Tuples, Discontinuity, and Gapping in Categorial Grammar

Glyn Morrill & Teresa Solias

Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya
Edifici F I B, Pau Gargallo, 5
08028 Barcelona
e-mail: morrill@lsi.upc.es

Departamento de Filología Española (Lingüística)
Universidad de Valladolid
Facultad de Filosofía y Letras, Plaza de la Universidad, s/n
47001 Valladolid
e-mail: solias@cpd.uva.es

Abstract

This paper solves some puzzles in the formalisation of logic for discontinuity in categorial grammar. A ‘tuple’ operation introduced in [Solias, 1992] is defined as a mode of prosodic combination which has associated projection functions, and consequently can support a property of unique prosodic decomposability. Discontinuity operators are defined model-theoretically by a residuation scheme which is particularly amenable proof-theoretically. This enables a formulation which both improves on the logic for wrapping and infixing of [Moortgat, 1988] which is only partial, and resolves some problems of determinacy of insertion point in the application of these proposals to in-situ binding phenomena. A discontinuous product is also defined by the residuation scheme, enabling formulation of rules of both use and proof for a ‘substring’ product that would have been similarly doomed to partial logic.

We show how the apparatus enables characterisation of discontinuous functors such as particle verbs and phrasal idioms, and binding phenomena such as quantifier raising and pied piping. We conclude by showing how the apparatus enables a simple categorial analysis of (SVO) gapping using the discontinuity product and the wrapping operator.

1 Introduction

In [Lambek, 1958] the suggestive recursive fractional categorial notations of [Ajdukiewicz, 1935] and [Bar-Hillel, 1953] were provided with a foundational setting in mathematical logic. This takes the form of a model theory interpreting category formulas in algebraic structures. A Gentzen style sequent proof theory for which there is a Cut-elimination result means that a decision procedure is provided on the basis of sequent calculus.

The category formulas are freely generated from atomic category formulas (e.g. N for referring nominals, S for sentences, CN for common nouns, ...) by binary operators \ ('under'), / ('over') and • ('product'). The interpretation is in semigroups, i.e. algebras (L,+) where + is a binary operation satisfying the associativity axiom s1 + (s2 + s3) = (s1 + s2) + s3. (In the non-associative formulation of [Lambek, 1961], this condition is withdrawn.) We may in particular consider the algebra obtained by taking the set V* of strings over a vocabulary V; then L is V* — {τ} where τ is the empty string. Each category formula A is interpreted as a subset D(A) of L. Given such a mapping for atomic category formulas it is extended to the compound category formulas thus:

\[D(A\setminus B) = \{ s | \forall s' \in D(A), s' + s \in D(B) \} \]
\[D(B\setminus A) = \{ s | \forall s' \in D(A), s + s' \in D(B) \} \]
\[D(A\bullet B) = \{ s_1 + s_2 | \exists s_1 \in D(A), s_2 \in D(B) \} \]

In general we may define L in terms of a semigroup algebra (L*, + , τ) where τ ∈ L is an identity element, i.e. an element such that s + τ = t + s = s; then L is L* — {τ}. In the sequent calculus of [Lambek, 1958] a sequent is of the form A1, ..., An ⊢ A where n > 0, \(^1\) and is read as asserting that for any elements

\(^1\)The requirement n > 0 blocks the inference from
where \(s_1, \ldots, s_n\) in \(A_1, \ldots, A_n\), respectively, \(s_1 + \ldots + s_n\) is in \(A\). Thus the relevant prosodic operations are encoded by the linear ordering of antecedents in the sequent, and structural rules of permutation, contraction, and weakening are not valid. The calculus is as follows. The notation \(\Gamma(\Delta)\) represents an antecedent containing a subpart \(\Delta\).

\[
\begin{align*}
A & \Rightarrow A & \Gamma & \Rightarrow A & \Delta(A) & \Rightarrow B & \Delta(\Gamma) & \Rightarrow B \\
& \quad \text{(2)} & \text{Cut} \\
\end{align*}
\]

- a. \(\Gamma \Rightarrow A \quad \Delta(B) \Rightarrow C \quad A, \Gamma \Rightarrow B \quad \Delta(\Gamma, A \setminus B) \Rightarrow C \quad \Gamma \Rightarrow A \setminus B \)

- b. \(\Gamma \Rightarrow A \quad \Delta(B) \Rightarrow C \quad \Gamma, A \Rightarrow B \quad \Delta(B / A, \Gamma) \Rightarrow C \quad \Gamma \Rightarrow B / A \)

- c. \(\Gamma, A \Rightarrow B \quad \Gamma \Rightarrow A \quad \Delta \Rightarrow B \quad \Gamma, \Delta \Rightarrow A \setminus B \)

- d. \(\Gamma, A \Rightarrow B \quad \Gamma \Rightarrow A \quad \Delta \Rightarrow B \quad \Gamma, \Delta \Rightarrow A \setminus B \)

As is normal in sequent calculus, each operator has a \(L(\text{left})\) rule of use and a \(R(\text{right})\) rule of proof. Cut-free backward chaining proof search is terminating since in every proof step going from conclusion to premises, the total number of operator occurrences is reduced by one.

The original development of categorial grammar grew from semantic concerns, and as is well known, the formalism embraces compositional type-logical semantics. In particular, division categories \(A / B\) and \(B / A\) can be seen as Fregean functors: incomplete Bs the meanings of which are abstracted over A argument meanings. Complete (or: saturated) expressions bearing primary meanings belong to atomic categories. Given some basic semantic domains (e.g., truth values \(\{0, 1\}\), a set of entities \(E, \ldots\)) a hierarchy of spaces for a type-logical semantics may be generated by such operations as function formation \((\tau_2^1\colon \text{the set of all functions from } \tau_2 \text{ into } \tau_1)\) and pair formation \((\tau_1 \times \tau_2\colon \text{the set of all ordered pairs comprising a } \tau_1 \text{ followed by a } \tau_2)\). Each category formula \(A\) is associated with a semantic domain \(T(A)\). Such a type map \(T\) for atomic category formulas (e.g., \(T(N) = E, T(S) = \{0, 1\}, T(CN) = \{0, 1\}\)) is extended to compound category formulas by \(T(A / B) = T(B / A) = T(B)^T(A)\) and \(T(A \bullet B) = T(A) \times T(B)\). Each category formula \(A\) is now interpreted as a set of two dimensional 'signs': a subset \(D(A) \subseteq L \times T(A)\). Such an interpretation for atomic category formulas is extended to one for compound

\[\begin{align*}
A & \Rightarrow A & \Rightarrow A / A \quad \text{as a theorem would assert that the identity element } t \text{ is a member of each category of the form } A / A \text{ (similarly for } A \setminus A) \text{. Since we have defined categories to be interpreted as subsets of } \mathcal{A}, \text{ which does not necessarily contain an identity element, such a theorem would not be valid, and it is prevented by defining sequents as having at least one antecedent formula.}
\end{align*}\]

\[\begin{align*}
D(A / B) &= \{ (s, m) \mid (s, m) \in D(A), (s', m') \in D(B) \} \\
D(B / A) &= \{ (s, m) \mid (s', m') \in D(A), (s + s', m(m')) \in D(B) \} \\
D(A \setminus B) &= \{ (s + s', m(m')) \mid (s', m') \in D(B) \}
\end{align*}\]

Proofs can be annotated to associate typed semantic lambda terms with each theorem [Moortgat, 1988]. A sequent has the form \(x_1; A_1, \ldots, x_n; A_n \Rightarrow \phi; A\) where \(n > 0\), no semantic variable is associated with more than one category formula, and \(\phi\) is a typed lambda term over (free) variables \(\{x_1, \ldots, x_n\}\). It is to be read as stating that the result of applying the prosodic operation implicit in the ordering, and the semantic operation represented explicitly by \(\phi\), to the prosodic and semantic components of any signs in \(A_1, \ldots, A_n\) yields a sign in \(A\). This system is understood as observing the type map in the obvious way, and is an instance of the Curry-Howard correspondence between (intuitionistic) proofs and typed lambda terms. It was first employed in relation to categorial grammar in [van Benthem, 1983]; for generalisation to other connectives see [Morrill, 1990b; Morrill, 1992a].

2 Prosodic Labelling

As we shall see, the implicit coding of prosodic operations in the ordering of a sequent is not expressive enough to represent the logic of discontinuity connectives. In this connection, [Moortgat, 1991b] employs [Gabbay, 1991] notion of labelled deductive system (LDS). When we label for prosodics as well as semantics, a sequent has the form \(a_1 - x_1; A_1, \ldots, a_n - x_n; A_n \Rightarrow \alpha - \phi; A\) where \(n \geq 0\), no prosodic or semantic variable is associated with more than one category formula, \(\alpha\) is a prosodic term over variables \(\{a_1, \ldots, a_n\}\) and \(\phi\) is a typed lambda term over (free) variables \(\{x_1, \ldots, x_n\}\). The prosodically and semantic...

\[\begin{align*}
D(A / B) &= \{ (s, m) \mid (s, m) \in D(A), (s + s', m(m')) \in D(B) \} \\
D(B / A) &= \{ (s, m) \mid (s', m') \in D(A), (s + s', m(m')) \in D(B) \} \\
D(A \setminus B) &= \{ (s + s', m(m')) \mid (s', m') \in D(B) \}
\end{align*}\]
tically labelled calculus is as follows.\(^3\)

\(a.\quad \frac{\text{id}}{a - x : A \Rightarrow a - x : A}
\)

\(b.\quad \Gamma \Rightarrow a - \phi : A \quad a - x : A, \Delta \Rightarrow \beta(a) - \psi(x) : B
\)

\(\frac{\Gamma, \Delta \Rightarrow \beta(a) - \psi(\phi) : B}{\text{Cut}}
\)

\(c.\quad \Gamma \Rightarrow a - \phi : A \quad b - y : B, \Delta \Rightarrow \chi(b) - \gamma(y) : C
\)

\(\frac{\Gamma, d - w : A \setminus B, \Delta \Rightarrow \gamma(a + d) - \chi(w \phi) : C}{\text{L}}
\)

\(d.\quad \Gamma, a - x : A \Rightarrow a + \gamma - \psi : B
\)

\(\frac{\Gamma \Rightarrow \gamma - \lambda x \psi : B / A}{\text{R}}
\)

\(e.\quad \Gamma \Rightarrow a - \phi : A \quad b - y : B, \Delta \Rightarrow \gamma(b) - \psi(y) : C
\)

\(\frac{\Gamma, d - w : B / A, \Delta \Rightarrow \gamma(a + d) - \psi(\phi) : C}{\text{L}}
\)

\(f.\quad \Gamma, a - x : A \Rightarrow \gamma + a - \psi : B
\)

\(\text{a.}\quad \frac{\text{id}}{a : A \Rightarrow a : A}
\)

\(b.\quad \Gamma \Rightarrow \alpha : A \quad a : A, \Delta \Rightarrow \beta(a) : B
\)

\(\frac{\Gamma, \Delta \Rightarrow \beta(a) : B}{\text{Cut}}
\)

\(c.\quad \Gamma \Rightarrow \alpha : A \quad b : B, \Delta \Rightarrow \gamma(b) : C
\)

\(\frac{\Gamma, d : A \setminus B, \Delta \Rightarrow \gamma(a + d) : C}{\text{L}}
\)

\(d.\quad \Gamma, a : A \Rightarrow a + n \gamma : B
\)

\(\frac{\Gamma \Rightarrow \gamma : A \setminus B}{\text{R}}
\)

\(e.\quad \Gamma \Rightarrow \alpha : A \quad b : B, \Delta \Rightarrow \gamma(b) : C
\)

\(\frac{\Gamma, d : B / n A, \Delta \Rightarrow \gamma(d + n a) : C}{\text{L}}
\)

\(f.\quad \Gamma, a : A \Rightarrow \gamma + n \alpha : B
\)

\(\frac{\Gamma \Rightarrow \gamma : B / n A}{\text{R}}
\)

\(g.\quad \alpha : A, b : B, \Delta \Rightarrow \gamma(a + n b) : C
\)

\(\frac{c : A \bullet B, \Delta \Rightarrow \gamma(c) : C}{\text{L}}
\)

\(h.\quad \Gamma \Rightarrow \alpha : A \quad \Delta \Rightarrow \beta : B
\)

\(\frac{\Gamma, \Delta \Rightarrow \beta : B}{\text{R}}
\)

3 In prosodic and semantic terms we allow omission of parenthesis under associativity, and under a convention that unary operators bind tighter than binary operators.

\(3\) In fact the residuation scheme is even more general than that which we need here: it applies to ternary 'accessibility' relations in general, not just to binary functions, i.e. deterministic ternary relations.

3 Residuation

The pattern of prosodic interpretation and prosodic labelling given above is entirely general. The interpretation scheme is called residuation. Under the scheme we define in terms of any binary operation \(\land\) complementary (or: dual) division operators \(\lor\) and \(\land\) and product operator \(\circ\), by the clauses given in (5).

\[
D(A \land B) = \{s|s' \in D(A), s + s' \in D(B)\}
\]

\[
D(B \lor A) = \{s|s' \in D(A), s + s' \in D(B)\}
\]

\[
D(A \circ B) = \{s_1 + n s_2\mid s_1 \in D(A), s_2 \in D(B)\}
\]

As a consequence the following laws hold [see Lambeek, 1958; Lambeek, 1988; Dunn, 1991; Moortgat, 1991a; Moortgat and Morrill, 1991]:

\[
A \land B \lor C \equiv C \lor B \equiv A \land C
\]

The LDS logic directly reflects this interpretation. It always has the following format, together with label equations in accordance with the axioms of the algebra of interpretation.

\[
a : A \Rightarrow a : A
\]
The semantic interpretation with respect to function and Cartesian product formation can also be applied uniformly, with systematic labelling as in the previous section.

4 Discontinuity

Elegant as such categorial grammar is, it is more suggestive of an approach to computational linguistic formalism than actually representative of such. Amongst the various enrichments that have been proposed (see e.g. [van Benthem, 1989; Morrill et al., 1990; Barry et al., 1991; Morrill, 1990a; Morrill, 1990b; Moortgat and Morrill, 1991; Morrill, 1992a; Morrill, 1992b]), [Moortgat, 1988] advanced earlier discussion of discontinuity in e.g. [Bach, 1981; Bach, 1984] with a proposal for infixing and wrapping operators. The operators not only provide scope over these particular phenomena but also, as indicated in e.g. [Moortgat, 1990], seem to provide an underlying basis in terms of which operators for binding phenomena such as quantification and reflexivisation should be definable. The coverage of pied piping in [Morrill, 1992b] would also be definable in terms of these primitives, but all this depends on the resolution of certain technical issues which have been to date outstanding.

Amongst the examples we shall be able to treat by means of our present proposals are the following.

a. Mary rang John up.

b. Mary gave John the cold shoulder.

c. John likes everything.

d. for whom John works.

e. John studies logic, and Charles, phonetics.

In the particle-verb construction (8a) and discontinuous idiom (8b), the object ‘John’ infixes in discontinuous expressions with unitary meanings. In (8c) the quantifer must receive sentential semantic scope, and in (8d) the pied piping must be generated, with the semantics of ‘who John works for’. In (8e), the semantics of the verb gapped in the second conjunct must be recovered from the first conjunct.

Binary operators \uparrow and \downarrow are proposed in [Moortgat, 1988] such that $B\uparrow A$ signifies functions that wrap around their A arguments to form Bs, and $B\downarrow A$ signifies functions that infix themselves in their A arguments to form Bs. Assuming the semigroup algebra of associative Lambek calculus, there are two possibilities in each case, depending on whether we are free to insert anywhere (universal), or whether the relevant insertion points are fixed (existential). We leave semantics aside for the moment.

Existential

$$D(B\uparrow A) = \{s|\exists s_1, s_2[s = s_1 + s_2 \land \forall s'[D(A), s_1 + s' + s_2 \in D(B)]\}$$

Universal

$$D(B\downarrow A) = \{s|\forall s_1, s_2[s = s_1 + s_2 \rightarrow \forall s'[D(A), s_1 + s' + s_2 \in D(B)]\}$$

Inspecting the possibilities of ordered sequent presentation, of the eight possible rules of inference (use and proof for each of four operators), only $\uparrow_3 R$ and $\downarrow_\forall L$ are expressible:

a. $$\frac{\Gamma_1, A, \Gamma_2 \Rightarrow B}{\Gamma_1, \Gamma_2 \Rightarrow B\uparrow_3 R}$$

b. $$\frac{\Delta_1, B, \Delta_2 \Rightarrow C}{\Delta_1, \Gamma_1, B\downarrow_\forall A, \Gamma_2, \Delta_2 \Rightarrow C\downarrow_\forall L}$$

This is the partial logic of [Moortgat, 1988]. Note that the absence of a rule of use for existential wrapping means that we could not generate from discontinuous elements such as ring up and give the cold shoulder which we should like to assign lexical category $(N\setminus S)_T N$. (Evidently \downarrow_\forall would permit incorrect word order such as *Mary gave the John cold shoulder’.)

The problem with ordered sequents is that the implicit encoding of prosodic operations is of limited expressivity. Accordingly, [Moortgat, 1991b], seeks to improve the situation by means of explicit prosodic labelling. This does enable both rules for e.g. \downarrow_\forall but still does not enable the useful $\uparrow_3 L$: the remaining problem is, as noted by [Versmissen, 1991], that we need to have an insertion point somehow determined from the prosodic label for an existential wrapper in order to perform a left inference.

In [Moortgat, 1991a] a discontinuity product is proposed, again implicitly assuming just a semigroup algebra:

$$D(A \circ B) = \{s_1 + s_2 + s'[s_1 + s' \in D(A), s_2 \in D(B)]\}$$

As for the discontinuity divisions, ordered sequent presentation cannot express rules of both use and proof; only $\circ R$ can be represented:

$$\frac{\Gamma_1, \Gamma_2 \Rightarrow A \quad \Delta \Rightarrow B}{\Gamma_1, \Delta, \Gamma_2 \Rightarrow A \circ B}$$

Even using labelling, the problem for $\circ L$ remains and is the same as that above: there is no proper management of separation points.

In [Moortgat, 1991a] it is observed how the quantifying-in of infix binders such as quantifier \downarrow_\forall
We may in particular think of the algebra of elements whereas a prosodic object formed by non-associative adjunction has no such recoverable separation point. Our proposals will facilitate this definability, and also admit of a full (labelled) logic.

5 Tuple Control of Insertion Points

The present innovation rests on extending the prosodic algebra \((L^*, +, t)\) as above to an algebra \((L^*, +, t, (\ldots), 1, 2)\) where \((\ldots)\) is a binary operation of tuple formation (introduced in [Soliás, 1992]), with respect to which 1 and 2 behave as projection functions. Thus the algebra satisfies the conditions:

\[
1\langle s_1, s_2 \rangle = s_1 \quad 2\langle s_1, s_2 \rangle = s_2 \quad (14)
\]

We may in particular think of the algebra of elements \(V^*\) obtained from disjoint sets \(V\) and \(\{1, 2\}\) by closing \(V\) under two binary operations: concatenation \(+\), and pairing \(\langle ; \rangle\) where pairing can be defined as concatenation with delimitation and marking of insertion point.

The proposal can be related to [Moortgat and Morrill, 1991] which also considers algebras with more than one adjunction operation (each either associative or non-associative), and defines divisions and products with respect to each by residuation. Note however that firstly, our tuple prosodic operation is not simply that of non-associative Lambek calculus which is characterised by the absence of any axiom (associative or otherwise), since the projection axioms entail specific conditions not imposed in the non-associative case, and as such could be described as unassociative. Tupling is bijective and a prosodic object \(s\) formed by tupling records a separation point between two objects \(1s\) and \(2s\) whereas a prosodic object formed by non-associative adjunction has no such recoverable separation point. The full prosodically and semantically labelled logic is given in Figure 1. In \(\mathcal{T}\) 1c and 2c pick out the first and second projections of the prosodic object \(c\) in the same way that projections pick out the components of a semantic object in the \(\mathcal{L}\) rule of (4g);
likewise in $\downarrow B$ for the projections 1a and 2a. The resulting prosodic forms are only simplifiable when the relevant objects are tuples.\footnote{Having the projection functions defined for all prosodic objects rather than just tuple objects allows us to consider the prosodic algebra to be untyped (or: unsorted). Consequently, there is no need to check for the data type of prosodic objects such as by pattern-matching on antecedent terms (see comment above on transparency of rules). It may be possible to develop the present proposals by adding sort structure to the prosodic algebra in a manner analogous to the typing of the semantic algebra. Such sorting could be essential to defining a model theory with respect to which the calculus can be shown to be complete. Recursive nesting of inflection points does not appear to be motivated linguistically, and the present calculus does not support it. A sorted model theory which excludes the recursion might provide an interpretation with respect to which the present calculus is both sound and complete.}

6 Discontinuity Examples

6.1 Phrasal Verbs

As a first example of discontinuity consider the particle verb case `Mary rang John up' and the discontinuous idiom case `Mary gave John the cold shoulder'. The meaning of the particle verb and the phrasal idiom resides with its elements together, which wrap around their object. The lexical assignments required are:

\[
\langle \text{rang, up} \rangle \quad \rightarrow \quad \text{ring-up} \quad (17)
\]

\[
\langle \text{gave, the + cold + shoulder} \rangle \quad \rightarrow \quad \text{give-tcs} \quad := \quad \langle (N\backslash S)\uparrow N \rangle
\]

A derivation is given in Figure 2. The lexical prosodics and semantics of the proper names may be assumed to be atoms. For `Mary rang John up', substitution of the lexical prosodics thus yields (18) which simplifies as shown.

\[
\text{Mary} + 1\langle \text{rang, up} \rangle + \text{John} + 2\langle \text{rang, up} \rangle \sim (18)
\]

\[
\text{Mary} + \text{rang} + \text{John} + \text{up}
\]

Similarly, substitution of the lexical semantics gives (19).

\[
\langle \text{ring-up john} \rangle \text{mary} \quad (19)
\]

For `Mary gave John the cold shoulder', substitution of the lexical prosodics yields:

\[
\text{Mary} + 1\langle \text{give, the + cold + shoulder} \rangle + \text{John} + 2\langle \text{give, the + cold + shoulder} \rangle \sim (20)
\]

\[
\text{Mary} + \text{give} + \text{John} + \text{the + cold + shoulder}
\]

The semantics is:

\[
\langle \text{give-tcs john} \rangle \text{mary} \quad (21)
\]

6.2 Quantifier Raising

In Montague grammar quantifying-in is motivated by the necessity to achieve sentential scope for all quantifiers and quantifier-scope ambiguities. Quantifying-in allows a quantifier phrase to apply as a semantic functor to its sentential context. Quantifying-in at different sentence levels enables a quantifier to take scope accordingly, and alternative orderings of quantifying-in enable quantifiers to take different scopings relative to one another. In [Moortgat, 1990] a binary operator \uparrow is defined for which the rule of use is essentially quantifying-in, so that a Montagovian treatment of quantifier-scoping is achieved by assignment of a quantifier phrase like `something' to $N\uparrow S$, and assignment of determiners like `every' to $(N\uparrow S)/CN$. In [Moortgat, 1991a] he suggests that a category such as $A \uparrow B$ might be definable as $B \uparrow (B \uparrow A)$, but notes that this definability does not hold for his definitions, for which, furthermore, the logic is problematic. On the present formulation however, these intuitions are realised. The category $S/(S\uparrow N)$ is a suitable category for a quantifier phrase such as `everything' or `some man', achieving sentential quantifier scope, and quantificational ambiguity.

Assume the lexical entry (22).

\[
\text{everything} \quad \rightarrow \quad \lambda x \exists y (x \ y) \quad := \quad S/(S\uparrow N) \quad (22)
\]

For `John likes everything' there is the derivation in Figure 3. In this derivation, and in general, lines are included showing explicit label manipulations under equality in the prosodic algebra, in such a way that all rule instances match the rule presentations. Substitution of the lexical prosodics and semantics associates $\text{John} + \text{likes} + \text{everything}$ with (23) which simplifies as shown.

\[
(\lambda x \exists y (x \ y) \lambda c (\text{like} \ c \ \text{john})) \sim (23)
\]

\[
\forall y (\text{like} \ y \ \text{john})
\]

In this example the quantifier is peripheral in the sentence and a category $(S/N)/S$ could have been used in associative Lambek calculus. However, another category $S/(N\backslash S)$ would be needed to allow the quantifier phrase to appear in subject position, and further assignments still would be required for post-verbal position in a ditransitive verb phrase, and so on. Some generality can be achieved by assuming second-order polymorphic categories [see [Emms, 1990]], but note that the single assignment we have given allows appearance in all N positions without further ado, and allows all the relative quantifier scopings at S nodes.

6.3 Pied Piping

In [Moortgat, 1991a] and [Morrill, 1992b] a three-place operator is considered which is like $A \uparrow B$, except that quantifying-in changes the category of the context expression. [Morrill, 1992b] shows that this enables capture of pied piping. It follows from
the nature of the present proposals that $A_1 \{ B^{+}C \}$ presents the desired complicity between the operators. As a result, the treatment of [Morrill, 1992b] can be presented in these terms.

Consider the example ‘for whom John works’. The relative pronoun is lexically assigned as follows where R is the common noun modifier category CN\CN.

\[\text{whom} = \lambda x \lambda y \lambda z w[(z \ w) \land (y \ x \ w)] \] (24)

There is the derivation in Figure 4. The result of prosodic substitution is

\[\text{for \ + \ whom \ + \ (john \ + \ works, t)} \] (25)

The result of semantic substitution is

\[((\lambda x \lambda y \lambda z w[(z \ w) \land (y \ x \ w)]) \ \lambda a (\text{for \ a})) \ \lambda b ((\text{work \ b \ john})) \sim \lambda z \lambda w[(z \ w) \land ((\text{work \ for \ w}) \ \text{john})] \] (26)

As for the quantification, this example is potentially manageable in just Lambek calculus. But an example where the relative pronoun is not peripheral in the pied pipped material, such as ‘a man a brother of whom from Brazil appeared on television’ would be problematic for the same reasons as quantification. The solution, in terms of infixing and wrapping, is the same in the two cases, but pied piping has been a more conspicuous problem for categorial grammar because while the scooping of quantifiers can be played down, the syntactic realisation of pied piping is only too evident. In the phrase structure tradition, pied piping has been taken as strong motivation for feature percolation (see [Pollard, 1988]). We have seen how discontinuity operators challenge this construal.

Categorial grammar is well-known to provide possibilities for ‘non-constituent’ coordination (see [Steedman, 1985; Dowty, 1988]) less accessible in the phrase structure/feature percolation approach. We turn now to another example which is glaringly problematic for all approaches, gapping. It is entirely unclear how feature percolation could engage such a construction; but as we shall see the discontinuity apparatus succeeds in doing so.

7 Gapping

The kind of examples we want to consider are:

John studies logic, and Charles, phonetics. (27)

The construction is characterised by the absence in the right hand conjunct of a verbal element, the understood semantics of which is provided by a corresponding verbal element in the left hand conjunct. Clearly, instantiations of a coordinator category schema $(\text{X} / X) / X$ will not generate such cases of gapping. The phenomenon has attracted a fair amount of attention in categorial grammar (e.g. [Steedman, 1990; Raaijmakers, 1991]).

The approach of [Steedman, 1990] aims to reduce gapping to constituent coordination; furthermore it aims to do this using just the standard division operators of categorial grammar. This involves special treatment of both the right and the left conjunct. We present our discussion in the context of the present minimal example of gapping a transitive verb TV.

With respect to the right hand conjunct, the initial problem is to give a categorisation at all. Steedman does this by reference to a constituent formed by the subject and object with the coordinator. This constituent is essentially TV\S but with a feature
both blocking ordinary application, and licensing coordination with a left hand conjunct of the same category. The blocking is necessary because ‘and’ and ‘Charles, phonetics’ is clearly not of category TV\S: ‘Studies and Charles, phonetics’ is not a sentence. Now, with respect to the left hand conjunct, Steedman invokes a special decomposition of ‘John studies logic’ analysed as S, into TV and TV. This is then constituent coordination between TV and TV. Finally the coordinate structure of category TV\S combines with TV on the left to give S.

Although this treatment addresses the two problems that any account of gapping must solve, categorisation of the right hand conjunct and access of the verbal semantics in the left hand conjunct, it attempts to do so within a narrow conception of categorial grammar (only division operators) that necessitates invocation of distinctly contrived mechanisms. We believe that the radical reconstructions of grammar implicated by this analysis are not necessary given the general framework including discontinuity operators we have set out. We address for the moment just our minimal example.

Within the context of categorial grammar we have established, the right hand conjunct is characterisable as S\TV. It remains to access the understood verbal semantics from the sentence that is the left hand conjunct. In order to recover from the left hand side the information we miss on the right hand side, we would like to say that this information, the category and semantics of the verb, is made available to the coordinator when it combines with the left conjunct. In accordance with the spirit of Steedman, we can observe that the left hand conjunct contains a part with the category S\TV of the right hand constituent, but it is discontinuous, being interpolated by TV. But this is precisely what is expressed by the discontinuous product category (S\TV)cTV. Furthermore, an element of such a category has as its semantics a part the second projection of which is the semantics of the TV. Consequently gapping is generated by assignment of ‘and’ to the category ((S\TV)cTV)\S/(S\TV) with semantics $\lambda x \lambda y[(\tau_1 y \tau_2 y) \land (x \tau_2 y)]$.

The complete derivation for (27) is as in Figure 5, where TV abbreviates (N\S)/N. When we substitute the lexical prosodies (here each just a prosodic constant) for the prosodic variables in the conclusion, we obtain the prosodic form (28).

$$\text{John + studies + logic + and + (Charles, phonetics)}$$

Similarly substituting the lexical semantics (all semantic constants except for the coordinator semantics as above), we obtain the associated semantics (29) which evaluates as shown.

$$((\lambda x \lambda y[(\tau_1 y \tau_2 y) \land (x \tau_2 y)]) \lambda w([w \text{ phonetics} \text{ charles}]))$$

$$((\text{studies logic} \text{ john}) \land ((\text{studies phonetics} \text{ charles})) \sim$$

Some generalisation to cover different categories of gapped element and different categories of coordination is given by straightforward schematisation. In general, gapping coordinator categories have the form (\(Z \circ Y\)|\(X\)/|\(Z\) where \(Z\) is \(X\)/\(Y\). In this scheme, X is the category of the resulting coordinate structure and Y is the category of the gapped material. This allows interaction with other coordination phenomena such as node raising. For example, a referee pointed out that gapping can occur within incomplete sentences thus: ‘John gave a book and Peter, a paper, to Mary’. Such a case would be covered by the instantiation where Y is the ditransitive verb category and X is S/PP.

For generalisation including multiple gapping (several discontinuous segments elided) see [Solias, 1992], which employs in addition operators formed by residuation with respect to tupling. That approach has certain affinities with [Oehrle, 1987], and makes it possible to begin to address examples of Oehrle’s relating to scope and Boolean particles. The purpose of the present paper has been to lay the groundwork for empirical inquiry into gapping and other notorious nonconcatenative phenomena, made possible in

Figure 4: Derivation for ‘for whom John works’
categorial grammar by a proper treatment of discontinuity.

8 Conclusion

When [Moortgat, 1988] introduced discontinuity operators for categorial grammar, he noted that ordered sequent calculus was an inadequate medium for the representation of a full logic. In [Moortgat, 1991b] the LDS formalism was invoked, but as we have seen, the LDS format alone is not enough. The present paper has argued that a different view is required on the model theory of discontinuity than that suggested by interpretation in just a semigroup algebra. This view is provided by adding to the algebra of interpretation the tuple operation of [Solaia, 1992]. Not only does this clear up some vagueness with respect to existential and universal formulations, it also admits of a full labelled logic. This has brought us to a stage where it is appropriate to address such issues as completeness and Cut-elimination.

Acknowledgements

We thank the following for comment on an earlier abstract: Juan Barbo, Alain Lecomte, Michael Moortgat, Koen Versmissen, and three anonymous EACL reviewers. Particular thanks go to Mark Hepple who happens to have been thinking along similar lines.

References

