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Abstract

This thesis studies proof nets for several variants of the Lambek Calcu-
lus and their classical extensions. In the first part, Beyond Monomodality,
the focus is on basic issues of the Lambek Calculus with/without Permuta-
tion and Associativity, combinations of these variants and the use of unary
modalities. The second part, Beyond Multimodality, and the Appendix are
dedicated to three recent developments of the Lambek Calculus, namely
the Discontinuous Calculus, Pregroup Grammars, and the Lambek-Grishin

Calculus.

Keywords: sublinear logic, multimodality, proof nets, Lambek Calculus,
discontinuity, pregroups, Grishin rules.
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Introduction

Contextualization: Type-Logical Grammars and Lambek Calculus

The central tenet of type-logical grammars ([69, 79, and references therein])
could be stated by the slogan:

“grammaticality = provability”.

Under this view, writing a grammar G based on a logic L consists in mod-
elling a language as a finite set of lexical items LI =< φ, τ, σ >, where
φ is the phonological label of LI, τ is a (syntactic) type of the logic L,
and σ encodes the semantic information of LI. In this model, a string
φ1 . . . φn of phonological labels is a grammatical sentence of type t if and
only if there are lexical items < φ1, τ1, σ1 >, . . . , < φn, τn, σn > such that
Hyp(τ1, . . . , τn) ⇒ t is a theorem of the logic L, where Hyp(τ1, . . . , τn) is a
structuring of the types compatible with the linear order of the phonological
labels. A strict implementation of the Fregean principle of compositionality
of meaning ([39, 95]) can be achieved associating a semantic operation to
each (syntactic) inference rule ([120, 121, 92]). In this way, every deriva-
tion of a sentence yields deterministically a formula σ encoding its semantic
import.

Much of the research in this framework is based on the Lambek Calculus
([57]), an intuitionistic logic sensitive to the number of times hypothesis are
used (exactly once) and to their linear order. In its simplest form, L(\, /),
the calculus has only two operators –an implication and a retroimplication–
traditionally denoted by a backward and a forward slash. By way of illustra-
tion, consider the lexicon of a toy fragment of English, where “Mary” and
“Barcelona” have type np and “visited” has type (np\s)/np. The string
“visited Barcelona”, analyzed in a traditional structuralist theory as a ver-
bal phrase, is an expression of type np\s (just like any intransitive verb).
When immediately preceded by “Mary” it yields a grammatical sentence of
type s because [np, [(np\s)/np,np]] ⇒ s is a theorem of the calculus. The
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associative rule allows to restructure the hypothesis changing the bracketing
to [[np, (np\s)/np],np]. This means that also “Mary visited”, traditionally
not a constituent, can be given a type, namely s/np. Graphically this can
be represented in the following way:

Mary visited

BarcelonaMary

visited Barcelona

s s

np\s s/np

The calculus is thus a logic for typing trees identified up to associativity,
i.e. a logic for typing lists. It can be defined as intuitionistic logic, from
which the following structural rules have been dropped, with the logical (and
linguistic) consequences listed below:

• permutation: the linear order of hypothesis (lexical items) is fixed;

• weakening: all the hypothesis have to be used at least once (adding
one lexical item to a grammatical sentence will not, in general, yield
a grammatical sentence);

• contraction: hypothesis cannot be used multiple times (deleting a du-
plicate occurrence of a lexical item of a grammatical sentence will, in
general, lead to ungrammaticality).

A major consequence of the lack of the latter two structural rules is that con-
junction splits into two operators, a multiplicative conjunction introduced
(on the right) by a context independent rule, and an additive conjunction
introduced by a context sharing rule:

multiplicative
Γ, A0, A1,∆ ⇒ C

Γ, A0×A1,∆ ⇒ C

Γ⇒ A0 ∆⇒ A1

Γ,∆ ⇒ A0 ×A1

additive
Γ, Ai,∆⇒ C

Γ, A0 ∧A1,∆ ⇒ C

Γ⇒ A0 Γ⇒ A1

Γ ⇒ A0 ∧A1

The Lambek calculus L(/, \,×), with the implications and product, had
been designed having in mind its interpretation in language models. A
semigroup model is built from a semigroup (G, ·), the subsets of which serve
as interpretations of the types. The semigroup product is lifted at the level
of operation between subsets, and two directional residuation operations can
be defined and used to interpret the slash operators of the calculus:

2



• A · B = {a · b : a ∈ A, b ∈ B};

• A\B = {c ∈ G : ∀a ∈ A.a · c ∈ B};

• B/A = {c ∈ G : ∀a ∈ A.c · a ∈ B}.

IfG is freely generated by a setX (i.e. G is the set of finite strings of elements
of X and the product is concatenationn), then one speaks of a language
model. The Lambek Calculus is complete with respect to these models, both
in its version without product ([14]) and with product ([97, 98]). It enjoys,
even with the addition of ∧ and its de Morgan dual, the Cut Elimination
Property ([57]), which entails decidability. This is because all rules, except
the eliminable cut rule, have in their premisses sequent only subformulae
of the conclusion sequent and thus the proof search is finite. For L(\, /)
([114]) and L(/, \,×) with or without empty premisses([99]) the derivability
problem is NP-complete. While L(\, /) and L(/, \,×) are weakly equivalent
to context free grammars ([96, 100]), unconstrained addition of the additive
conjunction and disjunction, increases the recognizing power of the calculus
([50]).

The advent of Linear Logic and Proof Net Theory

Interest in the Lambek Calculus increased in the eighties for two reasons.
On one hand, in theoretical linguistics, there has been a progressive conver-
gence toward lexicalism with the emergence of, among other theories, Lexical
Functional Grammar ([12, 13]) and Head-Driven Phrase Structure Grammar

([104, 105, 106]), and with the adoption in the last theoretical proposals by
Chomsky of a notion of derivation ([24]). On the other hand, since Girard’s
seminal work on Linear Logic ([42]), the Lambek Calculus can be seen as the
intuitionistic (and exponential-free) fragment of Cyclic Linear Logic ([109]),
a version of Linear Logic with a restricted form of commutativity ([123]).
As a consequence, properties of the Lambek Calculus can be studied in the
environment of linear logic, which, being classical, displays more symmetries
and is often easier to investigate. Thus, new concepts of this theory can be
imported. For instance, it is possible to import from Girard’s theory the
notion of proof net ([110]). A proof net, roughly speaking, is a graph that
retains at each step of a derivation only the type just introduced and its im-
mediate subtypes, the context of application of a rule being recoverable from
the structure of the graph. An advantage is that proof nets capture better
the essence of a theorem of the Lambek Calculus because they identify ex-
actly those derivations that are equal up to differences in rule ordering which
do not lead to a different semantic interpretation. Moreover, the semantic
interpretation can be read off the proof net ([30]). A major consequence of

3



the introduction of proof net theory is that it offers a way to treat logical
problems using graph theoretical tools, hence the word geometry in the title
of this thesis.

To illustrate the construction of a proof net, consider a derivation of the type
s/np associated to the string “Mary visited” (see below). Of the derivation
retain only the highlighted types, marking them with the polarity symbol •

(◦) whenever they are an hypothesis (conclusion) of a sequent. Join moreover
with an edge the two types that come from identity axioms (the first line in
each branch of the derivation); similarly, join the type introduced by each
rule with its immediate subtypes. The informed reader will recognize in the
input symbol a disguised negation of linear logic. Indeed, proof nets of the
Lambek Calculus are essentially proof nets of Cyclic Linear Logic labelled
by intuitionistic types.

(np\s)/np np s

np\s

npnp

s/np

np np

np s

s/np

(np\s)/np

s

np\s

Mary Mary

np

np

np s

s

(np\s)/np

np

s npnp

visited visited

The graph thus constructed consists of a list of trees that are obtained
unfolding the types labelling their roots and whose leaves are connected by
edges, the identity links, joining atoms of opposite polarity. Among such
graphs, called proof structures, those that correspond to a derivation are
characterized by correctness criteria, such as the Danos-Regnier criterion for
Linear Logic ([25]) which is a reformulation of Girard’s long trip condition
([42]). For instance, a proof structure of the Lambek Calculus is correct if
it is planar, it has exactly one output conclusion and each of its elementary
cycles goes through both immediate subtypes of (at least) a type introduced
by a unary inference rule, i.e. a rule with just one sequent premisse ([110]).
In the example above, the proof structure meets the criterion because its
unique cycle contains the premisses of the (output) type s/np.

Given a sentence (output) type and a list of (input) types corresponding to
lexical items and considering their unfoldings into trees, one can attempt to
build incrementally left to right a correct proof structure by adding iden-
tity links always preserving planarity and avoiding the creation of incorrect
cycles. Moreover, a complexity profile can be associated to such correct
graphs. It counts, at any point P between two trees, the number of identity
links that join leaves of trees preceeding P with leaves of trees following

4



P . Interestingly, for a number of English constructions there appears to be
a direct correlation between the complexity profile of the proof net asso-
ciated to their analyses in the Lambek calculus and their psycholinguistic
processing complexity ([48, 81]). This yields an implementation, in a logical
framework, of the Dependency Locality Theory ([40]) which, in its simplest
version, states that processing complexity is directly proportional to the
number of unresolved syntactic dependencies. This is particularly evident
in the case of center embedded relatives ([23]):

The cheese that the rat ate stank.
? The cheese that the rat that the cat saw ate stank.
?? The cheese that the rat that the cat that the dog chased saw ate stank.

The drammatically decreasing acceptability of sentences obtained iterating
center embedding can thus be accounted for in terms of performance rather
then competence. They are considered grammatical, but involving a more
and more difficult computation that gets rapidly beyond working memory
capacity.2 A study shows that local minimalization of the complexity profile
appears to be a good heuristic in incremental building of proof nets ([118]).
Actually, if the Dependency Locality Theory is correct, one could even put
a maximal limit to the complexity without loosing any acceptable sentence.
Performance of aphasics observed in experimental conditions ([20]) have
also been analysed in this framework ([85]), suggesting that their speech
problems might depend on deficits of working memory capacity rather then
on partial loss of (implicit) knowledge of language.

Issues of generation

Clearly, the Lambek Calculus is not flexible enough to deal with all linguistic
phenomena. In particular, it is unable to treat a number of constructions
whose analysis would involve, in a derivation, manipulation of non-adjacent
types, as in the following cases:

• discontinuous constituents, such as phrasal verbs: John called her up.

• non-peripheral extraction, such as relativization of the object of a tran-
sitive verb followed by an adverb: ...that John met yesterday.

2An acceptability judgement is an empirical observation about the (degree of) perceived
correctness, by speakers, of a sentence. Grammaticality refers to conformity with a theory.
Unfortunately, much of linguistic literature uses the term grammaticality judgement as a
synonym for acceptability judgement.
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Nor can it deal with phenomena seemingly involving multiple use of the
same resource, as in constructions containing parasitic gaps ([111, 113]),
exemplified here by a sentence where the relative pronoun plays the role of
the direct object of both transitive verbs:

• This is the paper that John filed without reading .

On the other hand, certain classes of unacceptable sentences would be con-
sidered grammatical, such as the following examples displaying island con-

straints ([111]):

• relativization out of one constituent of a conjunction:
I like the city that Peter wrote about Barcelona and John visited .

• questioning a constituent of an adverbial phrase:
Where did I meet John when he was studying at ?

Beyond Monomodality

To overcome these limitations, several generalizations have been proposed
that can all be described as particular instances of a Multimodal Lambek
Calculus ([94, 45, 69]). A mode is a way of combining hypothesis. For
example, in the Lambek Calculus, there is just one mode, concatenation of
strings. Since concatenation is associative, it follows that the product in the
Lambek Calculus is associative as well. More explicitly, one can define an
operation ⋆ass on binary trees whereby two trees τ0 and τ1 can be joined in
the following way:

τ0τ1

⋆ass

This operation yields an associative mode, provided that the logic is enriched
with a rule that allows to restructure trees in the following way:

τ2

⋆ass

τ1

τ0

⋆ass ⋆ass

τ1

⋆ass

τ0

τ2

6



Indeed, it is easy to show that the above structural rule, together with
the × introduction rules mentioned earlier, allows to prove the equivalence
of the types (A ×ass B) ×ass C and A ×ass (B ×ass C). In turn, the lat-
ter equivalence, together with the cut rule, is sufficient to prove the above
structural rule. The advantage in defining the calculus with the structural
rule on trees is that in this way the cut rule is still eliminable. For the
same reasons the type, say, (A ×ass B) ×ass C can be proved in this mode
starting from hypothesis A, B, and C structured either as [ass[assA,B], C] or
[assA, [assB,C]]. Dropping from the calculus the associative rule, i.e. consid-
ering a non-associative mode, only the first structuring would be acceptable.
The logic thus obtained, the Non-Associative Lambek Calculus NLC, has a
particular theoretical importance, because it is the most restrictive variant
of the Lambek Calculus.

Other modes can be defined. In the Lambek Calculus with permutation
LCP, there is one commutative mode ⋆com which enjoys, beside the asso-
ciative rule, also the commutative rule expressed below:

τ1τ0

⋆com

τ0τ1

⋆com

Given this structural rule, not only the product turns out to be commutative,
but also the implication and the retroimplication coincide.

Various modes can coexist in a single calculus, each one with an associated
product and the implications. The definition of the logical operations is
constant across modes. It is the structural rules that vary. They determine
the properties of the operations of a particular mode and the possible struc-
turing of the hypothesis of a theorem. To give but a simple example, assume
that the type given above for “visited” is in the associative mode and give
to “yesterday” the type s\s in the commutative mode. Then both sentences
“yesterday Mary visited Barcelona” and “Mary visited Barcelona yester-
day” will be accepted as grammatical. This is because the following two
structurings of the lexical items are equivalent, thanks to the commutative
rule:

τ1

⋆ass

τ0

τ2

⋆ass
τ3

⋆com

τ1 τ0

τ2

⋆ass
τ3

⋆ass

⋆com
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Different modes can also communicate, e.g. with the structural rule of en-
tropy, that allows to disregard sensitivity to order ([26, 2, 112]):

τ0τ1

⋆com

τ0τ1

⋆ass

One can also introduce unary modes. A unary mode ⋆j , simply lifts a tree
by adding at its root a unary branching node marked by ⋆j . It comes with
two operations, denoted by [j] (bracket) and [j]-1 (antibracket), that are the
unary counterparts of product and implication.3

If a unary mode that licenses no structural rule intervenes between two
instances of an associative mode, as in the following picture, then it breaks
the configuration and the associative rule can no longer be applied and
accounts of island constraints become possible:

τ0

⋆ass

τ2

⋆ass

τ1

⋆1

On the other hand, a unary mode can be used to license locally a structural
rule, as in the following example where the unary mode c allows permutation
in an otherwise non-commutative associative environment.

τ0

τ1

⋆ass

τ1

⋆ass

τ0

⋆c ⋆c

This is useful to account for non-peripheral extraction. The assignment to
the relative “that” of the type rel/(s/[c][c]−1np) allows the np gap to occur
anywhere in the clause following the relative. On one hand, the bracket [c]

3Brackets and antibrackets correspond to the modalities that are often denoted in the
literature, respectively, as ♦ and �

↓ (see, e.g., [54]).
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forces the above structuring in which commutativity can be applied. On the
other hand, once the restructuring has taken place (or if there is no need
for it) the bracket can be removed by the unary version of modus ponens,
namely the theorem [c][c]−1x ⇒ x, valid for any type x.

Other unary and binary modes can be defined and, potentially, any rewriting
rule for maximally binary branching trees can be considered as a structural
rule. Such calculi are so powerful as to be Turing complete in their weak
generative capacity ([21]). An interesting restriction on structural rules
has been proposed in order to obtain a completeness result ([53]). Only
those structural rules are admitted that are weak Sahlqvist, i.e., loosely
speaking, that do not contain any form, however disguised, of weakening or
contraction. This condition has also the effect of guaranteeing decidability,
because the search space is finite. It is not clear, however, whether for
linguistic purposes it is too strong a restriction.

Beyond Multimodality

New trends have emerged since the mid 90’s to avoid an excessive, ad hoc,
use of multimodality.4

Joachim Lambek has advocated for a technically simpler approach. Moving
from logic to algebra, he has proposed ([60, 61, 62, and references therein])
that the structure of pregroups, resulting from the algebraization of Compact
Bilinear Logic ([17]), could be used as a more flexible version of the Lambek
Calculus. This new theory seems to go a long way toward a truly minimalist
proposal, in that it is formally very simple and does not use theoretical
constructs such as structuring of resources, traces, etc.

The basic idea is that syntactic types are the concatenation of simple cate-
gories s, n,. . . which are eventually negated, possibly more then once, using
either a left negation (sl, nl,. . . , sll, nll,. . . ) or a right negation (sr, nr,. . . ,
srr, nrr,. . . ). A string φ1 . . . φn is grammatical if for each φi there is a type
τi such that the string τ1 . . . τn can be simplified to the symbol s for sentence
using instances of the following rules: ala ≤ ∅ and aar ≤ ∅. The connection
between the Lambek Calculus and pregroups is very simple. Essentially one
has just to replace the implicative types a/b and b\a respectively by the two
formulas abl and bra, thus reducing the two schemata for modus ponens that
characterize the Lambek Calculus to the derivations abl b ≤ a and b bra ≤ a.

4The following list of new trends is not exaustive, since we have restricted our attention
to those proposals that came equipped with a theory of proof nets. Their relation with
other theories –such as Abstract Categorial Grammar ([27, 32]), Lambda Grammar ([93]),
Convergent Grammar ([103, 29])– is left for further research.
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Proof structures are reduced to sets of identity links, for which the only cor-
rectness criterion is that they do not cross. Although grammars based on
pregroups extend those based on the Lambek Calculus, they are still weakly
equivalent to context free grammars ([16, 19]). They are appealing for their
elegance, but they do not have the flexibility of the Lambek Calculus en-
riched with modalities and thus there are again problems in dealing with
island phenomena, discontinuous constituents, etc.

The latter issue has been central to the reflexion that led Glyn Morrill ([86,
82, and references therein] to the proposal of the Hypersequent Calculus.5

The basic idea is that a logical type A of sort n can be realized phonologically
by a list of n+ 1 components, i.e. the type A has a phonological label that
displays n points of discontinuity:

AnA1 · · ·A0

In this setting, the product of the Lambek Calculus is still interpreted as
concatenation:

A1 AnA0 B0 BmB1 · · ·· · ·

But it becomes also possible –indeed natural– to consider, for any positive
integer i, a wrapping product ⊙i, an operation that is interpreted as con-
catenation of the second factor among the (i−1)th and the ith component
of the first factor:

· · ·B1 BmB0Ai−1A0 · · · Ai · · · An

Each wrapping product comes with a pair of residuated operators. Introduc-
ing a suitable notation, each family of a product and its residuated pair can
be defined by a set of six rules that look formally like the usual rules of the
Lambek Calculus L(/, \,×). And since each rule is based only on concate-
nation as a way to structure the types, the calculus is truly monomodal. In
this sense, it can be seen as a minimal extension of the Lambek Calculus that
allows to deal with discontinuity. Issues of completeness have been studied,
for fragments of the calculus that allow for only one point of discontinuity, in

5A word of caution is necessary here. The term hypersequent had already been used in
the mathematical literature ([3, 107]), but in a different sense.

10



[119]. As for the recognizing power of the calculus, a lower bound has been
given for the Displacement Calculus D ([87]), a variant of the Hypersequent
Calculus that comprises units for concatenative product and for wrapping
product. The calculus D recognizes the permutation closures of context free
languages ([89]).

More recently, Michael Moortgat has considered an extension of the Non-
associative Lambek Calculus that could also be regarded as minimal in that
it does not rely on multimodality nor does it make use of structural rules (not
explicitly, at least). The proposal ([70]) has two basic ingredients. Since the
intuitionistic restriction is lifted and sequents are allowed to have multiple
conclusions, one can consider for each Lambek operator a dual. Thinking
in terms of the language of Non Commutative Linear Logic ([2]), the dual
of the product is the par operator, and the dual of an implication, say A/B
that can be thought of as A℘B⊥, is a difference operator A⊘B that can be
thought of as A⊗B⊥. Moreover, the Grishin rules ([44]) are incorporated in
the introduction rules of the implications and their duals. Thus the system
is called the Lambek-Grishin Calculus, hereafter abbreviated as LGC. This
system, that has been extended to incorporate unary operators as well as
their duals ([22]), is equipped with a continuation semantics ([11]) and with
a theory of proof nets ([75]), and it is complete with respect to ternary
relational semantics ([55]). A lower bound for the generative capacity of
LGC has been established in [66], namely the class of languages that are
the intersection of a context-free language and the permutation closure of a
context-free language.

Structure of the thesis

This thesis studies proof net theory for several of the calculi so far men-
tioned. In the first part, Beyond Monomodality, the focus is on basic issues
of the Lambek Calculus with/without Permutation and Associativity, com-
binations of these variants and the use of brackets. The two chapters of the
second part, Beyond Multimodality, and the Appendix can be read indepen-
dently and are dedicated to the three recent trends mentioned earlier. More
specifically, the content is divided in chapters as follows:

Chapter 1: I review the relevant literature and explain the notations. In
the final section, I propose a characterization of proofnets the sub-
structures of which have at least two conclusions: they correspond to
intuitionistic derivations with no empty antecedents.

Chapter 2: it presents a discussion of the diamond of the Lambek Calculi
with/without associativity and/or commutativity. It is based on my
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publication [36], where I propose that the property of balance corre-
sponds, in proofnet theory, to the lack in the logic of the associative
structural rule.

Chapter 3: the first part is about multimodal logics obtained combining
calculi considered in the previous chapter. I capture the lack of inter-
action among modalities by the notion of endomodal proof structures.
As a special case, I characterize proof nets for Moortgaat and Morrill’s
biheaded calculus [71]. The second part is about Lambek Calculi with
unary modalities. It is based partially on a joint publication with G.
Morrill [37], in which Versmissen’s proposal [122] of mimicking unary
modalities with two extra symbols is corrected. I furthermore propose
an alternative embedding, that works also for commutative logics.

Chapter 4: it improves (in the first part) and generalizes (in the second
part) the theory of proof nets for the Discontinuous Lambek Calculus
expounded in the joint publication with G. Morrill [83].6

Chapter 5: it is about introducing unary modalities in the theory of pre-
groups and enriching accordingly the theory of proof nets. It is based
on my publication [35], including some new comments to compare it
with relevant literature.

Appendix A: the Lambek-Grishin Calculus LG∅ + G↑ of [70] is reviewed
as a special case of a Displayed Lambek Calculus ([43]). A theory
of proof nets for such calculi is proposed, where edges are labeled by
types and polarities are encoded as directions on the edges.

6Without doubts, this chapter would have been very different if we had not been
working with O. Valent́ın on the joint publications [90, 84, 91].
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Part I

Beyond monomodality
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Chapter 1

Preliminaries

The basic building stones of any theory of natural language are the lexical
items, minimal structured clusters of information that establish a connec-
tion between the phonological and the semantical level of the analysis. For
instance, HPSG represents the lexical entry for a proper noun by the fol-
lowing complex matrix ([106, page 358]):1











































word

PHON 〈Kim〉

SYNSEM

































synsem− struc

SYN

[

HEAD
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noun

AGR 3sing

] ]

ARG-STR 〈 〉

SEM
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











MODE ref

INDEX i

RESTR

〈









RELN name

SIT s

NAME Kim

NAMED i









〉






























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
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























However, the role played by the lexicon varies widely across formal gram-
mars. On one end of the spectrum, there are theories –such as the early

1Needless to say, theories are not uniform in their conception of lexical items, let alone
in the formalization of the information they contain. Borrowing from [46], we can say that
[...] there is a stronger and a weaker sense in which the term ‘lexical item’ is employed.
In the stronger sense, a lexical item is one whose meaning is not systematically derivable
from the meaning of any smaller items it may contain. Thus [...] blackbird is clearly a
lexical item in this sense, while black bird equally clearly is not. In a weaker sense, a
lexical item is one that is not formed by a general, productive rule, such as cancellable
[since there are] limitations on the productivity of -able suffixation.
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theories of the generative tradition– where the burden of grammaticality is
carried by non-lexical rules. For instance, a (toy!) generative grammar of
Catalan might analyse the following sentence on the basis of the rules listed
below:

an
al
y
si
s

tv np

vpnp

s

n

Julia’s daughters

det

The

pp

of the Julia

Les filles de la Júlia

daughters

study

study

estudien

nuclear physics.

physics nuclear.

f́ısica nuclear.

ru
le
s

s −→ np vp
vp −→ tv np
np −→ det n (pp)

Variants of this analysis are so ingrained in the grammatical tradition that
hierarchical structures are often assumed to be the empirical data. When
commenting on the example reported above, the Grammar of Contemporary

Catalan [115] –a work that intends to be as theory neutral as possible–
states that a sentence is not a ‘plane’ structure, rather it is a cluster of

hierarchically organized constituents.2

On the other end of the spectrum we find the type-logical grammars that
follow in J. Lambek’s footsteps and that constitute, in my view, the ultimate
embodiment of the structuralist conception of natural language. In these
theories, the only rules that can be used in checking the grammaticality
of a sentence are the very same rules that establish the properties of the
metalanguage in which we express the lexical items. Constituents and their
hierarchical organization surface as projection of the information compressed
in the lexical items. Thus, they are simply theoretical constructions useful
in coming up with generalizations.

Under this view, structuring the (syntactic) information contained in a lex-
ical item means combining bits of information by logical operators. Graph-
theoretically this can be represented by a tree,3 the nodes of which are

2The translation is mine.
3In much of the mathematical literature ([33]), the term tree is used to refer to an

acyclic, connected graph with no distinguished unary node. Following [112, 65], I prefer
the term seaweed for such a graph, since the metaphor of the tree seems to imply that any
tree comes with a root. Therefore instead of rooted trees, I will simply talk of trees.
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labeled by the logical operators and the leaves, by the minimal bits of infor-
mation.

the type of a lexical item its unfolding as a tree

(n\n)/(s/c np)

s◦np•n•n◦

(n\n)/(s/c np)
•

×

× ℘c

On the one hand, the types decorated by an output polarity (the empty dot)
represent information required by the lexical item, i.e. its questions. On the
other hand, the types decorated by an input polarity (the full dot) stand for
information contained in the lexical item, i.e. its answers. Adding identity
links to a multiset of trees yields a proof structure, provided that all answers
are justified by a question and that all questions have been answered, as in
the following example.

n• np\c s
•

s•np◦
s◦np•n•n◦

(n\n)/(s/c np)
•n◦

×
× ℘c

×c

To verify that a proof structure represents a proof of a theorem in a given
logic, [74, 108] present a general method based on rewriting rules.4 A deriva-
tion is successful, and yields the structure of the theorem, if the proof struc-
ture can be rewritten as a tree using two classes of rules. On one hand, a
proof structure can be modified applying locally the graph-theoretical rep-
resentation of any structural rule of the logic. In the example above, if the
modality marked by the subindex c is commutative, the order of the leaves
of the rightmost tree can be altered so as to obtain a planar graph. On the
other hand, it is possible to contract a proof structure, removing an elemen-
tary planar cycle that goes through exactly one tensor and a par node (of

4The method works as long as the structural rewriting rules do not affect the number of
leaves in any tree, i.e. as long as the structural rules do not contain any form of weakening
or contraction.
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the same modality) and connecting directly the two edges that are left dan-
gling.5 For instance, continuing the above example, the proof structure can
be contracted by removing its unique cycle and connecting the rightmost
premise of the central tree and the rightmost input type. This amounts to
compacting two pairs answer/question into one more coarse-grained pair, as
pictured below:

(n\n)/(s/c np)
•n•n◦

n•n◦

np\c s
•

×

×

Once the derivation has removed all cycles, one can look at the graph as
a tree rooted in its unique output conclusion. This is the structure of the
theorem. The types that constitute its antecedent can be read, right to left,
on its leaves.

n•

n◦

(n\n)/(s/cnp)
•np\cs

•

×

×

For many calculi, the problem of sequentializability of proof structures has
been studied also from a declarative point of view. Generally, the correctness
criteria are expressed on subgraphs of the proof structures and are invariant
along successful derivations of the procedural theory reviewed above, hence
their necessity. To prove that they are sufficient, one common tecnique is
to adapt the Tensor Splitting Lemma to the logic under consideration and
proceed by induction over the complexity of the proof structure. When
a proof structure Π can be sequentialized as a derivation of a theorem α,

5There are also contraction rules for unary operators, see Definition 1.18.
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the structure of α is implicitly contained in Π. For some logics, it can be
derived from a class of subgraphs. Each subgraph of the class might contain
the same information, or they might have to be combined by some operation
that gathers the relevant information.

The theories so far discussed present an inherent asymmetry, since they deal
with proof structures that have only one output conclusion. Removing this
restriction one moves from an intuitionistic to a classical environment.

This chapter is divided in two parts. In the first section, we discuss the
notion of tree and of seaweed, its classical counterpart. In the second sec-
tion we review several equivalent definitions of intuitionistic and classical
proof structures and a portion of the procedural and declarative theories
of correctness that is relevant for our purposes. The chapter ends with the
proposal of (DR2), a condition that holds necessarily in a proof net that
represent classical (intuitionistic) derivations where sequents are formed by
at least two types (an output and at least an input type). In particular,
this condition, unlike the no subtending condition proposed in [31] for the
Lambek Calculus, holds also in commutative logics.

1.1 Structuring information

1.1.1 Trees

This section is about a set of labelled finite trees, suitable for a theory of
proof nets where logical operators label nodes of the proof structures. As
mentioned earlier, I prefer to speak of trees, rather then rooted trees, since
this metaphor implies –in my opinion– that the root is an intrinsic part
of such a graph. The familiar notions of tree context, substitution in a
tree context and structural rules are recalled as well. All graph-theoretical
definitions are given for finite objects.

Let N and L be non-empty disjoint sets. Let {N 1,N 2} be a partition of N ,
i.e. let N 1 and N 2 be disjoint sets such that N = N 1

⋃

N 2. For any i ∈ N i,
the elements of N i will be called modalities of arity i. L is mnemonic for
leaves but also, as will be seen later, for language. N is mnemonic for nodes.

Graph-theoretical vs. abstract definition of NL-trees

Definition 1.1 An NL-tree is an acyclic and connected graph with unary,
binary and ternary nodes. Ternary nodes, if there are any, are labeled by

19



elements of the set {×i : i ∈ N 2} and come with a cyclic order on the
incident edges. Binary nodes, if there are any, are labeled by elements of the
set {[j] : j ∈ N 1}. One unary node is called the root and is not labeled; the
other unary nodes, of which there is at least one, are called the leaves and
are labeled by elements of L.

×k

l2 l1

l3 [j]

×i

Figure 1.1: An example of an NL tree

To keep the language simple, we will refer to a leaf labeled by a (definite)
occurrence of an element l of L as a leaf l.

Definition 1.2 The set of abstract NL-trees is the smallest set that con-
tains the set L of leaves and, for all i ∈ N 2 and j ∈ N 1, is closed under
the binary operator ×̃i and the unary operator [̃j], i.e. abstract NL trees are
defined by induction in the following way:

τ = L (τ×̃iτ) [̃j]τ.

The binary and unary operators are also said to label the (non-terminal)
nodes of the tree.

For simplicity, we will drop outer parentheses. For example, we will write
simply (A×̃iB)×̃iC instead of the more cumbersome ((A×̃iB)×̃iC).

The bijective correspondence between abstract and graph-theoretical NL
trees is explained in Figure 1.2. Given the straightforward nature of the
correspondence, we will freely switch between the two representations.

NL-tree contexts and substitutions therein

Let H = {Hn : n ∈ N} be a set disjoint from L. Set L′ = L ∪ H. H is
mnemonic for hole, i.e. a distinguished leaf that appear in a context and
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l

τ2 τ1

×i

abstract

graph
theoretic

NL-tree

l

trivial

τ1×̃iτ2 [̃j]τ

non-trivial

[j]

τ

Figure 1.2: Abstract vs. graph theoretic NL trees

that can be substituted by any tree.

Definition 1.3 An NL-tree context with m holes (m ≥ 0) is an NL′-
tree σ[H1, . . . ,Hm] where m leaves are labeled by H1, . . . ,Hm and the other
leaves, if there are any, are labeled by elements of L. A leaf labeled by an
element of H is called a hole, a leaf labeled by an element of L is said to be
proper. An NL-tree context is pure if it has no proper leaves.

The notation σ[Hi] will be used to denote an m-holed context, when we
want to focus on the hole labeled by Hi. Removing the label Hi from σ[Hi]
yields a graph that will be denoted by σ[ ].

In the following, contexts are always assumed to have at most one hole,
unless otherwise specified. Clearly, a context with no holes is a tree.

The result of substituting a context ρ in the H hole of a context σ[H] is the
context σ[ρ] defined as follows:

• if σ[H] = H, then σ[ρ] = ρ;

• if σ[H] = ξ[H]×̃iτ , then σ[ρ] = ξ[ρ]×̃iτ ;

• if σ[H] = τ×̃iξ[H], then σ[ρ] = τ×̃iξ[ρ];

• if σ[H] = [̃j]ξ[H], then σ[ρ] = [̃j]ξ[ρ].

The tree σ[ρ1, . . . , ρm] is the result of substituting, for any i ∈ {1, . . . ,m},
a tree ρi in the hole Hi of σ[H1, . . . ,Hm].
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σ[Hi] σ[ ] σ[ρ]

Hi

σ[ ]

ρ

Figure 1.3: A tree context and a tree in context

. . . . . .

Hm H1

σ[H1, . . . ,Hm]

ρm ρ1

σ[ρ1, . . . , ρm]

Figure 1.4: Trees in a pure tree context σ[H1, . . . ,Hm]
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Structural rules for NL-trees

A structural rule is an ordered pair

s =< σ1[H1, . . . ,Hm], σ2[H1, . . . ,Hm] >

of pure contexts with m holes labeled by H1, . . . ,Hm, for some m ∈ N. Any
such rule induces a rewriting rule s on NL-tree contexts, namely:

τ [σ1[ρ1, . . . , ρm]]
s
→ τ [σ2[ρ1, . . . , ρm]]

where ρ1, . . . , ρm are arbitrary NL-tree contexts and τ [H0] is the context in
which the restructuring takes place and has therefore at least one hole.

τ1τ2

τ0[ ]

×i (COMi)

τ2τ1

τ0[ ]

×i

τ1

τ0[ ]τ0[ ]

τ3

τ2 τ1

×i

τ3 τ2

×j

×i×j

(lr-ASSij)

(rl-ASSij)

Figure 1.5: Commutative and associative rules for trees.

Given a set S of structural rules and two NL-tree contexts α and β, say that
β <S α if there is a rule s in S such that α

s
→ β. Let ≤S be the transitive

reflexive closure of <S and let ≈S be the equivalence relation generated by
≤S .

Definition 1.4 An S-sugared NL-tree (context) is an NL-tree (context)
identified up to the equivalence relation ≈S .
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By a slight abuse of notation, a sugared tree (context) – i.e. an equivalence
class [τ ]≈S – will be denoted, whenever this does not lead to confusion, by
any of its representant τ .

1.1.2 Seaweeds

I look down there [...] in the darkness,
there’s this green trail, [...] algae [...]

And it was, it was just leading me home.

Ron Howard, Apollo 13.

This section is about the notion of seaweed, a straightforward generalization
of a notion introduced in [28] to define sequents for a classical extension of
the Non-Associative Lambek Calculus. The term comes from [112], where
it denoted the graphical representation of sequents of Non-Commutative
Linear Logic, and it is meant to evocate the image of a rootless tree. The
notions of seaweed context, substitution in a seaweed context and structural
rules are given as well.

Let N and L be non-empty disjoint sets. Let {N 1,N 2} be a partition of N .
Let H = {Hn : n ∈ N} be a set disjoint from L. Set L′ = L ∪H.

Graph-theoretical vs abstract definition of NL-seaweed

Definition 1.5 An NL seaweed context is an acyclic and connected graph
with unary, binary, and ternary nodes. The ternary nodes are labeled by
elements of the set {×i : i ∈ N 2}. The binary nodes are labeled by elements
of the set {[j] : j ∈ N 1}. The unary nodes called (proper) leaves are labeled
by elements of L; the unary nodes called holes are labeled by distinct elements
of H = {Hi : i ∈ N}. A seaweed has no other nodes and at least one edge.
Ternary nodes come with a cyclic order on the incident edges.

Consider the set of non-ordered pairs (σ0, σ1) of abstract NL-tree contexts
with or without holes. On this set let ≈ be the smallest equivalence relation
such that for all tree contexts τ0, τ1, and τ2 and for all n ∈ N :

1. for any binary modality i:

(τ0×̃iτ1, τ2) ≈ (τ0, τ1×̃iτ2) and
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×k

l2 l1

l3

l0

×i

[j]

Figure 1.6: An example of an NL seaweed

(τ0×̃iτ1, τ2) ≈ (τ1, τ2×̃iτ0);

2. for any unary modality j:

([̃j]τ0, τ1) ≈ (τ0, [̃j]τ1).

Let us represent graphically a pair (σ0, σ1) as the graph obtained joining,
by a dashed line, the roots of σ0 and σ1. Then the graphs below represent
the pairs that appear in the clauses of the previous definition of the ≈-
equivalence, namely:

1. for any binary modality i, the graphs (τ0×̃iτ1, τ2), (τ0, τ1×̃iτ2), and
(τ1, τ2×̃iτ0) are respectively:

τ0τ1

τ2

τ0τ1

τ2

τ0τ1

τ2

×i×i ×i

2. for any unary modality j, the graphs ([̃j]τ0, τ1) and (τ0, [̃j]τ1) are re-
spectively:
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τ0τ0

τ1 τ1

[j][j]

Denote by σ0 ⋆ σ1 the ≈-equivalence class individuated by the pair (σ0, σ1).

Definition 1.6 An abstract NL seaweed context σ0 ⋆ σ1 with m holes is
the ⋆-product individuated by NL-tree contexts σi with mi holes (i = 0, 1),
where m0 +m1 = m.

Clearly, there is a bijective correspondence between abstract seaweed con-
texts and their representations by (graph theoretical) seaweed contexts. Be-
fore establishing the correspondence, see Figure 1.7, we introduce some more
notations.

In the following, for any binary modality i, the seaweed context (τ0×̃iτ1)⋆τ2
will be denoted also by the ternary brackets [i τ0, τ1, τ2 ]. Observe that for
all cyclic permutations π ∈ (0, 1, 2):

[i τ0, τ1, τ2 ] = [i τπ(0), τπ(1), τπ(2) ].

Similarly, for any unary modality j, the seaweed context [̃j]τ0 ⋆ τ1 will be
denoted also by the binary brackets [j τ0, τ1 ]. Observe that for all permu-
tations π ∈ (0, 1):

[j τ0, τ1 ] = [j τπ(0), τπ(1) ].

Note that any seaweed context α can be represented by a ⋆-product of a
trivial tree l and a tree τ . Choosing such a representation will be referred
to as focusing on the leaf l.

Definition 1.7 An NL seaweed context with no holes is called an NL sea-
weed. An NL seaweed context with no proper leaves is called a pure context.

The result of substituting an NL-tree context τ into the H hole of a context
α[H] is α[τ ] = τ ⋆ β, where H ⋆ β is the representation of α[H] obtained
focussing on H. The result of substituting, for any i ∈ {1, . . . ,m}, a tree
context τi for a hole Hi in the context α[H1, . . . ,Hm] = ρ[H1, . . . ,Ht] ⋆
σ[Ht+1, . . . ,Hm] is the seaweed α[τ1, . . . , τm] = ρ[τ1, . . . , τt]⋆σ[τt+1, . . . , τm].
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l1

l0

graph
theoretic

τ1τ2

τ0
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τ1

τ0

[j]

lo ⋆ l1

trivial

abstract

NL seaweed

[i τ0, τ1, τ2 ]

non-trivial

[j τ0, τ1 ]

Figure 1.7: Abstract vs. graph theoretical NL seaweeds

ρ[H1, . . . ,Ht] σ[τt+1, . . . , τm]ρ[τ1, . . . , τt]σ[Ht+1, . . . ,Hm]

. . . . . . . . . . . .Ht H1 Ht+1Hm
τt τ1 τm τt+1

α[H1, . . . ,Hm] = α[τ1, . . . , τm] =

ρ[H1, . . . ,Ht] ⋆ σ[Ht+1, . . . ,Hm] ρ[τ1, . . . , τt] ⋆ σ[τt+1, . . . , τm]

Figure 1.8: Trees in a pure seaweed context α[H1, . . . ,Hm]

Structural rules for NL-seaweeds

A structural rule is an ordered pair

s =< σ1[H1, . . . ,Hm], σ2[H1, . . . ,Hm] >

of pure seaweed contexts with m holes labeled by H1, . . . ,Hm, for some
m ∈ N. Any such rule induces a rewriting rule s on NL seaweed contexts,
namely:

σ1[ρ1, . . . , ρm]
s
→ σ2[ρ1, . . . , ρm]

where ρ1, . . . , ρm are NL-tree contexts.

Given a set S of structural rules and two NL seaweed contexts α and β,
say that β <S α if there is a rule s in S such that α

s
→ β. Let ≤S be
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(COMi)

τ2τ1

×i

τ1τ2

×i

τ0 τ0

τ1

(ASSij)

τ3

τ2 τ1

×i

×j

τ0

τ3 τ2

×j

×i

τ0

Figure 1.9: Commutative and associative rules for seaweeds

the transitive reflexive closure of <S and let ≈S be the equivalence relation
generated by ≤S .

Definition 1.8 An S-sugared NL seaweed (context) is an NL seaweed
(context) identified up to the equivalence relation ≈S .

By a slight abuse of notation, a sugared seaweed (context), – i.e. an equiva-
lence class [α]≈S – will be denoted, whenever this does not lead to confusion,
by any of its representant α.

Any tree structural rule < τ1[H1, . . . ,Hm], τ2[H1, . . . ,Hm] > yields naturally
the seaweed structural rule obtained turning the roots of the trees into an
extra hole H0, i.e.

< H0 ⋆ τ1[H1, . . . ,Hm],H0 ⋆ τ2[H1, . . . ,Hm] > .

Conversely, any structural rule s =< σ1[H0, . . . ,Hm], σ2[H0, . . . ,Hm] > for
seaweeds yields a structural rule for trees, simply by choosing to focus on
one hole. For instance, choosing to focus on H0, the rewriting rule s yields
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the following rewriting rule of tree contexts:

< τ1[H1, . . . ,Hm], τ2[H1, . . . ,Hm] > .

where, for any i ∈ {1, 2}, σi[H0, . . . ,Hm] is thought of as H0⋆τi[H1, . . . ,Hm]
for a suitable tree context τi[H1, . . . ,Hm].

However, there is no bijection between the sets of structural rules, since
focusing on different leaves of a seaweed can yield different structural rules
for trees. For instance, both left to right associativity (lr-ASSij) and right to
left associativity (rl-ASSij) of trees (see Figure 1.5) correspond to one and
the same associativity rule (ASSij) for seaweeds (see Figure 1.9). For this
reason, the classical extension of a Lambek Calculus enriched with structural
rules is not, in general, conservative.

In the next sections we review the procedural theory of correctness, dealing
only with structural rules that are not sensitive to polarity. Because of the
comments reported in the previous paragraph, we can only consider those
intuitionistic calculi the classical extension of which is conservative. For the
other calculi we present, following [43], an embedding in a displayed calculus.
Sensitivity to polarity is regained orienting the edges of the proof structures.
This proposal, elaborated independently, has been now superseded by R.
Moot’s work ([75]) and therefore it is not presented in the main body of the
thesis, but in an appendix.

1.2 Checking information

1.2.1 Defining proof structures

This section reviews the familar notion of proof structure6 giving a declara-
tive graph-theoretical definition, a constructive definition based on forests of
trees and identity links, and an inductive definition. It presents the notion
of pseudostructure, akin to the notion of hypothesis structure ([77]), which
is essentially just a graph that retains of a proof structure only its geometry
and the labeling of the doors. Finally, the notion of underlying linear logic
structure is defined and the notion of substructure is reviewed.

For m ∈ {1, 2}, let Nm be a set of modalities of arity m. Consider the
following sets:

6Two generalizations of the notion of proof structure will be given, respectively, in
Chapter 4 and Appendix A: proof structures of the hypercalculus, in which there is a
unique modality that underlies different families of operators, and directed proof struc-
tures, in which the fundamental difference is that the edges are directed. A unified defi-
nition would lead to a more involved wording and no practical advantage.
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• N× = {×i : i ∈ N 2} of tensor operators;

• N℘ = {℘i : i ∈ N 2} of par operators;

• N [ ] = {[j] : j ∈ N 1} of bracket operators;

• N [ ]-1 = {[j]-1 : j ∈ N 1} of antibracket operators.

Graph-theoretical definition of NL proof structures

Definition 1.9 An NL partial proof structure is a connected graph such
that:

• the (logical) ternary nodes are labeled by elements of N× ∪ N℘; in-
cident edges are ordered cyclically; one of them is specified to be the
conclusion, the left (right) premise is the edge that immediately follows
(precedes) the conclusion in clockwise fashion;

• the logical binary nodes are labeled by elements of N [ ] ∪ N [ ]-1; of the

two incident edges, one is the conclusion, the other the premise;

• the non-logical binary nodes are labeled by id or cut; id nodes have two
conclusions, cut nodes have two premises;

• the unary nodes are not labeled;

• there are no other nodes;

• any edge is a premise of at most one node and the conclusion of at
most one node; for any node label l, a node labeled by l together with
its premises and conclusions is called an l-link;

• the edges are labeled by elements of L; Figure 1.10 explains the restric-
tions on the labeling of edges of a link.

For typographical reasons id and cut nodes will be represented hereafter by
a horizontal line, that can be stretched ad libitum:

id A A⊥ cut A A⊥
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◦∈N×∪N℘ ⋄∈N[ ] ∪ N[ ]-1
id cut

link
A◦B

BA ◦
A

⋄

⋄A

id

A A⊥ A A⊥

cut

premises A and B A none A and A⊥

conclusions A ◦B ⋄A A and A⊥ none

Figure 1.10: Links in an NL partial proof structure

There is an alternative syntax for proof structures, in which the elements of
L label the nodes whereas the edges are left unlabeled.7 Although the latter
notation is more compact, we prefer to use the former because it highlights
the structure of the graph. The repertoire of compact links is the following:

◦∈N×∪N℘ ⋄∈N[ ] ∪ N[ ]
-1 id cut

link

A◦B

BA
A

⋄A A A⊥

A A⊥

Definition 1.10 An open leaf in a partial proof structure is an edge that is
the conclusion of no link. A door of a partial proof structure is an edge that
is a premise of no link.

Definition 1.11 An NL proof structure is an NL partial proof structure
with no open leaves.

To keep the language simple, we will refer to an edge labeled by an instance
of a type A as the edge A.

Formula trees and NL proof structures

Proof structures can be built out of (some!) lists of logical types of a lan-
guage. Each type is unravelled into a formula tree, according to the following

7Needless to say, there are also proposals for notions of proof structure that differ in
more substantial ways, see e.g. Pentus’s notion of proof nets in [99].
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⊥

×i
S S⊥

S×iS
⊥

℘i

×i

S⊥×i(S℘iN
⊥)
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S⊥ S℘iN
⊥

S

×i
N S⊥

N×iS
⊥

×i
S S⊥

S×iS
⊥

Figure 1.11: Proof structures: same doors, different identity links

definition, and identity and cut links are added so as to obtain a partition of
the set of leaves into pairs of atoms and their negations. Different identity
linkings can be considered for the same list of formula trees, see Figure 1.11.

Let L be a subset of a language L′ defined on the basis of a set A of atomic
symbols, the set A⊥ = {A⊥ : a ∈ A} of their negations, the set N× ∪ N℘
of binary operators, and the set N [ ] ∪ N [ ]-1 of unary operators. Extend the
negation metalinguistically to any element of the language L′ setting:

• F⊥⊥ = F ;

• (F×iG)⊥ = G⊥℘iF
⊥;

• (F℘iG)⊥ = G⊥×iF
⊥;

• ([j]F )⊥ = [j]-1F⊥; and

• ([j]-1F )⊥ = [j]F⊥.

where F and G are any element of L , i ∈ N 2, and j ∈ N 1.

In particular, if N 1 is the empty set and N 2 is a singleton set, we say that
L is the language of linear logic. In this case, we drop the modality index
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from operators, names of rules, etc.8

Definition 1.12 A formula tree τ(F ) is a graph defined as follows by in-
duction on the complexity of a type F :

• if F ∈ A, then τ(F ) is the graph that
consists of one edge labeled by F and two
unary unlabeled nodes;

  
  
!!
!! 
 
 
 

!
!
!
!

  
  
!!
!!

F

Trivial formula tree

• if F = G ◦ H, then τ(F ) is the graph
obtained from τ(G) and τ(H) joining,
around a ternary node labeled by ◦, the
edges labeled by G and H with a further
edge labeled by F ; moreover, the edges la-
beled by F , G, and H must be clockwise
in this cyclic order around the mentioned
node.

F
◦G H

τ(G) τ(H)

Binary operator

• if F = ⋄G, then τ(F ) is the graph ob-
tained joining the root of τ(G) to a binary
node labeled by ⋄ yielding a tree the root
of which is labeled by F .

τ(G)

F

G
⋄

Unary operator

Observe that a tree formula τ(F ) is an NL-tree exactly when F contains
neither par nor antibracket operators.

Inductive definition of NL proof structures

The following rules, applied to any NL proof structure Πh (h ∈ {1, 2}),
yield an NL proof structure Π, where i ∈ N 2 and j ∈ N 1:

• cut rule: Π1 Π2
Π

A A⊥

8Throughout the thesis, we will deal only with the exponential-free, multiplicative
fragment of linear logic.
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• tensor rules:

Π1 Π2
Π

×i

A B

A×i B

• par rule:

Π1 Π

℘i

A

A℘iB

B

• bracket rule:
Π1 Π

[j]A

A
[ ]

j

• antibracket rule:
Π1 Π

[j]
-1
A

A
[ ]-1

j

Definition 1.13 The set of inductive NL proof structures is the smallest
set that contains NL identity links and that is closed under:

• the cut rule;

• for any i ∈ N 2, the ×i- and ℘i-rules;

• for any j ∈ N 1, the [j]- and [j]-1-rules.

Observe that, if N 1 is the empty set and N 2 the singleton set, then the set
of inductive proof structures coincides with the set of proof nets of multi-
plicative linear logic (without modalities).

NL pseudostructures

Pseudostructures are the trait d’union between proof structures and sea-
weeds. In particular, seaweeds are acyclic pseudostructures. When moving
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from a proof structure to its underlying pseudostructure, one forgets –among
other things– which edge of a tensor node is the conclusion. This allows us
to modify pseudostructures locally using the same rewriting rules already
considered for seaweeds.9

Definition 1.14 An NL pseudostructure is a connected graph such that:

• its ternary nodes are labeled by elements of N× ∪ N℘; incident edges
are ordered cyclically; in the case of the nodes labeled by elements of
N℘, one of the edges is specified to be the conclusion (this is denoted
by a tail on the edge);

• its binary nodes are labeled by elements of N [ ] ∪N [ ]-1 ; in the case of

the nodes labelled by elements of N [ ]-1 , one of the edges is specified to

be the conclusion (this is denoted by a tail on the edge);

• unary nodes are labeled by elements of L;

• there are no other nodes;

• edges are not labeled.

In a pseudostructure, we can still speak of ◦-links as the nodes labeled by a
logical operator ◦ together with its incident edges.

Given any partial proof structure Π, the underlying pseudostructure Π− is
obtained in the following way:

• for any edge incident to a unary node, copy the label of the edge onto
the node itself;

• mark the conclusion of any node labeled by an element of N℘ or N [ ]-1

with a tail;

• remove edge labels;

• remove any non-logical binary node by connecting directly between
them the two incident edges.

Definition 1.15 An NL structure is either an NL proof structure or an
NL pseudostructure.

9The prefix pseudo intends to suggest the idea that there are pseudostructures that do
not underlie any proof structure.

35



℘i

×i ×i ×i

S S⊥×i(S℘iN
⊥) N×iS

⊥ S×iS
⊥

℘i

×i ×i ×i

S⊥×i(S℘iN
⊥) N×iS
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⊥S

Figure 1.12: Pseudostructures: same doors, different geometry

The underlying linear logic structure

Consider the forgetful function f that associates, to any element of the
language L, an element of the language of linear logic (see page 32) according
to the following clauses (where A,B ∈ L):

• for any atomic A, fA = A and f(A⊥) = A⊥;

• for any i ∈ N 2 and ◦ ∈ {×, ℘}, f(A ◦i B) = fA ◦ fB;

• for any j ∈ N 1 and ⋄ ∈ {[ ], [ ]-1}, f(⋄jA) = fA.

Definition 1.16 Let Π be an NL (partial) proof structure. The underlying
linear logic (partial) proof structure fΠ is the (partial) proof structure ob-
tained from Π replacing its links according to the two following instructions
(where A and B are elements of L):
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id-link A A⊥ → fA fA⊥

cut-link A A⊥ → fA fA⊥

binary logical links
i ∈ N 2, ◦ ∈ {×, ℘}

◦i
A◦iB

BA
→ ◦ fBfA

fA◦fB

unary logical links
j ∈ N 1, ⋄ ∈ {[ ], [ ]

-1}
⋄j
⋄jA

A
→ fA

If Π is a pseudostructure, then the underlying linear logic pseudostructure
is obtained replacing any element A of L by its translation fA, dropping
the indexes from ternary nodes and fusing into one single edge the edges
incident to any binary node.

For any NL (partial) structure Π, we say that Π satisfies a property P qua
structure of linear logic, if fΠ satisfies P .

Substructures of NL structures

Definition 1.17 A substructure S of a proof structure R is an induced
subgraph10 of R such that if a conclusion of a link L is in S, then the
premises of L or the other conclusion of L is in S as well.

Thus a substructure S of R can be seen as a collection of (occurrences of)
nodes of R . Hence, the subset relation on such collections yields naturally
a partial order on the set of substructures of a proof structure. In the same
way, it makes sense to talk about the union and intersection of non-disjoint
substructures. Clearly, the graphs that result from such boolean operations
are still substructures.

10A subgraph of a graph G is a graph whose vertex and edge sets are subsets of those
of G. A subgraph H of a graph G is said to be induced if, for any pair of vertices x and
y of H , xy is an edge of H if and only if xy is an edge of G.
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1.2.2 Working with proof structures

In this section, we adapt to our notations and aims the notions of rewriting
rules and contractibility given in [74] and [108]. The Bridging Lemma (Gi-
rard’s Splitting Lemma by a par link) is reviewed in this setting. The notion
of switching à la Danos-Regnier is recalled. A further clause is added, with
the aim of providing a novel characterization of linear logic proof structures
that can be sequentialized using only sequents with at least two types (no
empty antecedent in the intuitionistic/Lambek case). The Splitting Lemma
is established on the base of the Bridging Lemma. This allows us to give a
new and easy proof of the characterization of empires ([10]) in proof nets of
linear logic.

For m ∈ {1, 2}, let Nm be a set of modalities of arity m.

Rewriting rules and contractibility

Definition 1.18 For any i, j ∈ N 2, the contraction (CONij) is the rewrit-
ing rule defined by the following local modification of a pseudostructure:

(CONij) : ×i ℘j

l0 l1

7−→

l0 l1

Similarly, for any h, k ∈ N 2, the contraction (CONhk) is the rewriting rule
defined by the following local modification of a pseudostructure:

(CONhk) :

l1l0

[h] [k]-1 7−→

l0 l1

Any structural rule for trees and for seaweeds induces a rewriting rule of
pseudostructures.

Definition 1.19 For any seaweed structural rule

s =< σ1[H1, . . . ,Hm], σ2[H1, . . . ,Hm] >

(STRs) is the pseudostructure rewriting rule defined by the following local
modification:

σ1[l1, . . . , lm] 7−→ σ2[l1, . . . , lm].
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X1 X2 X3X0

×i×i

X1 X2 X3X0

×i ×i×i

℘i
(CONii)

Figure 1.13: An application of the contraction rule

For instance, the associative structural rule for seaweeds of Figure 1.9 and
the associative structural rule for trees

< H1◦i(H2◦jH2), (H1◦iH2)◦jH3 >

induce the rewriting rule (ASSij) defined by the following local modification
of a pseudostructure:

(ASSij): ×i ×j

l0 l1

l3 l2

7−→

×i

×j

l0 l1

l3 l2

Observe that the associativity structural rule for trees that goes in the re-
verse direction, i.e. < (H1◦iH2)◦jH3,H1◦i(H2◦jH2) > induces the same
associative structural rule for seaweeds and thus the same rewriting rule for
pseudostructures.

×i

X0 X3

℘i

X2X1

×i×i

(ASSii)
7−→ ×i

X3X2X0 X1

℘i ×i

×i

(CONii)
7−→ ×i

X3X2X0 X1

×i

(ASSii)
7−→ ×i

X3X2X1X0

×i

Figure 1.14: An application of structural rules and contraction
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Similarly, the commutative structural rule for seaweeds of Figure 1.9 and
the commutative structural rule for trees < H1◦iH2,H2◦iH1 > induce a
rewriting rule (COMi) determined by the following local modification of a
pseudostructure:

(COMi): ×i

l0

l1 l2

7−→ ×i

l0

l2 l1

Let R′ be the set of rewriting rules for NL pseudostructures derived from
a set S of structural rules. Let R be the set R′ enriched with a set of
contraction rules (CONij), for which there are possibly some restrictions on
the modalities i and j. Given any two NL pseudostructures Π and Σ, say
that Σ <R Π if Π can be rewritten as Σ applying a rule of R. Let ≤R be
the reflexive-transitive closure of <R.

Definition 1.20 An NL pseudostructure Π is R-contractible if there is an
NL seaweed α such that α ≤R Π. An NL proof structure is R-contractible
if the underlying pseudostructure Π− is R-contractible.

The Bridging Lemma

Definition 1.21 For any operator ◦, a ◦-link is final in an NL structure
Π if its conclusion edge is connected to a unary node.

Π1

Π1

Π
′

Π
′ Π2

Π
′

Π

◦

Π
′

◦

Π
Π

Π2

◦

Figure 1.15: Examples of final links and their removal

Lemma 1.22 Let Π be an R-contractible NL structure that has a final ℘-
or [ ]-1-link L. Removing L yields an R-contractible NL structure.
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Proof. We only need to consider the case of pseudostructures. Assume
that Π has a final ℘-link L and that it can be rewritten, as shown in the
picture below, as a seaweed τ0 ⋆ X (the star on some arrow means that
several rewriting rules might be involved in that step).

℘i

×j

Π1

℘i

Π′

τ0

X
X

Π1

X
X

∗ ∗

The central step, the contraction (CONij), can be postponed till the very
end of the rewriting process, because all rewriting rules are local. This shows
that Π′ is R-contractible. Noting that the case of a final [ ]-1-link is entirely
similar concludes the proof. �

Definition 1.23 For any operator ◦, a ◦-link is a bridge in a NL structure
if the removal of its conclusion yields two disconnected components.

Any bridging ◦-link L with conclusion X (see Figure 1.16) splits a proof
structure Π into a proof structure Π0, where L is final, and a partial proof
structure Π1(X) with one open leaf, the edge X.

X

Π0

Π1(X)

Figure 1.16: A bridging link in an NL structure

Lemma 1.24 (The Bridging Lemma) Let Π be an R-contractible NL
structure such that:

• it has at least a non-final ℘- or [ ]-1-link; and

• no ℘- or [ ]-1-link is final.
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Then there is a bridging ℘- or [ ]-1-link with conclusion X that splits Π into an
R-contractible structure Π0 and an R-contractible partial structure Π1(X).

Proof. We only need to show the result for pseudostructures. Let Π be a
pseudostructure and consider a rewriting process that reduces it to a sea-
weed. Consider the last step of the rewriting process, where a contraction c
removes a link L labeled either by ℘ or [ ]-1. Consider the case in which L is a
℘ -link. The link L is a bridge in the pseudostructure to which the contrac-
tion c is applied, for otherwise the pseudostructure could not be rewritten
as a seaweed. As pictured below, L splits this pseudostructure into a graph
π and a tree τ1.

℘i℘i

τ0

×j

τ1

τ0

τ1Π−1 (X)

Π−0

π

Moreover, the link L is a bridge in all the preceding pseudostructures, since
no rewriting rule operates across a ℘ node. Therefore, Π−0 reduces to τ0 ⋆X
and Π−1 (X) to τ1⋆X. Thus, L splits Π into the reducible pseudostructure Π0

and the partial pseudostructure Π1(X). The proof is completed observing
that the case in which L is an [ ]-1-link is entirely similar. �

Switchings and the Danos-Regnier criteria (DR)

Definition 1.25 A switching of a par link L is the choice of one of its
premises. A switching sΠ of an NL structure Π is the graph that results
from a switching of its ℘-links by disconnecting from each ℘-node the premise
that is not selected by the switching, as indicated in Figure 1.17.

Definition 1.26 An NL structure Π is said to be correct with respect to
(DR), or (DR)-correct, if it satisfies the following properties:

(DRa) each of its switchings is an acyclic graph;
(DRc) each of its switchings is a connected graph.
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Figure 1.17: A par link and its left and right switchings

The (DR) criteria are somewhat redundant.

Proposition 1.27 Let Π be an NL structure.

a. If Π satisfies (DRa) and one of its switchings is connected, then Π
satisfies (DRc).

b. If Π satisfies (DRc) and one of its switchings is acyclic, then Π satis-
fies (DRa).

Proof. Assume that (DRa) holds and that σ is a connected switching. Let
τ be a switching of Π. Then there is a chain of switchings σ = ρ0, . . . , ρn = τ
such that, for all i ∈ {1, . . . , n}, ρi−1 and ρi differ only for the switching of
one par link Li. To prove that τ is connected, it is enough to show that,
for any i ∈ {1, . . . , n}, if ρi−1 is connected, so is ρi. Removing the premise
selected by ρi−1 at Li breaks ρi−1Π into two components. Switching Li as
in ρi will either join again these two components or will create a cycle. Since
the latter case violates (DRa), ρiΠ must be connected. Assume now that
(DRc) holds and let σ be an acyclic switching of Π. Consider a switching τ
that differs from σ for the choice of premise at a ℘-node, say τ selects B at
A℘iB while σ selects A. Assume that τ contains a cycle γ. Clearly, γ must
go through B because σ is acyclic. Since τ is connected, there is a path that
joins A with A ◦B and that does not go through B. But then also σ would
be cyclic. It follows that τ , and any other switching, is acyclic. �

In the intuitionistic case, the (DR)-criterion on connectedness is equivalent
to the unicity of an output conclusion (see Theorem 2.38).

Remark 1.28 The contraction and structural rewriting rules preserve and
reflect the condition (DR), i.e. for any NL structures Σ and Π such that
Σ <R Π, Σ is (DR)-correct if and only if Π is (DR)-correct.

Since seaweeds are (DR)-correct the next result follows immediately.
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Corollary 1.29 Any R-contractible structure is (DR)-correct.

Trimmings, the Danos-Regnier criteria (DR2), and contractibility

Lemma 1.30 Let Π be a (DR)-correct structure of linear logic. Then either
it is a seaweed or it contains an elementary cycle c that goes through both
premises of exactly one par link and through n ≥ 0 tensor nodes.

Proof. Assume Π is not a seaweed. Consider a switching of Π. Because of
connectedness, the two premises of any par link are joined in the switched
graph by a path. Because of acyclicity, the path does not go through the
conclusion of the link. Thus, for any par link, there is a path that joins
the premises of the link, and goes, possibly, through some tensor node and
through at most one of the premises of other par links. Choose a par link
L1 and find such a path p1. If p1 contains a par link L2, another such path
p2 can be found. Observe that p2 cannot go through both premises of L1 –
it lies on a switching – nor can it go through the conclusion and a premise,
because otherwise the switching would be cyclic. Thus p2 does not contain
L1. If p2 goes through another ℘-link, we can repeat the reasoning. But the
process cannot be iterated indefinitely because proof structures are finite
objects. Hence there must be a cycle cn that goes through both premises of
a par link Ln and through no other par link. �

Consider an NL structure Π. Let σ be a switching of Π and L a par link
in Π. By trimming σΠ at L we mean disconnecting from the ℘-node the
premise of L selected by σ. If σ selects, say, the left premise the trimming
process amounts to the following local modification of σΠ at the switched
node L:

. .

.

℘i

.
−→

. .
..

.

.

Observe that trimming σΠ at L splits the switched proof structure in a
number of components. The components that contain the premises of L will
be denoted by σΠL .

Definition 1.31 Let Π be an NL structure and let L be a ℘-link in Π. A
trimming τ of Π at L is the graph σΠL for some switching σ of Π.
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Observe that, for any (DR)-correct proof structure, a trimming of Π at a
℘-link L is a connected graph.

Definition 1.32 Let Π be an NL structure that satisfies (DR). We say
that Π satisfies (DR2), or is (DR2)-correct, if and only if for any ℘-link L
there is a trimming of Π at L that contains some conclusion of Π.

The definition can be extended to cover (DR)-correct partial proof struc-
tures, requiring that for any par link there is a trimming that contains either
a conclusion or an open leaf of Π.

Remark 1.33 For any structure of linear logic, the condition (DR2) is pre-
served and reflected by (CON), (ASS), and (COM).

Corollary 1.34 Any structure of linear logic that satisfies (DR2) is con-
tractible using (CON), (ASS), and (COM).

Proof. The proof is by induction over the complexity of the structure, de-
fined as the number of ℘-links in the structure. If there are none, there
is nothing to show. Suppose there is some ℘-link. Then by Lemma 1.30
there is an elementary cycle c that goes through both premises of exactly
one par link and otherwise through edges of n ×-links, where n ≥ 0. Since
the structure is (DR2)-correct, n cannot be zero. Therefore, possibly after
applying the associativity and commutativity structural rule, applying the
contraction rule yields a structure of lower complexity. Since the contrac-
tion and the structural rules preserve (DR2)-correctness, we can apply the
induction hypothesis and thus conclude the proof. �

The Splitting Lemma

Definition 1.35 A (DR)-correct NL structure is in splitting conditions if
it has no final par link, no final unary link and at least a tensor or cut link.

Definition 1.36 A final times- or cut-link L splits an NL structure Π –or
is splitting in Π– if the removal from Π of the node of L and, if it is a tensor,
of its conclusion yields two disconnected NL proof structures.
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Π1
ΠΠ2

×i

Π1
ΠΠ2

Figure 1.18: Splitting links: a final tensor link and a cut link

Lemma 1.37 (Splitting Lemma) Let Π be an NL structure that is in
splitting conditions and is (DR2)-correct. Then there is a cut or final tensor
link L that splits Π into two (DR2)-correct substructures.

Proof. It is enough to prove the result for the underlying structure fΠ. Let
n be the number of ℘-links in fΠ. If n = 0, the result is trivial. Suppose
n ≥ 1. Because of Lemma 1.34, fΠ is contractible using the contraction
rule, and the commutative and associative structural rules. By the Splitting
Bridge Lemma, it splits into a proof structure Π′0 with a final ℘-link with
conclusion X and a partial proof structure Π′1(X), both of which must be
(DR2)-correct. Applying the induction hypothesis, one concludes that either
in Π′0 or in Π′1(X) there is a splitting link. This link clearly splits not only the
substructure that contains it, but the whole structure. The substructures of
Π that constitute the splitting inherit (DR2)-correctness. �

Let Π be a (DR2)-correct NL proof structure and let A be an edge of Π.
Denote by EΠA the set of (DR2)-correct substructures of Π with A among
its doors. This set is closed under intersection and union and is not empty.
Indeed the proof given in [10] for the linear logic case applies; this article
establishes, through a rather elaborate reasoning, a characterization of the
maximum element eΠA of EΠA that is used to prove the Splitting Theorem.11

We can invert the reasoning here and establish the characterization using the
Splitting Theorem just proved. Denote by trim(Π, A) the set of trimmings
of Π at A.

Proposition 1.38 Let A be an edge of a (DR2)-correct NL proof structure
Π. Then eΠA exists and

eΠA =
⋂

{s : s ∈ trim(Π, A)}.

11The reasoning expounded in [10] has been adapted, in Chapter 4, to establish the
Splitting Theorem for proof nets of the Discontinuous Lambek Calculus.
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Proof. The proof is by induction over the number n of logical and cut links
in Π. If n = 0 the result is trivial. If Π has a final par link L, removing
it yields a (DR2)-correct proof structure Π′. If A is not the conclusion of
L, by induction hypothesis eΠ′A exists and is the set eΠ′A defined by the
intersection of the trimmings of Π′ at A. The conclusion of L belongs to
⋂

{s : s ∈ trim(Π, A)} if and only if both premises of L belong to eΠ′A
and are different from A. Therefore

⋂

{s : s ∈ trim(Π, A)} belongs to
EΠA. It is the maximal element, since if another substructure S would
contradict its maximality, then the restriction of eΠ′A to S would contradict
the maximality of eΠ′A in E ′ΠA. If Π has a final unary link, the inductive
step is immediate. To conclude, suppose that Π is in splitting conditions.
The Splitting Lemma guarantees that there is a cut or final tensor link L in
Π that splits it into two (DR2)-correct substructures Π1 and Π2. If L is a
tensor link and A is its conclusion, the result is trivial, since eΠA is the whole
Π. Suppose that A belongs to one of the substructures, say Π1. By induction
hypothesis eΠ1

A =
⋂

{s : s ∈ trim(Π1, A)} and it is (DR2)-correct. If the
premise of L that belongs to Π1 is in eΠ1

A, then
⋂

{s : s ∈ trim(Π, A)} =
⋂

{s : s ∈ trim(Π1, A)} ∪ L ∪Π2.

Otherwise,
⋂

{s : s ∈ trim(Π, A)} =
⋂

{s : s ∈ trim(Π1, A)}. In both cases,
⋂

{s : s ∈ trim(Π, A)} belongs to EΠA and is therein the maximal element,
because it inherits the maximality of

⋂

{s : s ∈ trim(Π1, A)} in EΠ1
A. �

Another consequence of the Splitting lemma is the characterization of in-
ductive proof structures among the larger class of proof structures.

Remark 1.39 Applying any par, bracket or antibracket rule to a proof
structure Π′ yields a (DR)-correct proof structure Π if and only if the orig-
inal proof structure Π′ is (DR)-correct. Moreover, if Π is (DR2)-correct,
then Π′ is (DR2)-correct.

Remark 1.40 Joining two proof structures Π1 and Π2 by the cut rule or
any tensor rule yields a (DR)-correct proof structure Π if and only if the
two proof structures Π1 and Π2 are (DR)-correct. Moreover, if the proof
structures are (DR)-correct, then Π1 and Π2 are (DR2)-correct if and only
if Π is (DR2)-correct.

Corollary 1.41 Any inductive NL proof structure is (DR)-correct.

Because of the Splitting Lemma we can (almost) reverse the previous result.

Corollary 1.42 Any (DR2)-correct NL proof structure is inductive.
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Consequences of the (DR2) criteria

Lemma 1.43 Let Π be an NL structure that satisfies (DR) and has exactly
one conclusion. Then, there is a substructure S of Π that is (DR)-correct,
has exactly one conclusion, and the conclusion is a par type, i.e. it has the
form A℘iB for some i ∈ N 2 and some suitable elements A and B of L.

Proof. The proof is by induction of the complexity n of Π, defined as
the number of logical or cut links in Π. If n = 1 or, more generally, the
conclusion of Π is a par type, the result is trivial. Assume that n ≥ 2.
There are two possible situations. In case a unary link is final, remove it
and apply the induction hypothesis. Otherwise, the proof structure is in
×-splitting conditions and therefore a final cut- or tensor-link splits Π into
two substructures that satisfy (DR). At least one of them has exactly one
conclusion and therefore we can conclude by applying to it the induction
hypothesis. �

Theorem 1.44 Let Π be an NL proof structure that satisfies (DR). Then
Π satisifies (DR2) if and only if all substructures of Π have at least two
conclusions.

Proof. To show the ‘only if’ part, assume, for contraposition, that there is
a substructure S of Π that has only one conclusion. Because of the previous
lemma, we may assume without loss of generality that the conclusion of S
is a par type. We have then reached a contradiction, since no trimming at
the conclusion of S contains a conclusion of Π. Therefore all substructures
of Π have at least two conclusions. The proof of the ‘if’ part is by induction
over the complexity n of Π, defined as the number of logical or cut links in
the proof structure. If n = 0 there is nothing to say. Otherwise, if Π has a
final par-link or a final unary link, removing it yields a proof structure Π′

that, by induction hypothesis, satisfies (DR2). Reinserting the removed link
preserves this property. If Π is in splitting conditions, then a final cut- or
tensor-link splits Π into two substructures. We can apply the induction hy-
pothesis to both of them, concluding that they satisfy (DR2) and therefore,
by Remark 1.40, we can conclude that in this case too the proof structure
Π satisfies (DR2). �
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Chapter 2

The Diamond of Basic

Calculi

The Lambek Calculus LC ([57, 69]) is an early example of a sublinear
logic. It has been studied in its commutative variant LCP, and in its
non-associative variant NLC ([58, 54]).1 For each of them there is now
a classical conservative extension namely, in the given order, Cyclic Linear
Logic CyLL ([123]), Linear Logic LL ([42]), and Non Associative Cyclic
Linear Logic NCL ([28]).2 The most discriminating logics (NLC, NCL)
can be seen as a base logic to which the structural rules of commutativity
and associativity can be added, thus yielding the following diamond (see
Section 2.1):

(NLC/NCL)

(LCP/LL)

base logic

+ associativity
+commutativity

(NLCP/NLL)
+commutativity

(LC/CyLL)
+associativity

For the most lax logics, i.e. LL and LCP, a theory of proof nets is available
([42]). This theory has been adapted to the logics CyLL and LC that lack
the rule of commutativity simply by adding to the correctness criterion a

1A non-associative commutative Calculus NLCP has also been defined ([54]), though
it does not seem to have much interest. It can be extended to a Non Associative Linear
Logic NLL, obtained by dropping from LL the associative structural rule.

2Reference is intended here to the multiplicative fragments of these logics.
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further clause capturing the notion of planarity ([110]). We present here
another clause, balance, that corresponds to the absence of the structural
rule of associativity. This yields the following diamond for proof net theory
(see Sections 2.2.1 and 2.2.2):

basic theory
(LP/LL)

(NLP/NCLP)
+ balance

(LC/CyLL)
+planarity

+planarity
+ balance
(NL/NCL)

The simplest formulation of the basic theory uses the notion of Danos-
Regnier switchings ([25]). A proof structure is correct with respect to (DR)
if it satisfies the following property:

(DR) each switching of the proof structure is acyclic and connected.

Sensitivity to order is captured by the notion of planarity of proof nets.
This theory is typically stated for the cut free fragment of the logic, though
a slight generalization of the notion of tree proposed in Section 2.2.3 will
accomodate cut as well. A proof structure of an associative calculus sensitive
to order is correct if it satisfies (DR) and moreover it enjoys the following
property with respect to the given cyclic order of the conclusions:

(PL) the identity linking of the proof structure is planar.

In an alternative formulation ([65]), the order is not given a priori. Rather
it is extracted from the proof net. Suppose that a proof structure Π satisfies
(DR). Disconnecting in a switching of Π the selected edge of a par link L
from its conclusion splits the switched structure into two fragments. Call
the trimming at L the fragment that contains L’s premises. The trimming
is an (associative) seaweed and as such it represents a cyclic order. If no
door of the proof structure is in between the first and the second premise
of L, then we say that the premises are adjacent in the trimming. A proof
structure is correct if it satisfies (DR) and enjoys moreover the following
property:

(ADJ) the premises of any par link are adjacent in any trimming at the
link.

If a proof structure is correct according to (DR)+(ADJ), then all of its
switchings, restricted to the conclusions, define the same cyclic order. This
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is the order of the conclusions of the proof net, i.e. it is the cycle of formulae
that can be proved in LC/CyLL by a sequentialization of the proof net.

In a similar vein, balance can be stated of traditional linear logic proof
structures without making reference to a structuring of the conclusions.
Call balanced a cycle that contains as many tensors as pars. We claim that a
proof structure can be sequentialized in a non-associative logic if it satisfies
(DR) and moreover it enjoys the following property:3

(BAL) all cycles of the proof structure are balanced.

If a proof structure is correct with respect to (DR)+(BAL) then any of its
switchings, restricted to the conclusions, yields the same (non-associative)
seaweed. This is the structuring of the conclusions, i.e. it is the seaweed that
can be proved by any sequentialization of the proof net. This is illustrated
by the following balanced proof structure, where we have highlighted the
structuring of the conclusion as it results from switching left the par nodes
(X stands for (A⊥ ×C)× (A⊥℘B⊥) and Y , for ((B ×A⊥)℘A)×A).

X YC⊥A

×

×

×

℘ ℘

×

Note that the above criterion can be combined either with the (PL) con-
dition or with the (ADJ) condition. In the former case, the question is
the existence of a structuring compatible with a given (cyclic) order of the
formulae that is a theorem of NCL/NLL. In the latter case, it can be
used to check the existence of a structuring of a multiset of formulae that
constitutes a theorem of NCL/NLL. Thus the latter case can be seen as
the declarative counterpart of the procedural correctness criterion based on
rewriting rules that removes minimal cycles containing exactly a par and a
tensor node ([108]).4 For instance, continuing the example above, we can
apply a contraction thereby removing the inner cycle and obtain the graph
below on the left. A further construction will yield the structuring of the
conclusions.

3One-formula sequents are not allowed in NCL and thus the proof structure with one
axiom link and, say, A℘A⊥ as the unique conclusion is not a counterexample.

4The non-associative case is presented in [108] as a particular case of a more general
theory.

51



Y
×

XC⊥A

× ℘

×

XC⊥A

×

×

Y

Observe that (BAL) is preserved and reflected by rewriting rules. Moreover,
(DR)+(BAL) guarantee the existence of such a minimal cycle and thus are
sufficent to ensure contractibility (see Theorem 2.34).

The property (BAL) is related also to the notion of dualizing bijective well-
bracketing ([28]) of which it is indeed a consequence in non-associative pre-
nets à la de Groote and Lamarche. Reframing their proposal within the
syntax adopted in this thesis, a pre-net can be defined to be a pair (Π, α)
where Π is a proof structure, α is a seaweed and the multiset of labels of Π’s
conclusions coincides with the multiset of labels of α’s unary nodes. The
pair (Π, α) is represented as the graph obtained joining Π and α so that
every conclusion of Π is incident to the unary node of α that bears the
same label. To distinguish the two graphs, let us picture the seaweed with
dotted edges and label its ternary nodes by the context operator ⊙, as in
the picture below based on the previous example (for the moment, ignore
the subindexes).

⊙3 ⊙4

X YC⊥A

×3

×1

×2

℘2 ℘1

×4

The basic ingredient of de Groote and Lamarche’s correctness criteria is a
relation ρ defined on the ternary nodes of pre-nets. For all ternary nodes
x and y, say that xρy if x and y are the initial and final nodes of a path
π(x, y) that is the intersection of two (distinct) elementary cycles that go
each through exactly one identity node. The relation ρ is said to be dualizing
bijective if it establishes a bijection among the multiset of tensor nodes
and the multiset of par and context nodes. The subindexes of the previous
example illustrate this notion. In a correct pre-net, ρ is furthermore required
to satisfy the following two conditions:5

5There is a third condition that corresponds modularly to sensitivity to order.
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- well-bracketing: for any ternary node x, y, a, and b such that xρy and
aρb , a ∈ π(x, y) if and only if b ∈ π(x, y);

- (PRT): for any ternary node x and y if xρy and x is the tensor node
of a link L, the conclusion of L is in π(x, y).

On the one hand, using de Groote and Lamarche’s Splitting Theorem, it
is straightforward to prove that for any correct pre-net (Π, α) the proof
structure Π satisifies (DR) and is balanced. On the other hand, if Π satisfies
the latter criteria, then it can be rewritten (using contractions only) as a
seaweed β. Call α the mirror image of β.6 Then (Π, α) is a correct pre-net,
in which the relation ρ can be characterized as follows:

- a tensor and a par node are related by ρ if and only if, at some point
of the derivation of β, they are removed by a contraction;

- a tensor and a context node are related by ρ if and only if, at the end
of the derivation, they are related by the mirror symmetry.

This result is established, for any acyclic Π, by a straightforward induction
on its complexity, and is generalized to any proof net Π observing that
pre-net correctness is reflected by contractions.

The correspondence of the two theories is thus established. Observe, how-
ever, that (unsurprisingly!) correctness of a pre-net is not preserved under
associative modifications of the structuring of the conclusions. Therefore the
pre-net theory of [28] –unlike the theory based on the notion of balance– does
not check the correctness of the proof structure per se, but its correctness
with respect to the given structuring.

In this respect, de Groote and Lamarche’s proposal is similar to the proof
net theory obtained embedding NLC into (commutative) Linear Logic with
first order quantifiers ([76]). The embedding is obtained syntacticizing a
binary relational interpretation of the Lambek Calculus ([121, 53]), which
takes care of sensitivity to order, and adding one depth parameter. The re-
sulting proof structure is thus frozen by the quantifiers into a non-associative
non-commutative proof net the cycles of which are balanced. However, the
depth parameter does not correspond exactly to non-associativity, for in a
commutative context it controls only the depths of a node with respect to
the root. Depth preserving restructuring is allowed.

6Formally, the mirror image of a tree can be defined inductively by A♯ = A (if A is a
trivial tree) and, for any non-trivial tree, by (σ×̃τ )♯ = τ ♯×̃σ♯. The definition is extended
to seaweeds setting (σ ⋆ τ )♯ = σ♯ ⋆ τ ♯ and observing that the definition does not depend
on the choice of representation of the seaweed.
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2.1 Presentation of the calculi

2.1.1 Linear Logic ϕ-LL

In this section we give a uniform definition, in the spirit of [69], of the logic
ϕ-LL for any ϕ ⊆ {a, c}. If ϕ is equal to ∅, {a} or {a, c} the definition of the
calculus ϕ-LL given below yields a fragment of respectively Non-associative
Linear logicNLL ([28]), Cyclic Linear Logic CyLL ([123]), and Linear Logic
LL ([42]). More precisely, they are the multiplicative, unit- and modality-
free fragments of these logics, restricted to sequents that comprise at least
two types.

Types and sequents of ϕ-LL

Definition 2.1 The set Tϕ-LL(V ) of ϕ-LL types is the smallest set that
contains a set V of atomic types, their negations and that is closed under
the binary operations ×ϕ and ℘ϕ, i.e. the elements of Tϕ-LL(V ) are defined

inductively in the following way:7

T = V | V ⊥ | (T ×ϕT ) | (T ℘ϕT ).

A metalinguistic negation of types is defined in the following way. For every
atomic type V and for any type F and G:

• V = V ⊥⊥;

• (FωG)⊥ = G⊥ω⊥F⊥ where ω ∈ {×ϕ, ℘ϕ}, ×ϕ
⊥ = ℘ϕ, and ℘ϕ

⊥ = ×ϕ.

As a consequence, F = F⊥⊥ holds for any type F .

Let N = N 2 = {ϕ} and L = Tϕ-LL(V ). Recall Definitions 1.1, 1.2 and 1.3
on page 19 and Definitions 1.5, 1.6 and 1.7 on page 24.

Definition 2.2 A rigid ϕ-LL tree (context) is an abstract NL-tree (con-
text). A rigid ϕ-LL sequent (context) is an abstract NL seaweed (context).

Therefore, rigid ϕ-LL sequents can be pictured as in Figure 2.1, with nodes
labeled by ×ϕ and leaves labeled by ϕ-LL types.

7As usual, outer parentheses will be dropped.
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×ϕ

×ϕ

C⊥

A⊥

B

×ϕ

×ϕ

B

A⊥

(A×ϕB
⊥)×ϕCC⊥(A×ϕB

⊥)×ϕC

×ϕ

×ϕ

B

C⊥

(A×ϕB
⊥)×ϕC A⊥

Figure 2.1: Examples of ϕ-LL seaweeds

Recalling the notation introduced in Definition 1.6, the leftmost seaweed of
Figure 2.1, for instance, can be written abstractly in any of the following
equivalent ways, where X stands for (A×ϕB

⊥)×ϕC:

• if we want to focus on a leaf:

– (C⊥×̃ϕ(A
⊥×̃ϕX)) ⋆ B = [ϕ C⊥, A⊥×̃ϕX,B ];

– ((A⊥×̃ϕX)×̃ϕB) ⋆ C
⊥ = [ϕ A⊥×̃ϕX,B,C⊥ ];

– (X×̃ϕ(B×̃ϕC
⊥)) ⋆ A⊥ = [ϕ X,B×̃ϕC

⊥, A⊥ ];

– ((B×̃ϕC
⊥)×̃ϕA

⊥) ⋆ X = [ϕ B×̃ϕC
⊥, A⊥,X ];

• if we prefer to see the seaweed as the ⋆-product of non-trivial trees:

– (A⊥×̃ϕX) ⋆ (B×̃ϕC
⊥).

Rules of ϕ-LL

Definition 2.3 (ϕ-LL calculus: rigid presentation) The rules for the
ϕ-LL calculus of rigid sequents comprise:

• the identity and cut rules of Figure 2.2 (page 56);

• the logical rules of Figure 2.2;

• if a ∈ ϕ, the associative rule (ASS) of Figure 2.3 (page 57);

• if c ∈ ϕ, the commutative rule (COM) of Figure 2.3.

Observe that the associative rule of Figure 2.3 can be written equivalently
in any of the following forms:
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rule abstract format graph-theoretical format

Id A ⋆ A⊥

where A atomic
A A⊥

Cut

...D1
...D2

τ ⋆ A A⊥ ⋆ σ

τ ⋆ σ

στ
A A⊥

στ

...D1
...D2

Tensor

...D1
...D2

τ ⋆ A B ⋆ σ

[ϕ τ,A×ϕB,σ ]

στ
A B

×ϕ

στ

...D1
...D2

A×ϕB

Par

...D

[ϕ τ,A,B ]

τ ⋆ A℘ϕB

...D

τ
B A
×ϕ

τ
A℘ϕB

Figure 2.2: ϕ-LL derivations: identity, cut and logical rules
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rule abstract format graph-theoretical format

(ASS)
if a ∈ ϕ

...D

[ϕ τ0, τ1, τ2×̃ϕτ3 ]

[ϕ τ0, τ1×̃ϕτ2, τ3 ] τ1 τ0

τ2 τ3

τ1 τ0

τ2 τ3

...D

×ϕ×ϕ

×ϕ

×ϕ

(COM)
if c ∈ ϕ

...D

[ϕ τ0, τ1, τ2 ]

[ϕ τ0, τ2, τ1 ]

τ2

τ1 τ0

τ2

...D

×ϕ

τ0 τ1

×ϕ

Figure 2.3: ϕ-LL derivations: structural rules
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...D

[ϕ τ0, τ1, τ2×̃ϕτ3 ]

[ϕ τ0, τ1×̃ϕτ2, τ3 ]

...D

τ0 ⋆ (τ1×̃ϕ(τ2×̃ϕτ3))

τ0 ⋆ ((τ1×̃ϕτ2)×̃ϕτ3)

...D

(τ1×̃ϕτ2) ⋆ (τ3×̃ϕτ0)

(τ0×̃ϕτ1) ⋆ (τ2×̃ϕτ3)

Similarly, the commutative rule can be written equivalently in the following
forms:

...D

[ϕ τ0, τ1, τ2 ]

[ϕ τ0, τ2, τ1 ]

...D

τ0 ⋆ (τ1×̃ϕτ2)

τ0 ⋆ (τ2×̃ϕτ1)

Definition 2.4 We say that a rigid ϕ-LL sequent α is a theorem of ϕ-LL,
and we write ⊢ϕ-LL α, if and only if an appropiate application of the rules
of ϕ-LL yields a derivation

...D

α
.

For instance, the sequent (C⊥×̃ϕ(A
⊥×̃ϕX)) ⋆ B, in leftmost position in

Figure 2.1, can be derived in ϕ-LL if (and only if) a, c ∈ ϕ (where X =
(A×ϕB

⊥)×ϕC):

A⊥ ⋆ A B⊥ ⋆ B
[ϕ B,A⊥, A×ϕB

⊥ ] C ⋆ C⊥

[ϕ B,A⊥,X×̃ϕC
⊥ ]

[ϕ B,A⊥×̃ϕX,C⊥ ]

[ϕ B,C⊥, A⊥×̃ϕX ]

Using the graphical representation of seaweeds, this derivation can be pic-
tured as in Figure 2.4.

A sugared presentation of ϕ-LL

On the set of rigid ϕ-LL sequents consider the equivalence relation ≈ϕ gen-
erated by the transitive-reflexive closure of < defined as follows:

• H0 ⋆ (H1◦ϕ(H2◦ϕH3)) < H0 ⋆ ((H1◦ϕH2)◦ϕH3) if a ∈ ϕ;

• H0 ⋆ (H2◦ϕH1) < H0 ⋆ (H1◦ϕH2) if c ∈ ϕ.
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id

×ϕ×ϕ

A⊥

X

B

×ϕ

B A⊥

XC⊥

×ϕ

B⊥ B A⊥ A

(ASS)

(COM)

×ϕ

×ϕ

id

id

×ϕ×ϕ

C⊥ A⊥

XB

BA⊥

×ϕ

A×ϕB
⊥C⊥ C

C⊥

Figure 2.4: Graphical format of a ϕ-LL derivation

In Figure 2.1, the middle seaweed is ≈ϕ-equivalent to the leftmost seaweed
if c ∈ ϕ and to the rightmost seaweed if a ∈ ϕ. The leftmost and rightmost
seaweeds are ≈ϕ-equivalents if a, c ∈ ϕ.

Definition 2.5 A sugared ϕ-LL sequent (context) is a ϕ-sugared ϕ-LL se-
quent (context), i.e. a rigid ϕ-LL sequent (context) identified up to the
equivalence relation ≈ϕ.

By a slight abuse of notation, a sugared sequent, i.e. an equivalence class
[α]≈ϕ , will be denoted by any of its representant α.

Definition 2.6 (Sugared presentation of ϕ-LL ) The ϕ-LL calculus of
sugared sequents comprise the following rules of Figure 2.2 (page 56):

• the identity and cut rules;

• the logical rules.
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Thus, if ϕ = {a}, a sugared ϕ-LL sequent is a list of ϕ-LL types identified
up to circular permutations. If ϕ = {a, c}, a sugared ϕ-LC sequent is just
a multiset of ϕ-LL types.

The Cut Elmination Property in ϕ-LL

The Cut Elimination Property holds for ϕ-LL ([42, 101, 112]), the proof
being simpler in the absence of structural rules.

2.1.2 Lambek Calculus ϕ-LC

Ya ustadh, la tua fortuna è la mia fortuna†.
I. Camera d’Afflitto, Nagib al bar della felicità.

In this section we give a uniform definition, along the lines of [69], of the
logic ϕ-LC, for any ϕ ⊆ {a, c}. If ϕ is equal to ∅, {a} or {a, c} the definition
of the calculus ϕ-LC given below yields respectively the Non-associative
Lambek Calculus NLC ([58]), the Lambek Calculus LC ([57]), and the
Lambek Calculus with Permutation LCP ([120]).

Types and sequents of ϕ-LC

Definition 2.7 The set Tϕ-LC(V ) of ϕ-LC types is the smallest set that
contains a set V of atomic types and that is closed under the binary opera-
tions ×ϕ, /ϕ, and \ϕ, i.e. the elements of Tϕ-LC(V ) are defined inductively
in the following way:

T = V | (T ×ϕT ) | (T /ϕT ) | (T \ϕT ).

As usual, outer parentheses will be dropped.

Let N = N 2 = {ϕ} and L = Tϕ-LC(V ). Recall Definitions 1.1, 1.2 and 1.3
on page 19.

Definition 2.8 An (abstract) rigid ϕ-LC configuration is an (abstract)
NL-tree.

†Master, your fortune is my fortune.

60



Therefore abstract rigid ϕ-LC configurations are defined inductively in the
following way:

τ = L | (τ×̃ϕτ).

Rigid ϕ-LC configurations are pictured, as in Figure 2.5, as graphs with
nodes labeled by ×ϕ and leaves labeled by ϕ-LC types.

×ϕ

×ϕ

C

(A\ϕB)/ϕC A

×ϕ

×ϕ

C

A

(A\ϕB)/ϕC

×ϕ

×ϕ

(A\ϕB)/ϕC

C

A

Figure 2.5: Examples of ϕ-LC trees

Definition 2.9 An (abstract) rigid ϕ-LC context is an (abstract) NL-tree
context.

Therefore, abstract rigid ϕ-LC contexts are defined inductively in the fol-
lowing way:

σ[ ] = [ ] | σ[ ]×̃ϕτ | τ×̃ϕσ[ ].

Definition 2.10 An (abstract) rigid ϕ-LC sequent τ ⇒ A consists of an
(abstract) rigid ϕ-LC configuration τ and a ϕ-LC type A.

Rules of ϕ-LC

Definition 2.11 (Rigid presentation of ϕ-LC ) The rules for the ϕ-LC
calculus of rigid sequents comprise:

• the identity and cut rules of Figure 2.6;

• the logical rules of Figure 2.6;

• if a ∈ ϕ, the associative rules (ASS) of Figure 2.7;

• if c ∈ ϕ, the commutative rule (COM) of Figure 2.7.
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identity and cut rules

Id A⇒ A
where A atomic

Cut

...D1
...D2

τ ⇒ A σ[A]⇒ B

σ[τ ]⇒ B

logical rules

×ϕ

...D

σ[A×̃ϕB]⇒ C

σ[A×ϕB]⇒ C

×ϕ

...D1
...D2

τ1 ⇒ A τ2 ⇒ B

τ1×̃ϕτ2 ⇒ A×ϕB

\ϕ

...D1
...D2

τ ⇒ A σ[B]⇒ C

σ[τ×̃ϕA\ϕB]⇒ C

\ϕ

...D

A×̃ϕτ ⇒ B

τ ⇒ A\ϕB

/ϕ

...D1
...D2

τ ⇒ A σ[B]⇒ C

σ[B/ϕA×̃ϕτ ]⇒ C

/ϕ

...D

τ×̃ϕA⇒ B

τ ⇒ B/ϕA

Figure 2.6: Identity, cut and logical rules of ϕ-LC

(ASS)
if a ∈ ϕ

...D

σ[(τ1×̃ϕτ2)×̃ϕτ3] ⇒ C

σ[τ1×̃ϕ(τ2×̃ϕτ3)] ⇒ C

...D

σ[τ1×̃ϕ(τ2×̃ϕτ3)] ⇒ C

σ[(τ1×̃ϕτ2)×̃ϕτ3] ⇒ C

(COM)
if c ∈ ϕ

...D

σ[τ0×̃ϕτ1] ⇒ C

σ[τ1×̃ϕτ0] ⇒ C

Figure 2.7: Structural rules

Definition 2.12 We say that a rigid ϕ-LC sequent τ ⇒ A is a theorem of
ϕ-LC, and we write ⊢ϕ-LC τ ⇒ A, if and only if an appropiate application
of the rules of ϕ-LC yields a derivation

...D

τ ⇒ A
.

For instance, the sequent C×̃ϕ(A×̃ϕX) ⇒ B, can be derived in ϕ-LC if
(and only if) a, c ∈ ϕ (where X = (A\ϕB)/ϕC):
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A ⇒ A B ⇒ B
A×̃ϕA\ϕB ⇒ B C ⇒ C

A×̃ϕ(X×̃ϕC) ⇒ B

(A×̃ϕX)×̃ϕC ⇒ B

C×̃ϕ(A×̃ϕX) ⇒ B

The Cut Elimination Property holds for ϕ-LC (see Section 2.1.3).

A sugared presentation of ϕ-LC

On the set of rigid ϕ-LC configurations and contexts consider the smallest
equivalence relation ≈ϕ determined by the following rewriting rules:

• (H1×̃ϕH2)×̃ϕH3
a
→ H1×̃ϕ(H2×̃ϕH3) if a ∈ ϕ;

• H1×̃ϕH2
c
→ H2×̃ϕH1 if c ∈ ϕ.

In Figure 2.5, the middle tree is ≈ϕ-equivalent to the leftmost tree if c ∈ ϕ
and to the rightmost tree if a ∈ ϕ. The leftmost and rightmost trees are
≈ϕ-equivalents if a, c ∈ ϕ.

Definition 2.13 A sugared ϕ-LC configuration (context) is a rigid ϕ-LC
configuration (context) identified up to the equivalence relation ≈ϕ.

By a slight abuse of notation, a sugared configuration, i.e. an equivalence
class [τ ]≈ϕ , will be denoted by any of its representant τ .

Definition 2.14 A sugared ϕ-LC sequent τ ⇒ A consists of a sugared
ϕ-LC configuration τ and a ϕ-LC type A.

Definition 2.15 (ϕ-LC calculus: sugared presentation) The rules for
the ϕ-LC calculus of sugared sequents comprise:

• the identity and cut rules of Figure 2.6;

• the logical rules of Figure 2.6.
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2.1.3 Embedding ϕ-LC into ϕ-LL

The intuitionistic fragment ϕ-ILL of ϕ-LL is defined restricting the rules of
a two-sided presentation of ϕ-LL to yield sequents with only one conclusion.
Alternatively, ϕ-ILL can be characterized as the logic obtained from the one-
sided presentation of ϕ-LL, restricting the language to positive and negative
types. We follow the latter strategy.

Intuitionistic types and sequents of ϕ-LL

Definition 2.16 A ϕ-ILL type, i.e. an intuitionistic ϕ-LL type, is defined
by double induction based on a set V of atomic types:

positive types: P = V | N℘ϕP | P℘ϕN | P×ϕP ;
negative types: N = V ⊥ | P×ϕN | N×ϕP | N℘ϕN .

Inspection of the rules of any ϕ-LL logic shows that theorems proved therein
restricting the language to intuitionistic types have exactly one positive con-
clusion.

Definition 2.17 A ϕ-ILL sequent, i.e. an intuitionistic ϕ-LL sequent, is
a ϕ-LL sequent, where one type is positive and the others are negative.

A cut-free derivation in ϕ-LL of an intuitionistic sequent is necessarily intu-
itionistic, i.e. it involves exclusively intuitionistic types. Since ϕ-LL enjoys
the Cut Elimination Property, if an intuitionistic sequent can be proved at
all, then it can be proved intuitionistically. More generally, a derivation of
an intuitionistic statement that makes use of cut is intuitionistic if all the cut
types are intuitionistic. Thus, ϕ-ILL enjoys the Cut Elimination Property.

The intuitionistic translation of ϕ-LC

Definition 2.18 The output type A◦ (input type A•) is the translation
of a ϕ-LC type A into a positive (negative) ϕ-LL type. A◦ is defined by
induction as follows, whereas B• = B◦⊥:

• A◦ = A if A is atomic;

• A×ϕB
◦ = B◦×ϕA

◦;
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• A/ϕB
◦ = B•℘ϕA

◦;

• B\ϕA
◦ = A◦℘ϕB

•.

Since a double negation cancels out, for any type B one has that B◦ = B•⊥

and therefore:

• A• = A⊥ if A is atomic;

• A×ϕB
• = A•℘ϕB

•;

• A/ϕB
• = A•×ϕB

◦;

• B\ϕA
• = B◦×ϕA

•.

The translation extends to ϕ-LC configurations.

Definition 2.19 The intuitionistic translation of a ϕ-LC sequent τ ⇒ A
is the ϕ-LL sequent τ• ⋆ A◦, where τ• is defined as follows:

• if τ = B, then τ• = B•;

• if τ = τ0×̃ϕτ1, then τ• = τ•0 ×̃ϕτ
•
1 .

For instance, the intuitionistic translation of the ϕ-LC sequent

C×̃ϕ(A×̃ϕ(A\ϕB)/ϕC) ⇒ B

is the following intuitionistic sequent (assuming that A, B, and C are atomic
types):

(C×̃ϕ(A×̃ϕ(A\ϕB)/ϕC))
• ⋆ B◦ =

= (C•×̃ϕ(A
•×̃ϕ(A\ϕB)/ϕC)

•) ⋆ B◦ =
= C⊥×̃ϕ(A

⊥×̃ϕ(A×ϕB
⊥)×̃ϕC) ⋆ B

Note that the rules of ϕ-ILL correspond to translations of ϕ-LC rules, so
that ϕ-ILL- and ϕ-LC-derivations correspond via the translation. It follows
that ϕ-LC can be faithfully embedded into ϕ-LL. In particular, cut-free
ϕ-ILL derivations correspond to cut-free ϕ-LC derivations.
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Theorem 2.20 A ϕ-LC sequent τ ⇒ A is a theorem of ϕ-LC if and only
if its intuitionistic translation τ• ⋆ A◦ is a theorem of ϕ-LL.

Proof. The proof of the associative case (see e.g. [56]) does not make
critical use of associativity and works a fortiori in the commutative case.8

�

Corollary 2.21 The calculus ϕ-LC enjoys the Cut Elimination Property.

2.2 Proof net theory

2.2.1 Proof net theory for ϕ-LL

This section is dedicated to the notion of proof nets and correctness criteria
for ϕ-LL. For the procedural criteria, we draw on [108] and [74]. For the
declarative criteria, we draw on [10, 65] and, for the notion of balance, on
the author’s work ([36]).

Notion of ϕ-LL proof structure

Definition 2.22 A ϕ-LL (partial) proof structure is an NL (partial) proof
structure, where N = N 2 = {ϕ} and L = Tϕ-LL(V ).

Therefore, recalling Definition 1.9, a ϕ-LL partial proof structure is a con-
nected graph such that:

• its edges are labeled by elements of Tϕ-LL(V );

• its ternary nodes are labeled by elements of ×ϕ or ℘ϕ; incident edges
are ordered cyclically; one of them is specified to be the conclusion,
the left (right) premise is the edge that immediately follows (precedes)
the conclusion in clockwise fashion;

• its binary nodes are labeled by ID and CUT (or more simply, rep-
resented by a horizontal line); ID nodes have two conclusions, CUT
nodes have two premises;

8For an explicit proof of the non-commutative non-associative case see [28].
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link premises conclusions compact link

id A A⊥ none A and A⊥
A A⊥

cut
A A⊥

A and A⊥ none

A A⊥

logical A◦B

BA ◦
A and B A ◦B A◦B

BA

Figure 2.8: Links of a ϕ-LL proof structure

• unary nodes are not labeled;

• there are no other nodes;

• any edge is a premise of at most one node and the conclusion of at
most one node.

For any node label l, a node labeled by l together with its incident edges is
called an l-link. The labels of a link are related in the way explained in the
first four columns of Figure 2.8.

Proof nets as classes of equivalent derivations

Proof nets, i.e. proof structures that can be sequentialized, have been intro-
duced in [42] to identify those proofs that differ in inessential ways. To be
more precise, the following two definitions are needed.

Definition 2.23 Two ϕ-LL derivations D and D′ are ≡-equivalent if there
exists a sequence of ϕ-LL derivations D = D1, D2, . . . , Dn = D

′ such that,
for any i ∈ {1, . . . , i − 1}, Di and Di+1 differ only in a permutation of two
consecutive inferences.

Definition 2.24 The proof structure associated to a ϕ-LL derivation D
is the inductive proof structure (D) obtained following the rules given in
Figure 2.9.

67



derivation proof structure

A ⋆ A⊥ A A⊥

...D1
...D2

τ ⋆ A B ⋆ σ

[ϕ τ,A×ϕB,σ ]

(D1)

τ σ

(D2)

A B
×ϕ

A×ϕB

...D

[ϕ τ,A,B ]

τ ⋆ A℘ϕB
Bτ A

℘ϕ

A℘ϕB

(D)

...D1
...D2

τ ⋆ A A⊥ ⋆ σ

τ ⋆ σ

(D1)

τ σ

(D2)

A A⊥

Figure 2.9: Inductive definition of the ϕ-LL proof structure (D)

Clearly if two derivations are ≡-equivalent then their associated proof nets
coincide. The inverse result is not trivial. The following proof, given in
[10] for LL, applies without any modification to ϕ-LL, for any ϕ ⊆ {a, c},
provided that we use the sugared presentation of the calculi.

Theorem 2.25 Let D and D′ be ϕ-LL derivations of the same sequent. If
(D) = (D′) then D ≡ D′.

Proof. By induction over the complexity n of (D) = (D′). If n = 0 there
is nothing to show. Assume n ≥ 1. Let I0 be the last inference rule in D
and let τ ⋆ A be the theorem proved by D. Let I ′0 be the inference rule in
D′ that introduces A. Let I ′1, . . . , I

′
k be the inferences between I ′0 and the

last inference I ′k of D
′. If k = 0, then it is enough to apply the induction

hypothesis to the derivations of the premise sequents of I0 and I ′0. If k ≥ 1,
it can be shown that in D′ the rule I ′0 can be permuted below I ′1 to obtain
a derivation D′′ that is equivalent to D′. By induction hypothesis D′′ ≡ D
and thus by transitivity D′ is equivalent to D. The cases of I ′0 being a par
rule or both I ′0 and I ′1 being binary rules, are immediate. If I

′
0 is a tensor

rule and I ′1 is a par rule, then the derivations have the following form:
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D:

...D0
...D1

τ0 ⋆ A0 A1 ⋆ τ1
[τ0, A0×ϕA1, τ1]

D′:

...D′0
...D′1

τ ′0 ⋆ A0 A1 ⋆ τ
′
1

[τ ′0, A0×ϕA1, τ
′
1]

[. . . , C0℘ϕC1, . . .]
...

where I ′1 introduces C0℘ϕC1 in D
′. Both C0 and C1 are in (D′0) ∪ (D

′
1).

The rule I ′0 can be permuted below I ′1 if there is j ∈ {0, 1} such that C0 and
C1 are in (D

′
j). This is the case because on the one hand there is j ∈ {0, 1}

such that C0 and C1 are in (Dj), and D0 ∩ D1 is empty; and on the other
hand, if Ci is in (D

′
h) (for any i, h in {0, 1}) then Ci is connected to Ah by

a path that does not go through A0×ϕA1 and thus Ci is in (Dh). �

The notion of pseudostructure

Definition 2.26 A ϕ-LL pseudostructure is an NL pseudostructure, where
N = N 2 = {ϕ} and L = Tϕ-LL(V ).

Therefore, recalling Definition 1.14, a ϕ-LL pseudostructure is a connected
graph such that:

• its ternary nodes are labeled either by ×ϕ or by ℘ϕ; incident edges
are ordered cyclically; in the case of the ℘ϕ nodes, one of the edges is
specified to be the conclusion (and denoted by a tail on the edge);

• unary nodes are labeled by ϕ-LL types;

• there are no other nodes;

• edges are not labeled.

A ℘ϕ-link is a node labeled by ℘ϕ together with its incident edges.

We denote by Π− the pseudostructure associated to a ϕ-LL proof structure
Π, according to the instructions given on page 35.

Procedural correctness criteria

Definition 2.27 A ϕ-LL proof structure Π is ϕ-contractible and ϕ-rewrites
as a ϕ-LL sequent α if the underlying pseudostructure Π− rewrites as α
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using the contraction rule (CON) and the structural rules (ASS) if a ∈ ϕ,
and (COM) if c ∈ ϕ:

• (CON): ×ϕ ℘ϕ

l0 l1

7−→

l0 l1

• (ASS): ×ϕ ×ϕ

l0 l1

l3 l2

7−→

×ϕ

×ϕ

l0 l1

l3 l2

• (COM): ×ϕ

l0

l1 l2

7−→ ×ϕ

l0

l2 l1

Theorem 2.28 (Adequacy) If D is a ϕ-LL derivation of a sequent α,
then (D) rewrites as α.

Proof. By induction over the length n of D. If n = 0, i.e. if α is an axiom,
there is nothing to prove. If n ≥ 1 consider the last rule r in D. If r is an
instance of the par rule

...D0

[ϕ τ,A,B ]

τ ⋆ A℘ϕB

then by induction hypothesis (D0)
− rewrites as [ϕ τ,A,B ]. The same rewrit-

ing rules applied to (D)− yield the graph obtained joining in [ϕ τ,A,B ] the
leaves labeled by A and B by a par link with conclusion A℘ϕB. A further
contraction yields the seaweed τ ⋆ A℘ϕB. If the last rule used in D is an
instance of the tensor rule

...D0
...D1

τ0 ⋆ A0 A1 ⋆ τ1
[ϕ τ0, A0×ϕA1, τ1 ]
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then by induction hypothesis (Di)
−, following a list ρi of rewriting rules,

rewrites as τi ⋆ Ai for i ∈ {0, 1}. Following the lists ρ1 and ρ2, (D)
− yields

[ϕ τ0, A0×ϕA1, τ1 ]. If D consists of a derivation D′ followed by an instance
of a structural rule s, apply the induction hypothesis to (D′)− and rewrite
the resulting sequent applying the rewriting rule that corresponds to s. The
proof is completed observing that the case of cut is analogous to the tensor
case (with the minor difference that no further contraction is needed). �

Theorem 2.29 (Sequentialization) For any ϕ-LL proof structure Π that
rewrites as a sequent α, there is a ϕ-LL derivation D of α such that (D) = Π.

Proof. By induction over the complexity n of Π. If n = 0 there is nothing
to show. Suppose Π has a final ℘ϕ-node L, the conclusion of which is labeled
by X. By Lemma 1.22, the removal of L yields a contractible proof structure
Π′. By induction hypothesis, Π′ can be sequentialized as a derivation D′.
Completing D′ with a ℘ϕ-rule that introducesX as the main formula yields a
derivation D of α such that Π = (D). If Π has no final ℘ϕ-node, then, by the
Bridge Splitting Lemma 1.24, there is a bridging ℘ϕ-link that decomposes
Π into a proof structure Π0 and a partial proof structure Π1(X) such that
Π−0 and Π1(X)

− are contractible. Note that Π1(X) can be turned into a
proof structure Π1 simply adding an identity link with conclusions X and
X⊥. Π1(X) and Π1 coincide qua unlabeled graphs and therefore also Π−1
is contractible. By induction hypothesis, there are derivations D0 and D1

such that (D0) = Π0 and (D1) = Π1. Replacing in the derivation D1 the
axiom X ⋆ X⊥ with the derivation D0 yields a derivation D of α such that
(D) = Π. �

Invariants for the rewriting rules

It has already been observed that the contraction rule and the associative
and commutative rules preserve and reflect property (DR) and the stricter
property (DR2).

Since the associative and commutative rewriting rules are reversible, indeed
idempotent, any declarative correctness criterion must be, intuitively speak-
ing, a maximal invariant for these rules.

For commutativity, the solution was presented in [65] by R. Maieli.
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Definition 2.30 Let Π be an NL structure that satisfies (DR2). Let τ be a
trimming of Π at a ℘-link L. Consider a door D of Π that belongs to τ . The
paths that join pairwise D and the premises of L meet at centerτ (L,D), a
node called the center in τ of L and D.

Call π1, π2, and πD the paths in τ that join centerτ (L,D) with, respectively,
the first and the second premise of L and the door D.

Definition 2.31 We say that D is not between the premises of L in τ if the
paths π1, π2, and πD are in this cyclic order when moving counterclockwise
around centerτ (L,D). We say that the premises of L are adjacent in τ if
no door of Π that belongs to τ is between the premises of L.

Definition 2.32 A ϕ-LL structure Π that is (DR2)-correct satisfies condi-
tion (ADJ) if for any trimming τ at any par link L the premises of L are
adjacent in τ .

Clearly, the contraction and associative rewriting rules preserve and reflect
this property. The commutative rewriting rule destroys it.

Observe that associativity changes the number of tensor nodes on elementary
cycles, while it does not affect the number of par nodes. Any contraction
that affects an elementary cycle removes a pair made of a par node and a
tensor node. Commutativity does not affect the number of par/tensor nodes
on cycles. All this suggests the following characterization.

Definition 2.33 A cycle in a ϕ-LL structure is balanced if it contains the
same number of par nodes and tensor nodes. A ϕ-LL structure is balanced,
or satisfies condition (BAL), if each of its elementary cycles is balanced.

Clearly, any seaweed is, trivially, a balanced pseudostructure. Therefore, any
ϕ-LL proof structure that can be contracted without using the associativity
rule is balanced.

Declarative correctness criteria

Theorem 2.34 Let Π be a (DR2)-correct proof structure of ϕ-LL. Suppose
moreover that Π satisfies condition (BAL) if a 6∈ ϕ and (ADJ) if c 6∈ ϕ.
Then Π ϕ-rewrites as a seaweed α and the restriction of any switching of Π
to its conclusions is ≈ϕ-equivalent to α.

72



Proof. By induction over the number of ternary nodes of Π. If there is none,
there is nothing to prove. If Π has a final par link L with hypothesis A and
B, consider the proof structure Π′ obtained from Π by removing the link L.
Since Π′ inherits from Π the correctness conditions, by induction hypothesis
it ϕ-rewrites as a seaweed α′ and any switching of Π′ is ϕ-equivalent to α′.
Joining the leaves A and B of α′ with the link L yields a pseudostructure ρ
with one cycle that goes through one par node –the central node of L– and
through n ≥ 1 tensor nodes. If a 6∈ ϕ, then n = 1, for otherwise Π could
not have been balanced since all rewriting rules, except the associative one,
reflect balance. If a ∈ ϕ, the associative rule can be applied so as to de-
crease the number of tensor nodes in the cycle, till there is just one. Hence,
in any case, we can assume that Π ϕ-rewrites as a pseudostructure ρ that
contains one cycle γ′ and that γ′ goes through exactly one par node and one
tensor node. If c 6∈ ϕ, ρ satisfies the condition (ADJ), since this property
is preserved by all rewriting rules except the commutative one. If c ∈ ϕ,
the commutative rewriting rule can be applied. In any case we may assume
that ρ′, and therefore Π, ϕ-rewrites as a pseudostructure ρ′′ that contains
only a cycle γ′′ and that γ′′ is a planar cycle that goes through exactly one
tensor node and one par node. Hence applying a contraction rule the pseu-
dostructure ρ′′, and therefore Π, can be rewritten as a seaweed ϕ-equivalent
to α. If Π has no final par then, qua proof net of Linear Logic, it splits
into two substructures joined by a link L. Each of the substructures inherits
the correctness conditions and thus, by induction hypothesis, contracts to a
seaweed. Joining them by L yields a seaweed to which Π contracts. �

The main result follows immediately from the above theorems.

Theorem 2.35 Let Π be a ϕ-LL proof structure, and α a ϕ-LL sequent.
The following facts are equivalent:

• there is a ϕ-LL derivation D of α such that (D) = Π and any switching
of Π is ϕ-equivalent to α;

• Π ϕ-rewrites as α;

• Π satisfies conditions (DR2) and, moreover,

– (ADJ) if c 6∈ ϕ;

– (BAL) if a 6∈ ϕ.
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2.2.2 Proof net theory for ϕ-LC

In this section we transfer the results of the previous section to ϕ-LC via the
embedding of Section 2.1.3. Therefore, the only original results are those
for the non-associative versions of the Lambek Calculus.

We have recalled in Section 2.1.3 that the intuitionistic fragment of ϕ-LL
can be obtained from ϕ-LL restricting the language to positive and nega-
tive types. Thus the proof nets for the former logic are simply the proof
net of the latter logic with labelling restricted to such types. Also, intu-
itionistic ϕ-LL derivations correspond, via the notion of polarity, to ϕ-LC
derivations. Hence ϕ-LC proof nets are essentially intuitionistic ϕ-LL proof
nets. However, one would like the proof nets of ϕ-LC to make reference
only to the very same logic. This is achieved labelling the proof nets not
with positive and negative types, but directly with the polar Lambek types.
Labelling of the links is changed according to the following two rules:

• if a label is a positive ϕ-LL type p, replace it with P ◦, where P is the
unique ϕ-LC type such that P ◦ = p;

• if a label is a negative ϕ-LL type n, replace it with N•, where N is
the unique ϕ-LC type N such that N• = n.

The repertoire of links is reported in Figure 2.10, where if s is a polarity, s
denotes the opposite polarity.

identity ApAp cut ApAp

×ϕ
• ℘ϕ

A• B•

A×ϕB
•

×ϕ
◦ ×ϕ

A×ϕB
◦

A◦B◦

\ϕ
• ×ϕ

A\ϕB
•

B•A◦

\ϕ
◦ ℘ϕ

A\ϕB
◦

A•B◦

/ϕ
• ×ϕ

A/ϕB
•

A• B◦

/ϕ
◦ ℘ϕ

A/ϕB
◦

A◦B•

Figure 2.10: Links for ϕ-LC

Observe that there are three tensor links, namely the ×ϕ
◦, \ϕ

•, and /ϕ
• links

and three par links, namely the ×ϕ
•, \ϕ

◦, and /ϕ
◦ links. The correctness

conditions carry over without any change. As for the structuring αΠ of the
doors that is implicitly contained in a correct proof structure Π, observe
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that it is always possible to focus on the unique output door, call it A◦.
Therefore any such structuring α can be expressed as τ• ⋆ A◦ for a suitable
ϕ-LC configuration τ of the input doors.

Therefore, Theorem 2.35 can be restated for ϕ-LC as follows.

Theorem 2.36 Let Π be a ϕ-LC proof structure, and let τ ⇒ A be a ϕ-LC
sequent. The following facts are equivalent:

• there is a ϕ-LC derivation D of τ ⇒ A such that (D) = Π and any
switching of Π is ϕ-equivalent to τ• ⋆ A◦;

• Π ϕ-rewrites as τ• ⋆ A◦;

• Π satisfies conditions (DR2) and, moreover,

– (ADJ) if c 6∈ ϕ;

– (BAL) if a 6∈ ϕ.

Condition (DR), and therefore (DR2), can be stated in an equivalent way
for any ϕ-LC proof structure, changing the clause (DRc) on connectedness
for the close (DRu) on uniqueness of the output door:

(DRa) each of its switchings is an acyclic graph;
(DRu) the proof structure has a unique output door.

This claim, common lore in the literature, is motivated by a more general
result.

Definition 2.37 A component of a graph is a subgraph which is connected
and is maximal, with respect to inclusion, among connected subgraphs.

Theorem 2.38 Let R be a ϕ-LC proof-structure with no cyclic switching.
The following facts are equivalent:

• R has n output doors;

• a switching of R has n components;

• every switching of R has n components.

Proof. The proof is by induction on the number n of logical and cut links
of R. If n = 0, then R has only doors that are conclusions of identity links
and the result is trivial. If n ≥ 1 there are two cases:
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• Suppose that R has a door that is the conclusion of a par link L and let
R′ be the proof structure obtained from R removing L. Then R and
R′ have the same number n of output doors. By induction hypothesis,
one/every switching of R′ has n components. The switchings of R can
be obtained from the switchings of R′ by adding an edge connecting
one of the premises of L with the conclusion of L. This operation does
not affect the number of components and thus one/every switching of
R has n components.

• Suppose that R has a door that is the conclusion of a tensor link
L. If R has n output doors, the proof structure R′ obtained from
R removing L has n + 1 output doors and, by induction hypothesis,
one/any switching s of R′ has n + 1 components. The premises of L
must belong to different components of every s, otherwise R would
have cyclic switchings. Since the switchings of R can be obtained
reinserting the link L in the switchings of R′, any switching of R will
have n components.

�

2.2.3 Planar proof nets

In this section we further study proof nets for the two non-commutative
variants of ϕ-LL, i.e. the cases in which c 6∈ ϕ. We discuss the notion of
planarity of a proof net ([110]), formalizing the idea of ordering the leaves
of a forest of trees, by ordering their roots and, eventually, grafting some of
them with some cut tree.

Following the definition of type tree, we can define the notion of cut tree.

Definition 2.39 A type tree τ(F ) is a graph defined as follows by induction
on the complexity of a ϕ-LL type F :

• if F is atomic, then τ(F ) is the graph that
consists of one edge labeled by F and two
unary unlabeled nodes;

  
  
!!
!! 
 
 

!
!
!  

  
!!
!!

F

Trivial type tree
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• if F = G◦H for some ◦ ∈ {×ϕ, ℘ϕ}, then
τ(F ) is the graph obtained from τ(G) and
τ(H) joining, around a ternary node la-
beled by ◦, the edges labeled by G and H
with a further edge labeled by F ; moreover,
the edges labeled by F , G, and H must be
clockwise in this cyclic order around the
mentioned node.

F
◦G H

τ(G) τ(H)

Binary operator

Definition 2.40 A cut tree τcut(F,G) consists of a cut link that joins, in
the given order, two type trees τ(F ) and τ(G), where F and G are any ϕ-LL
types such that F = G⊥. Graphically:

CUT

T (F ) T (G)

Clearly, any ϕ-LL proof structure can be thought of as a collection of type
and cut trees, the leaves of which are joined pairwise by identity links.

Definition 2.41 An identity linking on a set of leaves F = {F1, . . . , Fn}
is a collection of identity links the sets of conclusions of which constitute a
partition of F .

When a proof structure contains no cut link, it is easy to see how ordering
the trees that constitute the proof structure yields an ordering of their leaves.
If there is some cut link, some extra work has to be done.

To simplify the wording of the definitions and results of this section, we add
to any cut link a further edge, the conclusion of the link, labeled by the
extra-symbol C.

Observe that for any type or cut tree T we can consider on the set of its edges
two relations, whereby an edge immediately preceeds another edge and and
edge is immediately dominated by another edge. The relations are defined
as follows:

• A ≤
{T}
ip B if < A,B > is the list of premises of a link of T ;

• A ≤
{T}
id B if A is a premise of a link of T with conclusion B.
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The only edge that is not immediately dominated by any other label is the
root of the tree. The edges that do not immediately dominate any edge are
the leaves of the tree.

Definition 2.42 The set of ϕ-LL grafted trees is the smallest set G such
that:

• for every type and cut tree T , ({T}, <
{T}
ip , <

{T}
id ) is in G;

• for any edge label A, B, and D of a grafted tree (T , <Tip, <
T
id) such

that A <Tip B and A,B ≤Tid D and for any cut tree S with root C,

(T ′ = T ∪ {S}, <T
′

ip , <
T ′

id ) is in G, where:

<T
′

ip = (<Tip \{< A,B >})∪ <
{S}
ip ∪{< A,C >,< C,B >}, and

<T
′

id = <Tid ∪ <
{S}
id ∪{< C,D >}.

A simple example of a grafted tree is ({T (A℘ϕB), S}, <) where S is the
cut-link with premises E and E⊥ and the partial orders are given by:

• <ip= {< A,C >,< C,B >}, and

• <id= {<A,A℘ϕB>,<C,A℘ϕB>,<B,A℘ϕB>,<E,C>}.

It can be represented graphically as in Figure 2.11.

℘

E E⊥

C B

cut

A

A℘B

Figure 2.11: An example of a grafted tree

Let S be a multiset of grafted trees and let R be a strict order on the set
of roots of S. The leaves of S are then partially ordered in a natural way.
Consider the following relations:
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• the dominance relation ≤Sd defined as the reflexive-transitive closure

of
⋃

T∈S <
{T}
id ;

• the generalization <Sip of the immediate precedence relation, defined

as R ∪
⋃

T∈S <Tip;

• the precedence relation <Sp defined as follows: A < B exactly when

there are C and D such that A <Sd C, C <Sip D, and B <Sd D.

The restriction of <Sp to the set of leaves of S is a total strict order. Let

〈F1, . . . , Fn〉 be the sequence of leaves, ordered according to <Sp .

Definition 2.43 An identity linking I on the sequence 〈F1, . . . , Fn〉 of leaves
is S-plane if there are no links in I with conclusions {Fi1 , Fi2} and {Fi3 , Fi4}
such that i1 < i3 < i2 < i4.

Note that the above property is invariant under circular permutations. Thus
it can be asserted also of the sequence 〈F1, . . . , Fn〉 identified up to permu-
tations induced by circular permutations of the sequence of grafted trees.

Observe that any ϕ-LL proof structure Π that is represented on the plane
with non-intersecting trees consists of a sequence S of grafted trees and an
identity linking on their leaves.

Definition 2.44 A ϕ-LL proof structure Π is S-plane if the identity linking
on the set of leaves of S is S-plane.

Theorem 2.45 Let Π be a (DR2)-correct proof structure that satisfies (BAL)
if a 6∈ ϕ. Π can be represented in the plane by a sequence S of grafted trees
and an S-plane identity linking if and only if Π satisfies condition (ADJ).

Proof. Clearly, if Π is S-plane then it satisfies (ADJ). Conversely, if it
satisfies (ADJ) then Π can be sequentialized as a ϕ-LL derivation D. The
following Proposition shows that the proof structure (D) associated to D
can be represented in the plane by a sequence S of grafted trees and an
S-plane identity linking. �

Recall that any sequent α establishes –on the multiset {F1, . . . , Fn} of its
types– a cyclic order, that can be represented by any cyclic permutation of
a sequence < Fi1 , . . . , Fin >.
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Proposition 2.46 Let D be a ϕ-LL derivation of a sequent α. Then it is
possible to represent (D) in the plane by a sequence S of grafted trees and an
S-plane identity linking. Moreover, S can be chosen so that the restriction
of <Sp to {F1, . . . , Fn} is the strict order < Fi1 , . . . , Fin >.

Proof. The proof is by induction over the length of the derivation D. If
the derivation is just an identity axiom, there is nothing to show. For the
inductive step, the following table gives –case by case– the definition of
the sequence S. The first column indicates the last rule of the derivation.
The second column indicates the sequence(s) of grafted trees that exist by
induction hypothesis. Here χ, χ1 and χ2 stand for sequences of cut trees
and γ (respectively δ) stands for a sequence of grafted trees that contains, in
the given order, the types that constitute the tree Γ (∆). Finally, the third
and fourth columns contain the definition of S and explain how to obtain
the tree T by grafting.

induction step ind. hypothesis S to obtain T
...D′

[ϕ Γ, A,B ]

Γ ⋆ A℘ϕB

γ, τ(A), χ, τ(B) γ, T graft χ in τ(A℘ϕB)
between A and B

...D′
...D′′

Γ ⋆ A B ⋆∆

[ϕ Γ, A×ϕB,∆ ]

γ, τ(A), χ1

and
χ2, τ(B), δ

γ, T, δ
graft χ1, χ2 in
τ(A×ϕB) between
A and B

...D′
...D′′

Γ ⋆ A A⊥ ⋆∆

Γ ⋆∆

γ, τ(A), χ1

and
χ2, τ(A

⊥), δ
γ, T, δ

graft χ1, χ2 in
τ(A,A⊥) between
A and A⊥

Clearly, the planarity of (D) follows from the induction hypothesis. �
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Chapter 3

Combining and Constraining

Basic Calculi

The Lambek Calculus LC is complete both with respect to models based on
ternary accessibility relations ([34]) and to powerset residuated semigroup
models ([15]).

On the one hand, the former result has been extended in [53] to any mul-
timodal Lambek Calculus that comprises unary and binary modalities and
in which the structural rules are weak Sahlqvist ([53]).1 On the other hand,
the latter result has been shown in [52] to hold for the Lambek Calculus gen-
eralized by the addition of any family of n-ary operators (n ≥ 1) together
with the respective residuated operators.

Thus, model-theoretically, the behaviour of unary and binary operators does
not differ. Their similarity is corroborated by the procedural theory of proof
nets ([74, 108]) that is based on one contraction rule for any tensor-par pair
and one for any bracket-antibracket pair. But, from a declarative point of
view, the situation seems to be different.

First of all, there is no general declarative theory of proof nets. For this rea-
son, we consider in this chapter the most restrictive cases of multimodality
–namely those systems where structural rules make reference to only one
modality– and we propose a correctness criterion that captures the notion
of endomodality, i.e. the lack of intermodal communication. Any system
with structural rules that mix modalities demands for a relaxion of such a
criterion.

1A structural rule is weak Sahlqvist if, loosely speaking, it does not result in any form
of weakening or contraction. Beside [53], a formal definition is found, e.g., in [69].
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Secondly, the notion of Danos-Regnier switching can be extended easily to
any n-ary residuated operators. A switching of a proof structure is the graph
that results from a switching of its ℘-links by disconnecting from each ℘-
node L all the premises that are not selected at L by the switching. But,
for n = 1, this means that there is no difference between an antibracket link
L and its switching. This suggests that, in a declarative correctness theory,
links of unary operators must be treated in a different way.2 I propose a
solution based on a translation into an endomodal calculus.

This chapter has the following structure. Section 3.1 presents the theory of
endomodal calculi, first for some classical logics and then for their intuition-
istic fragments.

The lack of mixed rules is captured by the following condition on (DR2)-
correct proof structures:

for any modality i, any trimming τ at any ℘i-link L, and any
conclusion D of the proof structure that belongs to τ the paths
that join pairwise D and the premises of L meet at a node labeled
by a tensor of modality i.

Clearly, this property does not hold if there is a mixed associative rule, as
exemplified by the following picture:

×j ×i

×i
×j

l2

l3

l1

l0 l0

l1

l2l3

If all the modalities of an endomodal calculus are non-associative, the prop-
erty of balance, relativized to each modality, entails the condition defined
above. In particular, this observation characterizes proof nets for Moortgat
and Morrill’s biheaded calculus ([71]) devised to account for mismatches in
head/dependent and functor/argument structures.3

2See also the discussion in [76], that leaves as an open question the possibility of
finding an embedding translation of unary connectives into the Lambek Calculus with
Permutation and first order quantification.

3The idea of using a bimodal calculus to account for the mismatches in head/dependent
and functor/argument structures has been taken up in some multimodal versions of Com-
binatory Categorial Grammar, see e.g. [6].
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Section 3.2 enriches with brackets the calculi of the previous section. In par-
ticular, Sections 3.2.2 and 3.2.3 –that are based on the joint publication [37]
with G. Morrill– build upon and correct Versmissen’s proposal of mimicking
brackets with two extra symbols ([122]). The basic idea –that the extra
symbols must be matched properly– comes from my own work on pregroups
with brackets ([35]) reported in the final chapter of this thesis. Section 3.2.4
contains the proposal of mimicking brackets with one extra symbol, say P ,
and one extra modality, say j:

• s([ ]A) = P×jsA;

• s([ ]-1A) = P⊥℘jsA.

This proposal has the advantage of working also in commutative environ-
ments. In particular, it can be seen as a first step toward a correctness
theory, where commutativity is licensed locally by a unary modality.

3.1 Endomodal Calculi

3.1.1 Linear Logic Φ-LL

In this section we study multimodal linear logics, obtained combining ver-
sions of linear logic with/without commutativity and/or associativity, where
no structural rule makes reference to more than one modality. The logics
are defined and a theory of proof nets is proposed. The central notion is the
property (ENDO), which corresponds to the absence of interaction among
modalities. The properties of balance and adjacency are relativized to each
modality.

Let Φ be a possibly empty subset of {ai, ci : i ∈ N 2}, where N 2 is the set
of indexes of the (binary) modalities.

Rules for Φ-LL

Definition 3.1 The set TΦ-LL(V ) of Φ-LL types is the smallest set that
contains a set V of atomic types, their negations and that is closed, for
any i ∈ N 2, under the binary operations ×i and ℘i, i.e. the elements of
TΦ-LL(V ) are defined inductively in the following way:

T = V | V ⊥ | T ×iT | T ℘iT .
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A metalinguistic negation of types is defined in the following way. For all
atomic types A, for any type F and G, and for any i ∈ N 2:

• A = A⊥⊥;

• (F×iG)
⊥ = G⊥℘iF

⊥;

• (F℘iG)
⊥ = G⊥×iF

⊥.

As a consequence, F = F⊥⊥ holds for any type F .

Definition 3.2 A Φ-LL sequent is an NL seaweed where N = N 2 and
L = TΦ-LL(V ).

Definition 3.3 The Φ-LL calculus of sequents comprises the following rules,
defined in Figure 3.1:

• the identity and cut rules;

• the logical rules;

• the structural rules determined by Φ.

Identity and Cut rules

Id A ⋆ A⊥

where A atomic

Cut

...D1

...D2

Γ ⋆ A A⊥ ⋆∆

Γ ⋆∆

Logical Rules (for any i ∈ N 2)

Tensor

...D1

...D2

Γ ⋆ A B ⋆∆

[i Γ, A×iB,∆ ]

Par

...D

[i Γ, A,B ]

Γ ⋆ A℘iB

Structural rules

(ASSi)
if ai ∈ Φ

(τ0×̃iτ1) ⋆ (τ2×̃iτ3)

(τ1×̃iτ2) ⋆ (τ3×̃iτ4)

(COMi)
if ci ∈ Φ

[i τ0, τ1, τ2 ]

[i τ0, τ2, τ1 ]

Figure 3.1: Rules of Φ-LL

The usual proof of the Cut Elimination Property applies to Φ-LL too.
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Proof Net Theory for Φ-LL

Definition 3.4 A Φ-LL structure –a pseudostructure/(partial) proof struc-
ture– is an NL structure –a pseudostructure/(partial) proof structure– where
N = N 2, and L = TΦ-LL(V ).

Recall Definition 2.30 of the center of a par link L and a door in a trimming
at L.

Definition 3.5 Let Π be a (DR2)-correct structure of Φ-LL. For any
modality i ∈ N 2, we say that Π is i-endocentric, or that it satisfies property
(i-ENDO), if for any ℘i-link L in Π, any trimming τ of Π at L and any
conclusion D in τ , the center in τ of L and D is of modality i. We say that
Π is endocentric, or that it satisfies property (ENDO), if Π is i-endocentric
for any modality i ∈ N 2.

Lemma 3.6 Let Π be an NL structure that satisfies (DR2), and (i-ENDO)
for some i ∈ N 2. Removal of a final ℘-link and splitting by a cut- or final
×-link preserve correctness with respect to these conditions.

Proof. Preservation of (DR2) has been already established by Remarks 1.39
and 1.40. Let Π′ be the structure obtained by removing from Π a final ℘-
link L with conclusion D. To show that Π′ is (i-ENDO)-correct, consider
a ℘i-link M with conclusion E and a trimming τ ′ of Π′ at M . Let C be a
conclusion of Π′ that belongs to the trimming τ ′. If C is a premise of L,
extend τ ′ to a trimming τ of Π, by selecting C at L. Then, centerτ ′(M,C) =
centerτ (L,D) must be of modality i. If C is not among the premises of L,
select at L any of its premises. Then centerτ ′(M,C) = centerτ (M,C).
Therefore, in any case, the center in τ ′ of M and C has modality i. A
similar reasoning proves preservation of (i-ENDO) under splitting. Indeed,
let a cut- or final ×-link split Π into two structures Π0 and Π1. Consider a
℘i-link M with conclusion E in, say, Π0. Let τ0 be a trimming of Π0 at M
and let C be a conclusion of Π0 that belongs to τ0. If C is not a premise
of the splitting link, let D = C. If it is, call D any conclusion of Π1 that is
not a premise of the splitting link. Observe that such a conclusion exists,
because Π1 satisfies (DR2). Extend in any way τ0 to a trimming of Π at
M . Then centerτ0(M,C) coincides with centerτ (M,D) and has therefore
modality i. �

The correctness conditions (ADJ) and (BAL) have to be relativized to each
modality i ∈ N 2.
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Definition 3.7 Let Π be an NL structure that is (DR2)-correct. We say
that Π satisfies condition (ADJi) if for any trimming τ at any ℘i-link L the
premises of L are adjacent in τ .

Definition 3.8 Let Π be an NL structure. A cycle in Π is i-balanced if
it contains the same number of ℘i-nodes and ×i-nodes. Π is i-balanced, or
satisfies condition (BALi), if each of its elementary cycles is i-balanced. Π
is balanced if it is i-balanced for any modality i ∈ N 2.

Lemma 3.9 Let Π be a Φ-LL structure that satisfies (DR2) and (j-ENDO)
for any modality j of a subset J ⊆ N 2. Assume moreover that, for all j ∈ J ,
(BALj) holds if and only if aj 6∈ Φ and (ADJj) holds if and only if cj 6∈ Φ.
Then one of the following facts hold:

1. Π is a seaweed;

2. for some j ∈ J , there is a cycle γ that goes through both premises of
a ℘j-link L and through other nodes that are all tensors of the same
modality j; moreover, if aj 6∈ Φ, γ goes through exactly one tensor; if
cj 6∈ Φ, then for any trimming τ at L, no conclusion is in between the
premises of L in τ ;

3. for some i ∈ N 2\J there is a cycle γ that goes through both premises of
a ℘i-link and through other nodes that are all tensors (not necessarily
of the same modality).

Proof. The proof is by induction over the complexity of Π, defined as
its number of logical links. If n = 0 there is nothing to show. If, for
some modality h, Π has a final ℘h-link L, removing it yields a structure
Π′ that, because of the previous lemma, inherits from Π all the correctness
conditions. By induction hypothesis, either Π′, and therefore Π, contains a
cycle with the sought for properties, or Π′ is a seaweed. In the latter case,
reinserting the final ℘-link L yields a cycle γ each tensor node of which is,
in the only possible trimming of Π, the center of L and a conclusion of Π.
If h 6∈ J , some tensor belongs to the cycle because of (DR2), and no further
check is needed. If h ∈ J , all these tensors must be of modality j because
Π is j-endocentric. Moreover, if aj 6∈ Φ, then by (BALj) the cycle γ has
to contain exactly one ×j-node; if cj 6∈ Φ, no conclusion of Π can be in
between the premises of L in the only possible trimming at L. If Π is in
splitting conditions, then it splits into two substructures Π0 and Π1 that are
connected by a splitting link L. The previous lemma ensures that both Π0

and Π1 inherit the correctness conditions from Π. By induction hypothesis,
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either some of the substructures, and therefore Π, contains the sought for
cycle γ, or both substructures, and therefore Π, are seaweeds. �

Observe that in the previous proof, the condition (ENDO) is needed only in
one step (when reinserting a removed final ℘-link) and only if there is some
modality that is associative. Indeed, if none is associative, (BALi) holds for
any i. Then for any i 6= h there cannot be a ×i in γ and for i = h there
must be exactly one.

Corollary 3.10 Let Π be an Φ-LL proof structure that satisfies (DR2) and
(ENDO). Assume moreover that, for all i ∈ N 2, (BALi) holds if and only
if ai 6∈ Φ and (ADJi) holds if and only if ci 6∈ Φ. Then one of the following
facts hold:

1. Π is a seaweed; or

2. Π contains a cycle γ that goes through both premises of a ℘ link of
some modality i and through other nodes that are all tensors of the
same modality i; moreover, if ai 6∈ Φ, γ goes through exactly one
tensor; if ci 6∈ Φ, then for any trimming τ at L, no conclusion is in
between the premises of L in τ .

Lemma 3.11 Let Π be a Φ-LL pseudostructure. The following facts hold:

• contractions, non-mixed associative rules, and commutative rules pre-
serve and reflect (DR), (CONCL≥2), (i-ENDO) for any modality i;

• for all modalities i 6= j, (ASSi) preserves and reflects (BALj);

• for all modalities i 6= j, (COMi) preserves and reflects (ADJj).

Corollary 3.12 Let Π be a Φ-LL proof structure. The following facts are
equivalent:

• Π is Φ-LL correct, i.e. it satisfies (DR2), (ENDO), (BALi) for any
modality i such that ai 6∈ Φ, and (ADJi) for any modality i such that
ci 6∈ Φ;

• Π can be rewritten as a seaweed using contractions and the rewriting
rules corresponding to the structural rules of Φ-LL.

Corollary 3.13 A Φ-LL proof structure is sequentializable in Φ-LL if and
only if it is Φ-LL correct.
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3.1.2 Lambek Calculi Φ-LC

In this section we study multimodal Lambek calculi, obtained by combin-
ing versions of the Lambek Calculus with/without commutativity and/or
associativity, where no structural rule makes reference to more than one
modality. The calculi are embedded, via the usual notion of polarity, in
the linear logics of the previous section and therefore inherit the proof net
theory.

Rules for Φ-LC

Definition 3.14 The set TΦ-LC(V ) of Φ-LC types is the smallest set that
contains a set V of atomic types and that is closed, for any i ∈ N 2, under
the binary operations ×i, /i, and \i, i.e. the elements of TΦ-LC(V ) are
defined inductively in the following way (where i ∈ N 2):

T = V | (T ×iT ) | (T /iT ) | (T \iT ).

As usual, outer parentheses will be dropped.

Let N = N 2 and L = TΦ-LC(V ). Recall Definitions 1.1, 1.2 and 1.3 on
page 19.

Definition 3.15 An (abstract) Φ-LC configuration is an (abstract) NL-
tree.

Therefore abstract Φ-LC configurations are defined inductively in the fol-
lowing way (where i ∈ N 2):

τ = L | (τ×̃iτ).

Definition 3.16 An (abstract) Φ-LC context is an (abstract) NL-tree con-
text.

Therefore, abstract Φ-LC contexts are defined inductively in the following
way (where i ∈ N 2):

σ[ ] = [ ] | σ[ ]×̃iτ | τ×̃iσ[ ].

Definition 3.17 An (abstract) Φ-LC sequent τ ⇒ A consists of an (ab-
stract) Φ-LC configuration τ and a Φ-LC type A.
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Definition 3.18 The calculus of Φ-LC sequents comprises the following
rules, defined in Figure 3.2:

• the identity and cut rules;

• the logical rules;

• the structural rules that belong to Φ.

Identity and cut rules

Id A ⇒ A
where A atomic

Cut

...D1

...D2

τ ⇒ A σ[A] ⇒ B

σ[τ ] ⇒ B

Logical rules (for any i ∈ N 2)

×i

...D

σ[A×̃iB]⇒ C

σ[A×iB]⇒ C

×i

...D1

...D2

τ1 ⇒ A τ2 ⇒ B

τ1×̃iτ2 ⇒ A×iB

\i

...D1

...D2

τ ⇒ A σ[B]⇒ C

σ[τ×̃iA\iB]⇒ C

\i

...D

A×̃iτ ⇒ B

τ ⇒ A\iB

/i

...D1

...D2

τ ⇒ A σ[B]⇒ C

σ[B/iA×̃iτ ] ⇒ C

/i

...D

τ×̃iA ⇒ B

τ ⇒ B/iA

Structural rules

(ASSi)

...D

σ[(τ1×̃ϕτ2)×̃ϕτ3] ⇒ C

σ[τ1×̃ϕ(τ2×̃ϕτ3)] ⇒ C

...D

σ[τ1×̃ϕ(τ2×̃ϕτ3)] ⇒ C

σ[(τ1×̃ϕτ2)×̃ϕτ3] ⇒ C

(COMi)

...D

σ[τ0×̃ϕτ1] ⇒ C

σ[τ1×̃ϕτ0] ⇒ C

Figure 3.2: Rules of Φ-LC calculus

Definition 3.19 We say that a Φ-LC sequent τ ⇒ A is a theorem of Φ-LC,
and we write ⊢Φ-LC τ ⇒ A, if and only if an appropiate application of the
rules of Φ-LC yields a derivation

...D

τ ⇒ A
.
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Embedding Φ-LC into Φ-LL

The same reasoning expounded in the previous chapter on the embedding
of ϕ-LC into ϕ-LL can be applied for the new calculi, with only very minor
modifications in the definitions. The proofs are essentially the same and will
therefore be omitted.

Definition 3.20 A Φ-ILL type, i.e. an intuitionistic Φ-LL type, is defined
by double induction based on a set V of atomic types (where i ∈ N 2):

positive types: P = V | N℘iP | P℘iN | P×iP ;
negative types: N = V ⊥ | P×iN | N×iP | N℘iN .

Definition 3.21 A Φ-ILL sequent, i.e. an intuitionistic Φ-LL sequent, is
a Φ-LL sequent, where one type is positive and the others are negative.

Definition 3.22 The output type A◦ (input type A•) is the translation
of a Φ-LC type A into a positive (negative) Φ-LL type. A◦ is defined by
induction as follows, whereas B• = B◦⊥:

• A◦ = A if A is atomic;

• A×iB
◦ = B◦×iA

◦;

• A/iB
◦ = B•℘iA

◦;

• B\iA
◦ = A◦℘iB

•.

Since a double negation cancels out, for any type B one has that B◦ = B•⊥

and therefore:

• A• = A⊥ if A is atomic;

• A×iB
• = A•℘iB

•;

• A/iB
• = A•×iB

◦;

• B\iA
• = B◦×iA

•.

The translation extends to Φ-LC configurations.

90



Definition 3.23 The intuitionistic translation of a Φ-LC sequent τ ⇒ A
is the sequent τ• ⋆ A◦, where τ• is defined as follows:

• if τ = B, then τ• = B•;

• if τ = τ0×̃iτ1, then τ• = τ•
0
×̃iτ

•
1
.

Theorem 3.24 A Φ-LC sequent τ ⇒ A is a theorem of Φ-LC if and only
if its intuitionistic translation τ• ⋆ A◦ is a theorem of Φ-LL.

Corollary 3.25 The calculus Φ-LC enjoys the Cut Elimination Property.

Proof net theory for Φ-LC

Because of the embedding established in the previous section, the proof nets
of Φ-LC are essentially the proof nets of Φ-LL with labelling restricted to
positive and negative types. To obtain proof nets that make reference only
to the theory of Φ-LC, the labelling of the links is changed according to the
following two rules:

• if a label is a positive Φ-LL type p, replace it with P ◦, where P is the
unique Φ-LC type such that P ◦ = p;

• if a label is a negative Φ-LL type n, replace it with N•, where N is
the unique Φ-LC type N such that N• = n.

The repertoire of links is reported in Figure 3.3, where i is any modality and
if s is a polarity, s denotes the opposite polarity.

The correctness conditions carry over from the previous section without any
change. As for the structuring αΠ of the doors that is implicitly contained
in a correct proof structure Π, observe that it is always possible to focus on
the unique output door, call it A◦. Therefore any such structuring αΠ can
be expressed as τ• ⋆ A◦ for a suitable Φ-LC configuration τ of the input
doors.

Therefore, the sequentialization results of the previous section can be re-
stated for Φ-LC as follows.

Theorem 3.26 Let Π be a Φ-LC proof structure and let τ ⇒ A be a Φ-LC
sequent. The following facts are equivalent:
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identity ApAp cut ApAp

×i
• ℘i

A• B•

A×iB
•

×i
◦ ×i

A×iB
◦

A◦B◦

\i
• ×i

A\iB
•

B•A◦

\i
◦ ℘i

A\iB
◦

A•B◦

/i
• ×i

A/iB
•

A• B◦

/i
◦ ℘i

A/iB
◦

A◦B•

Figure 3.3: Links for Φ-LC

• Π is Φ-LC correct, i.e. it satisfies (DR2), (ENDO), (BALi) for any
modality i such that ai 6∈ Φ, and (ADJi) for any modality i such that
ci 6∈ Φ; any switching of Π, restricted to its doors, is ϕ-equivalent to
τ• ⋆ A◦;

• Π can be rewritten as τ• ⋆ A◦ using contractions, and the rewriting
rules corresponding to the structural rules of the calculus;

• there is a Φ-LC derivation D of τ ⇒ A such that (D) = Π.

Moreover, we have seen that a (DR2)-correct proof structure that is balanced
for every modality satisfies necessarily the property (ENDO).

Corollary 3.27 Let Π be a Φ-LC proof structure and let τ ⇒ A be a Φ-LC
sequent. The following facts are equivalent:

• Π is Φ-LC correct, i.e. it satisfies (DR2), (BALi) and (ADJi) for
any modality i; any switching of Π, restricted to its doors, coincides
with τ• ⋆ A◦;

• Π can be rewritten as τ• ⋆ A◦ using contractions;

• there is a Φ-LC derivation D of τ ⇒ A that makes no use of structural
rules and such that (D) = Π.

Therefore, the correctness conditions for proof nets of the Calculus for
headed trees ([71]) and, more in general, of any Φ-LC calculus with no struc-
tural rule are simply (DR2) and, for any modality i, (BALi) and (ADJi).
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3.2 Bracketed Calculi

3.2.1 Linear Logic Φ-LLb

In this section, we present the logic Φ-LL of Section 3.1.1 enriched with a set
of unary modalities that are not involved in any structural rule. Following G.
Morrill’s work on structural inhibition (see, e.g., [79]), the unary modalities
are denoted by [ ] and [ ]-1, where [ ]-1 is the residual operator of [ ]. Thus [ ]
and [ ]-1 correspond to the modalities that are often denoted in the literature,
respectively, as ♦ and �↓ (see, e.g., [54]).

Let N 2 be a set of binary modalities and N 1 be a set of unary modalities.
Consider a subset Φ of {(ASSi) , (COMi) : i ∈ N 2}.

Definition 3.28 The set TΦ-LLb(V ) of Φ-LLb types is the smallest set
that contains a set V of atomic types, their negations and that is closed, for
any i ∈ N 2, under the binary operations ×i and ℘i, and, for any j ∈ N 1,
under the unary operations [j] and [j]-1, i.e. the elements of Tϕ-LL(V ) are

defined inductively in the following way (where i ∈ N 2 and j ∈ N 1):
4

T = V | V ⊥ | (T ×iT ) | (T ℘iT ) | [j]T | [j]-1T .

A metalinguistic negation of types is defined in the following way. For every
atomic type A, for any types F and G, and for any i ∈ N 2 and j ∈ N 1:

• A = A⊥⊥;

• (F×iG)
⊥ = G⊥℘iF

⊥;

• (F℘iG)
⊥ = G⊥×iF

⊥;

• ([j]F )⊥ = [j]-1F⊥;

• ([j]-1F )⊥ = [j]F⊥.

As a consequence, F = F⊥⊥ holds for any type F .

Definition 3.29 A Φ-LLb sequent is an NL seaweed where N = N 2

⋃

N 1

and L = TΦ-LLb(V ).

4As usual, outer brackets will be dropped.
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Definition 3.30 The Φ-LLb calculus of sequents comprises the following
rules, defined in Figure 3.4:

• the identity and cut rules;

• the logical rules for binary operators;5

• the logical rules for unary operators;

• the structural rules that belong to Φ.

Identity and Cut rules

Id A ⋆ A⊥

where A atomic

Cut

...D1

...D2

Γ ⋆ A A⊥ ⋆∆

Γ ⋆∆

Logical Rules of Binary Operators(for any i ∈ N 2)

Tensor

...D1

...D2

Γ ⋆ A B ⋆∆

[i Γ, A×iB,∆ ]

Par

...D

[i Γ, A,B ]

Γ ⋆ A℘iB

Logical Rules of Unary Operators (for any j ∈ N 1)

Bracket

...D

Γ ⋆ A

[j Γ, [j]A ]

Antibracket

...D

[j Γ, A ]

Γ ⋆ [j]-1A

Structural rules

(ASSi)
(τ0×̃iτ1) ⋆ (τ2×̃iτ3)

(τ1×̃iτ2) ⋆ (τ3×̃iτ4)

(COMi)
[i τ0, τ1, τ2 ]

[i τ0, τ2, τ1 ]

Figure 3.4: Rules of Φ-LLb

The usual proof of the Cut Elimination Property is easily extended to cover
these logics.

3.2.2 Lambek Calculus Φ-LCb

In this section, we present Φ-LC enriched with a family of unary modalities,
that are not involved in any structural rule. The embedding of Φ-LCb into

5Recall that for any binary modality i, the expression [i τ0, τ1, τ2 ] denotes the seaweed
(τ0×̃iτ1)⋆τ2, whereas for any unary modality j the expression [j τ0, τ1 ] denotes the seaweed

[̃j]τ0 ⋆ τ1; see Definition 1.6.
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Φ-LLb is given.

Let N 2 be a set of binary modalities and N 1 be a set of unary modalities.
Consider a subset Φ of {(ASSi) , (COMi) : i ∈ N 2}.

Rules of Φ-LCb

Definition 3.31 The set TΦ-LCb(V ) of Φ-LCb types is the smallest set
that contains a set V of atomic types and that is closed, for any i ∈ N 2,
under the binary operations ×i, /i, and \i, and for any j ∈ N 1, under
the unary operations [j], [j]-1 i.e. the elements of TΦ-LCb(V ) are defined
inductively in the following way (where i ∈ N 2 and j ∈ N 1):

6

T = V | (T ×iT ) | (T /iT ) | (T \iT ) | [j]T | [j]-1T .

Let N = N 2

⋃

N 1 and L = TΦ-LCb(V ). Recall Definitions 1.1, 1.2 and 1.3
on page 19.

Definition 3.32 An (abstract) Φ-LCb configuration is an (abstract) NL-
tree.

Therefore abstract Φ-LCb configurations are defined inductively in the fol-
lowing way (where i ∈ N 2 and j ∈ N 1):

τ = L | (τ×̃iτ) | [̃j]τ.

Definition 3.33 An (abstract) Φ-LCb context is an (abstract) NL-tree
context.

Therefore, abstract Φ-LCb contexts are defined inductively in the following
way (where i ∈ N 2, j ∈ N 1 and τ is any Φ-LCb configuration):

σ[ ] = [ ] | σ[ ]×̃iτ | τ×̃iσ[ ] | [̃j]σ[ ].

Definition 3.34 An (abstract) Φ-LCb sequent τ ⇒ A consists of an (ab-
stract) Φ-LCb configuration τ and a Φ-LCb type A.

Definition 3.35 (Φ-LCb calculus) The calculus of Φ-LCb sequents com-
prises the following rules, defined in Figure 3.5:

6As usual, outer parentheses ( and ) will be dropped.
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• the identity and cut rules;

• the logical rules of binary and unary operators;

• the structural rules that belong to Φ.

Identity and cut rules

Id A ⇒ A
where A atomic

Cut

...D1

...D2

τ ⇒ A σ[A] ⇒ B

σ[τ ] ⇒ B

Logical rules of binary operators (for any i ∈ N 2)

×i

...D

σ[A×̃iB]⇒ C

σ[A×iB]⇒ C

×i

...D1

...D2

τ1 ⇒ A τ2 ⇒ B

τ1×̃iτ2 ⇒ A×iB

\i

...D1

...D2

τ ⇒ A σ[B] ⇒ C

σ[τ×̃iA\iB]⇒ C

\i

...D

A×̃iτ ⇒ B

τ ⇒ A\iB

/i

...D1

...D2

τ ⇒ A σ[B] ⇒ C

σ[B/iA×̃iτ ]⇒ C

/i

...D

τ×̃iA ⇒ B

τ ⇒ B/iA

Logical rules of unary operators (for any j ∈ N 1)

[j]

...D

σ[[̃j]A] ⇒ B

σ[[j]A] ⇒ B

[j]

...D

τ ⇒ A

[̃j]τ ⇒ [j]A

[j]-1

...D

σ[A] ⇒ B

σ[[̃j][j]-1A] ⇒ B

[j]-1

...D

[̃j]τ ⇒ A

τ ⇒ [j]-1A

Structural rules

(ASSi)

...D

σ[(τ1×̃ϕτ2)×̃ϕτ3] ⇒ C

σ[τ1×̃ϕ(τ2×̃ϕτ3)] ⇒ C

...D

σ[τ1×̃ϕ(τ2×̃ϕτ3)] ⇒ C

σ[(τ1×̃ϕτ2)×̃ϕτ3] ⇒ C

(COMi)

...D

σ[τ0×̃ϕτ1] ⇒ C

σ[τ1×̃ϕτ0] ⇒ C

Figure 3.5: Rules of the Φ-LCb calculus

Definition 3.36 We say that a Φ-LCb sequent τ ⇒ A is a theorem of
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Φ-LCb, and we write ⊢Φ-LCb τ ⇒ A, if and only if an appropiate aplica-
tion of the rules of Φ-LCb yields a derivation

...D

τ ⇒ A
.

Embedding Φ-LCb into Φ-LLb

Definition 3.37 A Φ-ILLb type, i.e. an intuitionistic Φ-LLb type, is de-
fined by double induction based on a set V of atomic types (where i ∈ N 2

and j ∈ N 1):

positive types: P = V | N℘iP | P℘iN | P×iP | [j]P | [j]-1P ;
negative types: N = V ⊥ | P×iN | N×iP | N℘iN | [j]N | [j]-1N .

Definition 3.38 A Φ-ILLb sequent, i.e. an intuitionistic Φ-LLb sequent,
is a Φ-LLb sequent, where one type is positive and the others are negative.

Definition 3.39 The output type A◦ (input type A•) is the translation of
a Φ-LCb type A into a positive (negative) Φ-LLb type. A◦ is defined by
induction as follows, whereas B• = B◦⊥ (i ∈ N 2, j ∈ N 1):

• A◦ = A if A is atomic;

• A×iB
◦ = B◦×iA

◦;

• A/iB
◦ = B•℘iA

◦;

• B\iA
◦ = A◦℘iB

•;

• ([j]A)◦ = [j](A◦);

• ([j]-1A)◦ = [j]-1(A◦).

Since a double negation cancels out, for any type B one has that B◦ = B•⊥

and therefore:

• A• = A⊥ if A is atomic;

• A×iB
• = A•℘iB

•;

• A/iB
• = A•×iB

◦;
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• B\iA
• = B◦×iA

•;

• ([j]A)• = [j]-1(A•);

• ([j]-1A)• = [j](A•).

The translation extends to Φ-LCb configurations.

Definition 3.40 The intuitionistic translation of a Φ-LCb sequent τ ⇒ A
is the intuitionistic Φ-LLb sequent τ• ⋆ A◦, where τ• is defined as follows:

• if τ = B, then τ• = B•;

• if τ = τ0×̃iτ1, then τ• = τ•
0
×̃iτ

•
1
;

• if τ = [̃j]τ1, then τ• = [̃j](τ•
1
).

The same reasoning expounded for previous analogous results establishes
the following result.

Theorem 3.41 A Φ-LCb sequent τ ⇒ A is a theorem of Φ-LCb if and
only if its intuitionistic translation τ• ⋆ A◦ is a theorem of Φ-LLb.

The translation of derivations preserves the use of the cut rule (or lack
thereof).

Corollary 3.42 The calculus Φ-LCb enjoys the Cut Elimination Property.

3.2.3 Mimicking brackets with two extra symbols

In this section, we propose a theory of proof nets for LCb based on the use
of two extrasymbols that are proxies for open and close bracket.

Consider the set T b of LCb-types defined on the basis of a set V of atomic
types and a singleton set of unary modalities. Let T be the set of LC-types
defined on the basis of V ∪ {P ,Q}, where P and Q are auxiliary symbols
that do not belong to V.

Definition 3.43 Let t be the function from T b to T defined in the following
way:
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• t(A) = A if A is atomic;

• t(A×B) = t(A)× t(B);

• t(A/B) = t(A)/t(B);

• t(A\B) = t(A)\t(B);

• t([ ]A) = P × t(A)×Q;

• t([ ]-1A) = P\t(A)/Q.

The translation function t can be extended to sequents:

• t(Γ,∆) = t(Γ), t(∆);

• t([Γ]) = P , t(Γ), Q.

Under this translation, bracket and antibracket rules are compilations of
product- and slash-rules. Thus the translation t preserves theoremhood.
Moreover, the translation of an LCb-proof results in a LC-proof where
the auxiliary symbols P and Q are matched up properly, i.e. the axioms
introducing the symbols P and Q come in pairs so that the two symbols
arising from the translation of a unary operator are matched up with the
two symbols arising from the translation of one and a single unary operator.

The translation t does not in general reflect theoremhood, for there are non-
theorems7 of LCb, such as [[ ]-1A], [[ ]-1B]⇒ [ ][ ]-1(A×B), that are translated
into theorems of LC:

P ⇒ P A,B ⇒ A×B
P,P\A,B ⇒ A×B

P ⇒ P P\A,B ⇒ P\(A×B)
P\A,P , P\B ⇒ P\(A×B) Q ⇒ Q

P\A,P , (P\B)/Q,Q ⇒ P\(A×B)
P\A,P , (P\B)/Q ⇒ (P\(A×B))/Q Q ⇒ Q
P\A,P , (P\B)/Q,Q ⇒ ((P\(A×B))/Q)×Q Q ⇒ Q

P ⇒ P (P \A)/Q,Q, P , (P\B)/Q,Q ⇒ ((P\(A×B))/Q)×Q
P, (P\A)/Q,Q, P , (P\B)/Q,Q ⇒ P × (((P \(A×B))/Q)×Q)

7Observe that, simulating a necessity operator �A as [ ][ ]
-1
A (see [69]), the derivation

presented below leads to a proof of the translation of the K axiom �A × �B ⇒ �(A ×

B). However, this translation is not useful in dealing with K-like logics, since a similar
derivation yields a proof of the translation of �A× (C ×�B) ⇒ �(A× (C ×B)).
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The previous example shows, contra [122], that this property is not enough
to guarantee that the translation t reflects theoremhood. However, as proved
in [122], in any LC-proof the inference steps leading from a type A to a type
P ×A×Q or P\A/Q can be grouped together. The gist of the proof is that
if the inference rule introducing, say, P\A (or P × A) occurs earlier in a
proof, then the rule introducing P\A/Q (respectively, P × A × Q) can be
pushed up so as to become the immediately successive rule. The proof is by
induction on the length of a proof of the sequent. The crucial observation
is the permutability of rules as in the following example, where the left rule
of the slash operator is permuted up past the right product rule:

...
...

Γ⇒ B ∆(P\A) ⇒ C
Q ⇒ Q Γ,∆(P\A)⇒ B × C

Γ,∆(P\A/Q,Q) ⇒ B × C

...
... Q ⇒ Q ∆(P\A)⇒ C

Γ⇒ B Γ,∆(P\A/Q,Q) ⇒ C
Γ,∆(P\A/Q,Q)⇒ B × C

Proposition 3.44 A sequent ⊢ Γ ⇒ A of LCb is a theorem if and only if
its translation ⊢ t(Γ) ⇒ t(A) has a proof in LC where the axioms introducing
the types P and Q come in pairs so that the types P and Q arising from the
translation of one unary operator are matched up with the two types P and
Q arising from the translation of one and a single unary operator.

Proof. The necessity of the condition can be verified by a simple proof by
induction on the length of LCb-proofs. The condition is sufficient because
the inference rules leading from a type A to a type P ×A×Q or P\A/Q can
be grouped together and because splittings preserve the proper matching of
the auxiliary symbols P and Q. �

The previous proposition yields a theory of proof nets for LCb. An LC-
proof structure corresponds to the translation under t of an LCb-proof if
and only if it is a proof net of LC in which moreover the symbols P and
Q are properly matched up. To an (anti)bracketed type is associated a
tree composed by two binary links of the same type that can therefore be
compiled away, as in the following example, in a single ternary link of the
same type:

P×A×Q•

×

×
P •

Q•A•

×

P×A×Q•

A•P • Q•

A•

×

P×A×Q•

A•P • Q•
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input output

bracket ℘

[ ]A•

A•P • Q•

×

[ ]A◦

A◦Q◦ P ◦

antibracket ×

[ ]
-1
A•

A•P ◦ Q◦

℘

[ ]
-1
A◦

A◦Q• P •

Figure 3.6: Ternary links for the Lambek calculus with brackets

. ..

.

. ..

.

. ..

.

.. . .. .

℘ ℘ ℘

Figure 3.7: Switchings of a ternary par link

Some modification of basic definitions are in order:

• (partial) proof structures/pseudostructures can have 4-ary nodes: they
are labeled by elements ofN [ ] ∪N [ ]-1 ; incident edges are ordered cycli-
cally; one of them is specified to be the conclusion; the only premise
labeled by a type of LCb is called the proper premise;

• beside the usual links of the Lambek Calculus, the repertoire of links
is enriched with four ternary links for brackets and antibrackets, see
Figure 3.6;

• a switching of a ℘-link, just as for the Lambek Calculus, is simply the
choice of one of the premises of the link; but the notion of switched
proof structure has to be changed slightly, taking into account the fact
that, in any switching of a ternary link, there is more then one premise
that is not selected. The new definition is: a switching sΠ of a LCb
structure Π is the graph that results from a switching of its ℘-links by
disconnecting from each ℘-node the premises that are not selected by
the switching, as indicated in Figure 3.7.

Note that the compilation of the two binary links into a ternary link does
not affect the connectedness and acyclicity of switchings. These observations
establish the correctness criteria for LCb-proof nets and, by the same token,
show that two LCb-derivations are ≈-equivalent if and only if they are
mapped to the same LCb-proof net.
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Theorem 3.45 Let Π be an LCb proof structure and τ ⇒ A, an LCb
sequent. The following facts are equivalent:

• There is an LCb derivation D of τ ⇒ A such that (D) = Π;

• Π satisfies the following correctness criteria:

1. every switching of Π is acyclic;

2. Π has exactly one output door;

3. every trimming of a par link contains a door of Π;

4. Π satisfies condition (PL);

5. brackets are matched up correctly.

The condition on uniqueness of an output door can be substituted by the
requirement that every switching of Π is connected.

The condition (PL) can be substituted by the adjacency condition, provided
that we adapt the relevant terminology to the ternary links. Observe that:

• the notion of trimming of a par link needs no modification, since it is
about the disconnection of the selected premise of the link;

• for any (DR)-correct proof structure, the premises of a ternary link L
are joined pairwise by a path in any trimming at L.

Definition 3.46 Let Π be an LCb structure that satisfies (DR2). Let τ
be a trimming of Π at a ternary par link L. Consider a door D of Π that
belongs to τ . The paths that join pairwise D and the two left-most premises
of L meet at l-centerτ (L,D), a node called the left center in τ of L and D.
The paths that join pairwise D and the two right-most premises of L meet
at r-centerτ (L,D), a node called the right center in τ of L and D.

Definition 3.47 We say that a door D is not between the premises of L in
τ if:

• the paths that join l-centerτ (L,D) with, respectively, the first and sec-
ond premise of L and D are in this cyclic order when moving coun-
terclockwise around l-centerτ (L,D);

• the paths that join r-centerτ (L,D) with, respectively, the second and
third premise of L and D are in this cyclic order when moving coun-
terclockwise around r-centerτ (L,D).
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×

×

× ×

℘

P • ([ ]-1A)• Q• P • ([ ]-1B)• Q• ([ ][ ]-1(A× B))◦

Figure 3.8: An incorrect LCb proof structure

We say that the premises of L are adjacent in τ if no door of Π that belongs
to τ is between the premises of L.

Now, the definition of adjacency carries over.

Definition 3.48 A LCb structure Π that is (DR2)-correct satisfies condi-
tion (ADJ) if for any trimming τ at any par link L the premises of L are
adjacent in τ .

Figure 3.8 contains the incorrect LCb proof structure of the LCb sequent

[[ ]-1A], [[ ]-1B]⇒ [ ][ ]-1(A×B)

that corresponds to the LC derivation given earlier for the translation, under
t, of the sequent. Observe that brackets are not properly matched. If the
extra symbols P and Q would have been combined with the other types
using a different modality, the mentioned violation of correcteness criteria
would be related to the use of a intermodal associative law. This suggests
that a faithful translation can be defined using a calculus of the class studied
in the first section of this chapter.

3.2.4 Mimicking brackets with one extra symbol

In this section, we present a theory of proof nets for any Φ-LL logic enriched
with a unary modality that is not involved in any structural rule. The results
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are based on an embedding into an endomodal Φ-LL logic enriched with one
commutative modality. The theory transfers to Φ-LC calculi enriched with
a unary modality, via the usual embedding into the intuitionistic fragment
of the logic.

Let L be a Φ-LLb logic based on a set V of atomic symbols and that has one
unary modality j and a set I of binary modalities. Let V ′ be V ∪{P}, where
P 6∈ V , and let I ′ be the set I of binary modalities enriched with a further
modality ×j that is commutative and associative. Consider the Φ-LL logic
L’ defined on the set V ′ of atomic symbols and comprising the set I ′ of
binary modalities, where every modality of I has the same properties that
it had in L.

The translation s of L types as L’ types is defined as follows:

• sA = A if A is atomic or the negation of an atomic type;

• s(A ◦i B) = sA♦isB where ◦ ∈ {×, ℘} and i ∈ I;

• s([j]A) = P×jsA;

• s([j]-1A) = P⊥℘jsA.

A simple proof by induction over the complexity of L-types shows that
s(A⊥) = (sA)⊥ for any L-type A.

The translation s extends to trees setting:

sτ =







sA if τ is a type A;
sτ1×̃isτ2 if τ = τ1×̃iτ2;

P⊥×̃js(τ1) if τ = [̃j]τ1.

Observe that for any associative modality h and for any commutative modal-
ity k the following equations hold by definition of L’ (where τ1, τ2, and τ3
are any L-tree):

sτ1×̃h(sτ2×̃hsτ3) = (sτ1×̃hsτ2)×̃hsτ3
sτ1×̃ksτ2 = sτ2×̃ksτ1

Graphically, we have:
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s(τ1×̃iτ2) s([̃j]τ1)s(A)

s(A)

s(τ1)

×i

s(τ2)

×j

s(τ1)
P⊥

Observe that in any translation sα of an L-tree α there are as many ×̃j-
nodes as leaves labeled by P⊥. If sα = τ1×̃iτ2, then the above mentioned
property holds for each of the subtrees τ1 and τ2, because there is no mixed-
associative law involving the modalities i and j.

Note that for any tree τj (j ∈ 1, 2, 3) and any binary modality i ∈ I, the
following equalities hold:

s(τ1×̃iτ2) ⋆ sτ3 = sτ1 ⋆ s(τ2×̃iτ3) = sτ2 ⋆ s(τ3×̃iτ1).

s[j τ1 ] ⋆ sτ2 = sτ1 ⋆ s[j τ2 ]

Indeed, the first equation holds because the translation s is a homomorphism
with respect to binary structural operations and therefore each of its terms is
equal to [j sτ1, sτ2, sτ3 ]. The second equation holds because the j-modality
is commutative and therefore [j P

⊥, sτ1, sτ2 ] = [j sτ1, P
⊥, sτ2 ]. Observe

also that associativity, or lack thereof, of the j-modality is immaterial for
the argument.

Thus the translation s can be extended to L sequents (where A and B are
types; τ1, τ2, and τ3 are trees; and i ∈ I):

• sα =







sA ⋆ sB if α = A ⋆ B;
[i sτ1, sτ2, sτ3 ] if α = [i τ1, τ2, τ3 ];
[j P

⊥, sτ1, sτ2 ] if α = [j τ1, τ2 ].

Graphically, we have:
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s(A ⋆ B) s[i τ1, τ2, τ3 ] s[j τ1, τ2 ]

sτ2

sτ1

P⊥

sτ2sτ3

sτ1

×i ×j

sA

sB

Thus any translation sα of an L-seaweed α satisfies the following properties
(where A1 and A2 are L-types and τ1, τ2, and τ3 are L-trees):

• if sα is the trivial seaweed A1 ⋆ A2 then, for any h ∈ {1, 2}, Ah =
sBh for some suitable L-type Bh; more generally, all the leaves of a
translation sα are translations of L-types;

• if sα = [i τ1, τ2, τ3 ] then, for any h ∈ {1, 2, 3}, τh is equal, up to
associativity and commutativity of the modality j, to sσh for some
suitable L-tree σh;

• if sα = [j P
⊥, τ1, τ2 ] then, for any h ∈ {1, 2}, τh is equal, up to

associativity and commutativity of the modality j, to sσh for some
suitable L-tree σh.

Observe that the LCb non-theorem mentioned earlier, i.e.

[[ ]-1A], [[ ]-1B]⇒ [ ][ ]-1(A×B)

yields, under the translation, a sequent that clearly cannot be proved in the
new setting:

(P ×̃j(P
⊥℘jA)×̃(P ×̃j(P

⊥℘jB))⇒ P×j(P
⊥℘j(A×B))

Theorem 3.49 Let α be an L sequent. Then α is an L theorem if and only
if its translation sα is an L′ theorem.

Proof. The necessity of the condition can be verified by a straightforward
proof by induction on the length of L-derivations. To show that the condi-
tion is sufficient, we will proceed by induction over the number n of logical

106



rules in cut-free L′-derivations. If n is zero, there is nothing to show. Sup-
pose that a derivation D of sα involves at least one application of a logical
rule and consider the bottom-most logical rule r. If r is an instance of a bi-
nary rule of modality i ∈ I, then the derivation has the following structure,
where A0 and A1 are L-types, τ0 and τ1 are L

′-trees, and Σ is a sequence of
structural rules:

...D′
0

...D′
1

τ0 ⋆ sA0 sA1 ⋆ τ1
[i τ0, sA0×isA1, τ1 ]

...Σ

sα

There are L-trees σ0 and σ1 such that, for any h ∈ {0, 1}, the trans-
lated tree sσh is equal, up to L′-structural rules, to τh and such that
sα = [i sσ0, s(A0×iA1), sσ1 ]. For any h ∈ {0, 1}, continuing the deriva-
tion D′

h with suitable structural rules yields a L′-derivation of sσh ⋆ sAh

and therefore, by induction hypothesis, there are derivations Dh of σh ⋆Ah.
Combining D1 and D2 with the ×i-rule yields finally a derivation of α. If
the last logical rule r is an instance of a ×j-rule, then the structure of the
derivation is the following, where A is an L-type, τ0 and τ1 are L

′-trees, and
Σ is a list of structural rules:

...D′
0

...D′
1

τ0 ⋆ P sA ⋆ τ1
[j τ0, P×jsA, τ1 ]

...Σ

sα

Observe that the derivation D′
0
can only be trivial, meaning that τ0 must

be P⊥. Indeed, the P⊥ that is the other conclusion of the axiom that
introduces P has to be combined in D′

0
by a tensor rule, the only way to

join subderivations in a cut-free proof. But this would yield a type B×hP
⊥,

that cannot be a subtype of any translated L-type. Therefore τ0 = P⊥ and
there is an L-tree σ1 such that sσ is equal, up to L′-structural rules, to τ1
and such that sα = s[j [j]A, σ1 ]. Completing D

′
1
at the bottom with suitable

structural rules yields a derivation of sA⋆sσ1. By induction hypothesis there
is an L-derivation D1 of A ⋆ σ1 and therefore, simply applying at the end a
[j]-rule, an L-derivation of [j [j]A, σ1 ]. If the last logical rule r is unary the
derivation has one of the following structures, where A0 and A1 are L-types,
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τ is an L′-tree and Σ is a list of L′-structural rules:

...D′

[i τ, sA0, sA1 ]

τ ⋆ (sA0)℘i(sA1)
...Σ

sα

...D′

[j τ, P
⊥, sA1 ]

τ ⋆ P⊥℘i(sA1)
...Σ

sα

In any case there is an L-tree σ such that sσ is equal, up to L′-structural
rules, to τ . Moreover, in the first case α = σ ⋆ A0℘iA1 and in the second
case α = σ⋆ [j]-1A1. Applying the list Σ of structural rules immediately after
the derivation D′ yields an L′-derivation of, respectively, s[i σ,A0, A1 ] and
s[j σ,A1 ]. In each case, by induction hypothesis, there is a derivation D of
[i σ,A0, A1 ] (respectively [j σ,A1 ]) that yields, adding a ℘i-rule ([j]

-1-rule),
an L-derivation of α. �

The previous result on the faithfulness of the embedding and the theory
already established for Φ-LL calculi, yield the following results without the
need for any other proof.

Definition 3.50 A Φ-LLb pseudostructure/(partial) proof structure is an
NL pseudostructure/(partial) proof structure where N = I ∪ {j}, and L =
TΦ-LLb(V ).

Corollary 3.51 Let Π be a Φ-LLb proof structure and let α be a Φ-LLb
sequent. The following facts are equivalent:

• Π is Φ-LLb correct, i.e. it satisfies (DR2), (ENDO), (BALi) for
any binary modality i such that ai 6∈ Φ, and (ADJi) for any binary
modality i such that ci 6∈ Φ; any switching of Π is Φ-LLb-equivalent
to α;

• there is a Φ-LLb derivation D of α such that (D) = Π.

The embedding of Φ-LCb into Φ-LLb allows us to transfer the previous
characterization to the former calculi.

Corollary 3.52 Let Π be a Φ-LCb proof structure and let τ ⇒ A be a
Φ-LCb sequent. The following facts are equivalent:
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• Π is Φ-LCb correct, i.e. it satisfies (DR2), (ENDO), (BALi) for
any binary modality i such that ai 6∈ Φ, and (ADJi) for any binary
modality i such that ci 6∈ Φ; any switching of Π is Φ-LLb-equivalent
to τ• ⋆ A◦;

• there is a Φ-LCb derivation D of τ ⇒ A such that (D) = Π.
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Part II

Beyond multimodality
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Chapter 4

Discontinuous Lambek

Calculus

The Lambek Calculus LC is a deductive system endowed with a multiplica-
tive conjunction, called henceforth the continuous product, and its residual
operators, the backward and forward slashes. It is a logic for typing trees
identified up to associativity and deals, therefore, with lists of types. On the
phonological level, the continuous product is interpreted in free semigroups
as the operation of concatenation. But natural language goes beyond con-
catenation and includes discontinuous phenomena, i.e. it displays semantic
units that are realized phonetically by non-adjacent material and, more gen-
erally, semantic-prosodic mismatches.

The research on the Discontinuous Lambek Calculus ([82, and references
therein]) aims at formulating a logic that keeps as many as possible inter-
esting properties of LC, while being able to deal in a natural way with dis-
continuity. Applications of variants of the Discontinuous Lambek Calculus
have been discussed in a number of publications ([79, 84, 91, 90, 82, 87, 88]),
some of which written in collaboration with the author.

The core of the Discontinuous Lambek Calculus is the Hypersequent Calcu-
lus HCω

ǫ
, a logic built around a deterministic discontinuous product called

wrap.1 In these systems, a type with i points of discontinuity is encoded
in a configuration by the list of its i + 1 components. The discontinuous

1A discontinuous type constructor was proposed in [68], but the sequent calculus lacked
a left rule for the introduction of the operator. An ordered sequent format for wrap was
given in [78] and a prosodically labelled sequent format in [79]. Earlier, Pollard’s thesis
([102]) had proposed wrapping of headed strings, the head of the second string being
the target of the wrapping (see [119] for a discussion of the weak equivalence of Head
Grammars and grammars based on a fragment of the Discontinuous Lambek Calculus).
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Wrapping around the lth point of discontinuity

Fi+1⊙lFj

FjFi+1

· · · · · · j l10l−110 · · ·l+1 i+1

Residual operators

0 1 l−1 1 · · ·· · · l l+1 · · · k

Fk↓lFh−1+kFk

Fh−1+k

0 h

0 1 l−1 1 · · ·· · · l l+1 · · · h

FkFh−1+k↑lFk

Fh−1+k

0 k

Figure 4.1: Discontinuous operators: an informal introduction

products combine types via wrapping avoiding interleaving of components
of different types, as sketched informally in Figure 4.1. Concatenation can
be seen as a degenerate case of wrapping, namely when all the components
of the first factor preceed the components of the second. The extract and
infix implications (see Figure 4.1) are the residual operations of the wrap
product.2

Using the vector notation, proposed by the author in the joint work [84] (see
Section 4.2.1), the logical rules of the calculus follow the same schema as the
LC rules (see Section 4.2.2). As for the interaction with semantics, there is
nothing to add, since the discontinuous product and implications are treated
just as the Lambek product and slashes. The Cut Elimination Property has
been proved for HCω

ǫ
([90]) and for the Displacement Calculus, i.e. HCω

ǫ

2The extract and infix implications appear already in [68] following the work of [4, 5].
For a sequent presentation of these operators –with control over the insertion point– see
again [78, 79].

114



enriched with units of sort zero and one.

Another version of the Hypersequent Calculus can be obtained enriching
HCω

ǫ
with a nondeterministic wrap operator and its two residual operators

([84]). The nondeterministic wrap, represented by the operator ⊙, has an
additive flavour. To introduce on the left a type A⊙B, one must be able to
deterministically wrap A around B at any point of discontinuity.3

Phonologically, discontinuous types are interpreted in free graded algebras,
i.e. free monoids built out of a collection of prime elements, one of which
–the separator– stands for the point of discontinuity. Completeness with
respect to these models is an open question. For the fragment of the calcu-
lus with at most one point of discontinuity, [119] shows completeness with
respect to powersets of 1-graded residuated algebras. The only known result
about the generative power of Hypersequent Calculi, is a lower bound for
the Displacement Calculus mentioned earlier: this calculus recognizes the
permutation closures of context free languages ([89]).

In this chapter, we present an unpublished theory of proof nets forHCω
ǫ
and

its variants HCω
ǫ|
0

and HCω
ǫ| , which are obtained from the former barring the

empty configuration with no point of discontinuity and, respectively, all the
empty configurations which consist solely of n ≥ 0 points of discontinuity.

The basic idea is that proof structures for Hypersequent Calculi are essen-
tially proof nets of LCP, the Lambek Calculus with Permutation, enriched
with trip instructions. In the basic case, when we consider types that have
at most one point of discontinuity, we can think that links in such proof
structures come equipped with ribbons, the edges of which are the trip in-
structions. The general case is conceptually similar, although it is more
difficult to represent. In any case, the trip instructions determine, in any
proof net, a prosodic trip i.e. a way of travelling deterministically through
its conclusions. Moreover, the proof net can be sequentialized as a deriva-
tion of a sequent in which the order of (components of) types corresponds
to the order of visiting them along the prosodic trip.

We illustrate these ideas with the following example. In this case the
prosodic-semantic mismatch arises from a quantifier phrase that takes sen-
tential scope semantically, even if in a traditional grammar it would be
considered a complement of the verb. Observe that the prosodic trip (the
dotted cycle) travels through the conclusions in the given linear order of the
conclusions, despite the fact that the proof structure is not planar.

3As pointed out by one of the reviewers, HC
ω
ǫ seems to be to LC what Multiple Context

Free Grammars are to Context Free Grammars. Addition of the nondeterministic wrap
disrupt the simile.
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The chapter is structured as follows. To facilitate the comprehension of
the general theory, Section 4.1 illustrates –somewhat informally– the main
ideas on the fragment BDLC of the calculus HCω

ǫ
, where types have at

most one point of discontinuity and parameter paths can be pictured easily.
This serves also the purpose of presenting a corrected version of the theory
expounded in the joint work with G. Morrill ([83]).

The approach followed in [83] consisted of two steps. Firstly, we extended to
BDLC Moot and Piazza’s embedding of LC into First Order Intuitionistic
Linear Logic ([76]), thereby bringing into syntax a relational interpretation
à la van Benthem ([121]). Secondly, we proposed a characterization of those
proof structures that represent translations of BDLC derivations.

Although it is, in principle, possible to extend this approach to cover the
case of an unbounded number of discontinuities, the sheer number of pa-
rameters involved in the translation dissuades from trying. However, it is
clear now that reference to quantification can be obviated altogether, follow-
ing an approach that is akin to Melliès’s topological characterization ([67])
of proof nets for Non-Commutative Multiplicative Linear Logic ([2, 112]).
Essentially our parameter paths correspond, in his theory, to the borders of
the ribbons. But instead of modifying the parameter paths when switching
a proof structure, we use them to define a generalized notion of switching.
The key concept is the notion of hyperswitching, inspired by Girard’s notion
of jump ([41]) and Bellin and van Wiele’s subsequent work ([10]). Indeed
Section 4.2 can be seen as an adaptation of the latter publication to the
discontinuous calculus.

116



4.1 The Hypersequent Calculus BDLC

In this section we present briefly the theory for the Hypersequent Calculus
BDLC, the language of which is obtained enriching the LC language with
types of sort 1, and with a wrap operator that yields continuous types and
its residual implications.

Definition 4.1 The types F0 of sort 0 and F1 of sort 1 are defined on the
basis of a set A of atomic types of sort 0 by:

F0 ::= A | F0·F0 | F0\F0 | F0/F0 | F1⊙F0 | F1↓F0

F1 ::= F0↑F0

The connectives · , \ and / are called ‘continuous product’, ‘under’ and
‘over’, and the connectives ⊙ , ↓ and ↑ are called ‘discontinuous product’,
‘infix’ and ‘extract’. A type F1 of sort 1 has two components

0
√F1 and

1
√F1.

Definition 4.2 The configurations O0 of sort 0 and O1 of sort 1 are defined
by the following unambiguous grammar, where Λ is the empty configuration
and [ ] is the metalogical separator marking the point of discontinuity:

O0 ::= Λ | F0,O0 | 0
√F1,O0,

1
√F1,O0

O1 ::= O0, [ ],O0 | O0,
0
√F1,O1,

1
√F1,O0

Definition 4.3 A BDLC sequent Oi ⇒ Fi of sort i (i ∈ {0, 1}) consists
of a BDLC configuration Oi and a BDLC type Fi, both of sort i.

For any type F1 of sort 1, the vector notation
−→F1 designates the configuration

0
√F1, [ ],

1
√F1. For any configuration O1 = Γ, [ ],∆ of sort 1 and O0 of sort

0, the notation O1|O0 denotes the configuration Γ,O0,∆.

The expression Γ[F0] indicates a configuration with a distinguished occur-
rence of the type F0 of sort zero. Γ[

−→F1] stands for a configuration with a
distinguished occurrence, in this order, of the first and second component of−→F1 (see Definition 4.15 for a more formal statement).

The rules of BDLC, the Hypersequent Calculus for Basic Discontinuity, are
given in Figure 4.2.

In order to develop a theory of proof nets for BDLC, let us focus our
attention first on its continuous fragment, i.e. the Lambek Calculus LC.
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identity and cut rules

Id A⇒ A Cut
Γ⇒ A ∆[

−→
A ]⇒ B

∆[Γ]⇒ B

logical rules for continuous operators

·L Γ[A,B]⇒ C

Γ[A·B]⇒ C
·R Γ⇒ A ∆⇒ B

Γ,∆⇒ A·B
\L Γ[A]⇒ C ∆⇒ B

Γ[∆, B\A]⇒ C
\R B,Γ⇒ A

Γ⇒ B\A
/L

Γ[A]⇒ C ∆⇒ B

Γ[A/B,∆]⇒ C
/R

Γ, B ⇒ A

Γ⇒ A/B

logical rules for discontinuous operators

⊙L Γ[
−→
A |B]⇒ C

Γ[A⊙B]⇒ C
⊙R Γ⇒ A ∆⇒ B

Γ|∆⇒ A⊙B

↓L Γ[A]⇒ C ∆⇒ B

Γ[∆|B↓A]⇒ C
↓R

−→
B |Γ⇒ A

Γ⇒ B↓A

↑L Γ[A]⇒ C ∆⇒ B

Γ[
−−→
A↑B|∆]⇒ C

↑R Γ|B ⇒ A

Γ⇒ A↑B

Figure 4.2: Rules of BDLC

There are the usual notions of polarity and proof structures built out of
links. TheBDLC links for continuous operators are (planar) forking ribbons
decorated by the usual Lambek links and with parameter edges being the
borders of the ribbons, see Figure 4.3. The usual edges of the Lambek links
are pictured as solid lines and are referred to as predicate edges, since the
semantic reading of the proof nets are obtained from them according to the
semantic trip instructions ([30, 81]). Parameter edges are pictured as dotted
lines and should be thought of as syntactic trip instructions. Identity and cut
links are also (non-forking) ribbons and come with parameter edges. This
representation is inspired by van Benthem’s binary relational intepretation
of Lambek types ([121]). Notice that, in ℘-links, one parameter edge is
marked by a symbol, the quantifier ∀.4 Parameter edges join in the obvious
way to form parameter paths and cycles. To extend all parameter paths to
cycles, we add base links to the repertoire of links. They consist simply of
parameter edges that are added at the conclusions of the proof structures.

We are ready now to rephrase in our notation Melliès’s characterization of
LC proof nets ([67]).

4In this version of the theory it could be just any symbol, but in [80] the symbol really
stood for a universal quantification.
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Logical links

B◦ A◦

A·B◦

×
A◦ B•

B\A◦

∀
℘

B• A◦

A/B◦

∀
℘

A·B•

A• B•

∀
℘

B◦ A•

B\A•

×
A• B◦

A/B•

×

Identity, cut, and base links

ApAp ApAp
Ap

where p and p are opposite polarities

Figure 4.3: LC links with parameter edges

Proposition 4.4 An LC proof structure with parameter edges is correct if
and only if the following conditions are satisfied:

1. Output-uniqueness. There is exactly one conclusion of output polarity.

2. Danos-Regnier acyclicity. Every predicate edge cycle crosses both edges
of some ℘-link.

3. ∀-correctness. Every parameter cycle is ∀-correct, i.e. it contains
exactly one ∀ symbol.

Observe that each predicate edge has one parameter edge on its left and
one on its right. If the predicate edge is labeled by an input type, the left
parameter can be thought of as the start of the type, and the right parameter
as the end. For an output type this is reversed:

start A• end end A◦ start

Extending the theory to discontinuity, types of sort 1 have four incident
parameter edges, corresponding to a quaternary relational predication, that
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logical links

A⊙B•

A• B•

∀
∀℘

A↓B•

A◦ B•

×

A↑B•

A• B◦

×

A⊙B◦

B◦ A◦

×

A↓B◦

B◦ A•

∀
∀ ℘

A↑B◦

B• A◦

℘

cut and base links

Ap
Ap A• A◦

Figure 4.4: Discontinuous links with parameter edges

encodes the start and end of the two components:5

start1 end2 A
• start2 end1

end1 start2 A
◦ end2 start1

The expanded links for the discontinuity operators are given in Figure 4.4,
along with the link for cut over types of sort 1. They can no longer be
regarded as ribbons. Rather parameter paths can be considered as trip in-
structions. There are also discontinuous base links, i.e. trip instructions on
the conclusions of the proof structure that are labeled by types of sort 1.
Observe that while continuous ℘-links introduce one ∀ symbol each, discon-
tinuous ℘-links either introduce no symbol or they introduce it twice.

The conditions listed in Definition 4.4 are no longer sufficient to guarantee
sequentializability, as proved by the counterexample reported in Figure 4.5.

5With this ordering, the parameter edges do not cross inside a link. In the general
theory of the next section, however, it is impossible to avoid crossing inside certain links.
Parameters will be ordered as follows:

for any input type of sort i: < start1, end1, start2, end2, . . . , starti, endi >;
for any output type of sort i: < endi, starti, . . . , end2, start2, end1, start1 > .
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Figure 4.5: An incorrect BDLC proof structure

Danos-Regnier acyclicity will be replaced by the stronger condition of hyper-
acyclicity, a notion based on the concept of hyperswitching. The new condi-
tion replaces the resolution criteria of [80] and corrects the input-acyclicity
condition of [83].6

Definition 4.5 The range of a ℘-link L in a BDLC proof structure Π
consists of the premises of L and, if L introduces a ∀ on a cycle γ, any node
crossed by γ.

Definition 4.6 A hyperswitching of a ℘-link L is the choice of one element
of the range of L. A hyperswitching s of a BDLC proof structure Π is
the choice of a hyperswitching for each ℘-node of Π. The graph sΠ is the
graph obtained from a hyperswitching s of Π disconnecting at any ℘-link its
premises from the ℘-node and connecting the latter with the element of the
range selected by the hyperswitching (see Figure 4.6).

Definition 4.7 A BDLC proof structure is correct, or it is a BDLC proof
net, if:

1. Output-uniqueness. There is exactly one conclusion of output polarity.

6The input-acyclicity conditions states that no parameter cycle can contain both pa-
rameter edges of a‘n input type of sort zero. In general, this is too strong a condition,
since it would wrongly reject, e.g., the proof structure associated to the derivation of the
BDLC theorem E× (B\A), ((A↑B)⊙(C/C))\(E\D) ⇒ D. I conjecture that it is correct
if we restrict the calculus to non-empty sequents.
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Figure 4.6: A ℘-link, its left and right switching and a hyperswitching

2. Hyper-acyclicity. There is no cyclic hyperswitching.

3. ∀-correctness. Every parameter cycle is ∀-correct.

As will be seen in the following sections, a BDLC proof net can be se-
quentialized as a derivation of a BDLC theorem, the structure of which is
contained, implicitly, in the proof net. Indeed, correctness of a proof struc-
ture entails the existence of a parameter cycle –called the prosodic trip–
that goes through all the parameter edges of the conclusions. To read the
theorem off the proof net, one needs only to follow the prosodic trip starting
up from the rightmost parameter edge of the unique output conclusion and
write down the (components of the) successive types visited according to
the instructions of Figure 4.7.

instructions on conclusions

sort 0 sort 1

A

A• A◦

A

A◦

[ ] A
0
√
A

1
√
A

A•

Figure 4.7: Reading a theorem off the proofnet

For instance, Figure 4.8 shows an example of a proof net with a discontinuous
functor for the following type assignments:

gave+1+the+cold+shoulder : (N\S)↑N
John : N
Mary : N
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Figure 4.8: An example of a proof net for a discontinuous idiom

The proof net contains a prosodic trip, from which one can read off the
following sequent:7

N , 0
√

(N\S)↑N , N , 1
√

(N\S)↑N ⇒ S
John + gave + Mary + the+ cold+ shower

Notice that discontinuous operators are useful also in dealing with phenom-
ena other then discontinuity. An example is the classical issue of the multiple
readings of a sentence such as ‘everyone loves someone’, where the quanti-
fiers are assigned type (S↑N)↓S. Figure 4.9 shows subject wide scope and
object wide scope analyses.

4.2 The Hypersequent Calculus HCω
e

In this section, we study the Hypersequent calculusHCω
ǫ
and the two closely

related variants HCω
ǫ|
0

and HCω
ǫ| . They differ only in the definition of the

collection of their sequents. In particular:

7Since the proof net contains no ℘-link marked by a ∀ symbol, all parameter edges
must belong to the prosodic trip.
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Figure 4.9: Proof nets for ‘everyone loves someone’

• the HCω
e
empty configuration of sort zero is not an HCω

ǫ|
0

configuration;

• the HCω
e
empty configurations of any sort are not HCω

ǫ| configurations.
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4.2.1 Types and hypersequents

Definition 4.8 For any e ∈ {ǫ, ǫ|0, ǫ|}, the set THCω
e

(V ) of HCω
e
types is the

smallest set that contains, for each h ≥ 0, the types Fh of sort h generated
by the following grammar on the basis of a set V =

⋃

h∈N Vh of atomic types
(where {Vh : h ∈ N} is a partition of V ):8

Fh ::= Vh |
(Fi·Fj) | (Fi+1⊙lFj) | (∀i, j ∈ N such that i+ j = h)
(Fk\Fh+k) | (Fh+k/Fk) | (∀k ∈ N)
(Fk↓lFh−1+k) | (Fh−1+k↑lFk) (∀k ∈ N such that k ≤ h− 1)

where l is any positive integer less or equal to the sort of the left subtype.

A discontinuous type Fh of sort h is represented, in configurations, by h+ 1
matched occurrences. Each occurrence is referred to as a segment or com-
ponent. Types of sort 0 have only one segment. The cumbersome use of
coindexation can be avoided, since interleaving of segments of discontinuous
types is not allowed, i.e. there is no configuration such as the following:

. . . , Ai, . . . , Bj , . . . , Ai, . . . , Bj, . . .

To achieve the matching of the components of a type of sort h it is enough
to specify their relative order. Matched occurrences of an h-sorted type
Fh will be denoted by 0

√Fh,. . . ,
h
√Fh. For any 0-sorted type F0, the only

component is 0
√F0. Clearly, F0 =

0
√F0. In a configuration of sort h there

are h occurrences of the metalogical separator [ ] marking the points of
discontinuity.

Definition 4.9 The set of HCω
ǫ
configurations is the smallest set of lists

defined by the following unambiguous grammar, where Λ denotes the empty
list and, for any natural number j, Oj is a configuration of sort j:

O0 ::= Λ
Oh+1 ::= [ ],Oh

Ok ::= 0
√Fi,O1, 1

√Fi, . . . ,Oi, i
√Fi,O0

where in the last line, for each j ∈ {0, . . . , i}, Oj is a configuration and
k =

∑i
j=0 sort(Oj).

8As usual, in writing a type, its outer brackets will be dropped.
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As we will see below, the empty string Λ is not an HCω
ǫ|
0

configuration.

Nevertheless, we can still say, by convention, that it has sort zero.

Definition 4.10 The set of HCω
ǫ|
0

configurations is the smallest set of lists

defined by the following unambiguous grammar where, for any natural num-
ber j, Oj is a configuration of sort j:

O1 ::= [ ]
Oh+1 ::= [ ],Oh

Ok ::= 0
√Fi,O1, 1

√Fi, . . . ,Oi, i
√Fi,O0

where in the last line, for each j ∈ {0, . . . , i}, Oj is a configuration or the
empty string9 and k =

∑i
j=0 sort(Oj).

Let Λh denote, for any natural number h, the list that consists of h occur-
rences of the metalinguistic symbol [ ]. Although in HCω

ǫ| no such string is

a configuration, we can still set sort(Λh) to be, by convention, h.

Definition 4.11 The set of HCω
ǫ| configurations is the smallest set of lists

defined by the following unambiguous grammar:

Oh+1 ::= [ ],Oh

Ok ::= 0
√Fi,O1, 1

√Fi, . . . ,Oi, i
√Fi,O0

where in the last line, for each j ∈ {0, . . . , i}, Oj is either a configuration
or a list of separators and k =

∑i
j=0 sort(Oj).

Definition 4.12 For any e ∈ {ǫ, ǫ|0, ǫ|}, an HCω
e
sequent Oi ⇒ Fi of sort i

(i ∈ N) consists of an HCω
e
configuration Oi and an HCω

e
type Fi, both of

sort i.10

9Within HC
ω
ǫ|
0
it is not possible to type a configuration – such as 0

√
F1,

1
√
F1– where

two components of a type are adjacent. Nevertheless, we prefer to consider such strings
as configurations, since they are needed in the versions of the hypersequent calculus that
includes the bridge operator ̂ ([86, 82]).

10We could have defined a sequent to be just a pair of a configuration and a type. Inspec-
tion of the rules, however, shows that for any provable sequent the premise configuration
and the conclusion have necessarily the same sort. Thus, by restricting the language, we
do not surreptitiously restrict the calculus.
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It is useful to realize that HCω
e
configurations can be generated also by

other grammars. For this purpose, we define sequent wrappings and vector
configurations.

Definition 4.13 Let Oh = Γ0, [ ], . . . , [ ],Γh be a list of components of HCω
e

types that contains h ≥ 1 points of discontinuity. Let O be another list of
components of HCω

e
types. For any positive integer i ≤ h, we denote by

Oh|iO the list
Γ0, [ ], . . . ,Γi−1,O,Γi, . . . , [ ],Γh

obtained wrapping Oh around O at the ith point of discontinuity, i.e. replac-
ing the ith occurrence of [ ] in Oh by the list O.

An obvious proof by induction shows that, if Oh and O are HCω
e
configu-

rations, then Oh|iO is also an HCω
e
configuration.

Definition 4.14 Let Fh be a type of sort h ≥ 1. The vector configuration−→Fh associated to Fh is the configuration obtained separating the components
of Fh by occurrences of [ ]. The vector configuration

−→F0 associated to F0 is
the configuration F0 of sort 0.

For instance, if O3 = Γ0, [ ],Γ1, [ ],Γ2, [ ],Γ3 and O are configurations and
F3 is a type, then we have:

O3 |1O = Γ0,O ,Γ1, [ ],Γ2, [ ],Γ3;−→F3 = 0
√F3, [ ],

1
√F3, [ ],

2
√F3, [ ],

3
√F3;−→F3|1O = 0

√F3,O, 1
√F3, [ ],

2
√F3, [ ],

3
√F3.

Notice that HCω
ǫ
configurations of sort h (h ∈ N) can be generated by the

following grammar:

Oh ::= Λh | −→Fh | Oi,Oj | Oi+1 |lOj

where, in the last two cases, i, j ∈ N are such that i+ j = h.

To obtain a grammar for HCω
ǫ|
0

, we have to modify slightly the above defi-

nition. In the first clause, h must be positive. Moreover in the last clause,
Oj can be either a configuration or the empty string.

For HCω
ǫ| , on one hand we remove the clause Oh = Λh for any h ≥ 0. On

the other hand, in the last clause, we require that either both Oi+1 and Oj

are configurations, or at most one of them is an empty string of some sort.
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identity and cut rules

Id A⇒ A Cut
Γ⇒ A ∆[

−→
A ]⇒ B

∆[Γ]⇒ B

logical rules (i ∈ N)

⊙iL
Γ[
−→
A |i−→B ]⇒ C

Γ[
−−−→
A⊙iB]⇒ C

⊙iR
Γ⇒ A ∆⇒ B

Γ|i∆⇒ A⊙iB

↓iL
Γ[
−→
A ]⇒ C ∆⇒ B

Γ[∆|i−−−→B↓iA]⇒ C
↓iR

−→
B |iΓ⇒ A

Γ⇒ B↓iA

↑iL
Γ[
−→
A ]⇒ C ∆⇒ B

Γ[
−−−→
A↑iB|i∆]⇒ C

↑iR Γ|i−→B ⇒ A

Γ⇒ A↑iB

Figure 4.10: Rules of HCω
e

4.2.2 Rules of the calculus

Let us introduce the convention whereby the unique structural operator, the
comma marking concatenation, will be denoted by the (associative) operator
|0. The logical operators ·, \, and / will be denoted, respectively, by ⊙0, ↓0
and ↑0.

Definition 4.15 A configuration Oi of sort i appears in the context O[ ] if
O[Oi] is a configuration that can be generated by the following grammar
(where O is a configuration and l is a positive integer smaller or equal to
the sort of the configuration on the left of |l):

O[Oi] = Oi | O[Oi]|lO | O|lO[Oi] .

The rules of HCω
e
, the hypersequent calculus for ω-discontinuity, are given

in Figure 4.10.

Theorem 4.16 If a sequent is derivable in HCω
e

then it has a Cut-free
derivation.

Proof. See the proof given by O. Valent́ın in the Appendix to the joint
work [90]. �

Corollary 4.17 It is decidable whether a hypersequent of HCω
e
is a theo-

rem.
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HCω
e

translation into LCP

types

V (atomic) V
A·B and A⊙B f(A)·f(B)

A/B,B\A,B↓lA, and A↑lB f(B)−◦f(A)
configurations

Λh Λ−→
A f(A)

Oi,Oj and Oi|lOj f(Oi), f(Oj)

Figure 4.11: The hyperforgetful translation f

Proof. By backward-chaining in the finite Cut-free hypersequent search
space.

TheHCω
ǫ
(HCω

ǫ|
0

,HCω
ǫ| ) system is a refinement of the Commutative Lambek

Calculus LCP with (without) the empty configuration. This is because each
HCω

e
rule, translated sequent by sequent via the hyperforgetful function of

Figure 4.11, yields an LCP rule. Denote by fD the translation, sequent by
sequent, of anHCω

e
derivation D. The next proposition follows immediately.

Proposition 4.18 If D is an HCω
e
derivation of a sequent O ⇒ F , then

fD is an LCP derivation of fO ⇒ fF .

This result suggests that HCω
e
proof structures might be obtained from

LCP proof structures, on which further restrictions are imposed. We turn
now to develop this idea.

4.3 Proof nets for HCω
e

HCω
e
proof structures are, essentially, LCP proof structures constrained by

deterministic trip instructions. We define the correctness criteria, and adapt
Bellin and van de Wiele’s results ([10]) to the context of the hypercalculus.

4.3.1 Proof structures and correcteness criteria

In this section we define the notions of HCω
e
proof structure and underlying

hyperstructure. The latter is a multigraph, in which we individuate param-
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eter cycles. These paths are a subsidiary notion in stating the correctness
criteria for HCω

e
proof structures. Moreover, any HCω

e
proof net can be

sequentialized as a derivation of a HCω
e
theorem, the structure of which can

be read off the proof net travelling along a special parameter cycle, called
the prosodic trip.

Proof structures and hyperstructures

Definition 4.19 An HCω
e
proof structure is a connected graph such that:

• its edges are labeled by pairs Ap of an HCω
e

type A and a polarity
symbol p ∈ {•, ◦};

• its (logical) ternary nodes are labeled either by × or ℘; one of the
incident edges is specified to be the conclusion; the other two edges are
called the premises;

• its (non-logical) binary nodes are labeled by ID and CUT (or more sim-
ply, represented by a horizontal line); ID nodes have two conclusions,
CUT nodes have two premises;

• unary nodes are not labeled and have one premise;

• there are no other nodes;

• any edge is a premise of exactly one node and the conclusion of exactly
one node.

For any node N , the node together with its incident edges is called a link and
N is said to be its central node. In an identity (cut) link the central node is
labeled by ID (CUT). In an input (output) ◦-link the central node is ternary
and the conclusion is labeled by a polarized type A ◦B• (A ◦B◦), where ◦ is
any logical operator. In a base link, the central node is unary; its premise
is called a conclusion of the proof structure. The labels of a link are related
in the way explained in Figures 4.12 and 4.13 (the interpretation and use of
the lists of parameters that appear on the links will be explained below).

HCω
e
links come with trip instructions encoded by lists of parameters: each

incident edge labeled by a type of sort n is assigned, depending on the type
of the link, a list of 2(n + 1) distinct integers. For typographical reasons,
we write the edge label on top of the edge and the parameters of a link in
between the label and the central node.
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identity and cut links

Ap
ϕ
Ap

ϕ♯
id Ap Ap

ϕ♯ϕ
cut

links for continuous operators

input output

A• B•
uψϕu

℘

A·B•
ϕψ

B◦ A◦
uϕψu

×

A·B◦
ψϕ

ξ♯vϕξ
A• B◦

×

A/B•
ϕv

B• A◦
ξ♯ϕvξ

℘

A/B◦
vϕ

B◦ A•
ξ♯ψuξ

×

B\A•
uψ

A◦ B•
ξ♯uψξ

℘

B\A◦
ψu

where if ξ = v1, v2, . . . , vn then ξ
♯ = vn, . . . , v2, v1

Figure 4.12: HCω
e
links (first part)
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links for discontinuous operators (length(ϕ) = 2i− 1)

input output

A• B•
uχvϕuvψ

℘

A⊙iB
•

ϕχψ

B◦ A◦
ψyxϕyχx

×

A⊙iB
◦

ψχϕ

A• B◦
vξ♯uϕξψ

×

A↑iB•
ϕuvψ

B◦ A◦
ψξ♯ϕuξv

℘

A↑iB◦
ψvuϕ

B◦ A•
ϕ♯ψξ♯ξvuϕ

×

B↓iA•
uψv

A◦ B•
ϕ♯uvξ♯ξψϕ

℘

B↓iA◦
vψu

base links

input output

A•

ϕ2
A◦

uϕ2u

where if ϕi+1 = u1, . . . , ui+1 then ϕ
2
1 = u1u1 and ϕ

2
i+1 = ϕ2

i ui+1ui+1

Figure 4.13: HCω
e
links (second part)
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logical link cut link identity link base link
.

.

.

n
. .

n
. .

n

.

n

Figure 4.14: Edges ordering in a hyperstructure

The trip instructions are a guide in identifying the parameter paths. In
order to define this notion, we introduce now the concept of hyperstructure.

Definition 4.20 The hyperstructure underlying an HCω
e
proof structure Π

is the multigraph hΠ defined by the following characteristics:

• hΠ has the same set of nodes as Π;

• two nodes n1 and n2 are adjacent in hΠ if and only if they are adjacent
in Π; call < n1, n2 > the edge that connects them in Π;

• any two adjacent nodes n1 and n2 of hΠ are connected by a bundle
b(< n1, n2 >) of 2(n + 1) edges, where n is the sort of the type that
labels < n1, n2 > in Π.

Moreover, the edges of a bundle are endowed with an order. If e is a premise
(conclusion) of a link with central node n, then the edges of the bundle b(e)
are ordered clockwise (anticlockwise) around n, as indicated in Figure 4.14.

Hyperpaths and parameter paths

The paths determined by the trip instructions in a proof structure are called
parameter paths and are determined by hyperpaths in the underlying hyper-
structure. We recall the notions of path in a graph and a multigraph, and
then we define the notions of hyperpath and parameter path.

Definition 4.21 A path in a graph is a list < v0, . . . , vn > of nodes such
that for any i ∈ {1, . . . , n} there is an edge ei that connects the nodes vi−1
and vi. A path is a cycle if its first and last nodes coincide. A path (cycle)
is simple if its nodes are pairwise distinct (except the first and the last one).
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Definition 4.22 A path in a multigraph is a pair

(< v0, . . . , vn >,< e1, . . . , en >)

of lists of nodes and edges such that for any i ∈ {1, . . . , n} the edge ei
connects the nodes vi−1 and vi.

Definition 4.23 Consider two edges f and g of a link L of an HCω
e
proof

structure Π, where f and g are possibly the same edge. Let ϕ and γ be the
parameters assigned to f and g by the trip instructions in L. Consider the
ith edge fi of the bundle b(f) and the jth edge gj of the bundle b(g). We say
that fi and gj are hypercontiguous if the ith element of ϕ is equal to the jth

element of ψ.

Definition 4.24 A hyperpath in a hyperstructure hΠ is a path

χ = (< v0, . . . , vn >,< e1, . . . , en >)

where either n = 1 or the following conditions hold:

• for any i ∈ {1, . . . , n− i}, the edges ei and ei+1 are hypercontiguous;

• the edges e1, . . . , en are pairwise distinct.

The hyperpath χ is said to underly the path π = < v0, . . . , vn > of Π. If
π is a cycle, i.e. if v0 = vn, we require furthermore that en and e1 are
hypercontinguous. Then χ is said to be the hypercycle underlying π.

Definition 4.25 A parameter path (cycle) in an HCω
e
proof structure Π is

a path (cycle) for which there is in hΠ an underlying hyperpath (hypercycle).

For instance, as illustrated below, there are several ways to cross –along
parameter paths– a link with conclusion C ⊙D•, where C and D are types
of sort 1:

C• D•
1234

℘
2563

1564

C⊙D•

134



If C ⊙D• is the left premise of the following link, the (hyperpaths underlying
the) parameter paths across the two links join in the obvious way and yield
longer parameter paths:

A• B•
1234

℘
4567

123567

A·B•

If A·B• is a conclusion of the proof structure, then the parameter paths
across it are joined pairwise:

A·B•
112233

Correctness criteria

The notions of acyclic hyperswitching and ∀-correct parameter cycle are the
key concepts of the HCω

ǫ
correctness criteria.

Definition 4.26 Let L be a par link in an HCω
e
proof structure Π. Let c

be its central node and let n1 and n2 be the nodes of L connected to c by L’s
premises. The range of L consists of n1, n2 and any other node, different
from c, that belongs to a parameter cycle supported by L. A hyperswitching
of L is a choice of an element of its range.

Definition 4.27 Let s be a choice of a hyperswitching for each of the par
links of a HCω

e
proof structure Π. A hyperswitching sΠ of Π is the graph

obtained applying one of the following operations to any par link L of Π:

• if s selects at L one of its premises, then disconnect the other premise
from L’s central node11;

11Formally, by disconnecting in a graph Π an edge < n,m > from the node m we mean
removing the edge < n,m > and adding the edge < n, l > where l is an extra node that
does not belong to Π.
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• if s selects at L an element n of the range that is not a premise of L,
then disconnect both premises from the central node of L and connect
it with n.

A hyperswitching s of a proof structure Π is said to be cyclic if sΠ contains
a cycle.

Definition 4.28 Let L be a par link in an HCω
e

proof structure Π. A
parameter path (cycle) π is supported by L if two consecutive edges of a
hyperpath (hypercycle) underlying π belong to the bundles of L’s premises.

Definition 4.29 Let Π be an HCω
e
proof structure. A parameter cycle that

contains no conclusion of Π is ∀-correct if it is supported by exactly one par
link. A parameter path/cycle that contains a conclusion of Π is ∀-correct if
it is not supported by par links. A hyperpath (hypercycle) that underlies a
∀-correct parameter path (cycle) is said to be ∀-correct.

Definition 4.30 For any e in {ǫ, ǫ|0, ǫ|}, an HCω
e
proof structure is HCω

ǫ
-

correct, or is an HCω
ǫ
proof net, if it satisfies the following correctness con-

ditions:

1. Output-uniqueness: There is exactly one conclusion of output polarity.

2. Hyperacyclicity: There are no cyclic hyperswitchings.

3. ∀-correctness: Every parameter cycle is ∀-correct.

Observe that, because of the nature of the trip instructions, any parameter
path can be extended to a parameter cycle. However, if the trip instructions
on the base links are ignored, there are some maximal hyperpaths, i.e. hy-
perpaths that are not part of any longer hyperpath. We will refer to such
hyperpaths as prosodic paths.

Let γ be a parameter cycle that contains some conclusion of Π. Observe that
any hypercycle underlying γ consists of a list of prosodic paths. Clearly γ
is ∀-correct if and only if all these prosodic paths are ∀-correct. Therefore
∀-correctness can be stated equivalently in the following way:

• every parameter cycle that does not go through conclusions of Π is
∀-correct; and

• every prosodic path is ∀-correct.
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Figure 4.15: Presequent instructions on an output and an input conclusion

Prosodic trips

Some HCω
ǫ
proof structures contain a parameter cycle, the prosodic trip,

that goes through all the parameter edges of all the conclusions of the proof
structure. Travelling along it, one can read –in the sense explained below–
the presequent associated to it. This is the candidate to the sequent proved
by any sequentialization of a correct proof structure.

Definition 4.31 An HCω
e
presequent Γ ⇒ C is a pair comprising a HCω

e

type C and a list Γ of instances of the metalinguistic symbol [ ] and compo-
nents of HCω

e
types.

Let Π be a HCω
e
proof structure that has exactly one output conclusion

X◦ and n − 1 ≥ 0 input conclusions Y1, . . . , Yn−1. Let t =
∑n

h=1(Yh + 1).
Assume that in hΠ there is a hypercycle, defined by a sequence π of edges,
that contains all the 2t edges of the bundles of Π’s conclusions. Let us write
π so that its last two elements e2t−1 and e2t are, in this order, the first and
last edges of the bundle of the unique output conclusion. Let < e1, . . . , e2t >
be the subsequence of π that contains only the edges of the bundles of the
conclusions.

Let, for any polar type Xp labeling an edge e, b(Xp)j denote the j
th element

of the bundle of e. Consider, if it exists, the sequence < l1, . . . , lt > where
lt = X and, for any i ∈ {1, . . . , n−1}, li is defined as follows (see Figure 4.15):

• li= j
√
Y if for some input conclusion Y • and 0 ≤ j ≤ sort(Y ):

e2i−1 = b(Y •)2j+1 and e2i = b(Y •)2(j+1);

• if li=
j
√
Y and lh=

k
√
Y for some conclusion Y • and 0 ≤ j, k ≤ sort(Y ):

i < h if and only if j < k;
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• li= [ ] if for some h(i) ∈ {1, . . . , sort(X)}:

e2i−1 = b(X◦)2h(i)+1 and e2i = b(X◦)2h(i).

• if li= lj= [ ] for any indexes i, j ∈ {1, . . . , n− 1} then:

i < j if and only if h(j) > h(i).

Definition 4.32 If the sequence < l1, . . . , ln >, as defined above, exists we
say that π is the prosodic trip of the proof structure Π and l1, . . . , ln−1 ⇒ ln
is the presequent associated to it.

4.3.2 Correctness and sequentialization

In this section we establish the correctness of the proof structure (D) as-
sociated, in the usual way, to a derivation D. We adapts Bellin and van
de Wiele’s characterization of empires and kingdoms, derive the Splitting
Lemma in the context of HCω

e
, and finally prove some sequentialization

results.

Correctness

Proposition 4.33 If D is an HCω
ǫ
derivation of a hypersequent O ⇒ F ,

then the proof structure (D) is HCω
ǫ
-correct, it has a prosodic trip and

O ⇒ F is the presequent associated to it.

Proof. The proof structure (D) has, by definition, exactly one output con-
clusion, namely F◦. The other properties will be proved by induction over
the length n of the derivation D. If n = 0, the result is trivial. Suppose
n ≥ 1 and consider the last rule r in D. If r introduces the type A·B
on the left, let D′ be the subderivation of D obtained removing r. By in-
duction hypothesis, (D′) is correct and its prosodic trip π′ yields a sequent
Γ[
−→
A,
−→
B ] ⇒ C. Adding to (D′) a final link L with conclusion A·B• breaks

π′ into a hypercycle γ, that goes through the last edge of b(A) and the first
edge of b(B), and a hypercycle π that is the prosodic trip of (D) and yields
the presequent Γ[

−−→
A·B] ⇒ C. Observe that both γ and π are ∀-correct and

that no other hypercycle is modified. Therefore ∀-correctness is preserved.
Moreover, any hyperswitching of (D) can be obtained from a hyperswitching
of (D′), connecting L’s conclusion to some element of L’s range. Hence hy-
percyclicity is preserved. The other cases of unary rules r are similar, except
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that more hypercycles might be created when inserting the link related to r.
For instance, if r introduces the type A\B on the right, then adding to (D′)
the link L with conclusion A\B◦ splits the prosodic trip π′ of (D′) into the
prosodic trip π of (D) and, because of the ordering conditions in the defini-
tion of the prosodic trip, into 2sort(A) + 1 hypercycles, each of which goes
through one edge of b(A) and one of b(B). Consider now the case in which
the last rule r in D is binary and introduces the type A1·A2. Then removing
r yields, for any i ∈ {1, 2}, a subderivation Di of Γi ⇒ Ai . By induction
hypothesis, for both i the proof structure (Di) is correct and has a prosodic
trip πi that yields the final sequent of Di. Joining (D1) and (D2) via the
final link L with conclusion A1·A◦2 results in creating (D) and in fusing π1
and π2 into the prosodic trip π of (D). Observe that π is ∀-correct and that
any other hyperpath of h(D) is contained either in h(D1) or in h(D2). As
a consequence, no hypercycle supported by a par link spans over the two
substructures. Therefore (D) is ∀-correct and has no cyclic hyperswitchings.
All the other binary cases, including the cut rule, are similar. �

Empires and kingdoms

Since proof structures are graphs and graphs are defined on the bases of their
sets of nodes and edges, it makes sense to compare them using the subset
relation. For instance, a substructure S of an HCω

e
proof structure Π is a

proof structure the nodes and edges of which are all nodes and edges of Π.
For the same reason, it makes sense to combine (non-disjoint) substructures
with unions and intersections. In particular if A labels an edge of an HCω

ǫ

proof net Π, one can consider the partially ordered set S(A) of subnets of
Π that contain A among their conclusions. We show now that the poset
S(A) is a lattice and we characterize its maximal element, the empire of A,
thereby proving that S(A) is not empty.

Definition 4.34 A subnet of a proof net Π is a substructure S of Π that
is a proof net. The empire (kingdom) of an edge A of Π is, if it exists, the
biggest (smallest) subnet eA (kA ) of Π in which A is a conclusion.

Proposition 4.35 If two subnets of an HCω
ǫ

proofnet share at least an
edge, then their intersection is a subnet.

Proof. Let S and T be subnets of an HCω
ǫ
proofnet that share at least an

edge. Their intersection R is clearly a proof structure. It is ∀-correct be-
cause, on the one hand, any proper hypercycle of hR is a proper hypercycle
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of hΠ and therefore it is supported by exactly one par link. On the other
hand, any prosodic trip τ of R is part of either a prosodic trip of Π or a
hypercycle that is supported by a par link the conclusion of which does not
lie in R . In either case, τ is not supported by any par link in R. Moreover
R has no cyclic hyperswitching. Indeed, if it had a cyclic hyperswitching
then it could be extended to a hyperswitching of, say, S. The extension
would still be cyclic, in contradiction with the correctness of S. Finally,
R has exactly one output conclusion, because fR = fS ∩ fT and the lat-
ter has one output conclusion, since any of its switchings is connected and
acyclic because the set of proof nets of linear logic is closed under non-empty
intersection. �

Proposition 4.36 If two subnets of an HCω
ǫ

proof net are not disjoint,
then their union is a subnet.

Proof. Let R be the union of two non-disjoint subnets S and T . R is
∀-correct. Indeed, on the one hand, any proper parameter cycle in R lies
either in S or in T and therefore is supported by exactly one par link.
On the other hand any prosodic path in R extends either to a prosodic
path of Π or to a proper parameter path in Π. In the former case, the
prosodic trip is supported by no par link in Π and, a fortiori, in R. In
the latter case the supporting par link cannot lie in R, for otherwise the
whole parameter cycle would be contained therein, and therefore does not
support the parameter path in kC. Hyperacyclicity is inherited from Π,
since any hyperswitching of kC can be extended to a hyperswitching of
Π. Output-uniqueness follows from connectedness of all switchings of hR,
i.e. connectedness of all simple hyperswitchings of R. The latter property
holds since any simple hyperswitching of R, when restricted to S or T , is
connected and because S and T are non-disjoint. �

To prove that S(A) is not empty we characterize the empire of A, via the
notion of trimming.

Definition 4.37 Consider a premise A of a link L in an HCω
e
proof struc-

ture Π. For any switching s of Π, the trimming of sΠ at A is the graph sΠA

defined as follows:

• if L is a conclusion link or a par link at which σ does not select A, let
sΠA = sΠ;
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• if L is a par link at which s selects A or it is a tensor or cut link,
disconnect A from the central node of L and let sΠA be the component
that contains A.

Switchings and trimmings can be compared, qua graphs, by the subset re-
lation and combined with the operations of union and intersection.

Theorem 4.38 Let Π be an HCω
ǫ

proof net. For any edge A of Π, the
empire eA of A in Π exists and is the proof net determined in the following
equivalent ways:

1. S = ⋂

s sΠA where s varies over all hyperswitchings of Π;

2. the smallest substructure T that contains A and is closed under the fol-
lowing conditions on links, the premises of which do not include A:

(a) if one premise of a tensor or cut link is in T , then the link is in T ;
(b) the range of a ℘ link is in T if and only if the link is in T .

Proof. Let K be the set of substructures of Π that contain A and are
closed under conditions (a) and (b) on links, the premises of which do not
include A. Observe that S is an element of K (Lemma 4.39) and is minimal
therein (Lemma 4.40). Therefore T exists and coincides with S. Moreover,
S is HCω

ǫ
-correct (Lemma 4.41, 4.42, and 4.43) and is maximal in S(A)

(Lemma 4.44). �

Lemma 4.39 S is an element of K.

Proof. That S is a substructure that contains A and satisfies condition (a)
is immediate. As for one implication of (b), suppose that the range of some
℘ link L is in S. If L’s conclusion X is not in S, then A is a premise of a
logical link with conclusion Z (or of a cut link, the other premise of which
is Z) and in some hyperswitching s there is a path < X,π,Z,A >. But L
is switched to elements of L’s range and therefore X and A are also part of
another path contained in s. Hence s is proved to be cyclic in contradiction
with Π’s hyperacyclicity. Then L’s conclusion must be in S as well. As for
the other implication of (b), assume that the premises and the conclusion
X of a ℘ link L is in S (the following reasoning is illustrated in the picture
below).
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Suppose some node n of L’s range is not in S. Then there is a hyperswitching
s such that X, but not n, is in sΠA. Hence, A is a premise of a logical (or
cut) link M , the conclusion (other premise) of which we call Z. Moreover,
if M is a ℘ link, then s chooses A at M . Let < π,Z > be the path in sΠ
the first node of which is n. Clearly < π,Z > and sΠA do not share any
edge. The hyperswitching s does not choose n at L, for otherwise s would
be cyclic. It chooses some other element v of the range. The edge E that
joins L’s central node with v is part of sΠA and therefore it does not belong
to < π,Z >. Consider the switching t that is just like s except for choosing
n at L. Since X is in S, there is a path < X, ρ,A > in tΠA that does not
contain Z. But < π,Z > is also contained in tΠ, which therefore contains a
cycle. Since this is in contradiction with Π’s hyperacyclicity, the range of L
must be contained in S. It is thus established that S belongs to the set K.
�

Lemma 4.40 S is the smallest element of K.

Proof. Observe that K is closed under intersection. Therefore K contains
a minimal element T . Suppose that T $ S and let W ∈/ T be an edge in S.
Consider a hyperswitching s such that:

α) if A is a premise of a ℘ link L, then s selects A at L; otherwise,

β) if a premise, but not the conclusion, of a ℘ link L is in T , then s selects
at L an element of its range that is not in T .

Since W is in S, there is a path π in sΠA that starts with A (that is in
T ) and ends with W (that is not in T ). Since T is a substructure that has
properties (a) and (b), the path π can only exit T passing through a premise
X of a link L such that X, but not L’s conclusion, is in T and L is one of
the following links:
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(i) a tensor link, a premise of which is A;

(ii) a ℘ link, a premise of which is A;

(iii) a ℘ link such that T contains one of its premises but not all its range.

But none of these options are available, respectively, for the following rea-
sons:

(i) if X = A since π ⊆ sΠA and if X 6= A because s is acyclic;

(ii) s would select A at L and π ⊆ sΠA;

(iii) by construction of s.

Therefore S = T . �

Lemma 4.41 Every parameter cycle in S is ∀-correct.

Proof. Consider a hypercycle γ of hS. There are two possibilities. First,
suppose that γ goes through no conclusion of S or it goes only through
conclusions of S that are also conclusions of Π. Then γ is a hypercycle in
hΠ and therefore it is ∀-correct. Secondly, suppose that γ goes through
some conclusion of S that is not a conclusion of Π. Then γ, as a path of
hΠ, splits into a number of hyperpaths γ1, . . . , γn that are each part of a
hypercycle δ1, . . . , δn of hΠ (where δ1, . . . , δn are not necessarily distinct
hypercycles). If, for some i ∈ {1, . . . , n}, δi goes through some conclusion of
Π, then δi and, a fortiori, γi is ∀-correct. If, for some i ∈ {1, . . . , n}, δi does
not go through some conclusion of Π, then it must be supported by exactly
one par link L. Because of property (b) the conclusion of L cannot be part
of S because δi, and therefore the range of L, is not all in S. Hence γi is
∀-correct. Since γ1, . . . , γn are all ∀-correct, so is γ. �

Lemma 4.42 Every hyperswitching of S is acyclic.

Proof. Notice that, because of property (b), no par link of S can be switched
to an element outside of the substructure. Hence any hyperswitching s of S
can be extended to a hyperswitching of Π and must therefore be acyclic. �
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Lemma 4.43 S has exactly one output conclusion.

Proof. Observe that S has the same number of output conclusions as fS,
where f is the hyperforgetful function defined in Figure 4.11. Therefore it
is enough to show that fS has exactly one output conclusion. Notice that
fΠ has no cyclic switchings and has exactly one output conclusion. There-
fore, by Theorem 2.38, all of its switchings are connected graphs. Then any
hyperswitching of Π is a connected graph. Indeed, assume that a hyper-
switching s has more than one component. Suppose that a par link L of
sΠ is switched to an element n of its range that is not any of its premises.
Consider a hyperswitching t that is just like s except for choosing at L one
of its premises. Observe that t and s have the same number of components.
This is because disconnecting L’s conclusion from n increases the number
of components by one (for otherwise t would have been cyclic) and connect-
ing it with the chosen premise reduces the number of components by one
(for otherwise s would be cyclic). Iterating this reasoning we can obtain a
simple hyperswitching of Π that has the same number of components as s.
But s can have only one component, because its choice of premises of par
links determines also a switching of fΠ. Hence any hyperswitching t of Π
must be connected. Any simple hyperswitching of S can be extended to a
hyperswitching t of Π that respects conditions α) and β) of Lemma 4.40.
Now, tΠ is connected and therefore s = tΠA is connected. Therefore there
is a connected switching of fS which, by Theorem 2.38, must have exactly
one output conclusion. �

Lemma 4.44 S is the empire of A in Π.

Proof. Let R be a subnet of Π that has A among its conclusions and
suppose that there is an edge Z that belongs to R but not to S. Hence
Z is not part of a trimming sΠA for some hyperswitching s of Π. Since R
is ∀-correct, no par link of R is switched to an element outside of R and
therefore it is possible to restrict s to a hyperswitching t of R. Since every
hyperswitching of R is connected, Z and A have to be part of a path in tR.
But this cannot be the case since A is a conclusion of R and Z 6∈ sΠA. �

Since S(A) is not empty and is closed under intersections it has a minimal
element, the kingdom of A.
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The Splitting Lemma

An HCω
ǫ
proof net is in splitting conditions if it has no final par link, and

at least a tensor or cut link. The Splitting Lemma shows that any proof net
that satisfies these conditions contains a final link L the removal of which
results in splitting the proof net into the (disjoint) empires of L’s premises.
To establish this result, some technical lemmas are needed.

Definition 4.45 Let P and Q be the premises in an HCω
ǫ
proof net of a

cut link L with central node C. The kingdom kC of the cut link L is the
graph obtained joining the kingdoms kP and kQ by the cut link L.

Proposition 4.46 The kingdom kC of a cut link L in an HCω
ǫ
proof net

Π is the smallest subnet of Π that contains L.

Proof. Clearly, kC is a substructure. It is ∀-correct. Indeed, on the one
hand, any proper parameter cycle in kC lies either in kP or in kQ and
therefore is supported by exactly one par link. On the other hand any
prosodic path in kC extends either to a prosodic path of Π or to a proper
parameter path in Π. In the former case, the prosodic trip is supported by
no par link in Π and, a fortiori, in kC. In the latter case the supporting
par link cannot lie in kC, for otherwise the whole parameter cycle would
be contained therein, and therefore would not support the parameter path
in kC. Hyperacyclicity is inherited from Π, since any hyperswitching of kC
can be extended to a hyperswitching of Π. Finally, kC has a unique output
conclusion, because the polarity of its premises are opposite and both kP
and kQ have exactly one output conclusion. �

The above reasoning establishes the following result.

Proposition 4.47 The kingdom kC of the conclusion C of a tensor link L
is the result of joining the kingdoms of L’s premises by the link L.

To unify the previous two results in a unique statement, we will hereafter
refer to the central node of a cut link L as its conclusion.

Lemma 4.48 For any i ∈ {0, 1}, let Pi be a premise of a link Li in an
HCω

ǫ
proof net, and let Ci be Li’s conclusion, if Li is a logical link, or Li’s

central node if Li is a cut link. Suppose that C0 6= C1 and P1 ∈ eP0. Then:

C1 6∈ eP0 if and only if C0 ∈ kC1.
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Proof. Observe that, since P1 ∈ eP0 ∩ kC1 then both R = eP0 ∩ kC1 and
S = eP0 ∪ kC1 are subnets. Assume that C1 6∈ eP0. Then eP0 is properly
contained in S. If C0 6∈ kC1, then S would be a subnet of Π that has
P0 among its conclusions, thus contradicting eP0’s maximality among such
subnets. Therefore C0 ∈ kC1. To prove the other implication, assume now
that C0 ∈ kC1. Then R is properly contained in kC1. If C1 6∈ eP0, then R
would be a subnet of Π that has C1 among its conclusions, thus contradicting
kC1’s minimality among such subnets. Therefore C1 ∈ eP0. �

Let CΠ be the set of the conclusions of logical links and the central nodes of
cut links in an HCω

ǫ
proof net. Consider the relation << defined as follows

on CΠ:
C0<<C1 if and only if C0 ∈ kC1.

Lemma 4.49 Let Π be an HCω
ǫ
proof net and let C0 and C1 be elements

of CΠ. If C0<<C1 and C1<<C0, then C0 and C1 coincide.

Proof. Suppose that C0 and C1 do not coincide. Then kC0 = kC0 ∩ kC1 =
kC1. If C0 is the conclusion of a par link L, removing it yields a smaller
subnet, contradicting kC1’s minimality. If C0 is the conclusion of a tensor
link L (or the central node of a cut link L), then kC0 is the result of joining
the kingdoms of L’s premises by the link L. Then C1 belongs to the kingdom
kP0 of a premise P0 of L and therefore it belongs to the empire eP0. But by
Lemma 4.48, C1 6∈ eP0. Hence C0 and C1 coincide. �

Lemma 4.50 (The Splitting Lemma) AnyHCω
ǫ
proof net Π in splitting

conditions has a splitting tensor or cut link.

Proof. Consider an element C0 of CΠ that is maximal with respect to <<.
Let A0 and A1 be the premises of the link L with conclusion C0. Then L
is a splitting tensor or cut link. Clearly, only L’s central node belongs to
eA0∩eA1. Moreover, Π can be obtained joining eA0 and eA1 with L. Indeed,
if this was not the case, then for some i ∈ {0, 1} there would be a premise
P1 ∈ eAi of a link with conclusion C1 ∈/ eAi such that C1 is at or above
an element D of CΠ. By Lemma 4.48, C0 ∈ kC1. Since kC1 ⊆ kD, then
C0 ∈ kD, i.e. C0 << D, which is in contradiction with C0’s maximality.
Therefore eA0 and eA1 joined by L yield Π. �
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Sequentialization

The proof of the Sequentialization Theorem is based on a reasoning by
induction over the complexity of the proof net. One way to reduce the
complexity is to apply the Splitting Lemma. Another way is to remove a
final ℘-link. There might be more ways to sequentialize a proof net, but
their differences are not substancial.

Lemma 4.51 Removal of a final ℘-link from an HCω
ǫ
proof net preserves

correctness.

Proof. Removal of a final ℘ link L preserves each correctness condition for
the following reasons:

- output-uniqueness: in any ℘-link there are as many output premises as
output conclusions;

- hyperacyclicity: the existence of cycles does not depend on a final par
link;

- ∀-correctness of proper parameter cycles: after L’s removal there are the
same or fewer parameter cycles;

- ∀-correctness of prosodic paths: some prosodic paths are shortened re-
moving final parameter edges and, possibly, some parameter cycles turn
into prosodic paths since the edges of the bundles of L’s premises are
removed.

�

Theorem 4.52 (Sequentialization) Any HCω
ǫ
proof net Π has a prosodic

trip τ and there is an HCω
e
derivation D of the hypersequent O ⇒ F as-

sociated to τ such that (D) = Π.

Proof. The proof is by induction over the complexity of Π. If Π contains
only an identity link with conclusion A• and A◦, then Π has a prosodic trip
and it yields the sequent A ⇒ A. Suppose now that Π has a final par link
L. Removing L yields a proof structure Π′ that, by Lemma 4.51, is HCω

ǫ
-

correct. By induction hypothesis, Π′ can be sequentialized as a derivation
D′ of the sequent associated to the prosodic trip τ ′ of Π′. Observe that if two
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edges e1 and e2 of L’s premises bundles are part of a hypercycle γe in hΠ,
then γe is equal to < e1, e2, δe > for some hyperpath δe that, because of ∀-
correctness, contains no edge of the bundles of either Π’s conclusions or L’s
premises. Such edges e1 and e2 bear in L the same parameter and determine
the relative position of L’s premises in the hypersequent associated to τ ′. All
possible cases are reviewed in the following table. Then the derivation D′
can be completed to a derivation D, simply adding the rule that introduces
the conclusion of L.

L’s conclusion L’s premises
hypersequent
associated to τ ′

rule to be
added to D′

A·B• A•

ϕu
B•

uψ
Γ[
−→
A,
−→
B ] ⇒ C left ·

A⊙iB
• A•

ϕuvψ
B•

uχv
Γ[
−→
A |i−→B ] ⇒ C left ⊙i

A/B◦
B•

vξ
A◦

ξ♯ϕ
Γ,
−→
B ⇒ A right /

B\A◦ A◦

ϕξ
B•

ξ♯u
−→
B,Γ ⇒ A right \

A↑iB◦
B•

uξv
A◦

ψξ♯ϕ
Γ|i−→B ⇒ A right ↑i

B↓iA◦ A◦

ψχϕ
B•

ϕ♯uvψ♯

−→
B |iΓ ⇒ A right ↓i

If Π is in splitting conditions then by Lemma 4.50 the proof net Π splits,
removing a cut or final tensor link L, into two subnets Π1 and Π2. By in-
duction hypothesis, for any i = 0, 1 there is a derivation Di of the sequent
associated to the prosodic trip τi of Πi. In this case, the edges of L’s premises
bundles that bear identical parameters belong to prosodic paths and not to
proper parameter cycles, for otherwise one of the Πi’s would not be correct.
Rule by rule inspection shows that the prosodic paths contain enough in-
formation to guarantee that the derivations D1 and D2 can be combined by
the binary rule that introduces L’s conclusion (or that performs the cut on
L’s premises, if L is a cut link) to form a derivation D and that (D) = Π
has a prosodic trip that yields the sequent proved by D. �

Corollary 4.53 An HCω
ǫ
proof structure is correct if and only if it is se-

quentializable in HCω
ǫ
.

Two HCω
ǫ
derivations D and D′ of a hypersequent are ≡-equivalent if there

is a sequence of HCω
ǫ
derivations D = D1, . . . ,Dn = D′ such that, for any

i ∈ {1, . . . , n− 1}, Di and Di+1 differ at most in the order of application of
two consecutive inferences.
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Theorem 4.54 Let D and D′ be HCω
ǫ
derivations of the same hypersequent.

If (D) = (D′) then D ≡ D′.

Proof. The proof is by induction over n(D,D′) = ∑

γ k(γ) where γ ranges
over all branches of the derivation D and k(γ) is defined as follows. For any
branch γ of D, let Iγ be the last (bottom up) rule where D and D′ agree. If
Iγ is an identity link, then D and D′ agree in the order of application of rules
along this branch and we set k(γ) = 0. If Iγ is not an identity link, let k(γ)
be the number of rules that preceed Iγ in γ. If n(D,D′) = 0 then D = D′ and
there is nothing to show. Suppose instead that for some branch γ, k(γ) ≥ 1.
Let A be the active type of the inference IA above Iγ in γ. Let I

′
A be the

rule in D′, in which the same occurrence of A is active. Let I ′1,. . . ,I
′
k be the

rules in D′ that intervene, in this order, between I ′A and Iγ . We will show,
by induction over k, that there are derivations D0 = D′,D1, . . . ,Dk such
that for all i = 1, . . . , k the derivation Di is obtained from Di−1 permuting
I ′A below I ′i. Clearly, Dk ≡ D′. Since n(D,Dk) = n(D,D′)− 1, by induction
hypothesis D ≡ Dk. Thus D ≡ D′. Let us show that I ′A can be permuted
down I ′1 to obtain the derivation D1. The inductive step of the proof is
entirely similar. The cases of I ′A being a unary rule, or both I ′A and I ′1 being
binary rules, are clear by simple inspection of the rules. If I ′A is a binary
rule that introduces A = A0τA1 (or I

′
A is a cut over A) and I ′1 is a unary

rule introducing a type C = C0πC1 (where τ and π are logical operators)
then the relevant fragments of D and D′ can be represented as follows, where
s{X0, . . . ,Xi} stands for a hypersequent with distinguished occurrences of
the types X0, . . . ,Xi that do not appear necessarily in this order:

D D′

...D0
...D1

s0{A0} s1{A1}
s{A0τA1}

...D′0
...D′1

s′0{A0} s′1{A1}
s′{A0τA1;C0;C1}
s′′{A0τA1;C0πC1}

The rule I ′A can be permuted below I ′1 if there is j ∈ {0, 1} such that C0 and
C1 are in (D′j). This is the case because the rule that introduces C = C0πC1

must occur in D above IA. Therefore C, C0 and C1 belong to (Dj) ⊆ eAj

for some j ∈ {0, 1} and, since (D′i) ⊆ eAi for i ∈ {0, 1} and eA0 ∩ eA1 = ∅,
C0 and C1 belong both to (D′j). �
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The No Empty Configuration criteria

In this section, we propose a characterization of HCω
ǫ
proof nets that can

be sequentialized in HCω
ǫ|
0

and in HCω
ǫ| , i.e. without making use of empty

configurations of sort zero or, respectively, of any sort.

The characterization is similar to the analogous results for proof nets of
linear logic (see Definition 1.32 and subsequent discussion), except that we
use here trimmings of hyperswitchings and we make reference, in the case
of HCω

ǫ|
0

, to the sort of the conclusion of the ℘ node at which we trim the

proof net.

Lemma 4.55 Let Π be an HCω
ǫ
proof net that has exactly one conclusion

D. Then, there is a subnet S of Π that has exactly one conclusion C where,
furthermore, C is the conclusion of a ℘ link. Moreover, if D has sort 0,
then S can be chosen so that its conclusion C has sort 0.

Proof. Apply the same reasoning used in Lemma 1.43, ignoring reference
to unary operators. Observe that if D has sort 0 and Π is in splitting
conditions, then the subnet S can be chosen to have conclusion of sort 0
because of the restrictions of the sort on the premises of the link. �

Theorem 4.56 Let Π be an HCω
ǫ
proof net. Then, the following facts are

equivalent:

1. for every ℘ link L there is a trimming τ at L that contains some
conclusion of Π;

2. all subnets of Π have at least an input conclusion;

3. Π admits a sequentialization in HCω
ǫ| ;

4. all sequentializations of Π are in HCω
ǫ| .

Proof. Observe that property 4 immediately entails 3 and that 4 follows
from 2. To check all equivalences, it will be enough to prove the following
implications: 1 ⇒ 2 ⇒ 3 ⇒ 1.

1 ⇒ 2 : Suppose, by contraposition, that there is a subnet S of Π that has
only one conclusion. Because of Lemma 4.55 we may assume without loss of
generality that the conclusion of S is the conclusion of a ℘ link L. Observe
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that no parameter cycle supported by L can go through L’s conclusion, for
otherwise there would be a cyclic hyperswitching. Therefore no trimming
at L contains conclusions of Π.

2 ⇒ 3 : suppose, by contraposition, that the HCω
ǫ
proof net Π cannot be

sequentialized in HCω
ǫ| , i.e. assume that any sequentialization of Π makes

use of the empty configuration Λn of sort n. Choose a sequentialization D
and let Λn ⇒ A be a sequent proved by a subderivation E of D. Then (E)
is a subnet of Π with no input conclusion.

3 ⇒ 1 : The proof is by induction over the complexity n of Π, defined as
the number of logical and cut links in Π. For n = 0 –and more in general
when there are no ℘ links– there is nothing to show. Consider the case that
n ≥ 1 and there are some ℘ links. Suppose that in Π there is a final ℘
link M . Consider a ℘ link L of Π. If L = M , any trimming at L contains
some conclusion of Π because Π contains some conclusion other then L’s
conclusion. Suppose L 6=M . Removing M yields an HCω

ǫ
Π′ that can still

be sequentialized inHCω
ǫ| . By induction hypothesis there is in Π

′ a trimming

τ ′ at L that contains some conclusion of Π′. Clearly τ ′ can be extended to a
trimming τ of Π that contains some of its conclusions. Suppose now that Π
is in splitting conditions. Then it splits into two subnets both of which can
be sequentialized in HCω

ǫ| . One of the subnets contains a ℘ link L and, by

induction hypothesis, there must be in the subnet a trimming τ ′ at L that
contains some conclusion of the subnet. Clearly, it is possible to extend the
(switching underlying the) trimming so as to obtain a trimming τ at L that
contains a conclusion of Π. �

The previous characterization can be adapted straightforwardly to the case
of HCω

ǫ|
0

. To state the result in a concise way, let us introduce two new
terms.

Definition 4.57 A 0-link in an HCω
ǫ
proof structure is a link the conclusion

of which has sort zero. A 0-subnet of an HCω
ǫ
proof structure is a subnet,

the output conclusion of which has sort zero.

Theorem 4.58 Let Π be an HCω
ǫ
proof net. Then, the following facts are

equivalent:

1. for every ℘ 0-link L, there is a trimming τ at L that contains some
conclusion of Π;

2. all 0-subnets of Π have at least one input conclusion;
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3. Π admits a sequentialization in HCω
ǫ|
0

;

4. all sequentializations of Π are in HCω
ǫ|
0

.

Proof. Apply the same reasoning of the previous theorem, making reference
to configurations of sort zero (rather then any n) and to HCω

ǫ|
0

instead of

HCω
ǫ| . When proving the implication 1 ⇒ 2, observe that the conclusion of

the subnet S can be assumed, without loss of generality, too have sort zero
because of Lemma 4.55. �
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Chapter 5

Bracketed Pregroups

Pregroup grammars are based on partially ordered sets endowed with an
algebraic structure ([62, and references therein]). Given a lexicon L, a list
of lexical items constitutes therein a sentence of type s if the product, in the
given order, of the elements of the pregroup associated in L to the lexical
items is less or equal to s. Thus the partial order underlies a computation
reminescent of the Chomskyian notion of derivation ([24]).1

The roots of this approach, however, lie in logics. Indeed, pregroups are
models for Compact Bilinear Logic [59], a logic obtained collapsing the par
and tensor operators of Abrusci’s Noncommutative Linear Logic ([1]). As a
consequence of the identification, proof nets for this logic are simply planar
asymmetric identity links, where the first conclusion of each link is the right-
negation of its second conclusion.

The translation of Lambek types into pregroups is non-conservative, as re-
marked in [18, 16] where the following example is provided: (p/((p/p)/p))/
p ⇒ p for p atomic cannot be proved in the Lambek Calculus (with or with-
out the empty sequent) but its translation ppllpllplpl ≤ p holds in any pre-
group.

Grammars based on the calculus of free pregroups are weakly equivalent
to context-free grammars ([16]) and thus to the Lambek Calculus. Stabler
has proposed a generalized system, a particular kind of Tupled Pregroup
Grammars [116], that is mildly context sensitive, in Joshi’s sense. Moortgat
and Oehrle [72] have proposed a way to introduce multimodality in pregroup
grammars.

1We are speaking here of a moral equivalent. For a reconstruction of the Minimalist
Program in terms of sublinear logic see [117, 64] and for a discussion of the relation between
the type-logical approach and the minimalist approach see [49].
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But in [63] Lambek, responding to the examples cited in the latter article
with alternative analises, has argued that there is no convincing empirical
evidence for the introduction of multimodalities, basing his preference for
the original proposal on its formal simplicity and on the descriptive results
so far obtained for a variety of languages (see, e.g., [8, 7, 9]).2

To solve problems related with associativity Lambek proposes the use of
punctuation symbols, that have the effect of blocking a derivation ([62]). To
formalize this notion we propose here a generalization of pregroups, adapting
from multimodal Lambek Calculi the notion of unary modalities, called here
brackets and antibrackets. Marking an element of a pregroup with a bracket
has the effect, so to speak, of moving it to a different level: contractions –
cancellation of an element by its negation- are available inside brackets, but
not across them. This is similar to the use of a depth parameter proposed
in [72], but it is achieved inside the language of a poset endowed with an
algebraic structure.

Moreover, the bracket pregroup approach is compatible with Francez and
Kaminski’s proposal of commutation-augmented pregroups. Indeed their
theory –glossing over (important!) technical details– is obtained imposing,
on freely generated pregroups, constraints that allow a limited amount of
commutativity and cancelability ([38]). In this way they obtain pregroups
on which they can define grammars that are mildy context sensitive. The
very same equations can be imposed unproblematically onto the freely gen-
erated pregroups with brackets and antibrackets. The theory of proof nets
of bracketed pregroups, however, is no longer valid since the commuting
inequations yield crossing identity links.

This chapter is based on my publication [35], adding some comments and
improvements that allow for a comparison with Buszkowski’s formalization
of Compact Bilinear Logic ([17]). On the one hand, I have simplified the in-
ductive clause of the definition of the free β-pregroup generated by a poset,
following the work of Kíslak-Malinowska ([51]). On the other hand, I have
expanded the section on Compact Bilinear Logic, including the extension
CBL≤. This is obtained considering a partially ordered set (P,≤P ) of
atomic symbols and replacing the set of identity axioms A ⇒ A with the
larger set of axioms of the form A ⇒ B for any A ≤P B.

It thus becomes possible to prove, for any A ≤P B, the validity of the
following countably many inference schemas (the integer in brackets is a
form of negation, as explained later):

2Notice also that Lambek does not believe in a truth-conditional approach to semantics
and thus he is not bothered by the lack of the Curry-Howard homomorphism for his new
proposal.
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Γ1B
(2n)Γ2 ⇒ ∆

Γ1A
(2n)Γ2 ⇒ ∆

Γ ⇒ ∆1A
(2n)∆2

Γ ⇒ ∆1B
(2n)∆2

Γ1A
(2n+1)Γ2 ⇒ ∆

Γ1B
(2n+1)Γ2 ⇒ ∆

Γ ⇒ ∆1B
(2n+1)∆2

Γ ⇒ ∆1A
(2n+1)∆2

This is, in my opinion, the only significative difference with Buszkowski’s
formalization, where (the equivalent of) the previous four schemas have to
be postulated as rules.3

The chapter has the following structure. The first section covers back-
ground information and gives a sequent presentation of Compact Bilinear
Logic, hereafter referred to as CBL. In the second section, the notion of
β-pregroups is introduced and linguistically motivated. The construction of
the free β-pregroup is explained and proof nets, a geometrical method for
computing simplifications of pregroup expressions, are defined. The third
section shows that the generalization from pregroups to β-pregroups is nat-
ural, in the sense that it arises from the algebraization of an extension of
compact bilinear logic, for which the cut-elimination theorem is proved.

5.1 Compact bilinear logic and pregroups

The first part of this section is a brief review of the connection between
the Lambek Calculus [57], a fragment of Non-commutative Multiplicative-
Additive Linear Logic [1], and an algebraic structure known as pregroup [61].
In the following parts, we propose an axiomatisation of Compact Bilinear
Logic, both with a two- and a one-sided presentation, and we present a proof
of the Cut-Elimination Theorem for Compact Bilinear Logic.4

5.1.1 From the Lambek Calculus to Pregroups

Much research in categorial grammar is based on a logic known as the Lam-
bek Calculus [57], that we recall here in its Gentzen style presentation.

3To be more precise, the inference rules (that correspond to our identity axioms) and
these rules are subsumed by more general inference rules, of which there are countably
many for each A ≤P B.

4Buszkowski reports in [17] a proof of the Cut Elimination Theorem that he had pre-
sented at LACL 2001 in Le Croisic. I prove the theorem with my axiomatisation to pave
the way for the generalization of the result for Compact β-Bilinear Logic, see Section 5.3.
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Definition 5.1 Let P = {A,B, . . .} be a set of propositional symbols. The
LC types are defined inductively as follows:

F := A|F1/F2|F1\F2|F1 × F2.

LC sequents are of the form Γ⇒ F , where Γ is a finite string of types and
F is a type. The rules for the sequent calculus are given in Figure 5.1.

identity and cut

A⇒ A where A ∈ P
Γ⇒ A Γ1AΓ2 ⇒ C

Γ1ΓΓ2 ⇒ C

forward and backward slashes

∆⇒ B Γ1AΓ2 ⇒ C

Γ1A/B∆Γ2 ⇒ C

ΓB ⇒ A

Γ⇒ A/B

∆⇒ B Γ1AΓ2 ⇒ C

Γ1∆B\AΓ2 ⇒ C

BΓ⇒ A

Γ⇒ B\A
product

Γ1ABΓ2 ⇒ C

Γ1A×BΓ2 ⇒ C

Γ⇒ A ∆⇒ B

Γ∆⇒ A×B

Figure 5.1: Sequent rules for the Lambek calculus LC

The Lambek calculus is a fragment5 of the multiplicative part of Non-
commutative Multiplicative Additive Linear Logic [1]. We recall here only
the multiplicative fragment of the logic.

Definition 5.2 Let P be a set of propositional variables, 0 and 1 two con-
stants. The types of the logic are defined inductively as follows:

F := A|0|1|F l|F r|F1 × F2|F1 + F2

where for all types F and G one postulates F = F lr = F rl, (F × G)n =
Gn + Fn, and (F + G)n = Gn × Fn (where n = l, r). Sequents are of the
form Γ⇒ ∆ where Γ and ∆ are not both the null string. The rules for the
sequent calculus are given in Figure 5.2.

In non-commutative linear logic one can define directional implications in
terms of sum and negation: A/B := A + Bl and B\A := Br + A. The
following derivations show that the schemata that correspond to the Lambek

5The fragment is conservative if, unlike in the original definition of the Lambek Calcu-
lus, the definition of sequents of the Calculus allows for empty strings.
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identity

A⇒ A where A ∈ P

cut

Γ⇒ ∆1A∆2 Γ1AΓ2 ⇒ ∆

Γ1ΓΓ2 ⇒ ∆1∆∆2

where Γ1 = Γ2 = ∅, Γ1 = ∆2 = ∅, ∆1 = Γ2 = ∅, or ∆1 = ∆2 = ∅
left- and right-negation

Ψ⇒ F∆

F lΨ⇒ ∆

∆F ⇒ Ψ

∆⇒ ΨF l

Ψ⇒ ∆F

ΨF r ⇒ ∆

F∆⇒ Ψ

∆⇒ F rΨ

one and zero

⇒ 1

Γ1Γ2 ⇒ ∆

Γ11Γ2 ⇒ ∆

Γ⇒ ∆1∆2

Γ⇒ ∆10∆2 0⇒

product and par

Γ1ABΓ2 ⇒ ∆

Γ1A×BΓ2 ⇒ ∆

Γ1 ⇒ ∆1A∆2 Γ2 ⇒ ∆3B∆4

Γ1Γ2 ⇒ ∆3∆1A×B∆4∆2

where either ∆2 = ∆3 = ∅,
∆2 = Γ1 = ∅, or Γ2 = ∆3 = ∅

∆1A∆2 ⇒ Γ1 ∆3B∆4 ⇒ Γ2

∆3∆1A+B∆4∆2 ⇒ Γ1Γ2

where either ∆2 = ∆3 = ∅,
∆2 = Γ1 = ∅, or Γ2 = ∆3 = ∅

∆⇒ Γ1ABΓ2

∆⇒ Γ1A+BΓ2

Figure 5.2: Non-commutative Multiplicative Linear Logic

Calculus axioms for the backward and forward slashes are theorems of Non-
commutative Multiplicative Linear Logic:

ΓB ⇒ A

Γ⇒ ABl

Γ⇒ A+Bl

∆⇒ B
Bl∆⇒ Γ1AΓ2 ⇒ C

Γ1A+BlΓ2 ⇒ C

It has been observed ([59]) that pregroups are models for Non-commutative
Multiplicative Linear Logic in which × and 1 have the same interpretation
as, respectively, + and 0.

Definition 5.3 A pregroup is an algebraic structure (P,×, 1, l, r;≤) such
that:
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1. (P,×, 1) is a monoid, i.e. × is an associative binary operation in P
with unit 1;

2. (P,≤) is a partially ordered set such that, for any a, b, c, d in P , if
a ≤ b and c ≤ d then a× c ≤ b× d;

3. l and r are unary operations that for any a in P satisfy the equations:

al × a ≤ 1 ≤ a× al, and a× ar ≤ 1 ≤ ar × a.

On the other hand, one could define a logic [59] where there is only one
operator that has the property of both the product × and the sum + and
a constant that has the properties of both 0 and 1. In this way, there is
virtually no difference between the type A × B(= A + B), 1(= 0) and,
respectively, the string AB and the empty string. This means that we can
actually dispense altogether with the operators ×, + and the constants 0
and 1. This logic is the subject of the next subsection. As the reader can
verify, its models are pregroups.

5.1.2 Compact Bilinear Logic I

With the identifications suggested above, the rules for sum and multipli-
cation collapse into one rule, that we call here concatenation. Rules for
constants are no longer needed. The other rules are left unchanged.

Definition 5.4 (CBL – two-sided presentation) Let P = {A,B, . . .} be a
set of propositional variables. The CBL types and the strings of CBL types
are defined inductively as follows:

types: F := A|F l|F r where, for all types F , one postulates F = F lr = F rl;

strings: Γ := ∅|F |Γ1Γ2|Γ
l|Γr

where the negation Γn of a string (n stands for l or r) is defined inductively
by ∅n = ∅ and (ΓG)n = GnΓn. Sequents are of the form Γ ⇒ ∆ where
Γ∆ 6= ∅. The rules for the sequent calculus are given in Figure 5.3.

One might be tempted to drop the stipulation F lr = F rl = F , since the
equivalence of F lr, F rl, and F can be proved. In a similar vein, instead
of defining explicitly the negation of a string, one might want to state the
negation rules replacing the symbol F for type with the more generic symbol
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identity

A⇒ A where A ∈ P

cut

Γ⇒ ∆1F∆2 Γ1FΓ2 ⇒ ∆

Γ1ΓΓ2 ⇒ ∆1∆∆2

where Γ1 = Γ2 = ∅ or Γ1 = ∆2 = ∅ or ∆1 = Γ2 = ∅ or ∆1 = ∆2 = ∅
left and right negation

Ψ⇒ F∆

F lΨ⇒ ∆

∆F ⇒ Ψ

∆⇒ ΨF l

Ψ⇒ ∆F

ΨF r ⇒ ∆

F∆⇒ Ψ

∆⇒ F rΨ

concatenation

Γ1 ⇒ Γ2 ∆1 ⇒ ∆2

Γ1∆1 ⇒ Γ2∆2

Figure 5.3: CBL: two-sided presentation

Γ for string, thus defining a logic where one can prove the equivalence of
(ΓG)n and GnΓn (where n = l, r). These, however, would be mistakes, if
one wants to define a logic for which the cut-elimination theorem holds.
Indeed, without the stipulation about the mixed double negation of a type
or, respectively, with the changes concerning the negation of a string, there
would be no cut-free proof of, e.g., the following theorems: AllrA⇒ ∅, and
(ABl)rC ⇒ B(C lA)r.

Observe that we could enrich CBL with an operator · defined by two further
rules, the schemas of which correspond, in Non-Commutative Multiplicative
Linear Logic, to the rule on the left for × and on the right for +:

Γ1ABΓ2 ⇒ ∆

Γ1A ·BΓ2 ⇒ ∆

∆⇒ Γ1ABΓ2

∆⇒ Γ1A ·BΓ2

An application of the concatenation rule and the above rules establishes the
equivalence A · B ⇔ AB for any type A and B. Moreover, one can prove
the validity of the inference rules that correspond, in Non-Commutative
Multiplicative Linear Logic, to the rule on the left for + and on the right
for ×. For instance, the case ∆2 = ∆3 = 0 is proved as follows:

∆1A⇒ Γ1 B∆4 ⇒ Γ2

∆1AB∆4 ⇒ Γ1Γ2

∆1A ·B∆4 ⇒ Γ1Γ2

Γ1 ⇒ ∆1A Γ2 ⇒ ∆3B∆4

Γ1Γ2 ⇒ ∆1AB∆4

Γ1Γ2 ⇒ ∆1A · B∆4
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Therefore, the operator · has both the properties of the + and the × oper-
ators.

In a similar vein, one could introduce in CBL the constant ǫ defined by
the following rules, the schemas of which correspond –in Non-Commutative
Multiplicative Linear Logic– to the introduction rule of 0 on the left and of
1 on the right.

ǫ ⇒ ⇒ ǫ

Observe that ǫ is equivalent to the empty sequent and that the other intro-
duction rules for 0 and 1 can be proved as follows:

Γ1Γ2 ⇒ ∆
Γ2 ⇒ Γr

1∆ ǫ ⇒
ǫΓ2 ⇒ Γr

1∆

Γ1ǫΓ2 ⇒ ∆

Γ ⇒ ∆1∆2

Γ1∆
r
2 ⇒ ∆1 ⇒ ǫ

Γ1∆
r
2 ⇒ ∆1ǫ

Γ1 ⇒ ∆1ǫ∆2

Therefore, ǫ has both the properties of 0 and 1.

Enriching CBL with the mentioned operators yields a logic, the Tarski-
Lindebaum algebra of which is a pregroup in which atomic symbols are not
comparable.

If the set P of atomic symbols comes equipped with a (non-trivial) partial
order, then we define an extension CBL≤ of CBL, obtained replacing the
set of CBL identity axioms by the larger set of axioms A ⇒ B for any A
and B such that A ≤ B in P .

For any A ≤ B, and any integer n, we can prove the theorems A(2n) ⇒ B(2n)

and B(2n+1) ⇒ A(2n+1) where C(m) stands for C negated m times by r
(l) if m is positive (negative) and C(0) = C. For instance, let us prove
A(2n) ⇒ B(2n) with n positive. The proof is by induction on n. Observe
that:

A(2n−2) ⇒ B(2n−2)

A(2n−2)B(2n−1) ⇒

B(2n−1) ⇒ A(2n−1)

⇒ B(2n)A(2n−1)

A(2n) ⇒ B(2n)

If n = 1, the previous lines are a proof of the basic step. If n > 1, they are
a proof of the inductive step.
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In CBL≤ there are also new valid inference schemas. In particular, for any
A ≤ B in P and any integer n one can prove the following rules:

Γ1B
(2n)Γ2 ⇒ ∆

Γ1A
(2n)Γ2 ⇒ ∆

Γ ⇒ ∆1A
(2n)∆2

Γ ⇒ ∆1B
(2n)∆2

Γ1A
(2n+1)Γ2 ⇒ ∆

Γ1B
(2n+1)Γ2 ⇒ ∆

Γ ⇒ ∆1B
(2n+1)∆2

Γ ⇒ ∆1A
(2n+1)∆2

The proofs are either via cut or by straightforward inductions over |n|. For
instance, this is the proof of the bottom left schema, in the case that n = 0:

ΓAr∆ ⇒ Φ

ΓAr ⇒ Φ∆l

Γ ⇒ Φ∆lA

Γ ⇒ Φ∆lB

ΓBr ⇒ Φ∆l

ΓBr∆ ⇒ Φ

All the other checks are similar.

To prove the cut-elimination theorem it is expedient to give a one-sided
presentation of the logic.

5.1.3 Compact Bilinear Logic II

Definition 5.5 (CBL – one-sided presentation) Let P = {A,B, . . .} be a
set of propositional variables. The types of the logic and the strings of types
are defined inductively as follows:

types: F := A|F l|F r where, for all types F , one postulates F = F lr = F rl;

strings: Γ := ∅|F |Γ1Γ2|Γ
l|Γr

where the negation ⊢ Γn of a string (n stands for l or r) is defined inductively
by ∅n = ∅ and (ΓG)n = GnΓn. Sequents are of the form ⊢ Γ where Γ is not
the null string. The rules for the sequent calculus are given in Figure 5.4.
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identity and cut

⊢ ArA
where A ∈ P

⊢ Γ1FΓ2 ⊢ ∆1F
r∆2

⊢ ∆1Γ1∆2Γ2

where Γ2 = ∅ or ∆1 = ∅
left- and right-negation

⊢ FΓ

⊢ ΓF ll

⊢ ΓF

⊢ F rrΓ

concatenation

⊢ Γ1Γ2 ⊢ ∆
⊢ Γ1∆Γ2

Figure 5.4: CBL: one-sided presentation

Note that the asymmetry of the axioms with respect to negations is only
apparent, since ⊢ AAl can be proved observing that Al = Arll and using the
left negation rule.

As in the previous section, if the set P of propositional variables is partially
ordered, we define the one-sided presentation of CBL≤ substituting the set
of CBL identity axioms with the larger set of axioms ⊢ ArB for all atomic
propositions A and B such that A ≤ B in P .

Unsurprisingly, for any A ≤ B in P and any integer n, the following theorems
and inference schemas hold in CBL≤ :

⊢ A(2n+1)B(2n) ⊢ B(2n+2)A(2n+1)

⊢ ΓA(2n)

⊢ ΓB(2n)

⊢ ΓB(2n+1)

⊢ ΓA(2n+1)

In the following proposition, we show that the two- and the one-sided pre-
sentations are equivalent.

Proposition 5.6 Let Γ and ∆ be strings. The sequent Γ⇒ ∆ is a theorem
of two-sided CBL≤ if and only if ⊢ Γr∆ is a theorem of one-sided CBL≤.
Moreover, Γ ⇒ ∆ has a cut-free proof if and only if ⊢ Γr∆ has a cut-free
proof.

Proof: We will prove that:

162



(i) if Γ ⇒ ∆ has a (cut-free) proof of length at most k, then there is a
(cut-free) proof of ⊢ Γr∆;

(ii) if a sequent Γr∆ has a (cut-free) proof of length at most k, then there
is a (cut-free) proof of ⇒ Γr∆ (and thus of Γ⇒ ∆).

The proofs are by induction on k. For the base case there is nothing to
prove, because if k = 0 then Γ⇒ ∆ and ⊢ Γr∆ are instances of the identity
axioms. Let us suppose that (i) and (ii) hold for all n ≤ k.

To prove (i) for n = k + 1, let us assume that, in two-sided CBL≤, there is
a proof of Γ⇒ ∆ of length k+ 1. Let us analyse the last rule ρ used in the
proof.
If ρ was an instance of the concatenation rule

Γ1 ⇒ Γ2 ∆1 ⇒ ∆2

Γ1∆1 ⇒ Γ2∆2

then, by IH (induction hypothesis), there are proofs of ⊢ Γr
1Γ2 and of ⊢

∆r
1∆2 and thus using concatenation one obtains a proof of ⊢ ∆r

1Γ
r
1Γ2∆2 =

(Γ1∆1)
rΓ2∆2.

If ρ was the negation rule

∆F ⇒ Ψ

∆⇒ ΨF l

then by IH there is a proof of ⊢ F r∆rΨ and thus of ⊢ ∆rΨF l (just apply
the left negation rule). If the last rule was the introduction rule of a right
negation on the left side of the sequent, the proof is similar. For the other
negation rules there is nothing to prove.

Note that in all the previous cases, if we start with a cut-free proof we obtain
again a cut-free proof. If ρ was an instance of the cut rule

Γ⇒ ∆1F∆2 Γ1FΓ2 ⇒ ∆

Γ1ΓΓ2 ⇒ ∆1∆∆2

then, by IH, there are proofs of ⊢ Γr∆1F∆2 and ⊢ Γr
2F

rΓr
1∆ and thus,

using cut, of ⊢ Γr
2Γ

r∆1Γ
r
1∆∆2. Note that this sequent is indeed equal to

⊢ (Γ1ΓΓ2)
r∆1∆∆2, because by the definition of the cut rule either ∆1 or Γ1

is the empty string.
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Since we have exhausted all the possible case for ρ, the induction is complete
for part (i).

The proof of case (ii) is similar. Assume that there is a (cut-free) proof of
length k + 1 of the sequent Γr∆ and analyse the last step ρ in the proof.

If ρ was an instance of the concatenation rule

⊢ Γ1Γ2 ⊢ ∆

⊢ Γ1∆Γ2

then there are proofs of ⇒ ∆ and Γl
1 ⇒ Γ2 and thus concatenation yields

the proof

⇒ ∆ Γl
1 ⇒ Γ2

Γl
1 ⇒ ∆Γ2

⇒ Γ1∆Γ2

If ρ was an instance of the right negation rule

⊢ ΓF
⊢ F rrΓ

then by induction hypothesis there is a proof of ⇒ ΓF and thus of ⇒ F rrΓ.
The check for the case of the left negation rule is similar.

To conclude the proof, all we need to observe is that a one-sided cut

⊢ Γ1FΓ2 ⊢ ∆1F
r∆2

⊢ ∆1Γ1∆2Γ2

can be replaced by the following derivation containing a two-sided cut:

⇒ ∆1F
r∆2

⇒ Γ1FΓ2 F∆l
1 ⇒ ∆2

∆l
1 ⇒ Γ1∆2Γ2

⇒ ∆1Γ1∆2Γ2
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5.1.4 The Cut Elimination Theorem for CBL≤

Theorem 5.7 (Cut Elimination Theorem) CBL≤ enjoys the cut elim-
ination property.

Proof: We will show that every proof α of a sequent ⊢ Γ of one-sided CBL≤
can be transformed in a finite number of steps into a cut-free proof β of ⊢ Γ.
The analogous result for two-sided CBL≤ follows then from the previous
proposition. Without loss of generality we may assume that the proof α has
the following form, where γ and δ are cut-free proofs:

γ δ
...

...
⊢ Γ1FΓ2 ⊢ ∆1F

r∆2 cut
⊢ ∆1Γ1∆2Γ2

We can then prove by induction on the length n of the derivation α that α
can be transformed in a finite number of steps into a cut free proof β of ⊢ Γ.

Observe that if γ is the axiom ⊢ ArB for some A ≤ B in P , then either
F = Ar or F = B. Consider the case F = B (the other case is similar).
Note that Br must have been introduced in δ by an axiom ⊢ BrC for some
C in P such that B ≤ C. Hence A ≤ C and there is an axiom ⊢ ArC. The
derivation δ′, obtained replacing in δ the axiom ⊢ BrC with ⊢ ArC, is a
cut-free proof of ∆1A

r∆2.

Thus the base case of the induction, when n = 1, is established. Let us
suppose that γ has length n + 1 and let us analyse the last step ρ in the
proof γ of ⊢ Γ1FΓ2. Because of the observation of the previous paragraph,
we may assume that ρ is not an axiom.

If ρ was an instance of the concatenation rule, then one can switch the order
of application of cut and concatenation and obtain a cut-free proof applying
the induction hypothesis on the branch of the proof that contains the cut.
In more detail, suppose that ρ was an instance of concatenation as in the
following schema:

ζ ε
...

...
⊢ Ψ1Ψ2 ⊢ Ξ

⊢ Ψ1ΞΨ2 = Γ1FΓ2
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One has to consider three subcases, depending on whether F appears in Ψ1,
Ξ, or Ψ2.

1.1 If Ψ1 = Ψ11FΨ12, then Γ1 = Ψ11 and Γ2 = Ψ12ΞΨ2. Using cut on
the last two sequents of ζ and δ and then concatenation, one can write the
following proof:

ε
...
⊢ Ξ

ζ δ
...

...
⊢ Ψ11FΨ12Ψ2 ∆1F

r∆2 cut
⊢ ∆1Ψ11∆2Ψ12Ψ2

⊢ ∆1Ψ11∆2Ψ12ΞΨ2 = ∆1Γ1∆2Γ2

By induction hypothesis, the boxed derivation can be replaced by a cut-free
derivation, thus yielding a cut-free proof of ∆1Γ1∆2Γ2.

1.2. If Ψ2 = Ψ21FΨ22, the calculations are similar.

1.3. If Ξ = Ξ1FΞ2, the only difference is that one has to apply the cut rule
to the last sequents of ε and δ (keeping in mind, to verify the step toward
the last line, that either Ξ2 = Ψ2 = ∅ or ∆1 = ∅):

ζ
...

⊢ Ψ1Ψ2

ε δ
...

...
⊢ Ξ1FΞ2 ∆1F

r∆2 cut
⊢ ∆1Ξ1∆2Ξ2

⊢ ∆1Ψ1Ξ1∆2Ξ2Ψ2 = ∆1Γ1∆2Γ2

If ρ was an instance of the right negation rule, as in the schema below, then
there are two subcases.

ε
...

⊢ ΓG

⊢ GrrΓ = Γ1FΓ2

2.1. If Γ1 6= ∅, then Γ1 = GrrΓ′ and we can obtain a cut-free proof applying
the induction hypothesis to the boxed derivation in the following proof:
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δ

ε
...

... ∆1F
r∆2

Γ′FΓ2G F r∆2∆
ll
1 cut

⊢ Γ′∆2∆
ll
1Γ2G

⊢ GrrΓ′∆2∆
ll
1Γ2

⊢ ∆1Γ1∆2Γ2

2.2. If Γ1 = ∅, then F = Grr. We can then apply the same reasoning used
in the last subcase, starting from the following proof:

δ

ε
...

... ∆1F
r∆2

Γ2F
ll ∆2∆

ll
1F

L

cut
⊢ ∆2∆

ll
1Γ2

⊢ ∆1∆2Γ2

Clearly, if ρ was the left negation rule, the calculations are similar. Thus,
having examined all the possibilities, the induction has been established.

5.2 β-pregroup grammars

In this section, we generalize some definitions and results about pregroups
[60]. We define the notion of pregroup with β-brackets, explain the free
construction of this structure, and provide proof nets. Some examples briefly
illustrate the linguistic application of the proposed structure and motivate
the further generalization obtained introducing β-antibrackets.

5.2.1 Introducing β-brackets

Multimodal categorial grammars are built either on the non-associative or
on the associative Lambek calculus. In the former case a modality can be
introduced to license locally associativity. This strategy cannot be followed
in the context of pregroups, because, in the absence of associativity, one
couldn’t even prove modus ponens, since it wouldn’t be guaranteed, e.g., that
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(abl)b simplifies to a. Thus, we will pursue the latter strategy, introducing a
method to break associativity when needed. The tool we propose, β-brackets
and β-antibrackets, is inspired by the notion of bracket semigroup [79].

For expository reasons, we start by presenting the notion of pregroup with
β-brackets only.

Definition 5.8 A pregroup with β-brackets is a pregroup P endowed more-
over with a monotone map β : P → P .

To define grammars based on the notion of pregroup with β-brackets, we
need to explain how a partially ordered set (X,≤X ) freely generates such a
structure. Consider the set P ′ of elements defined inductively as follows (x
an element of X, n an integer):

p = 1|x(n)|p1p2|β(p)
(n),

where 1 stands for the empty string, p(0) for p, and p(n) stands for p negated
n times with the left (right) negation, if n is negative (positive).6 Consider
on P ′ the following operations:

multiplication of p1 by p2 = p1p2;
β-bracketing of p = β(p);

left-negation of p = p(−1);

right-negation of p = p(1)

where for m = −1,+1 one defines 1(m) = 1, (p(n))(m) = p(n+m), and

(p1p2)
(m) = p

(m)
2 p

(m)
1 . Let ≤P ′ be the reflexive-transitive closure of the

relation → defined inductively on P ′ as follows (where c, d are elements of
P ′):

negation contraction: cu(n)u(n+1)d → cd,

negation expansion: cd → cu(n+1)u(n)d

where u ∈ X or u = β(u1) for some u1 ∈ P ′, or

induced step (even case): cu(2n)d → cv(2n)d,

induced step (odd case): cv(2n+1)d → cu(2n+1)d

6We will refer to elements of the form x(n) as simple terms.
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where either u ≤X v or u=β(u1), v=β(v1) and u1 → v1 for some u1, v1 ∈ P ′.

The relation ≤P ′ gives rise on P ′ to an equivalence relation ∼= defined as
follows: a ∼= b if and only if a ≤P ′ b and b ≤P ′ a. By construction, the
equivalence relation is compatible with the operations defined previously on
P ′. Thus the quotient set P := P ′/∼= inherits in a natural way a (partial)
order ≤:=≤P ′/∼= and all the operations defined in P ′. To keep the notations
simple, we will refer to an equivalence classe [a] in P directly with the symbol
a, and use for the operations in P the same symbols used for the analogous
operations in P ′.

Note that, without loss of generality, we can always assume that in a chain
of contractions, expansions and inductive steps a = a0 ≤ a1 ≤ . . . ≤ an = b
all the contractions preceed the expansions. This is because, just as in the
case of pregroups [61], if an expansion is followed by a contraction (with,
eventually, an induced step intervening in between), either the two rules
cancel each other out (leave behind the induced step), or they can be applied
in the reverse order. From this observation follows the next result.

Proposition 5.9 If a ≤ b in the pregroup with β-brackets freely generated
by a poset X and b is a one-element string, then one can go from a to b by
contractions and induced steps only.

Simplifications in pregroups with β-brackets can be computed adapting from
linear logic the method of proof nets. To this purpose, it is convenient to de-
fine a set of auxiliary brackets, since this allows for a form of commutativity
between negations and brackets.

Definition 5.10 Let β() be a monotone map defined on a pregroup P . For
any integer n, we will call n-negated β-bracket the map βn() : P → P
defined for all a in P by

βn(a) := β(a(−n))(n).

An n-negated β-bracket is itself a monotone map. Moreover, it enjoys the
following properties:

• for any a in P : βn(a(n)) = β(a)(n);

• for any a in P : βn(a(m))βn+1(a(m+1)) ≤ 1.

The following proposition explains when it is possible to simplify n-negated
β-brackets.
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Proposition 5.11 Let P be a free pregroup with β-brackets. Then:

βn(a)βm(b) ≤ 1 if and only if n+ 1 = m and ab ≤ 1

Proof: Suppose that n+ 1 = m and ab ≤ 1. Then:

if n is even: ab ≤ 1 ⇒ a(−n) ≤ b(−n−1) (because a ≤ bl)

⇒ β(a(−n)) ≤ β(b(−n−1)) (βn() preserves ≤)

⇒ β(a(−n))(n) ≤ β(b(−n−1))(n)

if n is odd: ab ≤ 1 ⇒ b(−n−1) ≤ a(−n)

⇒ β(b(−n−1)) ≤ β(a(−n))

⇒ β(a(−n))(n) ≤ β(b(−n−1))(n)

Therefore in both cases βn(a)βn+1(b) = β(a(−n))(n) ≤ β(b(−n−1))(n) ≤ 1.

Suppose that βn(a)βm(b) ≤ 1. By definition, the expression βn(a)βm(b) is
equivalent to β(a(−n))nβ(b(−m))m. The inequality, therefore, holds exactly
when it is possible to apply a generalized contraction, i.e. when m = n+ 1
and ab ≤ 1.

Using n-negated β-brackets, we can define a notion of normal form for the
elements of P that will be the base for the definition of proof nets:

n := 1|x(m)|n1n2|β
m(n).

The normal form of an element a is obtained going repeatedly through the
following steps:

• replace any negation β(x)(n) of a β-bracket that appears in a by the
n-negated β-bracket βn(x(n));

• replace all negations (p1p2)
(n) of products by p

(n)
1 p

(n)
2 , if n is even, and

by p
(n)
2 p

(n)
1 if n is odd; and,

• replace all negations (p(n))(m) of a negation by the simple term p(n+m).

Definition 5.12 (Proof nets) Let (X,≤X) be a poset and P the pregroup
with β-brackets freely generated by X. An element a of P , written in normal
form, admits of a proof net that reduces to 1 if all simple terms of a and all
brackets in a can be connected by planar (i.e. non-intersecting) links of the
following form (u and v are simple terms, i.e. negations of elements of X):
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negation link:
u
�

�

___

�

�

v

β-bracket link:
βn( ) βn+1( )

where the above negation link can be placed if there is an element w in X
and an integer t such that u ≤ w(t) and v ≤ w(t+1).
An element a of P , written in normal form, admits of a proof net that
reduces to x (x being a one-element string) if there are elements a1 and a2
in P such that a = a1xa2 and both a1 and a2 admit of proof nets that reduce
to 1.

Clearly, it follows from the previous proposition that an element a can be
simplified to x if and only if a admits of a proof net that reduces to x. For
example, the expression in the next line reduces to a because of the following
proof net:

a βl( βll( cll

�

�

�

�

____________

�

�

�

�

) bl

�

�

______

�

�

) β( b βl( cl ) )

Note that, if we were to accept negation links also on elements that are not
basic terms, then we could replace, e.g., three of the above links with just
one link, as in the following picture:

a βl( β(c)ll

�

�

�

__________

�

�

�

bl

�

�

______

�

�

) β( b β(c)l )

And we could even place just one negation link:

a β((bβ(c)l)l

�

�

________

�

�

β((bβ(c)l))
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Thus, placing bracket links means, so to speak, looking into the fine structure
of a bracketed expression and creating channels that constrain the possible
negation links.

In multimodal categorial grammar, data are not simply strings. Rather, they
are structured lists. To present the analogous idea in a pregroup context,
let us consider a (non-empty) set F of labels (representing the phonological
information contained in the lexicon). Let M and Mβ be, respectively,
the monoid and the monoid with β-brackets freely generated by F . The
elements of the former are strings of labels. The elements of the latter are
well-bracketed strings of labels. Define by induction the map q : Mβ → M
that “forgets brackets”. For all a and b in Mβ and φ in F let q be defined
by q(φ) = φ, q(ab) = q(a)q(b), and q(β(a)) = q(a).

Definition 5.13 (β-structuring of a string) A β-structuring of a string
Φ = φ1 . . . φn of elements of F is an element b of Mβ such that q(b) = Φ.

Note that given a β-structuring b of a string Φ, substituting all occurrences of
the φis in b with elements τi of the free pregroup with β-brackets yields an el-
ement of this pregroup. We will denote this element by b{τ1/φ1, . . . , τn/φn).

Definition 5.14 (Grammar) A grammar G based on a pregroup with β-
brackets is a quadruple (F, (X,≤), T, s) where:

• F is a set (of labels);

• (X,≤) is a finite partial order;

• T is a map that assigns to each label a finite set of elements of P ,
where P is the pregroup with β-brackets freely generated by (X,≤);
and

• s is an element of X.

A string Φ = φ1 . . . φn of labels is grammatical (according to G) if there is a
β-structuring b of F and for all i = 1, . . . , n there are elements τi ∈ T (φ(i))
such that b{τ1/φ1, . . . , τn/φn) can be simplified to s in P .

With these definitions in place, we can now illustrate how (negated) β-
brackets project islands. Consider for example the type βr[Xr]Xβl[X l] for
the conjunction and, where X can be instantiated to any type. Then it is
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clear that there is only one possibility to structure the following sentence to
prove that it is grammatical (according to the proposed typing):7

β( . John . ) . and . β( . Mary . ) . left

β( . np

�

�

________

�

�

. ) . βr( npr ) np

�

�

�

�

_________________

�

�

�

�

βl( npl

�

�

_______

�

�

) . β( . np . ) . npr s

Analogously, one obtains an analysis of the phenomena known as across the
board extraction (only the analysis of the relevant fragment of the sentence
is presented):

I know the man . . .

who . β( . John . liked . ) . and . β( .Mary . hated . )

nrn npll

�

�

�

�

�

_____________________

�

�

�

�

�

sl

�

�

�

�

�

__________________

�

�

�

�

�

. β( . np

�

�

___

�

�

. npr s

�

�

�

_______

�

�

�

npl

�

�

_____

�

�

. ) . βr( np sr ) snpl βl(npll

�

�

�

�

_____________

�

�

�

�

sl

�

�

�

__________

�

�

�

) . β( . np

�

�

___

�

�

. npr snpl . )

All of this, of course, could have been achieved with a pregroup grammar.
The novelty is that the theory proposed here rules out, on syntactic ground,
sentences that are not acceptable, because the extraction is not across the
board. For instance, if in the following sentence one instantiate X to the
symbol s for sentence, then npll cannot cancel out with any instance of npl,
as reflected by the crossing links in the following picture:

I know the man . . .

who . β(. John . liked . Fred . ) . and . β( .Mary . hated . )

nrn npll

�

�

�

�

�

___________________________________

�

�

�

�

�

sl

�

�

�

�

�

____________________

�

�

�

�

�

. β( . np

�

�

___

�

�

. npr s

�

�

�

_________

�

�

�

npl

�

�

___

�

�

. np . ) . βr( sr ) s βl( sl

�

�

�

__________

�

�

�

) . β( . np

�

�

___

�

�

. npr snpl . )

7Dots have been inserted in derivations to highlight the correspondence between the
lexical items and their types. Brackets that appear also on the first line are due to the
β-structuring of the string of labels.
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Moreover, the theory proposed here rules out, again on syntactic grounds,
the unattested possibility of extracting all the material contained in one
conjoined phrase, as in the following example:

who . John .met . β( . the . friend of . ) . and

nrn npll

�

�

�

�

�

________________________________

�

�

�

�

�

sl

�

�

�

______

�

�

�

. np

�

�

___

�

�

. npr s npl

�

�

�

�

_____________________

�

�

�

�

�

. β( . np

�

�

�

_______________

�

�

�

nl

�

�

___

�

�

. n npl

�

�

_____

�

�

. ) . βr( npnpr )npnpl βl(npll

�

�

__

�

�

npl )

The reason for the ungrammaticality in this case is that a bracket βl(1) has
not been simplified (not connected with a bracket link).

It should be clear at this point that the structure of a pregroup with β-
bracketing allows writing types that force the complements to be bracketed.
For example, if a noun selects for a cp-complement, the fact that this comple-
ment constitutes an island to extraction can be accounted by the assignment
of the type nβl(cpl) to the noun, thus obtaining the following derivation:

n βl( cpl

�

�

______

�

�

) β( cp ) ≤ n

However, the theory is not yet powerful enough to force bracketing of the
expression itself together with (some of) its complements. To do this, we
need to introduce a notion of antibrackets.

5.2.2 Introducing β-antibrackets

A negated β-bracket cancels out with a β-bracket if the expressions that
they contain cancel out as well. The idea behind β-antibracket, by contrast,
is that only the brackets cancel out.

Definition 5.15 (β-pregroup) A β-pregroup is a pregroup with β-brackets
such that the bracket β has a right adjoint β̂(), i.e. such that there is a
monotone map β̂() : P → P with the property that, for all a and b in P ,
β(a) ≤ b if and only if a ≤ β̂(b). β̂() is called the β-antibracket.
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It is immediate to verify that β-antibrackets, if they exist, are uniquely
defined and are related to β-brackets by the following rules of expansions
and contractions: for all a in P

a ≤ β̂(β(a)) and β( β̂(a)) ≤ a.

Given the antibracket map β̂(), for any integer n we can define, as has been

done for β-brackets, the map β̂
n
: P → P as follows: for any a in P let

β̂
n
(p) = β̂(p−n)(n). Then it is clear that for all n which are even, β̂

n
()

is the right adjoint of βn(), while for all n which are odd βn() is the right

adjoint of β̂
n
().

The free β-pregroup generated by a poset (X,≤) is constructed as the pre-
group with β-brackets, except for the following changes:

1. in the recursive definition of the elements of P ′ there is also a clause
for antibrackets:

p = 1|x(n)|p1p2|β(p)
(n)| β̂(p)(n);

2. on P ′ one defines also the operation of antibracketing, i.e. the map
that to an element p of P ′ associates the element β̂(p);

3. in defining the relation → (and hence ≤P ′) one has to introduce rules
for bracket contraction and expansion and make reference to antibrack-
ets in all clauses (B stands for β or β̂):

neg. contraction: cu(n)u(n+1)d → cd

neg. expansion: cd → cu(n+1)u(n)d

where u ∈ X or u = B(u1) for some u1 ∈ P ′ or

β-contraction: cu(n)d → cv(n)d

where if n is even u = β( β̂(v)) and if n is odd u = β̂(β(v))

β-expansion: cu(n)d → cv(n)d

where if n is even v = β̂(β(u)) and if n is odd v = β( β̂(u))

induced step: cu(n)d → cv(n)d where

if n is even either u ≤X v or u = B(u1), v = B(v1), and u1 → v1

if n is odd either v ≤X u or u = B(u1), v = B(v1), and v1 → u1

Calculations similar to the previous case show that we can assume with-
out loss of generality that in a sequence of inequalities contractions always
preceed expansions. Thus we have again the following result.
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Proposition 5.16 If a ≤ b in the free β-pregroup freely generated by a poset
(X,≤X) and b is a one-element string, then it is possible to go from a to b
by contractions and induced steps only.

Definition 5.17 (Proof nets for β-pregroups) The definition reads like
the definition for proof nets in pregroup with β-brackets, except that the
repertory of channels includes also:

β̂-bracketlinks:
β̂
n
( ) β̂

n+1
( )

adjunction links:
Bn( Cn( ) )

where, in the last clause, if n is even, then B = β and C = β̂ and if n is
odd, then B = β̂ and C = β.

With this structure, we can now force bracketing also around a lexical item
LI and all/some of its complements C1, C2,. . . , as pictured below:

β( . C1 . LI . C2 . )

β( . a

�

�

____

�

�

. ar β̂( b ) cl

�

�

____

�

�

. c . ) ≤ b

C1 . β( . LI . C2 . )

a

�

�

�

�

__________

�

�

�

�

. β( . β̂( ar b ) cl

�

�

____

�

�

. c . ) ≤ b
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5.3 Compact β-bilinear logic

In this section, we propose two extensions of CBL, whose algebraizations give
rise respectively to the structure of pregroups with β-brackets and pregroups
with β-brackets and antibrackets. For these two logics, we prove the Cut
Elimination Theorem.

The structure of pregroup arises from the algebraization of CBL≤. This
means that it is the result of the following process. Let S be the set of strings
of CBL≤. It is partially ordered by the relation of implication. Consider
the quotient set S/∼=, were ∼= is the equivalence relation of coimplication,
thus identifying those types that are logically equivalent. Define on S/ ∼=
algebraic operations that correspond to the negation operators of CBL≤
and to concatenation. For example, the left negation of the set of strings
equivalent to a string Γ is defined as the set of strings equivalent to the string
Γl. The resulting algebra is a pregroup. In a similar vein, one can define
logics such that their algebraizations give rise to the notion of pregroup with
β-brackets and of pregroup with β-brackets and antibrackets.

We will present here the generalization of the results proved above in the case
of compact bilinear logic for β-CBL, the logic corresponding to β-pregroups.
The definition and results of the logic corresponding to pregroups with β-
brackets only can be derived, dropping all references to β̂, from the definition
and results given in the following for β-CBL.

We start with the two-sided presentation of Compact β-Bilinear Logic, here-
after referred to as β-CBL.

Definition 5.18 (Two-sided presentation) Let P = {A,B, . . .} be a set
of propositional variables. The types of the logic and the strings of types are
defined inductively as follows:

types: F := A|F l|F r|β(Γ)| β̂(Γ)

where, for all type F , one postulates F = F lr = F rl;

strings: Γ := ∅|F |Γ1Γ2|Γ
l|Γr

where the negation Γn of a string (n stands for l or r) is defined inductively
by ∅n = ∅ and (ΓG)n = GnΓn. Sequents are of the form Γ ⇒ ∆ where
Γ∆ 6= ∅. The rules for the sequent calculus are given in Figure 5.5.
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identity

A⇒ A where A ∈ P

cut

Γ⇒ ∆1F∆2 Γ1FΓ2 ⇒ ∆

Γ1ΓΓ2 ⇒ ∆1∆∆2

where Γ1 = Γ2 = ∅ or Γ1 = ∆2 = ∅ or ∆1 = Γ2 = ∅ or ∆1 = ∆2 = ∅
left- and right-negation

Ψ⇒ F∆

F lΨ⇒ ∆

∆F ⇒ Ψ

∆⇒ ΨF l

Ψ⇒ ∆F

ΨF r ⇒ ∆

F∆⇒ Ψ

∆⇒ F rΨ

concatenation

Γ1 ⇒ Γ2 ∆1 ⇒ ∆2

Γ1∆1 ⇒ Γ2∆2

bracketing

Γ⇒ ∆

β(Γ)⇒ β(∆)

Γ⇒ ∆

β̂(Γ)⇒ β̂(∆)

adjunction

β(Γ)⇒ ∆

Γ⇒ β̂(∆)

Γ⇒ β̂∆

β(Γ)⇒ ∆

Figure 5.5: Compact β-bilinear logic

Clearly, β-pregroups are models for β-CBL, since the only new rules are
those for bracketing, that guarantee that β() and β̂() are compatible with
the order, and the adjunction rules, from which it follows that β̂() is the
right adjunct of β().

As for the case of CBL, we could replace the set of identity axioms by the
larger set of axioms of the form A ⇒ B for any A ≤ B in P . The definitions
and results carry over straightforwardly from the CBL case and therefore
we do not overload the presentation with these details.

As for compact bilinear logic, we will present now the logic with one-sided
sequents, show that the two presentations are equivalent and thus prove the
cut-elimination theorem.

Definition 5.19 (Compact β-bilinear logic) Let P = {A,B, . . .} be a
set of propositional variables. The types of the logic and the strings of types
are defined inductively as follows:
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types: F := A|F l|F r|β(Γ)| β̂(Γ) where, for all F , one postulates F = F lr =
F rl;

strings: Γ := ∅|F |Γ1Γ2|Γ
l|Γr

where the negation ⊢ Γn of a string (n stands for l or r) is defined inductively
by ∅n = ∅ and (ΓG)n = GnΓn. Sequents are of the form ⊢ Γ where Γ is not
the null string. The rules for the sequent calculus are given in Figure 5.6.

identity and cut

⊢ ArA
where A ∈ P

⊢ Γ1FΓ2 ⊢ ∆1F
r∆2

⊢ ∆1Γ1∆2Γ2

where Γ2 = ∅, or ∆1 = ∅
left- and right-negation

⊢ FΓ

⊢ ΓF ll

⊢ ΓF
⊢ F rrΓ

concatenation

⊢ Γ1Γ2 ⊢ ∆

⊢ Γ1∆Γ2

bracketing

⊢ Γr∆

⊢ β(Γ)rβ(∆)

⊢ Γr∆

⊢ β̂(Γ)r β̂(∆)

adjunction

⊢ β(Γ)r∆

⊢ Γr β̂(∆)

⊢ Γr β̂∆

⊢ β(Γ)r∆

Figure 5.6: Compact β-bilinear logic

The following proposition states the equivalence of the two presentations.
Its proof is a straightforward adaptation of the similar result for CBL, and
therefore we will not bore the reader with it.

Proposition 5.20 For any strings Γ and ∆, Γ ⇒ ∆ is a theorem of two-
sided β-CBL if and only if ⊢ Γr∆ is a theorem of one-sided β-CBL. More-
over, Γ⇒ ∆ has a cut-free proof if and only if ⊢ Γr∆ has a cut-free proof.

Theorem 5.21 Compact β-Bilinear Logic enjoys the cut elimination prop-
erty.

Proof: As was the case for CBL, all we need to prove is that a cut can be
removed from a proof α of one-sided β-CBL that has the following form:
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γ δ
...

...
⊢ Γ1FΓ2 ⊢ ∆1F

r∆2 cut
⊢ ∆1Γ1∆2Γ2

where both subproofs γ and δ are cut-free. The proof is again by induction
on the length n of α and all we need to prove are the cases corresponding
to the new rules.

If the last rule ρ used in γ was an instance of β-bracketing, then γ has the
following form:

ε
...

⊢ Γr∆

⊢ β(Γ)rβ(∆) = Γ1FΓ2

There are two subcases to be considered.

1.1. If F = β(∆) then Γ1 = β(Γ)r and Γ2 = ∅. Therefore we can write the
following derivation:

δ
...

ε ⊢ ∆1β(∆)
r∆2

... ⊢ β(∆)r∆2∆
ll
1

⊢ Γr∆ ⊢ ∆r β̂(∆2∆
ll
1 ) cut

⊢ Γr β̂(∆2∆
ll
1 )

⊢ β(Γ)r∆2∆
ll
1

⊢ ∆1β(Γ)
r∆2 = ∆1Γ1∆2

By induction hypothesis, the boxed subproof above can be substituted by a
cut-free proof, thus yielding a cut-free derivation of ∆1Γ1∆2.

1.2. If F = β(Γ)r then Γ1 = ∆1 = ∅ and Γ2 = β(∆). Without loss of
generality, we may assume that δ has the following form for some string Ψ,
where along the branch of the derivation labelled by η the rules apply to
β(Γ) as one block:
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ε
...

⊢ Γr∆

⊢ β(Γ)rβ(∆) = FΓ2

ζ
...

⊢ ΨrΓ
⊢ β(Ψ)rβ(Γ)

...
...η

...

⊢ β(Γ)rr∆2 = F r∆2

⊢ ∆2Γ2

Joining ε and ζ with cut yields a derivation of ⊢ Ψr∆. By induction hypoth-
esis, there is a cut-free proof ϑ of this sequent. Consider the boxed subproof
pictured above. Replacing ζ with ϑ and any instance of Γ with an instance
of ∆, one obtains a cut-free proof of β(∆)rr∆2 = Γrr

2 ∆2 and therefore of
∆2Γ2.

If the last rule ρ used in γ was an instance of the right adjunction rule, then
γ has the following form:

ε
...

⊢ Γr β̂(Γ2)

β(Γ)r∆ = Γ1FΓ2

There are three subcases to be considered.

2.1. If F = β(Γ)r then Γ1 = ∅ and Γ2 = ∆, we can use the same technique
as in the previous case:

ε
...

⊢ Γr β̂(Γ2)

⊢ β(Γ)rΓ2 = FΓ2

ζ
...

⊢ ΨrΓ
⊢ β(Ψ)rβ(Γ)

...
...

...

⊢ ∆1β(Γ)
rr∆2 = ∆1F

r∆2

⊢ ∆1∆2Γ2

The only differences are that now the induction hypothesis will give us a cut-
free proof ϑ of ⊢ Ψr β̂(Γ2) and the substitutions will result in the sequent
⊢ ∆1Γ

rr
2 ∆2, from which ⊢ ∆1∆2Γ2 follows, because either Γ2 or ∆2 is the

empty string.
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If F is a factor of the string ∆, then Γ1 = β(Γ)rΓ′ for some string Γ′

and Γ′GΓ2 = ∆. Hence the sequent before the last in γ is ⊢ Γr β̂(Γ′FΓ2).
Depending on how the β̂-bracket was introduced, one has to distinguish two
cases:

2.2. if β̂() was introduced using a β̂-bracketing rule, then we may assume
without loss of generality that α has the following form, where along η the
rules apply to β̂(Γ′FΓ2) as a whole block:

ε
...

⊢ ΨrΓ′FΓ2

⊢ β̂(Ψ)r β̂(Γ′FΓ2)
...

...η
...

⊢ Γr β̂(Γ′FΓ2)

⊢ β(Γ)rΓ′FΓ2

δ
...

∆1F
r∆2

⊢ ∆1Γ1∆2Γ2

The subproofs ε and δ can be joined with cut to yield a proof of ⊢ ∆1Ψ
rΓ′∆2Γ2.

By induction hypothesis, there is a cut-free proof of this sequent, that
moreover can be continued applying a negation rule to yield a proof ϑ of
⊢ ΨrΓ′∆2Γ2∆

ll
1 . Consider the boxed subproof pictured above. Replacing ε

with ϑ and any occurrence of Γ′FΓ2 with an occurrence of Γ
′∆2Γ2∆

ll
1 one

obtains a cut-free proof of ⊢ ∆1β(Γ)
rΓ′∆2Γ2, i.e. of ⊢ ∆1Γ1∆2Γ2.

2.3. If β̂() was introduced using an adjunction rule, then we may assume
that α has the following form:

ε
...

⊢ β(Ψ)rΓ′FΓ2

⊢ Ψr β̂(Γ′FΓ2)
...

...
...

⊢ Γr β̂(Γ′FΓ2)

⊢ β(Γ)rΓ′FΓ2

δ
...

∆1F
r∆2

⊢ ∆1Γ1∆2Γ2

Then, as in the previous case, there is by induction hypothesis a cut-free
proof of the sequent ⊢ ∆1β(Ψ)

rΓ′∆2Γ2 and thus, after making the obvious
substitutions, of ⊢ ∆1Γ1∆2Γ2.
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The proof of the other cases, needed to established the induction, are vari-
ations on the above calculations and are left to the reader.
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Appendix A

Symmetrical Calculi

In this section we review LGC, the Lambek-Grishin Calculus as proposed
by M. Moortgat on the basis of previous work by V.N. Grishin ([44]). We
deal only with the fragment in which the interaction principles (G1) to (G4)
hold, i.e. LG∅ + G

↑ according to the notations used in [70]. Following [43],
we review the relevant work on displaying the Lambek Calculus. Finally
we propose for these displayed calculi a theory of proof nets, where edges
are labeled by types and polarities are encoded as directions on the edges.
Essentially, this proposal is just a recasting of [77] substituting the notion
of tree by the notion of polar seaweed.

This proposal, elaborated independently, has been now superseded by R.
Moot’s work ([75]) and therefore it is not presented in the main body of the
thesis, but in this appendix.

A.1 Lambek-Grishin Calculus LGC

Logical operators come in pairs of dual elements {×,⊕}, {/,⊘}, and {\,;}.

Definition A.1 The set TLGC(V ) of LGC types is the smallest set that
contains a set V of atomic types and that is closed under the binary oper-
ations ×, /, \, ⊕, ⊘, and ;, i.e. the elements of TLGC(V ) are defined
inductively in the following way:1

T = V | (T × T ) | (T /T ) | (T \T ) | (T ⊕ T ) | (T ⊘T ) | (T ;T ).

1As usual, outer parenthesis will be dropped.
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The duality extends to types, according to the following inductive definition:

• if A is atomic, then Ad = A; otherwise,

• (A ⋄B)d = Ad⋄dBd where {⋄, ⋄d} is any pair of dual operators.

Definition A.2 An LGC configuration is an abstract NL-tree with nodes
labeled by the binary operator ◦ and leaves labeled by LGC types, i.e LGC
configurations are defined inductively in the following way:2

τ = T (τ ◦ τ).

Definition A.3 An LGC sequent σ ⇒ τ is an ordered pair (σ, τ) of LGC
configurations.

The dual operator is a homomorphism of LGC configurations, i.e. the dual
configuration τd of a configuration τ is defined by induction as follows:

• if τ is a type T , then τd = T d;

• if τ = σ ◦ ρ, then τd = σd ◦ ρd.

The dual of a LGC sequent σ ⇒ τ is defined as τd ⇒ σd.

Let H be a symbol that does not belong to L.

Definition A.4 An LGC context is an abstract NL-tree context σ[H] with
nodes labeled by ◦, one leaf labeled by H, and the other leaves, if there are
any, labeled by LGC types.

The result of substituting a configuration ρ in the context σ[H] is the con-
figuration σ[ρ] defined as follows:

• if σ[H] = H, then σ[ρ] = ρ;

• if σ[H] = ξ[H] ◦ τ , then σ[ρ] = ξ[ρ] ◦ τ ;

• if σ[H] = τ ◦ ξ[H], then σ[ρ] = τ ◦ ξ[ρ].
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identity and cut rules

Id A⇒ A
where A atomic

cut
ρ⇒ A σ[A]⇒ τ

σ[ρ]⇒ τ

ρ⇒ σ[A] A⇒ τ

ρ⇒ σ[τ ]

logical rules

×
σ[A ◦B]⇒ τ

σ[A×B]⇒ τ

σ ⇒ A τ ⇒ B

σ ◦ τ ⇒ A×B

⊕
A⇒ σ B ⇒ τ

A⊕B ⇒ σ ◦ τ

σ ⇒ τ [A ◦B]

σ ⇒ τ [A⊕B]

\
ρ⇒ B σ[A]⇒ τ

σ[ρ ◦B\A]⇒ τ

B ◦ σ ⇒ τ [A]

σ ⇒ τ [B\A]

;
τ [A]⇒ B ◦ σ
τ [B;A]⇒ σ

B ⇒ ρ τ ⇒ σ[A]

τ ⇒ σ[ρ ◦B;A]

/
ρ⇒ B σ[A]⇒ τ

σ[A/B ◦ ρ]⇒ τ

σ ◦B ⇒ τ [A]

σ ⇒ τ [A/B]

⊘
τ [A]⇒ σ ◦B
τ [A⊘B]⇒ σ

B ⇒ ρ τ ⇒ σ[A]

τ ⇒ σ[A⊘B ◦ ρ]

Figure A.1: LGC rules

Definition A.5 The rules for the LGC calculus are listed in Figure A.1.

Examples of derivations are given in Figure A.2 on page 187. These deriva-
tions, and similar ones, establish the following result.

B ⇒ B C ⇒ C
A ⇒ A B ◦ C ⇒ B × C

B ◦ C ⇒ A ◦ A;(B × C)
(A;B) ◦ C ⇒ A;(B × C)
(A;B)× C ⇒ A;(B × C)

B ⇒ B C ⇒ C
A ⇒ A B ⊕C ⇒ B ◦ C

A ◦ A\(B ⊕ C) ⇒ B ◦ C
A\(B ⊕ C) ⇒ (A\B) ◦ C
A\(B ⊕ C) ⇒ (A\B)⊕ C

Figure A.2: Deriving (G1) and (G1’)

Proposition A.6 The following sequents are LGC theorems:

2As usual, outer parenthesis will be dropped.
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(G1) (A;B)× C ⇒ A;(B × C); (G1’) A\(B ⊕ C) ⇒ (A\B)⊕ C;
(G2) C × (A;B) ⇒ A;(C ×B); (G2’) A\(C ⊕B) ⇒ C ⊕ (A\B);
(G3) C × (B⊘A) ⇒ (C ×B)⊘A; (G3’) (C ⊕B)/A ⇒ C ⊕ (B/A);
(G4) (B⊘A)× C ⇒ (B × C)⊘A; (G4’) (B ⊕ C)/A ⇒ (B/A)⊕ C.

It is well known that this presentation of LGC does not enjoy the Cut
Elimination Property. Consider, for instance, the example given in [73]
where the use of Cut proves to be unavoidable. It is based on the types i :=
n\s of an intransitive verb, t := i/n of a transitive verb, and T := (i⊘i);t,
a higher order type for a transitive verb. The sequent n ◦ (T ◦ n) ⇒ s can
be proved combining the theorems T ⇒ t and n◦ (t◦n) ⇒ s by the cut rule
but has no cut-free proof.

In Section A.3, we will define the logic LGCd, a conservative extension of
LGC, that enjoys the Cut Elimination Property (see Corollary A.38). The
embedding into LGCd shows also that LGC is a conservative extension of
NLC (see Corollary A.53).

Definition A.7 For any LGC configuration σ, the left closure lσ and the
right closure rσ are defined by induction in the following way:

• if σ = A is a trivial configuration, then lA = rA = A;

• if σ = τ ◦ ρ, then lσ = lτ × lρ and rσ = rτ ⊕ rρ.

Lemma A.8 For any configuration σ of LGC , the sequents σ ⇒ lσ and
rσ ⇒ σ are theorems of LGC .

Proof. The proof is by induction over the structural complexity of σ. If σ is
a trivial configuration, there is nothing to show. If σ is a structural product,
then apply the induction hypothesis to the immediate subconfigurations and,
for the case of the left (right) closure, apply the tensor right rule (plus left
rule) and the (inductive clause of the) definition of left (right) closure. �

Observe that for any configuration σ[ρ], a simple proof by induction over the
structural complexity of σ[ ] shows that l(σ[ρ]) = l(σ[l(ρ)]) and r(σ[ρ]) =
r(σ[r(ρ)]).

Lemma A.9 For any LGC theorem σ ⇒ τ , the sequents lσ ⇒ τ and σ ⇒ rτ
are LGC theorems.
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Proof. The following proof by induction over the structural complexity of
σ shows that lσ ⇒ τ is an LGC theorem. Indeed, if σ is a trivial con-
figurations, there is nothing to prove. If it is not trivial, then σ can be
seen as the configuration ξ[A ◦B] for some suitable context ξ[ ] and types
A and B. Then any derivation of σ ⇒ τ can be continued using the tensor
left rule, which yields ξ[A×B] ⇒ τ . Since ξ[A×B] has a lower structural
complexity, by induction hypothesis there is a derivation of l(ξ[A ◦B]) ⇒ τ ,
i.e. l(ξ[A ◦B]) ⇒ τ . The proof that σ ⇒ rτ is a LGC theorem is obtained
by duality. �

The previous two lemmas establish the following result.

Proposition A.10 For any LGC sequent σ ⇒ τ , σ ⇒ τ is an LGC the-
orem if and only if lσ ⇒ rτ is an LGC theorem.

A.2 Displayed Lambek Calculus ϕ-LCd

Let ϕ be a possibly empty subset of {a, c}.

Definition A.11 The set Tϕ-LCd
(V ) of ϕ-LCd types is the smallest set

that contains a set V of atomic types and that is closed under the binary
operations ×ϕ, /ϕ, \ϕ, ⊕ϕ, ⊘ϕ, and ;ϕ, i.e. the elements of Tϕ-LC(V ) are

defined inductively in the following way:3

T = V | (T ×ϕT ) | (T /ϕT ) | (T \ϕT ) | (T ⊕ϕT ) | (T ⊘ϕT ) | (T ;ϕT ).

Definition A.12 A ϕ-LCd configuration is an abstract NL tree with nodes
labeled by ◦ϕ, >ϕ, and <ϕ, and leaves labeled by ϕ-LCd types, i.e. ϕ-LCd

configurations are defined inductively in the following way:4

τ = T | (τ◦ϕτ) | (τ>ϕτ) | (τ<ϕτ).

Definition A.13 A ϕ-LCd sequent τ ⇒ σ is an ordered pair (τ, σ) of
ϕ-LCd configurations.

Definition A.14 The rules for the ϕ-LCd calculus comprise:

3As usual, outer parenthesis will be dropped.
4As usual, outer parenthesis will be dropped.
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• the rules listed in Figure A.3, where the modality index is n = ϕ;

• if ϕ 6= ∅, the structural rules of Figure A.4.

identity and cut rules

Id A⇒ A
where A atomic

Cut
τ ⇒ A A⇒ σ

τ ⇒ σ

display rules

(display-l)

τ>nσ ⇒ ρ

σ ⇒ τ◦nρ

σ<n ρ ⇒ τ

(display-r)

ρ ⇒ τ>nσ

τ◦nρ ⇒ σ

τ ⇒ σ<n ρ

logical rules

×n
A◦nB ⇒ σ

A×nB ⇒ σ
×n

τ ⇒ A σ ⇒ B

τ◦nσ ⇒ A×nB

⊕n
A⇒ τ B ⇒ σ

A⊕nB ⇒ τ◦nσ
⊕n

σ ⇒ A◦nB
σ ⇒ A⊕nB

\n
A⇒ τ σ ⇒ B

B\nA⇒ σ>nτ
\n

τ ⇒ B>nA

τ ⇒ B\nA

;n
B>nA⇒ τ

B;nA⇒ τ
;n

τ ⇒ A B ⇒ σ

σ>nτ ⇒ B;nA

/n
A⇒ τ σ ⇒ B

A/nB ⇒ τ<n σ
/n

τ ⇒ A<nB

τ ⇒ A/nB

⊘n
A<nB ⇒ τ

A⊘nB ⇒ τ
⊘n

τ ⇒ A B ⇒ σ

τ<n σ ⇒ A⊘nB

Figure A.3: Minimal set of rules

Proposition A.15 ϕ-LCd is a conservative extension of ϕ-LC.

Proof. The key observation is that any ϕ-LC rule corresponds, via display,
to a ϕ-LCd rule. Consider, for instance, the ϕ-LC rule for the introduction
on the left of \ϕ:

ρ[A]⇒ C σ ⇒ B

ρ[σ◦ϕB\ϕA] ⇒ C

Because of the display rules, the premise ρ[A] ⇒ C is equivalent, for some
suitable configuration τ , to the sequent A ⇒ τ . The conclusion of the rule
can then be written equivalently as σ◦ϕB\ϕA ⇒ τ , which in turn can be
written as B\ϕA ⇒ σ>ϕτ . Thus, displaying the active types, the ϕ-LCd

190



structural rules

(ASSl)
if a ∈ ϕ

(τ1◦ϕτ2)◦ϕτ3 ⇒ τ

τ1◦ϕ(τ2◦ϕτ3) ⇒ τ

(ASSr)
if a ∈ ϕ

σ ⇒ (τ1◦ϕτ2)◦ϕτ3

σ ⇒ τ1◦ϕ(τ2◦ϕτ3)

(COMl)
if c ∈ ϕ

τ0◦ϕτ1 ⇒ τ

τ1◦ϕτ0 ⇒ τ

(COMr)
if c ∈ ϕ

σ ⇒ τ0◦ϕτ1
σ ⇒ τ1◦ϕτ0

Figure A.4: Structural rules of ϕ-LCd

rule is obtained. Similarly, any structural rule in ϕ-LC corresponds, via
display, to a left structural rule of ϕ-LCd. �

A.3 Displayed Multimodal Lambek Calculus σ-LCd

The calculus σ-LCd is a multimodal generalization of ϕ-LCd, determined
by a (non-empty) set N of binary modalities and a set σ of structural rules.

Definition A.16 The set Tσ-LCd
(V ) of σ-LCd types is the smallest set

that contains a set V of atomic types and that is closed, for any n ∈ N ,
under the binary operations ×n, /n, \n, ⊕n, ⊘n, and ;n, i.e. the elements
of Tσ-LCd

(V ) are defined inductively in the following way:5

T = V | (T ×nT ) | (T /nT ) | (T \nT ) | (T ⊕nT ) | (T ⊘nT ) | (T ;nT ).

Definition A.17 A σ-LCd configuration is an abstract tree with nodes la-
beled by ◦n, >n, and <n , and leaves labeled by σ-LCd types, i.e. σ-LCd

configurations are defined inductively in the following way:6

τ = L | (τ◦nτ) | (τ>nτ) | (τ<n τ).

Definition A.18 A σ-LCd sequent σ ⇒ τ is an ordered pair (σ, τ) of σ-LCd

configurations.

Just as for LGC, we can define the notion of duality based, for all modalities
n, on the pairs of dual operators {×n,⊕n}, {/n,⊘n}, and {\n,;n}. Then
the dual of a type is defined as follows:

5As usual, outer parenthesis will be dropped.
6As usual, outer parenthesis will be dropped.
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• if A is atomic, then Ad = A; otherwise,

• (A ⋄B)d = Ad⋄dBd where {⋄, ⋄d} is any pair of dual operators.

The dual configuration τd of a configuration τ is given by the clauses:

• if τ is a type T , then τd = T d;

• if τ = σ ⋄ ρ, then τd = σd⋄dρd for any ⋄ ∈ {◦n, >n, <n }.

The dual of an LGC sequent σ ⇒ τ is τd ⇒ σd.

Let H = {Hn : n ∈ N} be a set disjoint from Tσ-LCd
(V ).

Definition A.19 A σ-LCd context with m holes (m ≥ 0) is an abstract
tree σ[H1, . . . ,Hm] with nodes labeled by ◦n, >n, and <n , m leaves labeled
by H1, . . . , Hm and the other leaves, if there are any, labeled by σ-LCd

types. A leaf labeled by an element of H is called a hole, a leaf labeled by
an element of L is said to be proper. A σ-LCd context is pure if it has no
proper leaves.

The notation σ[Hi] will be used to denote an m-holed context, when we
want to focus on the hole labeled by Hi.

In a σ-LCd context σ[H1, . . . ,Hm], any hole Hi (i = 1, . . . ,m) has a sign
pi, which can be either positive or negative. If we need to mention explicitly
the sign, we write σ[H1

p1 , . . . ,Hm
pm ].

Definition A.20 Let H be a hole in a σ-LCd context σ[H]. We say that

• H has positive sign if σ[H] is the trivial context H; or

• H has sign p if σ[H] is a non-trivial context that can be written in one
of the following ways, where τ is any context, and p 6= q can be either
+ or −:

σ[Hp] = σ[Hp]◦nτ | τ◦nσ[H
p] |

σ[Hp]<n τ | τ<n σ[H
q] |

σ[Hq]>nτ | τ>nσ[H
p]

The result of substituting a context ρ in the H hole of a context σ[H] is the
context σ[ρ] defined as follows, where ⋄ ∈ {◦n, >n, <n } for any modality n:
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• if σ[H] = H, then σ[ρ] = ρ;

• if σ[H] = ξ[H] ⋄ τ , then σ[ρ] = ξ[ρ] ⋄ τ ;

• if σ[H] = τ ⋄ ξ[H], then σ[ρ] = τ ⋄ ξ[ρ].

Definition A.21 A structural rule in σ-LCd is determined by a context
restructuring rule, i.e. two pairs of pure contexts, such as

< σ1[H1
p1 , . . . ,Hm

pm], τ1[Hm+1
pm+1 , . . . ,Hl

pl ] >

and

< σ2[H1
p1 , . . . ,Hm

pm ], τ2[Hm+1
pm+1 , . . . ,Hl

pl ] >,

where, for each hole, its sign in the first and in the second pair coincide.
The associated σ-LCd structural rule is the ordered pair

σ1[ρ1, . . . , ρm] ⇒ τ1[ρm+1, . . . , ρl]

σ2[ρ1, . . . , ρm] ⇒ τ2[ρm+1, . . . , ρl]

where ρ1, . . . , ρl are variables that range over σ-LCd configurations.

To preserve the symmetry of the calculus, we require that the set σ of
structural rules be closed under duality, i.e. if a rule is in σ then its dual
belongs to σ as well.

Definition A.22 The rules of the σ-LCd calculus comprise the minimal
set of rules listed in Figure A.3 on page 190 and the set σ of structural
rules.

Here is an example of a structural rule

(τ1◦nτ2)◦nτ3 ⇒ τ

τ1◦n(τ2◦nτ3) ⇒ τ

It allows us to prove the theorem A×n(B×nC) ⇒ (A×nB)×nC. To be
able to prove its dual, i.e. (A⊕nB)⊕nC ⇒ A⊕n(B⊕nC) one needs the dual
structural rule:

σ ⇒ (τ1◦nτ2)◦nτ3
σ ⇒ τ1◦n(τ2◦nτ3)
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Observe that, because of the display rule, any structural rule could be writ-
ten as involving exclusively a restructuring of, e.g., the premises of the
sequents. For instance, the associative rule just mentioned above can be
written equivalently in the following form:

τ1>n(τ2<n τ3) ⇒ σ

(τ1>nτ2)<n τ3 ⇒ σ

Not restricting structural rules to affect only one side of a sequent allows us
to write rules in a more intuitive way.

Lemma A.23 For any σ-LCd derivation with the following structure:

...D1

...D2

τ ⇒ A A ⇒ σ

τ ⇒ σ

where D1 and D2 are cut-free, there is a cut-free σ-LCd derivation of τ ⇒ σ.

Proof. The proof is by induction over the complexity of the cut, defined as
the number of logical operators that appear in τ , A, and σ. If either τ ⇒ A
or A ⇒ σ is an axiom, there is nothing to show (this covers the basic case of
the induction). Othewise, let r be the last logical rule in D1. If r introduces
A, then r is a right rule and, without loss of generality, we can assume that
it is the last rule in D1. We will show the case in which r is the × right
rule, the other cases being similar. The derivation we start with has the
following form, where Σ[A1×A2] is a possibly empty list of structural rules,
E1, E2, and F1 are cut-free derivations and F2[A1×A2] is a cut-free partial
derivation (in the sense that one of its premises is the sequent A1×A2 ⇒ σ′):

r

...E1
...E2

...F1

τ1 ⇒ A1 τ2 ⇒ A2 A1 ◦ A2 ⇒ σ′

τ1 ◦ τ2 ⇒ A1 ×A2 A1 ×A2 ⇒ σ′

...Σ1[A1 ×A2]
...F2[A1 ×A2]

τ ⇒ A1 ×A2 A1 ×A2 ⇒ σ

τ ⇒ σ
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The following derivation is obtained pasting, by a cut rule, two subderiva-
tions of the previous derivation (plus we use once a display rule):

...F1

...E2 A1 ◦A2 ⇒ σ′

τ2 ⇒ A2 A2 ⇒ A1>σ
′

τ2 ⇒ A1>σ
′

Since the cut that is used has lower complexity, there is by induction hypoth-
esis a cut-free derivation G2 of the last sequent τ2 ⇒ A1>σ

′. This derivation
can be combined with E1 in the following way:

...G2
τ2 ⇒ A1>σ

′

...E1 A1 ◦ τ2 ⇒ σ′

τ1 ⇒ A1 A1 ⇒ σ′<τ2
τ1 ⇒ σ′<τ2

Again, by induction hypothesis there is a cut-free derivation G1 of τ1 ⇒ σ′<τ2.
Denote by F2[τ1 ◦ τ2] the partial derivation F2[A1×A2], where at each step
the type A1 × A2 has been substituted by the configuration τ1 ◦ τ2. Simi-
larly, let Σ1[τ1 ◦ τ2] be the partial derivation Σ1[A1 ×A2] upon substitution
of τ1◦τ2 for A1×A2. This yields the sought for cut-free derivation of τ ⇒ σ:

...G1

τ1 ⇒ σ′<τ2
τ1 ◦ τ2 ⇒ σ′

...F2[τ1 ◦ τ2]

τ1 ◦ τ2 ⇒ σ
...Σ1[τ1 ◦ τ2]
τ ⇒ σ

If r introduces a type different from A, the derivation has the following
structure, where E1, E2, and D

′ are cut-free derivations, and Σ[A] is a se-
quence of display and structural rules (we illustrate the case in which r is a
binary rule, the unary case being similar):
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r

...E1
...E2

τ3 ⇒ τ4 τ5 ⇒ τ6
τ1 ⇒ τ2
...Σ[A]

...D′

τ ⇒ A A ⇒ σ

τ ⇒ σ

Now, A must appear in the sequent conclusion and in one of the sequent
premises of r. To fix ideas, say that it appears in τ2 = τ2[A] and in τ5 = τ5[A]
(the other cases are similar). Then, for a suitable sequence ∆[A] of display
rules, we can consider the following derivation:

...E2
τ5[A] ⇒ τ6
...∆[A]

...D′

τ ′5 ⇒ A A ⇒ σ2
τ ′5 ⇒ σ

Since the last rule in the derivation above is a cut of complexity lower than
the cut in the initial derivation, by induction hypothesis there is a cut-free
derivation G of τ ′5 ⇒ σ. Let ∆♯[A] be the sequence ∆[A] of display rules in
inverse order and let ∆♯[σ] be ∆♯[A] where, at every step, the type A has
been substituted by the configuration σ. This allows us to combine G and
E1 into the following cut-free derivation of τ ⇒ σ:

r

...G
τ ′5 ⇒ σ

...E1
...∆♯[σ2]

τ3 ⇒ τ4 τ5[σ] ⇒ τ6
τ1 ⇒ τ2[σ]

Σ[σ]

τ ⇒ σ

All cases having been considered, the result is established. �

Given the previous lemma, a straightforward proof by induction over the
number of cuts in a derivation establishes the following result.
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Theorem A.24 (Cut Elimination Property) Any σ-LCd theorem has
a cut-free derivation.

A.4 Proof net theory for σ-LCd

Definition A.25 A σ-LCd tree is an acyclic and connected directed graph
with unary and ternary nodes. Ternary nodes, if there are any, are labeled
by elements of the set {×n : n ∈ N} and come with a cyclic order on the
incident edges. At any ternary node, at least one adjacent edge points toward
the node and one, away from it. One unary node is called the root and is
not labeled; the other unary nodes, of which there is at least one, are called
the leaves and are labeled by elements of L.

l2

l3

×n

×n

l1

l3

l1 l2

×n

×n

Figure A.5: An input and an output directed tree

If the edge adjacent to the root points toward it, we speak of an input tree;
if it points away from it, we speak of an output tree (see Figure A.5).

Definition A.26 The set of polar σ-LCd trees is the smallest set defined
by double induction in the following way:7

input trees: I = L• | (I◦nI) | (I<nO) | (O>nI)
output trees: O = L◦ | (O◦nO) | (I>nO) | (O<n I)

The inductive definition of Figure A.6 assigns to any configuration an input
and an output σ-LCd tree.

The correspondence between polar trees and their graph-theoretical repre-
sentation as σ-LCd trees is illustrated in Figure A.7.

7As usual, outer parenthesis will be dropped.
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configuration l τ◦nσ τ<n σ σ>nτ

input tree l• τ•◦nσ
• τ•<n σ

◦ σ◦>nτ
•

output tree l◦ σ◦◦nτ
◦ σ•>nτ

◦ τ◦<n σ
•

Figure A.6: Configurations and polar trees

I

O

I1◦nI2 I<nO O>nIl•

O1◦nO2 O<n I I>nOl◦

O1 O2

×n

l
O I

×n

I O

×n

I O

×n

O I

×n

I2 I1

×n

l

Figure A.7: Abstract and graph-theoretical polar trees

A σ-LCd tree context is obtained, as in the previous sections, enriching the
set of leaves with a disjoint set {Hi : i ∈ N} of hole labels. A hole Hi is
an input (output) hole if the adjacent edge points away (toward) the node
labeled by Hi. Substitution of a tree in a context carries over with one minor
restriction on polarity: an input (output) tree can be substituted only for
an input (output) hole.

Consider the set of pairs (I,O) of an input and an output σ-LCd context.
On this set let ≈ be the smallest equivalence relation such that for all n ∈ N ,
for all input contexts I0, I1, and output contexts O1 and O2:

• (I1,O1<n I2) ≈ (I1◦nI2,O1) ≈ (I2,I1>nO1); and

• (I1<nO2,O1) ≈ (I1,O1◦nO2) ≈ (O1>nI1,O2).

Denote by I ⋆O the ≈-equivalence class individuated by the pair (I,O).

Definition A.27 A polar σ-LCd seaweed is an ≈-equivalence class.
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Definition A.28 A σ-LCd seaweed context is an acyclic and connected
directed graph with unary and ternary nodes. The ternary nodes are labeled
by elements of the set {×n : n ∈ N}; the unary nodes called (proper) leaves
are labeled by elements of L; the unary nodes called holes are labeled by
(distinct) elements of H = {Hi : i ∈ N}. It has no other nodes and at least
one edge. Ternary nodes come with a cyclic order on the incident edges; at
any ternary node, at least one of the incident edges points toward the node
and at least one points away from it.

Definition A.29 A σ-LCd seaweed context with no holes is called a σ-LCd

seaweed. A σ-LCd seaweed context with no proper leaves is said to be pure.

The correspondence between a polar σ-LCd seaweed and its graph-theoretical
representation is illustrated, for non-trivial cases, in Figure A.8.

(I1,O1<n I2) (I1◦nI2,O1) (I2,I1>nO1)

I2 O1

I1

×n

O1

I1I2

×n

O1 I1

I2

×n

(I1<nO2,O1) (I1,O1◦nO2) (O1>nI1,O2)

I1O2

×n

O1 O2 O1

I1

×n

O1I1

×n

O2

Figure A.8: Polar and graph-theoretical σ-LCd seaweeds

Consider the following sets:

• N× = {×i : i ∈ N} of tensor operators;

• N℘ = {℘i : i ∈ N} of par operators.
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Definition A.30 A σ-LCd partial proof structure is a connected directed
graph such that:

• its edges are labeled by σ-LCd types;

• its ternary nodes are labeled by elements of N× ∪ N℘; incident edges
are ordered cyclically; one of them is the conclusion, the left (right)
premise is the edge that immediately follows (precedes) the conclusion
in clockwise fashion; the premises are labeled by the immediate subfor-
mulas of the type labeling the conclusion; at any ternary node, at least
one of the edges points toward the node and at least one, away from
it;

• its binary nodes are labeled by ID and CUT (or more simply, rep-
resented by a horizontal line); ID nodes have two conclusions, CUT
nodes have two premises; at any binary node, the incident edges have
identical labels; one of the edges points toward the node, while the other
edge points away from it;

• unary nodes are not labeled;

• there are no other nodes;

• any edge is the premise of at most one node and the conclusion of at
most one node.

For any l ∈ N× ∪ N℘ ∪ {ID,CUT}, a node labeled by l together with its
incident edges is called an l-link. We speak of an input (output) logical link
when the conclusion points away from (toward) the node of the link. Labels
and directions in logical links are related in the way exhibited in Figure A.9.
If l ∈ N℘ the link is said to be of type i or, equivalently, to be a par link. If
l ∈ N×, the link is said to be of type ii or, equivalently, a tensor link.

Definition A.31 An open leaf in a σ-LCd partial proof structure is an
edge that is the conclusion of no link.

Definition A.32 A σ-LCd proof structure is a σ-LCd partial proof struc-
ture with no open leaves.

Definition A.33 A σ-LCd pseudostructure is a connected directed graph
such that:
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×n

×n

×n

A\
n
B

A B

A\
n
B

AB
℘n

A⊕nB

A B

A⊕nB

B A
×n

A B

A⊘nB

AB

A⊘nB

℘n ×n

℘n

A×nB

A B

A×nB

B A
℘n

A B

A/nB

AB

A/nB

℘n

A;nB

A B
℘n

A;nB

AB
×n

Figure A.9: Directed logical links.

• its ternary nodes are labeled by elements of N× ∪ N℘; incident edges
are ordered cyclically; in the case of the nodes labeled by elements of
N℘, one of the edges is specified to be the conclusion (and denoted
by a tail on the edge); at any ternary node, at least one of the edges
points toward the node and one, away from it:

• unary nodes are labeled by types of σ-LCd;

• there are no other nodes;

• edges are not labeled.

In a pseudostructure, we can still speak of ℘-links as the nodes labeled by
an n ∈ N℘ together with its incident edges.

Given any directed partial proof structure Π, the underlying directed pseu-
dostructure Π− is obtained in the following way (see Figure A.10):

• for any edge incident on a unary node, copy the label of the edge onto
the node itself;

• mark the conclusion of any node labeled by an element of N℘ with a
tail;
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℘n

×n

℘n

×n

(B⊘nC);nA C/n(A\nB)

℘n

×n

℘n

×n
C A

B⊘nC A A\nB C

B B

(B⊘nC);nA C/n(A\nB)

Figure A.10: A directed proof structure and its pseudostructure

• remove edge labels;

• remove any binary node by connecting directly between them the two
incident edges; the new edge inherits the direction of the two joined
edges.

The contraction rule (CONn) for σ-LCd pseudostructures can have any of
the forms pictured in Figure A.11, where p and q stand for any direction on
the edges.

Any structural rule

σ1[ρ1, . . . , ρm] ⇒ τ1[ρm+1, . . . , ρl]

σ2[ρ1, . . . , ρm] ⇒ τ2[ρm+1, . . . , ρl]

induces the rewriting rule on σ-LCd pseudostructures determined by (the
graphical representation of) the following modification:

σ1[l1, . . . , lm]
• ⋆ τ1[lm+1, . . . , ll]

◦ → σ2[l1, . . . , lm]
• ⋆ τ2[lm+1, . . . , ll]

◦.
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×n

l0 l1

℘n

p

q
7−→

l0 l1

×n

l0 l1

℘n

q

p

7−→

l0 l1

Figure A.11: Contractions in directed pseudostructures.

Let R′ be the set of rewriting rules for pseudostructures derived from the
set σ of structural rules of σ-LCd. Let R be the set R′ enriched with the
set of contraction rules (CONn), for any modality n ∈ N . Given any two
σ-LCd pseudostructures Π and Σ, say that Σ <R Π if Π can be rewritten
as Σ applying a rule of R. Let ≤R be the reflexive-transitive closure of <R.

Definition A.34 A σ-LCd pseudostructure Π is R-contractible if there is
a σ-LCd seaweed α such that α ≤R Π. A σ-LCd proof structure is R-
contractible if the underlying pseudostructure Π− is R-contractible.

Proposition A.35 If D is a σ-LCd derivation of a sequent σ ⇒ τ , then
(D)− rewrites as σ• ⋆ τ◦.

Proof. By induction over the length n of D. If n = 0, i.e. if α is an axiom,
there is nothing to prove. If n ≥ 1 consider the last rule r in D. If r is an
instance of the left ×n rule

...D0

A◦nB ⇒ σ

A×nB ⇒ σ

then by induction hypothesis (D0)
− rewrites as (A◦nB)

• ⋆ σ◦. The same
rewriting rules applied to (D)− yield the graph obtained joining in (A◦nB)

•⋆
σ◦ the leaves labeled by A and B by the input link with conclusion A×nB.
A further contraction yields a seaweed equivalent to (A×nB)

• ⋆ σ◦. If r is
an instance of any other unary logical rule, the reasoning is similar.
If the last rule r used in D is an instance of the right ×n rule
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...D0

...D1

τ0 ⇒ A0 τ1 ⇒ A1

τ0◦nτ1 ⇒ A0×nA1

then by induction hypothesis (Di)
−, following a list ρi of rewriting rules,

rewrites as τ•i ⋆ A
◦
i for i ∈ {0, 1}. Following the lists ρ1 and ρ2, (D)

− yields
(τ0◦nτ1)

• ⋆ (A0×nA1)
◦. The other logical binary cases are similar.

If D consists of a derivation D′ followed by an instance of a structural rule
s, apply the induction hypothesis to (D′)− and rewrite the resulting sequent
applying the rewriting rule that corresponds to s. As for the display rules,
recall that σ-LCd seaweeds are invariant for them. The proof is completed
observing that the case of cut is analogous to the tensor case (with the minor
difference that no further contraction is needed). �

The same reasoning as in Lemma 1.24 proves the following result.

Lemma A.36 (The Bridge Splitting Lemma) Let Π be an σ-LCd con-
tractible NL structure such that:

• it has at least a non-final ℘-link; and

• no ℘-link is final.

Then there is a bridging ℘- with conclusion X that splits Π into a contractible
σ-LCd structure Π0 and a contractible σ-LCd partial structure Π1(X).

Theorem A.37 (Sequentialization) Let Π be a σ-LCd proof structure
such that Π− rewrites as a σ• ⋆ τ◦. Then there is a σ-LCd derivation D of
σ ⇒ τ such that (D) = Π.

Proof. By induction over the complexity n of Π. If n = 0 there is nothing
to show. Suppose Π has a final ℘-node L, the conclusion of which is labeled
by X. The removal of L yields a proof structure Π′ such that Π′− is con-
tractible. By induction hypothesis, Π′ can be sequentialized as a derivation
D′. Completing D′ with a unary logical rule that introduces X as main
formula yields a derivation D of σ ⇒ τ such that Π = (D). If Π has no final
℘-node, then, by the previous Splitting Lemma, there is a bridging ℘-link
that decomposes Π into a proof structure Π0 and a partial proof structure
Π1(X) such that Π−

0
and Π1(X)

− are contractible. Note that Π1(X) can
be turned into a proof structure Π1 simply by adding an identity link with
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conclusion X. Π1(X) and Π1 coincide qua unlabeled graphs and therefore
also Π−

1
is contractible. By induction hypothesis, there are derivations D0

and D1 such that (D0) = Π0 and (D1) = Π1. Replacing in the derivation D1

the axiom X ⇒ X with the derivation D0 yields a derivation D of σ• ⋆ τ◦

such that (D) = Π. �

A.5 Displaying LGC

Displaying LGC yields a calculus LGCd that shares the same set of types
and configurations. Its rules comprise the minimal set of rules of Figure A.3
and the set of structural rules of Figure A.12.

(G1)
ρ>(σ ◦ τ) ⇒ ψ

(ρ>σ) ◦ τ ⇒ ψ
(G3)

(ρ ◦ σ)<τ ⇒ ψ

ρ ◦ (σ<τ) ⇒ ψ

(G2)
ρ>(σ ◦ τ) ⇒ ψ

σ ◦ (ρ>τ) ⇒ ψ
(G4)

(ρ ◦ σ)<τ ⇒ ψ

(ρ<τ) ◦ σ) ⇒ ψ

Figure A.12: Structural rules of LGCd.

Corollary A.38 LGCd enjoys the Cut Elimination Property.

Observe that the set of structural rules of LGCd can be equivalently ex-
pressed by their dual rules listed in Figure A.13. Note, however, that the
dual of (G1) is equivalent to (G3) (and viceversa), whereas the dual of (G2)
is equivalent to (G2) itself (and similarly for the (G4) rule).

Definition A.39 A ◦-context is an LGCd context in which the structural
operators > and < do not appear.

Definition A.40 The anticontext σ̃[K] of the ◦-context σ[H] is defined by
induction in the following way:

(G1’)
ψ ⇒ ρ>(σ ◦ τ)
ψ ⇒ (ρ>σ) ◦ τ

(G3’)
ψ ⇒ (ρ ◦ σ)<τ
ψ ⇒ ρ ◦ (σ<τ)

(G2’)
ψ ⇒ ρ>(σ ◦ τ)
ψ ⇒ σ ◦ (ρ>τ)

(G4’)
ψ ⇒ (ρ ◦ σ)<τ
ψ ⇒ (ρ<τ) ◦ σ

Figure A.13: Alternative set of structural rules of LGCd.
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• if σ[H] = H, then σ̃[K] = K;

• if σ[H] = τ ◦ σ[H], then σ̃[K] = σ̃[τ>K];

• if σ[H] = σ[H] ◦ τ , then σ̃[K] = σ̃[K<τ ].

A simple induction over the structural complexity of a ◦-context establishes
the following result.

Lemma A.41 For any ◦-context σ[H] and any configurations τ and ρ, the
sequent σ[τ ] ⇒ ρ is an LGCd theorem if and only if τ ⇒ σ̃[ρ] is an LGCd

theorem. Dually, the sequent ρ ⇒ σ[τ ] is an LGCd theorem if and only if
σ̃[ρ] ⇒ τ is an LGCd theorem.

Lemma A.42 For any ◦-context τ [H], the following inferences are valid in
LGCd :

σ ⇒ B>τ [A]

σ ⇒ τ [B>A]

σ ⇒ τ [A]<B

σ ⇒ τ [A<B]

B>τ [A] ⇒ σ

τ [B>A] ⇒ σ

τ [A]<B ⇒ σ

τ [A<B] ⇒ σ

Proof. The proof is by induction over the structural complexity of τ [ ]. In
the base case there is nothing to show. Suppose we start with the sequent
σ ⇒ B > (τ1[A] ◦ τ2). Then, using (G1

′), we obtain σ ⇒ (B > τ1[A]) ◦ τ2
and from this, by induction hypothesis, we can derive σ ⇒ τ1[B > A] ◦ τ2.
All the other cases are similar. �

Lemma A.43 Any LGC rule is a valid inference rule in LGCd.

Proof. We only need to check the cases in which the active formula of the
LGC rule is embedded in a (non-trivial) context. There are two classes of
such cases. In the first one, exemplified here by the LGC left introduction
rule for the tensor, we use Lemma A.41 in the first and last step:

σ[A ◦B] ⇒ τ

A ◦B ⇒ σ̃[τ ]

A×B ⇒ σ̃[τ ]

σ[A×B] ⇒ τ
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As for the other class, exemplified here by the LGC right introduction
rule of the operator \, we use Lemma A.42 in the second step and then
the Lemma A.41 twice to be able to apply the LGCd right rule for the
operator \:

B ◦ σ ⇒ τ [A]

σ ⇒ B>τ [A]

σ ⇒ τ [B>A]

τ̃ [σ] ⇒ B>A

τ̃ [σ] ⇒ B\A

σ ⇒ τ [B\A]

�

A proof by induction over the length of LGC derivations establishes, in the
light of the previous lemma, the following result.

Proposition A.44 All LGC theorems are LGCd theorems.

Definition A.45 For any LGCd configuration σ, the left closure lσ and
the right closure rσ are defined by double induction in the following way:

• if σ = A is a trivial configuration, then lA = rA = A;

• if σ = τ ◦ ρ, then lσ = lτ × lρ and rσ = rτ ⊕ rρ;

• if σ = τ>ρ, then lσ = rτ;lρ and rσ = lτ\rρ;

• if σ = τ<ρ, then lσ = lτ⊘rρ and rσ = rτ/lρ.

Lemma A.46 For any LGCd configuration σ, the sequents σ ⇒ lσ and
rσ ⇒ σ are LGCd theorems.

Proof. As for Lemma A.8, the proof is by induction over the structural
complexity of the configuration σ, except that now there are more cases
to be considered in the inductive step. For instance, if σ = σ1<σ2, then
by induction hypothesis there are derivations of σ1 ⇒ lσ1 and rσ2 ⇒ σ2.
Applying the right introduction rule for ⊘ yields σ1<σ2 ⇒ l(σ1<σ2), since
l(σ1<σ2) = lσ1⊘rσ2. The other cases are similar. �

Lemma A.47 For any LGCd type A, the sequent A ⇒ A is an LGCd

theorem.
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Proof. The usual proof by induction over the complexity of the type A
works. For instance, if A = B⊘C, then by induction hypothesis there are
derivations of B ⇒ B and C ⇒ C. Applying the right and, then, the left
introduction rule for ⊘ yields B<C ⇒ B⊘C and hence B⊘C ⇒ B⊘C. �

Corollary A.48 For any LGCd configuration σ, the sequents lσ ⇒ lσ and
rσ ⇒ rσ are LGCd theorems.

Lemma A.49 If
σ1 ⇒ τ1
σ2 ⇒ τ2

is an LGCd rule, then
lσ1 ⇒ rτ1
lσ2 ⇒ rτ2

is a

valid LGC inference. Similarly, if
σ1 ⇒ τ1 σ2 ⇒ τ2

σ3 ⇒ τ3
is an LGCd

rule, then
lσ1 ⇒ rτ1 lσ2 ⇒ rτ2

lσ3 ⇒ rτ3
is a valid LGC inference.

Proof. For logical unary rules the result is trivial. For logical binary rules,
we will check the case of the right LGCd rule for the operator ⊘, the other
cases being similar. Recall the rule:

B ⇒ τ σ ⇒ A

σ<τ ⇒ A⊘B

In the translation under l and r of the antecedent sequents of the rule,
observe that lB = B, and rA = A. Then:

⊘R

⊘L

lB ⇒ rτ lσ ⇒ rA

lσ ⇒ (A⊘B) ◦ rτ

lσ⊘rτ ⇒ A⊘B

The last line is the translation of the conclusion of the rule, since r(A⊘B) =
A⊘B and l(σ<τ) = lσ⊘rτ .
For the case of the display rules, we use Corollary A.48 combined with the
cut rule. For instance, consider the case of the display rule:

τ ◦ σ ⇒ ρ

σ ⇒ τ>ρ

In this case the cut will be over l(τ ◦ σ) = lτ × lσ. Then:

×R

cut
\R

Cor. A.48 Cor. A.48
lτ ⇒ lτ lσ ⇒ lσ

lτ ◦ lσ ⇒ lτ × lσ l(τ ◦ σ) ⇒ rρ

lτ ◦ lσ ⇒ rρ

lσ ⇒ lτ\rρ
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The last line is the translation under l and r of the conclusion of the rule,
since lτ\rρ = r(τ>ρ).
For the Grishin structural rule, we need to use the Grishin interaction en-
coded in the suitable rule for the logical operators. Consider, for instance,
rule (G1):

ρ>(σ ◦ τ) ⇒ ψ

(ρ>σ) ◦ τ ⇒ ψ

The Grishin interaction that is needed is encoded in the ;L rule. This yields
the following LGC derivation, where the cut is over the type rρ;(lσ× lτ) =
l(ρ>(σ ◦ τ)):

×R

;R

;L

×L

cut

Cor. A.48 Cor. A.48
lσ ⇒ lσ lτ ⇒ lτ Cor. A.48

lσ ◦ lτ ⇒ lσ × lτ rρ ⇒ rρ
lσ ◦ lτ ⇒ rρ ◦ (rρ;(lσ × lτ))
(rρ;lσ) ◦ lτ ⇒ rρ;(lσ × lτ)
(rρ;lσ)× lτ ⇒ rρ;(lσ × lτ) l(ρ>(σ ◦ τ)) ⇒ rψ

(rρ;lσ)× lτ ⇒ rψ

The last line is the translation under l and r of the conclusion of the rule,
since (rρ;lσ)× lτ = l((ρ>σ) ◦ τ).
The proof is completed observing that the case of the cut rule is trivial,
since for any cut formula A one has that lA = rA = A. �

A straightforward proof by induction over the length of LGCd derivations
establishes, because of the previous lemma, the following result.

Corollary A.50 If σ ⇒ τ is an LGCd theorem, then lσ ⇒ rτ is an LGC
theorem.

Theorem A.51 Any LGC sequent is a theorem of LGC if and only if it
is a theorem of LGCd.

Proof. The ‘only if’ part is Proposition A.44. As for the ‘if’ implication,
let the LGC sequent σ ⇒ τ be an LGCd theorem. By Corollary A.50,
lσ ⇒ rτ is an LGC theorem and therefore, by Proposition A.10, σ ⇒ τ is
an LGC theorem. �

Theorem A.52 LGCd is a conservative extension of NLC.
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Proof. Clearly, any NLC theorem is an LGCd theorem, since all the
Lambek rules are valid inferences in LGCd. Now, suppose Γ ⇒ C is an
NLC sequent that can be proved in LGCd. We will show that it can be
proved in NLC. The proof is by induction over the number n of logical
rules in cut-free LGCd derivations. If n = 0, there is nothing to prove.
Suppose n ≥ 1 and look for the last logical rule r used in the derivation. If r
is an instance of a logical rule on the right, say for example the rule for the
backslash, then r is the last rule of the derivation, since neither Grishin nor
display rules can take place below r. Then we are in the situation reported
below on the left:

...D

τ ⇒ B>A

τ ⇒ B\A

...D

τ ⇒ B>A

B ◦ τ ⇒ A

The derivation on the right above has fewer logical rules then the former
derivation. Hence, by induction hypothesis, the final sequent can be derived
in NLC and, therefore, τ ⇒ B\A can be derived as well.
If the last logical rule r in the derivation is an instance of a left logical
rule, then there are possibly some structural rules below r. They cannot
be Grishin rules, since the structure of the final sequent involves only the
◦ operator. Therefore they can only be the display rules needed to display
the main type of r. If r is an instance of the × rule, the derivation has the
form reported below on the left:

...D

A ◦B ⇒ σ̃[C]

A×B ⇒ σ̃[C]

σ[A×B] ⇒ C

...D

A ◦B ⇒ σ̃[C]

σ[A ◦B] ⇒ C

The derivation on the right has a lower complexity and therefore, by in-
duction hypothesis, σ[A ◦B] ⇒ C can be derived in NLC and so can the
sequent σ[A×B] ⇒ C. If r is an instance of an implication, say the back-
slash, the derivation has the form reported below on the left:

...D1

...D2

A ⇒ ψ φ ⇒ B

B\A ⇒ φ>ψ
...

σ[B\A] ⇒ C

...D1

...D2

A ⇒ ξ̃[C] φ ⇒ B

B\A ⇒ φ>ξ̃[C]

φ ◦B\A ⇒ ξ̃[C]

ξ[φ ◦B\A] ⇒ C

Since the rules below r are only instances of the display rules, there are a
◦-configuration φ and a ◦-context ξ[ ] such that σ[B\A] = ξ[φ ◦B\A] and
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ψ = ξ̃[C], i.e. we can rewrite the LGCd derivation above on the left as
the derivation above on the right. By induction hypothesis, there are NLC
derivations of ξ[A] ⇒ C and φ ⇒ B, and therefore ξ[φ ◦B\A] ⇒ C can be
proved therein. �

Corollary A.53 LGC is a conservative extension of NLC.

A.6 Proof net theory for LGC

The general theory concerning proof nets for the displayed multimodal Lam-
bek Calculus and Theorem A.51 establish the following results, based on a
set of rewriting rules that comprise the contraction rules and the Grishin
structural rules of Figure A.14.

Proposition A.54 If D is an LGC derivation of a sequent σ ⇒ τ , then
(D)− rewrites as σ• ⋆ τ◦.

Theorem A.55 (Sequentialization) Let Π be a LGCd proof structure
such that Π− rewrites as σ• ⋆ τ◦, where σ ⇒ τ is an LGC sequent. Then
there is an LGC derivation D of σ ⇒ τ such that (D) = Π.
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(G1)

×

×

l0

l1

l2l3

−→
×

l0

l3 ×

l1l2

(G2)

×

×

l0

l1

l2l3

−→

×

×

l0

l2

l1l3

(G3) ×

l0

l3 ×

l1l2

−→

×

×

l0

l1

l2l3

(G4) ×

l0

l3 ×

l1l2

−→ ×

l0

l2 ×

l1l3

Figure A.14: Grishin rewriting rules.
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Conclusions

The Lambek Calculus LC is an ante litteram example of sublinear logic.
Roorda’s adaptation to it of Girard’s proof net theory and the introduction
of multimodality opened a new area of investigation: proof nets for multi-
modal calculi. Moot and Puite’s procedural theory of proof nets for Lambek
Calculi with weak Sahlqvist structural rules was a brilliant contribution to
this field. However, from a declarative point of view, there have been fewer
results.

The study –reported in the first part of this thesis– of the invariants for
Moot and Puite’s rewriting rules along successful derivations resulted in a
declarative characterization of the most constrained calculi.

First of all, introducing the notion of balance we completed the diamond of
proof net theory for the Lambek Calculus with/without Associativity and/or
Commutativity.

Our proposal allows three possible approaches to capture sensitivity to struc-
ture. At one end of the spectrum, one can verify whether a proof structure
is correct with respect to a given structuring of its conclusions. At the other
end, one can check correctness of a proof structure per se and unearth a
possible structuring. An intermediate possibility is to prove correctness of
a proof structure with respect to a linear (cyclic) order of the conclusions
and recover a structuring compatible with this order.

The latter strategy seems to be more in line with linguistic necessities, since
structuring beyond order is a theoretical construct (at least as long as we
do not take into account suprasegmental phonology).

Secondly, we have characterized –via the notion of endomodality– the lack of
interaction among binary modalities. Moreover we have seen that, in endo-
modal proof structures, sensitivity to order and structure can be checked
separately for each modality. This gives an upper limit for the character-
ization of proof nets, in the sense that any weak Sahlqvist structural rule
should be characterized by relaxing endomodality+balance+planarity.
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However, this shows also the limits of this approach. For instance, it does not
provide a characterization of a multimodal system in which there is commu-
nication between two non-associative non-commutative modes, despite the
fact that such communication does not affect the geometry of proof struc-
tures. Thus the characterization is very fragile. A possible solution would
be to find a more geometric criterion. Just as planarity has been reformu-
lated by Maieli in terms of order constraints on trimmings, one could express
balance by the following property, monocentricity, that I conjecture to be
equivalent to balance in any (DR2)-correct proof structure Π:8

for every ℘ link L there is a tensor node TL such that for
all trimmings τ at L and for all conclusions C of Π that
belong to τ , the node TL is the center of L and C in τ .

However, as soon as we allow for communication between modalities, it
is not clear how to recover the structuring of the conclusions. Hence, a
declarative characterization of Multimodal Lambek Calculi is still largely
an open question.

The third point addressed in Part I of the thesis is the question of links
for unary modalities. Since Danos-Regnier switchings cannot discriminate
among unary links for a unary modality and its residuated operator, there
arises the necessity of treating unary modalities by compilation.

While working on the last chapter on pregroups with brackets, it became
clear that Versmissen’s proposal of mimicking unary modalities with two ex-
tra symbols was not correct. The proof net theory elaborated for bracketed
pregroups suggested also how to fix his proposal. The solution, however, is
based on planarity. This is not a good strategy if one wants to use modal-
ities to license structural rules. Hence the proposal for a translation that
makes use of only one extra symbol and an extra modality, that does not
interact with the previous ones. A proof net theory is obtained immediately,
compiling the translation and using the endomodality correctness criterion.

Observe also that if there are several families of unary modalities, the trans-
lation can be iterated. However, a certain amount of redundancy is intro-
duced, in that in the translation of any unary modality, the modality is
recorded both on the new atomic type that is introduced and on the binary
modality used for the translation. There seem to be two strategies to avoid
this redundancy:

• assume that for all unary modalities h and k the new atomic types bh
and bk coincide;

8Recall Definition 2.30 of the center of a ℘ link L and a conclusion in a trimming at L.
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• use different atomic types, but only one new non-associative binary
modality.

The latter strategy appears perhaps more conservative and natural. How-
ever, if brackets are used to record, say, grammatical features and some
communication among features is expected (say, a noun marked for mas-
culine gender is marked for gender), then the former strategy is preferable,
since the communication can be encoded as structural rules. But again,
as soon as there is intermodal comunication we have no general theory for
unearthing the structuring of the conclusions.

In Part II of the thesis we have directed our attention to recent theories that
have moved away from multimodality and the use of structural rules. We
have limited our attention to those theories for which there is research on
their proof nets.

Grafting Puite and Moot’s procedural theory on directed graphs yields a
proof net theory for the Lambek-Grishin Calculus. However, the rewriting
rules highlight that this calculus is not truly without structural rules as
might appear from the sequent presentation.

In contrast, Morrill’s Discontinuous Hypercalculus is an example of a calcu-
lus that is truly monomodal and without structural rules. We have provided
it with a theory of proof nets obtained constraining proof nets of the Com-
mutative Lambek Calculus. Moreover, we have characterized those proof
nets that can be sequentialized without making use of empty sequents.

One would also like to extend the proof net theory to include the nonde-
terministic wrap, an operator with a distinctively additive flavour. It seems
that one possible solution would be to combine the theory proposed here
with the theory proposed by [47] for additives in (commutative) linear logic.
The combination is certainly possible for the Lambek Calculus enriched with
additives, provided that local correctness is checked with respect to a given
order.

But, perhaps, it is wrong to think of the nondeterministic wrap as an ad-
ditive operator. It should be viewed rather as being some sort of internally
commutative operator, the commutativity being among the various points
of discontinuity. From the point of view of proof nets, it seems that this
internal commutativity could be treated following Mellies’s approach, i.e.
introducing also switchings for nondeterministic tensor operators. However,
it is not clear to me how we could write a non-additive sequent calculus for
such an operator. And then, if we could, this would also mean that we are
reintroducing multimodality.
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The other contribution offered in Part II is concerned with enriching pre-
groups with unary modalities. We propose a definition of bracketed pre-
group, explain its free construction and generalize the Switching Lemma.
We observe that Francez and Kaminski’s commutativity and cancelability
inequalities can be imposed on this construction unproblematically. A more
difficult question, that we leave for further research, is whether their inequa-
tions could be stated using unary modalities.

In any case, it seems that multimodality keeps lurking on the horizon ...
Waiting for further developments in the field, allow me to conclude borrow-
ing some lines from Queneau’s Exercices de style:

Tiens j’ai dèjà raconté la moitié de mon histoire. Je me demande comment

j’ai fait. C’est tout de même agréable d’écrire. Mais il reste le plus difficile.

Le plus calé. La transition. D’autant plus qu’il n’y a pas de transition. Je

préfère m’arrêter.†

†Hm, I’ve got through half my story already. Wonder how I did it. Writing’s really
quite pleasant. But there’s still the most difficult part left. The part where you need the
most know-how. The transition. All the more so as there isn’t any transition. I’d rather
stop here. (From the English edition, translated by B. Wright)
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[116] E. Stabler. Tupled pregroup grammars. Technical report, UCLA,
2003.

[117] E. P. Stabler. Derivational minimalism. In C. Retoré, editor, LACL
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