
A Count Invariant for Lambek Calculus with Additives
and Bracket Modalities?

Oriol Valentı́n1, Daniel Serret2, and Glyn Morrill1

1 Universitat Politècnica de Catalunya
oriol.valentin@gmail.com, morrill@lsi.upc.edu

http://www.lsi.upc.edu/˜morrill/
2 Universitat de Barcelona
daniel.serret@gmail.com

Abstract. The count invariance of van Benthem (1991[16]) is that for a sequent
to be a theorem of the Lambek calculus, for each atom, the number of positive
occurrences equals the number of negative occurrences. (The same is true for
multiplicative linear logic.) The count invariance provides for extensive pruning
of the sequent proof search space. In this paper we generalize count invariance
to categorial grammar (or linear logic) with additives and bracket modalities. We
define by mutual recursion two counts, minimum count and maximum count, and
we prove that if a multiplicative-additive sequent is a theorem, then for every
atom, the minimum count is less than or equal to zero and the maximum count is
greater than or equal to zero; in the case of a purely multiplicative sequent, mini-
mum count and maximum count coincide in such a way as to together reconstitute
the van Benthem count criterion. We then define in the same way a bracket count
providing a count check for bracket modalities. This allows for efficient pruning
of the sequent proof search space in parsing categorial grammar with additives
and bracket modalities.

1 Introduction

Van Benthem (1991[16]) showed that a necessary condition for a sequent to be a theo-
rem of the Lambek calculus is that it satisfies a simple count check. Let P be the set of
atoms. Where P ∈ P, the P-count #P(A) of a type A is defined by:

#P(P) = 1
#P(Q) = 0 for Q ∈ P − {P}
#P(A•B) = #P(A) + #P(B)
#P(A\C) = #P(C) − #P(A)
#P(C/B) = #P(C) − #P(B)

? Research partially supported by an ICREA Acadèmia 2012 to the third author, and by
BASMATI MICINN project (TIN2011-27479-C04-03) and SGR2009-1428 (LARCA). Many
thanks to Josefina Sierra and to three Formal Grammar referees for comments and suggestions.
Particular thanks to the referee who pointed towards the simplification of the proposal in the
appendix which we have used in the main text. Any errors are our own.

Let the P-count be extended to configurations by the following, where Λ is the empty
configuration:

#P(A, Γ) = #P(A) + #P(Γ)
#P(Λ) = 0

The count-invariance property is that

` Γ⇒ A =⇒ ∀P ∈ P, #P(Γ) = #P(A)

This is proved by induction on sequent proofs.
The count invariance forms the basis of an extensive pruning of the sequent proof

search space in categorial parsing-as-deduction/theorem-proving. Every time a subgoal
Γ⇒ A is generated it can be quickly checked whether ∀P, #P(Γ) = #P(A); if not, the
subgoal can be discarded at once. Informal experimentation shows that such count-
checking, together with focusing normalization (Andreoli 1992[1]; König 1989[6]; Hep-
ple 1990[4]; Hendriks 1993[3]; Morrill 2011[11]) makes a critical difference in effi-
ciency of Lambek calculus sequent proof search parsing-as-deduction.

In this paper we consider the case of the Lambek calculus extended with additives
(Lambek 1961[7]; Girard 1987[2]; van Benthem 1991[16]; Morrill 1990[9]; Kanazawa
1992[5]). For linguistic motivation see Morrill (1994[14], ch. 6) or Morrill (2011[15],
ch. 7). Our contribution is to define two new counts, #min and #max, which, for a multiplic-
ative-additive sequent to be a theorem, must be less than or equal to zero and greater
than or equal to zero respectively. In the special case that a sequent has no additives,
#min = #max = the van Benthem count # so that the two inequations together impose
the van Benthem criterion, i.e. our generalisation preserves the particular case of the
van Benthem count for pure multiplicative sequents. We go on to formulate in addition
count invariance for bracket modalities (Morrill 1992[10]; Moortgat 1995[8]).

2 Count invariance for additives

Let us consider the sequent formulation of LA, the Lambek calculus with additive con-
nectives. We will denote the additive conjunction as ∧ and the additive disjunction as
∨. The sequent rules are shown in Figure 1. Cut, of course, is eliminable.

Where m = max or min, we define recursively counts #max/min,P on types as follows:1

#m(P) = 1
#m(Q) = 0 for Q ∈ P − {P}
#m(A•B) = #m(A) + #m(B)
#m(A\C) = #m(C) − #m(A)
#m(C/B) = #m(C) − #m(B)
#m(A∧B) = m(#m(A), #m(B))
#m(A∨B) = m(#m(A), #m(B))

We extend the counts #min/max to configurations by the following:

#m(A, Γ) = #m(A) + #m(Γ)
#m(Λ) = 0

1 max = min; min = max. We leave the parameter P ∈ P implicit.

id
A⇒ A

Γ⇒ A ∆(A)⇒ B
Cut

∆(Γ)⇒ B

Γ⇒ A ∆(B)⇒ C
\L

∆(Γ, A\B)⇒ C

A, ∆⇒ B
\R

∆⇒ A\B

Γ⇒ A ∆(B)⇒ C
/L

∆(B/A, Γ)⇒ C

∆, A⇒ B
/R

∆⇒ B/A

∆(A, B)⇒ C
•L

∆(A•B)⇒ C

∆⇒ A Γ⇒ B
•R

∆, Γ⇒ A•B

∆(B)⇒ C
∧L1

∆(A ∧ B)⇒ C

∆(A)⇒ C
∧L2

∆(A ∧ B)⇒ C

∆⇒ B ∆⇒ C
∧R

∆⇒ B ∧C

∆(A)⇒ C ∆(B)⇒ C
∨L

∆(A ∨ B)⇒ C

∆⇒ C
∨R1

∆⇒ B ∨C

∆⇒ B
∨R2

∆⇒ B ∨C

Fig. 1. Rules for the additives and multiplicatives

And we define the counts #min/max of a sequent by:

#m(∆⇒ A) = #m(A) − #m(∆)

Given an arbitrary atomic type P we have the following theorem:

(1) Theorem (Soundness of LA w.r.t. #p
m,P(A))

If ∆⇒ A is an LA provable sequent then:

#min(∆⇒ A) ≤ 0 ≤ #max(∆⇒ A)

Proof. By induction on the length of Cut-free LA derivations. In the following, i.h. will
abbreviate induction hypothesis.

– Axiom case. If A = P then:

#min(A⇒ A) =

#min(A) − #min(A) = 1 − 1 = 0 = 1 − 1 =

#max(A) − #max(A) =

#max(A⇒ A)

Otherwise, if A is an atomic type Q different from P we have:

#min(A⇒ A) = 0 − 0 = #max(A⇒ A)

– ∧ left rule:
∆(A)⇒ C

∧L
∆(A ∧ B)⇒ C

We have that:

#min(∆(A ∧ B)⇒ C) =

#min(C) − (#min(A ∧ B) + #min(∆(Λ))) =

#min(C) − max(#min(A), #min(B)) − #min(∆(Λ)) ≤
#min(C) − #min(A) − #min(∆(Λ)) =

#min(∆(A)⇒ C)
i.h.
≤ 0

On the other hand:

0
i.h.
≤ #max(∆(A)⇒ C) =

#max(C) − #max(A) − #max(∆(Λ)) ≤
#max(C) − min(#max(A), #max(B)) − #max(∆(Λ)) =

#max(C) − #max(A ∧ B) − #max(∆(Λ)) =

#max(∆(A ∧ B)⇒ C)

– ∧ right rule:
∆⇒ B ∆⇒ C

∧R
∆⇒ B ∧C

Suppose that max(#min(B), #min(C)) = #min(B). We have that,

#min(∆⇒ B ∧C) =

#min(B ∧C) − #min(∆) =

max(#min(B), #min(C)) − #min(∆) =

#min(B) − #min(∆) =

#min(∆⇒ B)
i.h.
≤ 0

If max(#min(B), #min(C)) = #min(C) we get similarly:

#min(∆⇒ B ∧C) =

#min(B ∧C) − #min(∆) =

max(#min(B), #min(C)) − #min(∆) =

#min(C) − #min(∆) =

#min(∆⇒ C)
i.h.
≤ 0

On the other hand, suppose that min(#max(B), #max(C)) = #max(B)

0
i.h.
≤ #max(∆⇒ B) =

#max(B) − #max(∆) =

min(#max(B), #max(C)) − #max(∆) =

#max(B ∧C) − #max(∆) =

#max(∆⇒ B ∧C)

Similarly, if we have that min(#max(B), #max(C)) = #max(C) we obtain:

0 ≤ #max(∆⇒ B ∧C)

– ∨ left rule:
∆(A)⇒ C ∆(B)⇒ C

∨L
∆(A ∨ B)⇒ C

Suppose that min(#min(A), #min(B)) = #min(A). We have that:

#min(∆(A ∨ B)⇒ C) =

#min(C) − #min(A ∨ B) − #min(∆(Λ)) =

#min(C) − min(#min(A), #min(B)) − #min(∆(Λ)) =

#min(C) − #min(A) − #min(∆(Λ)) =

#min(∆(A)⇒ C)
i.h.
≤ 0

Similarly, if we have that min(#min(A), #min(B)) = #min(B) we obtain:

#min(∆(A ∨ B)⇒ C) =

#min(C) − #min(A ∨ B) − #min(∆(Λ)) =

#min(C) − min(#min(A), #min(B)) − #min(∆(Λ)) =

#min(C) − #min(B) − #min(∆(Λ)) =

#min(∆(B)⇒ C)
i.h.
≤ 0

On the other hand, if we have max(#max(A), #max(B)) = #max(A):

0
i.h.
≤ #max(∆(A)⇒ C) =

#max(C) − #max(A) − #max(∆(Λ)) =

#max(C) − max(#max(A), #max(B)) + #max(∆(Λ))
#max(∆(A ∨ B)⇒ C)

Similarly, if we have max(#max(A), #max(B)) = #max(B) we get the desired result.

– ∨ right rule:
∆⇒ B

∨R
∆⇒ B ∨C

We have that:
#min(∆⇒ B ∨C) =

#min(B ∨C) − #min(∆) =

min(#min(B), #min(C)) − #min(∆) ≤
#min(B) − #min(∆) =

#min(∆⇒ B)
i.h.
≤ 0

On the other hand:

0
i.h.
≤ #max(∆⇒ B) =

#max(B) − #max(∆) ≤
max(#max(B), #max(C)) − #max(∆) =

#max(∆⇒ B ∨C)

– / left rule:
Γ⇒ A ∆(B)⇒ C

/L
∆(B/A, Γ)⇒ C

We have that:

#min(Γ⇒ A)
i.h.
≤ 0 #min(∆(B)⇒ C)

i.h.
≤ 0

Adding both inequations
#min(C)−(#min(B) − #min(A))︸ ︷︷ ︸

= −#min(B/A)

−#min(Γ) − #min(∆(Λ)) ≤ 0

Where the last inequation corresponds to

#min(∆(B/A, Γ)⇒ C) ≤ 0

On the other hand:

0
i.h.
≤ #max(Γ⇒ A) 0

i.h.
≤ #max(∆(B)⇒ C)

Adding both inequations
0 ≤ #max(C) − #max(∆(Λ)) − #max(Γ)−(#max(B) − #max(A))︸ ︷︷ ︸

= −#max(B/A)

Where the last inequation corresponds to:

0 ≤ #max(∆(B/A, Γ)⇒ C)

– / right rule
∆, A⇒ B

/R
∆⇒ B/A

We have that:

#min(∆, A⇒ B) = #min(B) − #min(A)︸ ︷︷ ︸
= #min(B/A)

−#min(∆)
i.h.
≤ 0

Where the last inequation corresponds to:

#min(∆⇒ B/A) ≤ 0

On the other hand:

0
i.h.
≤ #max(∆, A⇒ B) =

#max(B) − #max(A) − #max(∆) =

#max(B/A) − #max(∆)

Where the last inequation corresponds to:

0 ≤ #max(∆⇒ B/A)

– \L rule: as /L

– \R rule: as /R

– • left rule:
∆(A, B)⇒ C

•L
∆(A • B)⇒ C

We have that:

#min(C) − #min(∆(Λ)) − #min(A) − #min(B)
i.h.
≤ 0

Where the last inequation corresponds to:

#min(∆(A • B)⇒ C) ≤ 0

On the other hand:

0
i.h.
≤ #max(C) − #max(∆(Λ)) − #max(A) − #max(B)

Where the last inequation corresponds to:

0 ≤ #max(∆(A • B)⇒ C)

– • right rule:
∆⇒ A Γ⇒ B

•R
∆, Γ⇒ A • B

We have that:

#min(A) − #min(∆)
i.h.
≤ 0 #min(B) − #min(Γ)

i.h.
≤ 0

Adding both inequations
#min(A • B) − #min(∆) − #min(Γ) ≤ 0

Where the last inequation corresponds to:

#min(∆, Γ⇒ A • B) ≤ 0

On the other hand:

0
i.h.
≤ #max(A) − #max(∆) 0

i.h.
≤ #max(B) − #max(Γ)

Adding both inequations
0 ≤ #max(A • B) − #max(∆) − #max(Γ)

Where the last inequation corresponds to:

0 ≤ #max(∆, Γ⇒ A • B)

This completes the proof. �

2.1 Exemplification

In this section, by way of example we give some underivable sequents which are falsi-
fied by the count check. Let P and Q be two atomic types:

1) 0LA P⇒ P∧Q

Consider the count check with respect to P. We have then that:

#max(P⇒ P∧Q) =

#max(P∧Q) − 1 =

min(1, 0) − 1 = −1 � 0

Therefore we falsify sequent 1).

2) 0LA P∨Q⇒ P

Consider the count check with respect to Q. We have then that:

#max(P∨Q⇒ P) =

#max(P) − #max(P∨Q) =

0 − max(0, 1) = −1 � 0

Therefore we falsify sequent 2).

3) 0LA P∨Q⇒ P∧Q

Consider the count check with respect to P. We have then that:

#max(P∨Q⇒ P∧Q) =

#max(P∧Q) − #max(P∨Q) =

min(1, 0) − max(1, 0) = 0 − 1 = −1 � 0

Therefore we falsify sequent 3).

4) 0LA P⇒ P • P

Consider the count check with respect to P. We have then that:

#min(P⇒ P • P) =

#min(P • P) − #min(P) =

2 − 1 = 1 � 0

Therefore we falsify sequent 4).

3 Count invariance for bracket modalities

In the Lambek calculus with bracket modalities (Morrill 1992[10]; Moortgat 1995[8])
configurations are bracketed; for linguistic applications see Morrill (1994[14], ch. 7)
or Morrill (2011[15], ch. 5). We extend the logic LA with bracket modalities, and we
denote it LAb; configurations may now include brackets. The logical rules for bracket
modalities are as shown in Figure 2.

Γ(A)⇒ B
[]−1L

Γ([[]−1A])⇒ B

[Γ]⇒ B
[]−1R

Γ⇒ []−1B

Γ([A])⇒ B
〈〉L

Γ(〈〉A)⇒ B

Γ⇒ B
〈〉R

[Γ]⇒ 〈〉B

Fig. 2. Logical rules for bracket modalities

We can define bracket counts #min/max,[] as follows:2

#m(P) = 0 for P ∈ P
#m(〈〉A) = #m(A) + 1
#m([]−1A) = #m(A) − 1

2 We leave implicit the reference to [].

The clauses for the multiplicative and additive connectives are the same as those given
in the previous section. We extend the bracket count to configurations thus:

#m(A, Γ) = #m(A) + #m(Γ)
#m([Γ]) = #m(Γ) + 1
#m(Λ) = 0

(Naturally for an atom P, #m,P([Γ]) = #m,P(Γ).) Where m ∈ {min,max}, the min/max-
count of a sequent is again:

#m(∆⇒ A) = #m(A) − #m(∆)

The soundness theorem (1) extends to bracket modalities.

Proof. Extending the proof of (1) to bracket modalities.

– 〈〉 left rule:
∆([A])⇒ B

〈〉L
∆(〈〉A)⇒ B

We have that for m ∈ {min,max}:

#m([A]) = #m(〈〉A)

It follows that for m ∈ {min,max}:

#m(∆([A])⇒ B) =

#m(∆(〈〉A)⇒ B)

And therefore, by i.h.:
#min(∆(〈〉A)⇒ B) ≤ 0
0 ≤ #max(∆(〈〉A)⇒ B)

– 〈〉 right rule:
∆⇒ A

〈〉R
[∆]⇒ 〈〉B

We have that for m ∈ {min,max}:

#m([∆]⇒ 〈〉A) = #m(〈〉A) − #m([∆]) =

(#m(A) + 1) − #m(∆) − 1 =

#m(A) − #m(∆) =

#m(∆⇒ A)

It follows that by i.h:
#min([∆])⇒ 〈〉B) ≤ 0
0 ≤ #max([∆]⇒ 〈〉B)

– []−1 left rule:
∆(A)⇒ B

[]−1L
∆([[]−1A])⇒ B

We have that for m ∈ {min,max}:

#m([[]−1A]) = (#m(A) − 1) + 1 = #m(A)

It follows that for m ∈ {min,max}:

#m(∆([[]−1A])⇒ B) = #m(∆(A)⇒ B)

And therefore by i.h.:
#min(∆([[]−1A])⇒ B) ≤ 0
0 ≤ #max(∆([[]−1A]⇒ B)

– []−1 right rule:
[∆]⇒ A

[]−1R
∆⇒ []−1A

We have that for m ∈ {min,max}:

#m([∆]⇒ A) =

#m(A) − #m(∆) − 1 =

(#m(A) − 1) − #m(∆) =

#m(∆⇒ []−1A)

It follows that by i.h.:
#min(∆⇒ []−1A) ≤ 0
0 ≤ #max(∆⇒ []−1A)

This completes the proof.

�

3.1 Exemplification

We consider some examples of underivable sequents which are falsified by the count
invariant extended to bracket modalities. Let N and S be two atomic types.

1) 0LAb N, (〈〉N)\S ⇒ S

We have that the following count check with respect to []:

#min(N, (〈〉N)\S ⇒ S) = #min(S) − #min(N) − #min((〈〉N)\S)
= #min(S) − #min(N) − #min(S) + #min(〈〉N)
= #min(S) − #min(N) − #min(S) + (#min(N) + 1)
= 0 − 0 − 0 + (0 + 1) = 1 � 0

Therefore we falsify sequent 1).

2) 0LAb [[N]], (〈〉N)\S ⇒ S

Consider the count check with repect to []:
#max([[N]], (〈〉N)\S ⇒ S) = #max(S) − #max([[N]]) − #max((〈〉N)\S)

= 0 − (1 + 1 + 0) − (0 − (1 + 0))
= −2 + 1 = −1 � 0

Therefore we falsify sequent 2).

3) 0LAb [S , (S \([]−1[]−1S))/S]⇒ S

Consider the count check with repect to []:

#min([S , (S \([]−1[]−1S))/S]⇒ S) = #min(S) − (1 + #min(S) + (#min(S) − 2) − 2 · #min(S))
= 0 − (1 − 2) = 1 � 0

Therefore we falsify sequent 3).

4 Conclusion: discriminatory power

Our proposal for count invariance comprises two inequations. These are parameterised
by atoms or brackets. If we assume that the likelyhood of satisfying one arbitrary in-
equation by chance is 1/2, the likelyhood of satisfying one inequation for n atoms or
brackets is 1/2n. But if there are two inequations, as in our case, the chance of satisfy-
ing the two is 1/2 × 1/2 = 1/4, and the probability of satisfying the two equations for
n atoms or brackets is 1/4n. Thus the discriminatory capacities of one or both of our
count invariants together grow with the number of atoms as follows:

n 2n 4n

1 2 4
2 4 16
3 8 64
4 16 256
5 32 1024
6 64 4096
7 128 16384
8 256 65536

Clearly the count invariant is sound for multiplicative-additive linear logic since
it is a criterion sensitive to occurences and in no way depends on commutativity or
non-commutativity. In the same way it extends immediately to the deterministic con-
nectives of the (dis)placement calculus of Morrill, Valentı́n and Fadda (2011[13]) since
these form residuated families like the Lambek connectives. Furthermore we think it is
possible to extend it to the nondeterministic discontinuous connectives since these are
defined using additives. Finally, we have begun experimenting with implementation of
the new count invariant in the context of the categorial parser/theorem-prover CatLog
(Morrill 2012[12]).

Appendix

Another count invariant could be defined using mutual recursion with respect to polar-
ities (of types) and m = max or min. Where polarity p = • or ◦ represents antecedent
(input) and succedent (output) respectively and m = max or min, we define by mutual
recursion as follows counts #•/◦max/min,P on types, leaving the parameter P ∈ P implicit:3

#p
m(P) = 1

#p
m(Q) = 0 for Q ∈ P − {P}

#p
m(A•B) = #p

m(A) + #p
m(B)

#p
m(A\C) = #p

m(C) − #p
m(A)

#p
m(C/B) = #p

m(C) − #p
m(B)

#◦m(A∧B) = m(#◦m(A), #◦m(B))
#•m(A∧B) = m(#•m(A), #•m(B))
#◦m(A∨B) = m(#◦m(A), #◦m(B))
#•m(A∨B) = m(#•m(A), #•m(B))

We extend the counts #•min/max to configurations by the following:

#•m(A, Γ) = #•m(A) + #•m(Γ)
#•m(Λ) = 0

And we define the counts #min/max of a sequent by:

#m(∆⇒ A) = #•m(∆) − #◦m(A)

(2) Lemma
The following equality holds:

#•m(A) = #◦m(A) (?)

Proof. By induction on the complexity of LA types (as usual, i.h. abbreviates induction
hypothesis):

– Atomic case: obvious.
– Product case: obvious (using i.h.).
– Slashes. Consider / (\ is completely similar):

#•m(C/A) = #•m(C) − #◦m(A)
#◦m(C/A) = #◦m(C) − #•m(A)

By i.h. #•m(C) = #◦m(C) and #◦m(A) = #•m(A), whence #•m(C/A) = #◦m(C/A).
– Conjunction:

#•m(A∧B) = m(#•m(A), #•m(B))
#◦m(A∧B) = m(#◦m(A), #◦m(B))

By i.h. #•m(A) = #◦m(A) and #◦m(B) = #•m(B), whence #•m(A∧B) = #◦m(A∧B).

3 • = ◦; ◦ = •; max = min; min = max.

– Disjunction: similar to the case of conjunction.

�
This count invariant satisfies also the soundness theorem (1). By using the previous
lemma (2) we can almost mimick the proof from (1). The definition of count invariant
we present in this appendix has turned out to be interesting for an ongoing research on a
count invariant extended to the exponential modality of linear logic ! (Girard 1987[2]).

References

1. J. M. Andreoli. Logic programming with focusing in linear logic. Journal of Logic and
Computation, 2(3):297–347, 1992.

2. Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
3. H. Hendriks. Studied flexibility. Categories and types in syntax and semantics. PhD thesis,

Universiteit van Amsterdam, ILLC, Amsterdam, 1993.
4. Mark Hepple. Normal form theorem proving for the Lambek calculus. In H. Karlgren, editor,

Proceedings of COLING, Stockholm, 1990.
5. M. Kanazawa. The Lambek calculus enriched with additional connectives. Journal of Logic,

Language and Information, 1:141–171, 1992.
6. E. König. Parsing as natural deduction. In Proceedings of the Annual Meeting of the Asso-

ciation for Computational Linguistics, Vancouver, 1989.
7. J. Lambek. On the Calculus of Syntactic Types. In Roman Jakobson, editor, Structure of Lan-

guage and its Mathematical Aspects, Proceedings of the Symposia in Applied Mathematics
XII, pages 166–178. American Mathematical Society, Providence, Rhode Island, 1961.

8. Michael Moortgat. Multimodal linguistic inference. Journal of Logic, Language and Infor-
mation, 5(3, 4):349–385, 1996. Also in Bulletin of the IGPL, 3(2,3):371–401, 1995.

9. G. Morrill. Grammar and Logical Types. In Martin Stockhof and Leen Torenvliet, editors,
Proceedings of the Seventh Amsterdam Colloquium, pages 429–450, 1990. Also in G. Barry
and G. Morrill, editors, Studies in Categorial Grammar, Edinburgh Working Papers in Cog-
nitive Science, Volume 5, pages 127–148: 1990. Revised version published as Grammar and
Logic, Theoria, LXII, 3:260–293, 1996.

10. Glyn Morrill. Categorial Formalisation of Relativisation: Pied Piping, Islands, and Extraction
Sites. Technical Report LSI-92-23-R, Departament de Llenguatges i Sistemes Informàtics,
Universitat Politècnica de Catalunya, 1992.

11. Glyn Morrill. Logic Programming of the Displacement Calculus. In Sylvain Pogodalla and
Jean-Philippe Prost, editors, Proceedings of Logical Aspects of Computational Linguistics
2011, LACL’11, Montpellier, number LNAI 6736 in Springer Lecture Notes in AI, pages
175–189, Berlin, 2011. Springer.

12. Glyn Morrill. CatLog: A Categorial Parser/Theorem-Prover. In LACL 2012 System Demon-
strations, Logical Aspects of Computational Linguistics 2012, pages 13–16, Nantes, 2012.

13. Glyn Morrill, Oriol Valentı́n, and Mario Fadda. The Displacement Calculus. Journal of
Logic, Language and Information, 20(1):1–48, 2011. Doi 10.1007/s10849-010-9129-2.

14. Glyn V. Morrill. Type Logical Grammar: Categorial Logic of Signs. Kluwer Academic
Publishers, Dordrecht, 1994.

15. Glyn V. Morrill. Categorial Grammar: Logical Syntax, Semantics, and Processing. Oxford
University Press, New York and Oxford, 2011.

16. J. van Benthem. Language in Action: Categories, Lambdas, and Dynamic Logic. Number
130 in Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam,
1991. Revised student edition printed in 1995 by the MIT Press.

