is the “heart of logic”. But the picture emerging according to this paper is that categorial grammar
forms just the implicational fragment of a much larger logical grammar, with close relations to
linear logic.

(36)

The implementation in the appendix illustrates applications to polymorphism, optionality, inten-
sionality, bounded and unbounded extraction, and coordination reduction.

8 Commentary on the Program and Log

In the translations, application is represented by ¢ which associates to the left, and abstraction
is represented by @, which takes the abstractor variable to its left and which associates to the
right. Sometimes the translations obtained could undergo eta-reduction. Analysis halts after one
derivation has been found; exhaustive search would yield a large (but finite) number of derivations
assigning the same meaning.

Examples 1 and 2 illustrate simple sentences. In these, all words are evaluated at the same
index; this is indicated by the fact that each word meaning (assumed to be intensional) applies
initially to the same index. The translation as a whole is the abstraction over the indices, i.e. the
proposition expressed by the sentence. Example 3 exhibits an intensional domain: the elements of
the embedded clause are evaluated at an index different form that of the superordinate clause, and
the sentence-embedding verb applies to embedded sentence interpretation abstracted over indices
— 1t applies to the intension of the embedded clause. Examples 4 and 5 illustrate how intensional
verbs, and prepositions (assumed to take intensional objects), can extensionalise by applying to
Lifted arguments.

Example 6 demonstrates the product analysis of small clauses; in the translation, pairs are
represented by commas and brackets. In 7 and 8, search has a single value-polymorphic category
covering its role as an untensed verb and a noun. In 9 and 10, saw has a single argument-
polymorphic category covering its role as a governer of noun phrases or small clauses; the latter
is again encoded by means of product. Examples 11 and 12 indicate optionality.

Examples 13 and 14 show simple subject and object relativisation respectively. In 15 and
16 there is object relativisation of an intensional argument, and out of an intensional domain,
respectively; in 17 there is both.

18 and 19 show simple agreement for reflexives, implemented by featural analysis of basic
nominal categories; 20 and 21 show agreement for reflexives with relativisation. 22 and 23 show

8 Morrill, July 14, 1989

reflexives in positions which can be intensional; 24 shows reflexivisation across an auxiliary and
with the value-polymorphic search. Example 25 shows that reflexivisation cannot pass out of an
embedded clauses, which form intensional domains.

Examples 26 to 30 show sentence coordination, intransitive verb phrase coordination, transitive
verb phrase coordination, subject coordination, and object coordination, respectively; 31 is not
generated, reflecting a problem with agreement and coordination.

The right node raising in 32, and the across-the-board extraction in 33, are obtained, but
the embedded right node raising in 34 is not generated. This involves right node raising from
an intensional domain; presumably related is the failure to generate the left node raising in 34,
involving adverbials also assumed to create intensional domains. The left node raising in 36, not
involving intensionality, it obtained.

Appendix A: Prolog Implementation
:— op(400,yfx,/).
:— op(400,yfx,\).

:— op(350,yfx,*).

:— op(350,yfx,&).
:— op(350,yfx,+).

:— op(330,fy,#).
:— op(430,yfx,’/\’).

:- op(330,fy,7).
:- op(330,fy,!).

:— op(600,xfx,’:=).
:— op(600,xfx,’=>).
:— op(500,xfx,:).

:— op(450,yfx, ‘).
:— op(450,xfy,0).

top(Str,Trans) :-

lex_entries(Str,Premises),
theorem(Premises => Trans: #s).

lex_entries([]1,[]1).

lex_entries([Word|Words], [Word:Cat|Cats]) :-
Word := Cat,
lex_entries(Words,Cats).

% Axiom

theorem([A:X] => A:X) :-
basic_cat(X).

Morrill, July 14, 1989

h /L

theorem(Premises => CZ) :-
appendn([Gammal, [A:X/Y] ,Delta,Gamma2] ,Premises),
theorem(Delta => B:Y),
appendn([Gammal, [A‘B:X],Gamma2] ,Gamma),
theorem(Gamma => CZ).

% \L

theorem(Premises => CZ) :-
appendn([Gammal,Delta, [A:X\Y],Gamma2] ,Premises),
theorem(Delta => B:Y),
appendn([Gammal, [A‘B:X],Gamma2] ,Gamma),
theorem(Gamma => CZ).

h /R

theorem(Premises => BOA:X/Y) :-
append(Premises, [B:Y] ,Gamma),
theorem(Gamma => A:X).

% \R

theorem(Premises => BOA:X\Y) :-
append([B:Y],Premises,Gamma),
theorem(Gamma => A:X).

% *L

theorem(Premises => CZ) :-
appendn([Gammal, [(A,B) :X*Y],,Gamma2] ,Premises),
appendn([Gammal, [A:X], [B:Y],Gamma2] ,Gamma) ,
theorem(Gamma => CZ).

h *R

theorem(Premises => (A,B):X*Y) :-
append(Gamma,Delta,Premises),
theorem(Gamma => A:X),
theorem(Delta => B:Y).

% &L1

theorem(Premises => CZ) :-
appendn([Gammal, [A:X&_] ,Gamma2] ,Premises),
appendn([Gammail, [A:X],Gamma2] ,Gamma) ,
theorem(Gamma => CZ).

% &L2

theorem(Premises => CZ) :-
appendn([Gammal, [A:_&Y],Gamma2] ,Premises),

10 Morrill, July 14, 1989

appendn([Gammal, [A:Y] ,Gamma2] ,Gamma) ,
theorem(Gamma => CZ).

% &R

theorem(Premises => A:X&Y) :-
theorem(Premises => A:X),
theorem(Premises => A:Y).

% +L

theorem(Premises => CZ) :-
appendn([Gammal, [A:X+Y] ,Gamma2] ,Premises),
appendn([Gammal, [A:X],Gamma2] ,GammaX),
theorem(GammaX => CZ),
appendn([Gammal, [A:Y],Gamma2] ,GammaY),
theorem(GammaY => CZ).

Y% +R1

theorem(Premises => A:X+_)
theorem(Premises => A:X).

Y% +R2

theorem(Premises => A:_+Y)
theorem(Premises => A:Y).

% 7 Axiom

theorem([] => _: 7_).

% 7R

theorem(Premises => C: 7A) :-—
theorem(Premises => C:A).

% #

theorem(Premises => IQA: #X) :-
mod (DeModPremises,Premises,I),
theorem(DeModPremises => A:X).

h I\

theorem(Premises => CZ) :-
appendn([Gammall,Gammal2,Deltal, [A:X/\Y] ,Delta2,Gamma2l,Gamma22] ,Premises),
appendn([Gammai2,Deltal,Gamma21] ,Gammal),
theorem(Gammal => B1:Y),
appendn([Gammai2,Delta2,Gamma21] ,Gamma2),
theorem(Gamma2 => B2:Y),
appendn([Gammaill, [A¢(B1,B2):X],Gamma22] ,Gamma) ,
theorem(Gamma => CZ).

Morrill, July 14, 1989

mod([1,01,_).

mod([A‘I:X|DeMods],[A: #X|Mods],I) :-
mod (DeMods,Mods,I).

appendn([]1,[1).

appendn([L1|Ls],L) :-
append(L1,L2,L),
appendn(Ls,L2).

append ([1,L,L).

append([H|L1],L2, [HIL]) :-
append(L1,L2,L).

basic_cat(s).
basic_cat(sp).
basic_cat(n(_)).
basic_cat(np(_)).
basic_cat(pp).

and := #(s/\s).

ate := #(s\np(_)/ 7op().
arrived := #(s\np(_)).
book := #n(n).

cake := #n(n).

considers := #(s\np(_)/np()*(n(G)/n(G))).

continued := #(s\np(_)).

dislikes := #(s\np(_)/np(_)).

for := #(pp/(#s\(#s/np()))).

give := #(s\np(_)/np(_)/np()).
herself := #(s\np(f)\(s\np(f)/np(£))).
himself := #(s\np(m)\(s\np(m)/np(m))).
john := #np(m).

left #(s\np(_)).

likes := #(s\np(_)/np()).

lucky := #(n(G)/n(G)).

man := #n(m).

married := #(s\nop(_)/np(_)).

mary := #np(f).

met := #(s\np(_)/np().

record := #n(_).

saw := #(s\np(_)/np()+ (np(G)*(s\np(G)))).

search := #((s\np(_))&n(n)/pp).

sent := #(s\np(_)/np(_)/np()).
sought := #(s\np(_)/(#s\(#s/np()))).
suzy := #np().

the := #(np(G)/n(G)).

thinks := #(s\np(_))/ #s.

today := #(s\np(G))\ #(s\np(G)).
voted := #(s\np(_)/pp).

who := #(n(G)\n(G))/(#s\ #np(G)).
#(n(G)\n(G))/(#s/ #np(G)).

who :

11

12 Morrill, July 14, 1989

will #(s\np(G)/(s\np(G))).
yawn := #(s\np(_)).
yesterday := #(s\np(G))\ #(s\np(G)).

% Simple sentences

str(1l, [john,left]).
str(2, [mary,will,give,john,the,lucky,book]).

% Modality: intensional domains
str(3, [suzy, thinks,mary,met, john]).
% Abstraction: extensionalisation of prepositions and intensional verbs

str(4, [mary,sought, john]).
str(5, [mary,voted,for,the,man]).

% Product: small clauses
str(6, [mary,considers, john,luckyl).
% Intersection: value polymorphism

str(7, [mary,will,search,for, john]).
str(8, [the,search,for, john,continued]).

% Union: argument polymorphism

str(9, [mary,saw,the,man]).
str(10, [mary,saw, john,yawn]).

% Why not: optionality

str(11,[john,ate,the,cake]).
str(12,[john,ate]).

% Abstraction and Modality: relativisation and reflexivisation

str(13, [the,man,who,saw,mary,left]).

str(14, [the,man,who,suzy,met,left]).

str(15, [the,man,who,suzy,sought,left]).

str(16, [the,man,who,mary,thinks,suzy,met,left]).
str(17, [the,man,who,mary,thinks,suzy,voted,for,left]).
str(18, [mary,saw,herself]).

str(19, [mary,saw,himself]).

str(20, [the,man,who,saw,himself,left]).

str(21, [the,man,who,saw,herself,left]).

str(22, [mary,sought,herself]).

str(23, [mary,voted,for,herself]).

str(24, [mary,will,search,for,herself]).

str(25, [mary,thinks, john,met,herself]).

% Coordination

Morrill, July 14, 1989 13

str(26,[john,arrived,and,mary,left]).

str(27, [suzy,arrived,and,left]).

str(28, [mary,met,and,married, john]).

str(29, [suzy,and,mary,left]).

str(30, [john,met ,mary,and,suzy]l).
str(31,[john,and,mary,left]).
str(32,[john,likes,and,mary,dislikes,suzy]).

str(33, [the,man,who, john,likes,and,mary,dislikes,left]).
str(34, [mary,thinks, john,likes,and, suzy,thinks, john,dislikes,the,man]).
str(35, [john,saw,mary,yesterday,and, suzy,todayl).
str(36, [john,sent,suzy,the,book,and,mary,the,record]).

test(N) :-
str(N,Str),
nl, nl, write(N), tab(2), write(Str), nl,
test1(Str).

test1(Str) :-

top(Str,Trans),
numbervars(Trans,0,_), nl, write(Trans), !, fail.

Appendix B: Log of Terminal Session

Script started on Fri Jul 14 02:53:07 1989

% gprolog

Quintus Prolog Release 2.2 (Sun-3, Unix 3.2)

Copyright (C) 1987, Quintus Computer Systems, Inc. All rights reserved.
1310 Villa Street, Mountain View, Califormnia (415) 965-7700

| 7- compile(tpi18).

[compiling /home/user3/glyn/Sequent/tpi8...]

[tp18 compiled 20.550 sec 10,048 bytes]

yes

| 7- test(l).

1 [john,left]

A@left‘A‘ (john‘A)

2 [mary,will,give, john,the,lucky,book]

AOwill‘A‘ (B@give‘A‘ (john‘A)‘ (the‘A‘ (lucky‘A‘ (book‘A)))‘B)‘ (mary‘A)
3 [suzy,thinks,mary,met,john]

A@thinks‘ (BOmet‘B‘ (john‘B)‘ (mary‘B))‘A‘ (suzy‘A)

14 Morrill, July 14, 1989

4 [mary,sought,john]

A@sought ‘A¢ (B@COB‘ (john‘A)‘C)‘ (mary‘A)

5 [mary,voted,for,the,man]

AQvoted‘A‘ (for‘A¢ (BOCOB‘ (the‘A‘ (man‘A))‘C))‘ (mary‘A)

6 [mary,considers,john,lucky]

AQconsiders‘A‘ (john‘A,B@lucky‘A‘B)‘ (mary‘A)

7 [mary,will,search,for, john]

A@will‘A‘ (B@search‘A‘ (for‘A¢ (CODOC‘ (john‘A) ‘D)) ‘B)‘ (mary‘A)
8 [the,search,for,john,continued]

AQcontinued‘A‘ (the‘A‘ (search‘A‘ (for‘A‘ (BOCOB‘ (john‘A)‘C))))
9 [mary,saw,the,man]

AGsaw‘A‘ (the‘A‘ (man‘h))‘ (mary‘A)

10 [mary,saw, john,yawn]

AGsaw‘A‘ (john‘A,B@yawn‘A‘B) ‘¢ (mary‘A)

11 [john,ate,the,cake]

AGate‘A‘ (the‘A‘ (cake‘A))‘ (john‘A)

12 [john,ate]

AGate‘A‘B‘ (john‘A)

13 [the,man,who,saw,mary,left]

AQleft‘A‘ (the‘A‘ (who (B@COsaw‘C‘ (mary‘C)‘ (B‘C))‘A‘ (man‘h)))
14 [the,man,who,suzy,met,left]

AQleft‘A‘ (the‘A‘ (who (B@COmet‘C‘ (B‘C)‘ (suzy‘C))‘A‘ (man‘Ah)))
16 [the,man,who,suzy,sought,left]

AQleft‘A‘ (the‘A‘ (who‘ (B@C@sought‘C‘ (DOE@D‘ (B‘C)‘E)‘ (suzy‘C))‘A‘ (man‘ld)))
16 [the,man,who,mary,thinks,suzy,met,left]

AQleft‘A‘ (the‘A‘ (who (B@COthinks‘ (D@met ‘D¢ (B‘D)‘ (suzy‘D))‘C‘ (mary‘C))‘A‘ (man‘d)))

17 [the,man,who,mary,thinks,suzy,voted,for,left]

Morrill, July 14, 1989 15

AQleft‘A‘ (the‘A‘ (who (B@COthinks‘ (D@voted‘D‘ (for‘D¢ (EQFEE‘ (B‘D)‘F)) ‘¢ (suzy‘D))‘C‘ (mary‘C)) ‘A
18 [mary,saw,herself]
A@herself‘A‘ (B@COsaw‘A‘B‘C)‘ (mary‘A)

19 [mary,saw,himself]

20 [the,man,who,saw,himself,left]
A0left‘A¢ (the‘A‘ (who¢ (B@C@himself‘C‘ (DOE@saw‘C‘D‘E)‘ (B‘C))‘A‘ (man‘d)))

21 [the,man,who,saw,herself,left]

22 [mary,sought,herself]

AQherself ‘A‘ (B@COsought‘A‘ (D@E@D‘B‘E) ‘C) ¢ (mary‘A)

23 [mary,voted,for,herself]

A@herself‘A¢ (BOC@voted‘A‘ (for‘A‘ (DOE@D‘B‘E))‘C)‘ (mary‘A)

24 [mary,will,search,for,herself]

AGwill‘A‘ (BO@herself ‘A‘ (C@D@search‘A‘ (for‘A¢ (EQF@E‘C‘F))‘D)‘B) ‘¢ (mary‘A)

25 [mary,thinks, john,met,herself]

26 [john,arrived,and,mary,left]

AGand‘A‘¢ (arrived‘A‘ (john‘A),left‘A‘ (mary‘A))

27 [suzy,arrived,and,left]

AGand‘A‘¢ (arrived‘A‘ (suzy‘A),left‘A‘ (suzy‘A))

28 [mary,met,and,married, john]

AGand‘A¢ (met‘A‘ (john‘A) ¢ (mary‘A),married‘A‘ (john‘A)‘ (mary‘A))
29 [suzy,and,mary,left]

AGand‘A‘¢ (left‘A‘ (suzy‘A),left‘A‘ (mary‘A))

30 [john,met,mary,and,suzy]

AGand‘A‘¢ (met‘A‘ (mary‘A)‘ (john‘A),met‘A‘ (suzy‘A)‘ (john‘A))

31 [john,and,mary,left]

16 Morrill, July 14, 1989

32 [john,likes,and,mary,dislikes,suzy]

AGand‘A¢ (likes‘A‘ (suzy‘A)‘ (john‘A),dislikes‘A‘ (suzy‘A)‘ (mary‘A))

33 [the,man,who, john,likes,and,mary,dislikes,left]

AQleft‘A‘ (the‘A‘ (who (B@COand‘C‘ (likes‘C‘ (B‘C)‘ (john‘C),dislikes‘C‘ (B‘C)‘ (mary‘C)))‘A¢ (man®

34 [mary,thinks, john,likes,and,suzy,thinks, john,dislikes,the,man]

35 [john,saw,mary,yesterday,and,suzy,today]

36 [john,sent,suzy,the,book,and,mary,the,record]

AGand‘A‘¢ (sent‘A‘ (suzy‘A)‘ (the‘A‘ (book‘A))‘ (john‘A),sent‘A‘ (mary‘A)‘ (the‘A‘ (record‘A))‘ (john
no

| »- "Z

[End of Prolog execution]

h

script done on Fri Jul 14 03:07:10 1989

References

van Benthem, Johan: 1983, The semantics of Variety in Categorial Grammar, Report 83-29,
Department of Mathematics, Simon Fraser University. Also in W. Buszkowski et al. (eds.),
1988, Categorial Grammar, Volume 25, Linguistic & Literary Studies in Eastern Europe, John
Benjamins, Amsterdam /Philadelphia.

van Benthem, Johan: 1989, Language in Action, ms., Faculteit Wiskunde en Informatica, Univer-
siteit van Amsterdam.

Geach, P. T.: 1972, ‘A program for syntax’, in D. Davidson and G. Harman (eds.) Semantics of
Natural Language, D. Reidel, Dordrecht.

Girard, Jean-Yves: 1987, ‘Linear Logic’, Theoretical Computer Science 50, 1-102.
Girard, Jean-Yves, 1988, ‘Geometry of Interaction’, unpublished, Paris.

Girard, Jean-Yves and Yves Lafont: 1986, ‘Linear Logic and Lazy Computation’, Rapports de
Recherche No. 588, Institut National de Recherche en Informatique et en Automatique, Domaine
de Voluceau, Rocquencourt B.P.105, 78153 Le Chesnay Cedex, France.

Howard, W.A.: 1980, ‘The formulae-as-types notion of construction, in J.R. Hindley and J.P
Seldin (eds.) To H. B. Curry, Essays on Combinatory Logic, Lambda Calculus, and Formalism,
Academic Press.

Lambek, J.: 1958, ‘The mathematics of sentence structure’, American Mathematical Monthly 65,
154-170.

Morrill, Glyn: 1989, ‘Intensionality, Boundedness, and Modal Logic, Research Paper EUCCS/RP-
32, Centre for Cognitive Science, University of Edinburgh.

Morrill, July 14, 1989 17

Pereira, Fernando C. N. and David H. D. Warren: 1983, ‘Parsing as deduction’, in Proceedings of
the 21st Annual Meeting of the Association for Computational Linguistics, Massachusetts Institute
of Technology, Cambridge, Massachusetts.

