
CHAPTER F OURENRICHING CATEGORIAL GRAMMARChapter three has introduced categorial grammar as formulated on thefoundations of type theory and substructural logic presented in chaptertwo. As logic formalisms, the Lambek calculi attract mathematical in-terest in their own right. In terms of application to natural languagegrammar however, their mathematical elegance can seem to imply un-suitability: surely not many facets of natural language can be construedin such simple structures? Indeed we do not get far at all before it isapparent that extensions to the basic systems are required.In fact, the tendency in linguistics was to regard the Lambek calculias being already one of many possible augmentations of AB categorialgrammar, two other traditions of which are categorial grammar withcombinators (see e.g. Steedman 1987 and Szabolcsi 1987) and catego-rial grammar with uni�cation (see e.g. Uszkoreit 1986; Pollard and Sag1987, 1993; Zeevat, Klein and Calder 1987 and Bouma 1993). But onthe present view, classical categorial grammar is no more than a sug-gestive fractional notation which discovered its algebraic foundations inresiduation and cancellation under product with the Lambek calculi.When we generalise categorial grammar we wish to respect these foun-dations. This is what is done in what we may call the logical traditionof categorial grammar, where basic Lambek calculus with division andproduct operators is enriched with additional operators to increase itsexpressivity. 1. MU LT IMOD AL S Y S T EM SOne way of obtaining a richer system than is given by the connectivesof either the non-associative calculus NL or the associative calculus Lis by combining two (or more) families of these connectives: of di�erentkinds | non-associative and associative (for attempts see Oehrle andZhang 1989, Morrill 1990c), or of the same kind | non-associative andnon-associative or associative and associative (see Moortgat and Mor-87



88 CHAPTER F OURrill 1991). We refer to such logics as hybrid, or multimodal, includingmultiple modes of prosodic adjunction.1 In the case of double non-associativity for example, the categorial formulas are generated by twofamilies of operators, say nl; =l; �l and nr; =r; �r and are (prosodically) in-terpreted in a `bimodal groupoid' algebra (L;+l;+r) closed under twobinary operations. Each family is interpreted by residuation with respectto its associated mode of adjunction.D(A�lB) = fs1+ls2js1 2 D(A) ^ s2 2 D(B)gD(B=lA) = fsj8s0 2 D(A); s+ls0 2 D(B)gD(AnlB) = fsj8s0 2 D(A); s0+ls 2 D(B)g(1) D(A�rB) = fs1+rs2js1 2 D(A) ^ s2 2 D(B)gD(B=rA) = fsj8s0 2 D(A); s+rs0 2 D(B)gD(AnrB) = fsj8s0 2 D(A); s0+rs 2 D(B)g(2)Thus each family respects the residuation laws:A ) C=lB =jj= A�lB ) C =jj= B ) AnlCA ) C=rB =jj= A�rB ) C =jj= B ) AnrC(3)The Gentzen-style sequent calculus is like that for NL in that con�g-urations have a binary bracketing (i.e. binary tree) structure in relationto which inference is regulated. But the brackets (mother nodes) areeach of one of two `colours' | l or r | and operators are controlledaccording to their kind.(4) a. idA ) A � ) A �[A] ) BCut�[�] ) Bb. � ) A �[B] ) CnlL�[(l�; AnlB)] ) C (lA;�) ) BnlR� ) AnlBc. � ) A �[B] ) C/lL�[(lB=lA;�)] ) C (l�; A) ) B/lR� ) B=lA1In the sense that algebraic models can be seen as de�ning particular kinds ofternary accessibility relations, with categorial connectives being diadic modal opera-tors (Dirk Roorda, p.c.), the term modal in multimodal can also be seen as obtainingas in modal logic.



ENR I CH I NG CATE GOR I A L GRAMMAR 89d. �[(lA;B)] ) C�lL�[A�lB] ) C � ) A � ) B�lR(l�;�) ) A�lBe. � ) A �[B] ) CnrL�[(r�; AnrB)] ) C (rA;�) ) BnrR� ) AnrBf. � ) A �[B] ) C/rL�[(rB=rA;�)] ) C (r�; A) ) B/rR� ) B=rAg. �[(rA;B)] ) C�rL�[A�rB] ) C � ) A � ) B�rR(r�;�) ) A�rBSuch a system characterises, for instance, headed binary constituentstructure, each mother node being understood as marked for having ei-ther its left (l) subconstituent or right (r) subconstituent as head. Oneinstance of such structures is provided by metrical trees (Liberman andPrince 1977) and Moortgat and Morrill (1991) exemplify application toprosodic stress assignment in modelling rhythmic patterns of speech. Al-ternatively the devices could be applied to projection of head-dependentstructure, without subjectivity to the traditional correlation of headswith categorial functors, which is questionable in relation to determin-ers, adjectives, modi�ers, and so on.For a system combining two modes of adjunction each of which is asso-ciative, i.e. one based on an algebra (L;+l;+r) such that s1+l(s2+ls3) =(s1+ls2)+ls3 and s1+r(s2+rs3) = (s1+rs2)+rs3 (so (L;+l) and (L;+r)are semigroups), the logical rules are just the same, but structural rulesof association are added:(5) �[(l�1; (l�2;�3))] ) AAl�[(l(l�1;�2);�3)] ) A �[(r�1; (r�2;�3))] ) AAr�[(r(r�1;�2);�3)] ) AGentzen-style sequent calculus for a doubly associative system can alsobe given representing equivalence classes of con�gurations by n+ 2-arybracketing (Moortgat and Morrill 1991).In the case of mixing L and NL, the categorial language generatedby associative operators n (\under"), / (\over"), � and non-associative



90 CHAPTER F OURoperators which we shall henceforth notate > (\to"), < (\from"), �is to be interpreted in an algebra (L;+; (:; :)) where + and (:; :) arebinary operators and s1+(s2+s3) = (s1+s2)+s3, i.e. + (but not (:; :))is required to be associative (so (L;+) is a semigroup and (L; (:; :)) agroupoid). Interpretation is again by residuation with respect to theassociated adjunction.D(A�B) = fs1+s2js1 2 D(A) ^ s2 2 D(B)gD(B=A) = fsj8s0 2 D(A); s+s0 2 D(B)gD(AnB) = fsj8s0 2 D(A); s0+s 2 D(B)g(6) D(A�B) = f(s1; s2)js1 2 D(A) ^ s2 2 D(B)gD(B<A) = fsj8s0 2 D(A); (s; s0) 2 D(B)gD(A>B) = fsj8s0 2 D(A); (s0; s) 2 D(B)g(7)Gentzen sequent calculus for this partially associative system is asfollows. The binary tree structured antecedent con�gurations are brack-eted with f:; :g indicating the associative adjunction and (:; :) the non-associative.(8) a. idA ) A � ) A �[A] ) BCut�[�] ) Bb. � ) A �[B] ) CnL�[f�; AnBg] ) C fA;�g ) BnR� ) AnBc. � ) A �[B] ) C/L�[fB=A;�g]) C f�; Ag ) B/R� ) B=Ad. �[fA;Bg]) C�L�[A�B] ) C � ) A � ) B�Rf�;�g ) A�Be. � ) A �[B] ) C>L�[(�; A>B)] ) C (A;�) ) B>R� ) A>Bf. � ) A �[B] ) C<L�[(B<A;�)] ) C (�; A) ) B<R� ) B<A



ENR I CH I NG CATE GOR I A L GRAMMAR 91g. �[(A;B)] ) C�L�[A�B] ) C � ) A � ) B�R(�;�) ) A�Bh. �[f�1; f�2;�3gg] ) AAfg�[ff�1;�2g;�3g] ) AThe structural rule (8h) represents associativity for the associative modeof adjunction. We could alternatively represent equivalence classes ofbracketings under associativity by at sequences (cf. Morrill 1990c).In general we may introduce multimodal logics with any number nof families f�i, /i, nig, 1 � i � n, of multiplicative type-constructors,interpreted by residuation in a multigroupoid (L; f+gi2f1;:::;ng):D(A�iB) = fs1+s2js1 2 D(A) ^ s2 2 D(B)gD(B=iA) = fsj8s0 2 D(A); s+is0 2 D(B)gD(AniB) = fsj8s0 2 D(A); s0+is 2 D(B)g(9)For example phonological theory has identi�ed a number of prosodicunits; Nespor and Vogel (1986) asserts a prosodic hierarchy compris-ing syllable, foot, phonological word, clitic group, phonological phrase,intonational phrase, and phonological utterance. In order to recognisesuch structure we may introduce a mode of prosodic adjunction, with anassociated family of multiplicatives, for each prosodic unit. Each familywill respect the residuation laws:A ) C=iB =jj= A�iB ) C =jj= B ) AniC(10)Where we identify the mode of prosodic combination in question bysubscripting sequent bracketing, the Gentzen sequent logic is as followsfor each mode.(11) a. idA ) A � ) A �[A] ) BCut�[�] ) Bb. � ) A �[B] ) CnnL�[(i�; AniB)] ) C (iA;�) ) BniR� ) AniB



92 CHAPTER F OURc. � ) A �[B] ) C/iL�[(iB=iA;�)] ) C (i�; A) ) B/iR� ) B=iAd. �[(iA;B)] ) C�iL�[A�iB] ) C � ) A � ) B�iR(i�;�) ) A�iBIn addition there are structural rules corresponding to structural axiomssuch as associativity on the multigroupoid. When such axioms relatedi�erent adjunctions, we refer to them as linking rules. We shall seein section 3 how linking rules enable formulation of a multimodal logicof discontinuity; before that we introduce the notion of labelling, whichsupplies a form of presentation related to the PTQ-style presentation ofchapter one. 2. L A B E L L ED DE DUCT I ONIn the sequent calculus for categorial grammar as we have used it so far,prosodic operations are represented by the linear and hierarchical or-ganisation of con�gurations. Semantic operations, as we have seen, canbe represented by labelling antecedent formulas with variables, and la-belling succedent formulas with semantic terms over those variables, butprosodic operations were left implicit. In what follows we will presentdiscontinuity operators for which implicit prosodic interpretation by or-ganisation of antecedents into con�gurations is not so natural, becauseword order is not always given by the left to right yield of the structures.The situation will be ameliorated by labelling prosodics, like semantics,explicitly. This practice falls within Gabbay's (1991) general disciplineof labelled deduction, the slogan of which is to \bring semantics back intosyntax". What that will mean for grammar is PTQ-style prosodic andsemantic labelling of rules of formation. We will also present in section 4modal operators for which labelling provides a convenient proof format.A prosodically labelled sequent has the form:a1:A1; :::; an:An ) �:A(12)No prosodic variable ai may occur more than once in the antecedentwhich is thus a functional assignment of categorial types to prosodicvariables, and � is a prosodic term over the variables a1; :::; an. Such



ENR I CH I NG CATE GOR I A L GRAMMAR 93a sequent states that applying the prosodic operation represented by �to any objects in A1; :::; An (according to the labelling) yields an objectin A. When semantic labelling is also included, we have statements offormation as in chapter one:a1 { x1:A1; :::; an { xn:An ) � { �:A(13)Order of antecedents is now unimportant: as noted in chapter one, va-lidity is preserved under permutation (and contraction and weakening).In our labelling, we maintain the convention that antecedent formulasare labelled with prosodic and semantic variables. Other versions of la-belling involve labelling antecedent formulas with prosodic and semanticterms in general. We keep to the stricter discipline here in order thatthe antecedents in the theorems a1 { x1:A1; : : : ; an { xn:An ) � { �:Ajust show to what categories the prosodic and semantic operations �and � apply in a Montagovian rule of formation with input categoriesA1; : : : ; An and output categoryA. Pattern-matching against antecedentsemantic terms would constitute essential use of logical form in the waywhich removes the guarantee of convertibility of a PTQ-style grammarinto an EFL-style one. In the logical setting, the analogue is that the`bringing of semantics into syntax' would not be a transparent reectionof the model theory (though of course it might be valid). We advo-cate the same transparency with respect to the prosodic dimension asfor the semantic dimension, so that antecedent prosodic terms are alsorestricted to variables.For a given model theory each labelled sequent either is or is not valid,and we would like a labelled proof theory generating exactly the validi-ties. For the Lambek calculi we can obtain a labelled deductive system(LDS) fairly directly from the usual Gentzen-style sequent formulation.The process is really just one of compiling con�guration structure intothe succedent prosodic term. Henceforth we allow the distinguished oc-currence notation [.] to apply to terms as well as con�gurations. Work-ing for the moment with just prosodic labelling, we obtain the followingfor NL:(14) a. ida:A ) a:A � ) �:A a:A;� ) �[a]:BCut�;�) �[�]:B



94 CHAPTER F OURb. � ) �:A b:B;� ) [b]:CnL�; d:AnB;� ) [(�+d)]:C �; a:A ) (a+):BnR� ) :AnBc. � ) �:A b:B;� ) [b]:C/L�; d:B=A;� ) [(d+�)]:C �; a:A ) (+a):B/R� ) :B=Ad. a:A; b:B;� ) [(a+b)]:C�Ld:A�B;� ) [d]:C � ) �:A � ) �:B�R�;� ) (�+�):A�BA derivation of lifting, for example, is as follows.(15) a:A ) a:A b:B ) b:BnLa:A; d:AnB ) (a+d):B/Ra:A ) a:B=(AnB)The di�erence between associative and non-associative labelling lies inan understanding that + in the labels of the former, but not the latter,is associative. Thus in an LDS for L there is the following structuralrule.(16) � ) �[(�1+(�2+�3))]:AA� ) �[((�1+�2)+�3)]:AThen for example composition in L is derived thus:(17) c:C ) c:C a:A ) a:A b:B ) b:BnLa:A; d:AnB ) (a+d):BnLc:C; e:CnA; d:AnB ) ((c+e)+d):BAc:C; e:CnA; d:AnB ) (c+(e+d)):BnRe:CnA; d:AnB ) (e+d):CnBWhen we in addition label for semantics, a sequent has the forma1 { x1:A1, . . . , an { xn:An ) � { �:A, no prosodic or semantic vari-able is associated with more than one category, � is a prosodic term



ENR I CH I NG CATE GOR I A L GRAMMAR 95over variables a1; : : : ; an and � is a semantic term over (free) variablesx1; : : : ; xn. The prosodically and semantically labelled calculus is as fol-lows; in �L the [.] distinguished occurrence notation is extended to [., .]indicating two distinguished occurrences.(18) a. ida { x:A ) a { x:Ab. � ) � { �:A a { x:A;� ) �[a] {  [x]:BCut�;� ) �[�] {  [�]:Bc. � ) � { �:A b { y:B;� ) [b] { �[y]:CnL�; d { w:AnB;� ) [(�+d)] { �[(w �)]:Cd. �; a { x:A ) (a+) {  :BnR� )  { �x :AnBe. � ) � { �:A b { y:B;� ) [b] {  [y]:C/L�; d { w:B=A;� ) [(d+�)] {  [(w �)]:Cf. �; a { x:A ) (+a) {  :B/R� )  { �x :B=Ag. a { x:A; b { y:B;� ) [(a+b)] { �[x; y]:C�Ld { w:A�B;� ) [d] { �[�1w; �2w]:Ch. � ) � { �:A � ) � {  :B�R�;� ) (�+�) { (�;  ):A�BWith semantics a subject lifting derivation becomes the following.(19) a { x: N ) a { x:N c { z: S ) c { z: SnLa { x: N, b { y: NnS ) (a+b) { (y x): S/Ra { x:N ) a { �y(y x): S/(NnS)



96 CHAPTER F OURWe shall now use labelling to present a Fitch-style natural deduc-tion format for categorial derivations (see Morrill 1993) which is typo-graphically friendly in that derivations of reasonable complexity can berepresented in full down the page, whereas sequent proofs and labelledPrawitz-style natural deduction quickly exhaust space across the page.Fitch-style natural deduction is serial, i.e. linearly structured, whereasPrawitz-style is parallel, i.e. tree structured. The former represents con-ditional reasoning by `smart' block structure which indicates the scopeof hypothetical subderivations.For labelled Fitch-style categorial derivation, there are lexical assign-ment, subderivation hypothesis, and term label equation rules thus:a: n: � { �:A for any lexical entry(20)b: n: a1 { x1:A1 H... ...n+m: am { xm:An Hc: n: � { �:A�0 { �0:A = n; if � = �0 & � = �0The lexical assignment rule allows introduction of a lexical declarationat any stage in a derivation. The subderivation rule allows commence-ment of a subderivation with one or more hypotheses, at one level ofembedding down, and the label equation rule allows rewriting of labelsunder equality. As usual there are two rules for each operator: a rule ofelimination (corresponding to the Gentzen-style left rule) showing howto use a formula with that operator as principal connective, and a ruleof introduction (corresponding to the Gentzen-style right rule) show-ing how to prove a formula with that operator as principal connective.Logical rules for the categorial connectives are as follows.a: n: � { �:Am:  { �:AnB(�+) { (� �):B En n;m(21)b: n: a { x:A Hm: (a+) {  :B unique a as indicated { �x :AnB In n;ma: n: � { �:Am:  { �:B=A(+�) { (� �):B E/ n;m(22)



ENR I CH I NG CATE GOR I A L GRAMMAR 971. a { x: N2. b { y: NnS H3. (a+b) { (y x): S En 1, 24. a { �y(y x): S/(NnS) I/ 2, 3FIGURE 4.1. Derivation of lifting in labelled non-associative calculusb: n: a { x:A Hm: (+a) {  :B unique a as indicated { �x :B=A I/ n;ma: n:  { �:A�Bm: a { x:A Hm+ 1: b { y:B Hp: �[(a+b)] { ![x; y]:D unique a and b as indicated�[] { ![�1�; �2�]:D E� n;m;m+ 1; p(23)b: n: � { �:Am: � {  :B(�+�) { (�;  ):A�B I� n;mThe previous lifting theorem is now derived as in Figure 4.1A Fitch-style labelled calculus for the associative Lambek calculus Lcan be obtained from that for the non-associative calculus by adding aprosodic label equation applying to arbitrary subterms in a derivation:((�1+�2)+�3) = (�1+(�2+�3))(24)Alternatively, the associative Lambek calculus can be given by droppingparentheses in prosodic labels (using in e�ect n-ary +). Fitch-style thisgives the following:a: n: � { �:Am:  { �:AnB�+ { (� �):B En n;m(25)b: n: a { x:A Hm: a+ {  :B unique a as indicated { �x :AnB In n;m



98 CHAPTER F OUR1. d { w: VP/PP2. e { u:PP/N3. c { z:N H4. e+c { (u z): PP E/ 2, 35. d+e+c { (w (u z)): VP E/ 1, 46. d+e { �z(w (u z)): VP/N I/ 3, 5FIGURE 4.2. Derivation of composition in labelled associative calculusc: n: � { �:Am:  { �:B=A+� { (� �):B E/ n;m(26)d: n: a { x:A Hm: +a {  :B unique a as indicated { �x :B=A I/ n;me: n:  { �:A�Bm: a { x:A Hm + 1: b { y:B Hp: �[a+b] { ![x; y]:D unique a and b as indicated�[] { ![�1�; �2�]:D E� n;m;m+ 1; p(27)f: n: � { �:Am: � {  :B�+� { (�;  ):A�B I� n;mThis allows derivation of e.g. composition theorems not valid in the non-associative case; see Figure 4.2.We have already seen relativisation examples such as (28).which John talked about(28)The relativisation can be derived as shown in Figure 4.3 in Fitch-stylenatural deduction L without parentheses.Any multimodal system can be given a Fitch-style presentation asfollows with each connective correlated with its adjunction constructorin the labels. First there are always the lexical assignment, subderivation



ENR I CH I NG CATE GOR I A L GRAMMAR 991. which { �x�y�z[(y z) ^ (x z)]: (CNnCN)/(S/N)2. John { j:N3. talked { talk: (NnS)/PP4. about { about:PP/N5. a { x:N H6. about+a { (about x):PP 4, 5 E/7. talked+about+a { (talk (about x)):NnS 3, 6 E/8. John+talked+about+a { ((talk (about x)) j): S 2, 7 En9. John+talked+about { �x((talk (about x)) j): S/N 5, 8 I/10. which+John+talked+about {(�x�y�z[(y z) ^ (x z)] �x((talk (about x)) j)):CNnCN 1, 9 E/11. which+John+talked+about {�y�z[(y z) ^ ((talk (about z)) j)]:CNnCN = 10FIGURE 4.3. Derivation of `which John talked about'hypothesis, and term label equations:a: n: � { �:A for any lexical entry(29)b: n: a1 { x1:A1 H... ...n+m: am { xm:An Hc: n: � { �:A�0 { �0:A = n; if � = �0 & � = �0Then there are logical rules with each connective associated with its ad-junction in the labels:a: n: � { �:Am:  { �:AniB(�+i) { (� �):B Eni n;m(30)b: n: a { x:A Hm: (a+i) {  :B unique a as indicated { �x :AniB Ini n;ma: n: � { �:Am:  { �:B=iA(+i�) { (� �):B E/i n;m(31)



100 CHAPTER F OURb: n: a { x:A Hm: (+ia) {  :B unique a as indicated { �x :B=iA I/i n;ma: n:  { �:A�iBm: a { x:A Hm+ 1: b { y:B Hp: �[(a+ib)] { ![x; y]:D unique a and b as indicated�[] { ![�1�; �2�]:D E�i n;m;m+ 1; p(32)b: n: � { �:Am: � {  :B(�+i�) { (�;  ):A�iB I�i n;mLabel equations are to be added according to the algebras of interpre-tation.Furthermore any multimodal system has a prosodically and semanti-cally labelled Gentzen-style LDS presentation as follows, together withsuitable label structural rules.(33) a. ida { x:A ) a { x:Ab. � ) � { �:A a { x:A;� ) �[a] {  [x]:BCut�;� ) �[�] {  [�]:Bc. � ) � { �:A b { y:B;� ) [b] { �[y]:CnLi�; d { w:AniB;� ) [(�+id)] { �[(w �)]:Cd. �; a { x:A ) (a+i) {  :BniR� )  { �x :AniBe. � ) � { �:A b { y:B;� ) [b] {  [y]:C/iL�; d { w:B=iA;� ) [(d+i�)] {  [(w �)]:C



ENR I CH I NG CATE GOR I A L GRAMMAR 101f. �; a { x:A ) (+ia) {  :B/iR� )  { �x :B=iAg. a { x:A; b { y:B;� ) [(a+ib)] { �[x; y]:C�iLd { w:A�iB;� ) [d] { �[�1w; �2w]:Ch. � ) � { �:A � ) � {  :B�iR�;�) (�+i�) { (�;  ):A�iBIt is primarily in terms of such Fitch-style and Gentzen-style labellingthat the subsequent sections present discontinuity and modal operators.3. D I S CONT I NU I T Y OP ER ATOR SConsider the following paradigm of `quanti�er oating' (see Smith andWilson 1979, p.61).a. All the children might have been shouting at once.b. The children all might have been shouting at once.c. The children might all have been shouting at once.d. The children might have all been shouting at once.e. The children might have been all shouting at once(34)One characterisation might treat `all' as both a prenominal determiner(which may also occur with object nominals, etc.), and a verbal modi�erwhich can occur within the auxiliary group. But for the purpose ofexempli�cation let us take this paradigm at face value and considerhow the (oating) quanti�er `all' may precede the subject, or appearanywhere within the auxiliary verb sequence. In order to capture sucha generalisation we may de�ne a `non-directional' division such that BArepresents a functor into B capable of combining with its argument Ato both the left and the right:2D(BA ) = fsj8s0 2 D(A); s0+s 2 D(B) ^ s+s0 2 D(B)g= D(AnB) \D(B=A)(35)2The possibility of such a type-constructor has been part of the categorial folklorefor a long time. Its type mapping would naturally be T (BA ) = T (B)T (A).



102 CHAPTER F OURWe assume an associative context. Ordered natural deduction rules areas follows.(36) ... ...BA A EaB ... ...A BA EbB(37) ... � ...iA i� iAB B IiBAThe elimination rules are straightforward. Indexed overline over � signi-�es discharge of the sequence of assumptions � so that the introductionrule states that where there is a proof of B from � plus A at the leftperiphery, and such a proof from � plus A at the right periphery, thenBA is proved from � alone.Where we evade some details of the semantics of plurals and de�-nites, the distributional facts in (34) are captured by assignment of `all'to S=(NnS)S=(NnS) . Thus (34a) is obtained as follows by direct forward appli-cation to the lifted subject, and (34b) is obtained similarly, by directbackward application of `all' to `the boys'.(38) all the childrenN might have . . .1NnSnES /I1S/(NnS)S=(NnS)S=(NnS) EaS/(NnS) NnS(NnS)/(NnS) /ENnS/ESThe derivation for (34c) is as follows, and that for (34d-e) is similar.The associativity assumed means that the subject together with someauxiliary verbs has type S/(NnS).



ENR I CH I NG CATE GOR I A L GRAMMAR 103(39) the children might all have . . .1NnS(NnS)/(NnS) /ENnSN nES /I1S/(NnS) S=(NnS)S=(NnS) EbS/(NnS) NnS/ESThis case of quanti�er oating shows how an apparently puzzlingdistribution can receive a quite simple characterisation in the right tech-nical setting. In what follows we shall consider a range of discontinuousconstructions: particle verbs, discontinuous idioms and other discon-tinuous functors, quanti�er-scoping, pied-piping, gapping, and object-antecedent reexivisation. Discontinuity refers to phenomena whereinsigns di�er markedly in their prosodic and semantic structures. There isno precise pre-theoretic de�nition, and it is not our pretence to providea comprehensive account of the instances cited. However, we do intendto show how each is rendered amenable in its basic form.The directional divisions of standard categorial grammar signify func-tors that adjoin to the left or right of their arguments. Moortgat (1988b),following Bach (1981, 1984), considers the idea of operators B"A forfunctors that wrap themselves around an argument of category A toform a B, and (in our notation) A#B for functors that in�x themselvesin an argument of category A to form a B. Assuming an associativecontext, Moortgat observes that for each operator two variants can beconceived: existential and universal. Leaving the semantic dimensionaside, we interpret now in a monoid (L�;+; �), i.e. a semigroup (L�;+)together with an element � 2 L� satisfying s+� = �+s = s (an iden-tity element). Formulas will be interpreted as subsets of L = L� � f�g,but the identity element will be appropriate in order that peripheral-ity is accommodated as an instance of discontinuity. Interpretation inL� would commit us to � 2 D(A=A); D(AnA) since � would always sat-isfy the residuation condition that it adjoins to any element in D(A)



104 CHAPTER F OURon the right/left to give an element in D(A). Then assignment of e.g.`extremely' to (CN/CN)/(CN/CN) for such examples as `the extremelydeaf man' would also permit *`the extremely man'; see Morrill (1990b).De�ning interpretation in L = L� � f�g circumvents this problem.ExistentialD(B"9A) = fsj9s1; s2 2 L�; [s = s1+s2^8s0 2 D(A); s1+s0+s2 2 D(B)]gUniversalD(B"8A) = fsj8s1; s2 2 L�; [s = s1+s2 !8s0 2 D(A); s1+s0+s2 2 D(B)]g(40)For example (NnS)"9N would be the lexical category of discontinuousfunctors such as particle verbs (`rings . up') and discontinuous idioms like` gives . the cold shoulder', which wrap around their objects to form verbphrases and which convey a meaning as a whole not attributable to thecomponent word meanings. Note that there is a speci�c point at whichinterpolation is required. By way of further example, S"9N would bethe category of a sentence containing at some point a nominal gap, e.g.`Mary met . yesterday', `Mary met .', and `. walks', so that a relativepronoun category (CNnCN)/(S"9N) for `that' would generate each of`that Mary met yesterday', `that Mary met', and `that walks'. It is lessapparent what application there might be for universal wrap, but sucha functor would circumscribe its argument admitting all interpolationpoints. Evidently use of "8 instead of "9 for discontinuous idioms andso on would permit incorrect word order such as *`Mary gave the Johncold shoulder'For in�xation the two possibilities in a unimodal associative settingare: ExistentialD(A#9B) = fsj8s0 2 D(A); 9s1; s2 2 L�; [s0 = s1+s2^s1+s0+s2 2 D(B)]gUniversalD(A#8B) = fsj8s0 2 D(A); 8s1; s2 2 L�; [s0 = s1+s2 !s1+s0+s2 2 D(B)]g(41)By way of example here, Sneg#8Spos would be the category of a freelyoating negation particle, if there really were such an element. Existen-tial in�xation is reminiscent of quantifying-in if we think of a quanti�erphrase as wanting to in�x itself in a sentence lacking a nominal, at the



ENR I CH I NG CATE GOR I A L GRAMMAR 105position of the missing nominal. Thus a quanti�er phrase like `everyman' might have type (S"9N)#9S, (cf. Moortgat 1991) but we wouldneed to ensure that the two existentials were e�ectively referring to thesame point of interpolation, an issue we consider shortly.Inspecting the possibilities of ordered sequent presentation, of theeight possible rules of inference (use and proof for each of four divisionoperators), only "9R and #8L are expressible:(42) a. �1; A;�2 ) B "9R�1;�2 ) B"9Ab. �1;�2 ) A �1; B;�2 ) C#8L�1;�1; A#8B;�2;�2 ) CThis is the partial logic of Moortgat (1988b). A left ordered sequentrule for "9 cannot be formulated: if we ask how the sequent (43) mightbe proved, it is apparent that we lack a handle on the prosodic objectin B"9A and the point around which it wraps.�1; B"9A;�2 ) C(43)Such a rule is needed however for a complete logic. In relation to thisMoortgat (1991) observes that labelled deduction seems promising, andpossibilities are considered in Versmissen (1991) which involve mark-ing of insertion points. Yet the interpretations in (40) and (41) in aunimodal monoid algebra (L�;+; �) do not make reference to prosodicobjects marked with insertion points.In Moortgat (1991) a discontinuity `substring' product is proposed,again implicitly assuming just a semigroup algebra for interpretation:3D(A�B) = fs1+s2+s01js1+s01 2 D(A) ^ s2 2 D(B)g(44)As for the discontinuity divisions, ordered sequent presentation cannotexpress rules of both use and proof: only �R can be represented:(45) �1;�2 ) A � ) B�R�1;�;�2 ) A�B3The version given is actually just the existential case of two possibilities, exis-tential and universal, as before. No rules for the universal version can be expressedin ordered sequent calculus.



106 CHAPTER F OUREven using labelling, the problem for �L remains and is the same asthat before: there is no proper management of separation points.4Tension between �nding a proof theory with rules of both use andproof, and a model theory for linguistically useful discontinuity opera-tors to which it corresponds, is addressed in Morrill and Solias (1993)by using a bimodal prosodic algebra (L�;+; h:; :i; �) where (L�;+; �) is amonoid and (L�; h:; :i) is a free groupoid, involving a `tupling' operationh:; :i introduced in Solias (1992). The signi�cance of such an operationis that its parts are recoverable (by projection functions 1 and 2), en-abling a de�nition of wrapping and in�xation in terms of + and h:; :iin which h:; :i remembers separation points, in contrast to the attemptsin terms of associative + which do not. Use of the tuple operation col-lapses the former distinction between existential and universal in (40)and (41): both cases become `there exists exactly one'. This is becausetuples express a unique insertion point: tupling guarantees the unicity ofdecomposition. Existential and universal wrappers collapse into a singlewrapper and existential and universal in�xers collapse into a single in-�xer. The system is a three family multimodal one, with interpretationby residuation with respect to +, h:; :i and a wrapping adjunction Wde�ned by s1Ws2 = 1s1+s2+2s1.Note that the tuple prosodic operation is not simply that of a groupoid,but that of a free groupoid, since its components must be recoverablefor the wrapping adjunction to be de�ned. But this raises a problem,because while the non-associative calculus with product is complete forinterpretation by residuation in groupoids, it is not complete in freegroupoids (see Venema 1993b). So the multimodal calculus based ontupling would be incomplete.5The solution we propose here is one which departs from the unimodalproposals of Moortgat (1988b, 1991) and the bimodal proposals of Solias(1992) and Morrill and Solias (1993) in respect of the status of thewrapping adjunction. Instead of being de�ned, it is introduced from thestart as a primitive operation W in a trimodal algebra of interpretation(L�;+; (:; :);W; �). (L�;+; �) is a monoid and (L�; (:; :)) and (L�;W )groupoids, and the signi�cant properties of the wrapping adjunction are4See Hepple (1993) for an attempt to give full logic for Moortgat interpretationsvia a complex system of labelling.5There are also certain questions as to the de�nability of s1Ws2 when s1 is not atuple element, and to discrimination according to `prosodic sort' (tuple or non-tuple),rather than soley according to categorial type.



ENR I CH I NG CATE GOR I A L GRAMMAR 107speci�ed by the linking rule (s1; s3)Ws2 = s1+s2+s3.6To formulate discontinuity we have a community comprising threefamilies of multiplicatives: the usual associative `surface' operators, `split-point' non-associative operators, and discontinuity operators. The cat-egory formulas F are de�ned in terms of a set A of atomic categoryformulas thus:F = A j F�F j FnF j F=F j F�F j F>F j F<F j F�F j F#Fj F"F(46)Spelt out in full the prosodic interpretation by residuation with respectto each adjunction is as follows:D(A�B) = fs1+s2js1 2 D(A) ^ s2 2 D(B)gD(AnB) = fsj8s0 2 D(A); s0+s 2 D(B)gD(B=A) = fsj8s0 2 D(A); s+s0 2 D(B)g(47) D(A�B) = f(s1; s2)js1 2 D(A) ^ s2 2 D(B)gD(A>B) = fsj8s0 2 D(A); (s0; s) 2 D(B)gD(B<A) = fsj8s0 2 D(A); (s; s0) 2 D(B)g(48) D(A�B) = fs1Ws2js1 2 D(A) ^ s2 2 D(B)gD(A#B) = fsj8s0 2 D(A); s0Ws 2 D(B)gD(B"A) = fsj8s0 2 D(A); sWs0 2 D(B)g(49)Since this is interpretation by residuation in a multigroupoid, proof rulescan be provided in the standard formats. In particular it now becomespossible to present rules of both use and proof in the prosodically la-belled sequent formats (see Morrill 1993 for the ordered sequent format).The full set of labelled Gentzen-style sequent rules are as follows.(50) a. ida { x:A ) a { x:Ab. � ) � { �:A a { x:A;� ) �[a] {  [x]:BCut�;� ) �[�] {  [�]:B6This both removes questions about the partiality ofW , which is de�ned as a totalfunction, and replaces the problematic free groupoid under h:; :i by an unproblematicgroupoid under (:; :). On the other hand the prosodic algebra becomesmore abstract,with prosodic forms no longer all corresponding to just strings or split strings.



108 CHAPTER F OUR(51) a. � ) � { �:A b { y:B;� ) [b] { �[y]:CnL�; d { w:AnB;� ) [(�+d)] { �[(w �)]:Cb. �; a { x:A ) (a+) {  :BnR� )  { �x :AnBc. � ) � { �:A b { y:B;� ) [b] {  [y]:C/L�; d { w:B=A;� ) [(d+�)] {  [(w �)]:Cd. �; a { x:A ) (+a) {  :B/R� )  { �x :B=Ae. a { x:A; b { y:B;� ) [(a+b)] { �[x; y]:C�Ld { w:A�B;� ) [d] { �[�1w; �2w]:Cf. � ) � { �:A � ) � {  :B�R�;� ) (�+�) { (�;  ):A�B(52) a. � ) � { �:A b { y:B;� ) [b] { �[y]:C>L�; d { w:A>B;� ) [(�; d)] { �[(w �)]:Cb. �; a { x:A ) (a; ) {  :B>R� )  { �x :A>Bc. � ) � { �:A b { y:B;� ) [b] {  [y]:C<L�; d { w:B<A;� ) [(d; �)] {  [(w �)]:Cd. �; a { x:A ) (; a) {  :B<R� )  { �x :B<Ae. a { x:A; b { y:B;� ) [(a; b)] { �[x; y]:C�Lc { z:A�B;� ) [c] { �[�1z; �2z]:C



ENR I CH I NG CATE GOR I A L GRAMMAR 109f. � ) � { �:A � ) � {  :B�R�;� ) (�; �) { (�;  ):A�B(53) a. � ) � { �:A b { y:B;� ) [b] { �[y]:C#L�; d { w:A#B;� ) [(�Wd)] { �[(w �)]:Cb. �; a { x:A ) (aW) {  :B#R� )  { �x :A#Bc. � ) � { �:A b { y:B;� ) [b] {  [y]:C"L�; d { w:B"A;� ) [(dW�)] {  [(w �)]:Cd. �; a { x:A ) (Wa) {  :B"R� )  { �x :B"Ae. a { x:A; b { y:B;� ) [(aWb)] { �[x; y]:C�Ld { w:A�B;� ) [d] { �[�1w; �2w]:Cf. � ) � { �:A � ) � {  :B�R�;� ) (�W�) { (�;  ):A�BThere are label structural rules for associativity, adjunction identity,and the split-wrap linking rule:(54) a. � ) �[((�1+�2)+�3)] { �:AA� ) �[(�1+(�2+�3))] { �:Ab. � ) �[(�+�)] { �:AI� ) �[�] { �:A � ) �[(�+�)] { �:AI� ) �[�] { �:Ac. � ) �[((�1; �2)W�3)] { �:ASW� ) �[((�1+�3)+�2)] { �:A



110 CHAPTER F OURAlternatively, since there is only one associative adjunction, its as-sociativity can be represented by omitting parentheses for the relevantterm constructor.If the relative pronoun `that' is assigned a category (CNnCN)/(S"N),both peripheral and medial relativisation is generated; thus `that Marymet yesterday' can be derived via the following (leaving semantics aside):(55) a:N ) a:N b:N, e: NnS, d: (NnS)n(NnS) ) b+e+d: S/Lb:N, c: (NnS)/N, d: (NnS)n(NnS), a: N ) b+c+a+d: S SWb: N, c: (NnS)/N, d: (NnS)n(NnS), a:N ) (b+c; d)Wa:S"Rb: N, c: (NnS)/N, d: (NnS)n(NnS) ) (b+c; d):S"NThis gives the prosodic form that+(Mary+met; yesterday), where theextraction domain is marked o�, and partitioned at the extraction site.We shall later see a similar domain e�ect relating to prosodic phrasingand islandhood of relative clauses and other domains. The partitioningat the extraction site is also interesting, in relation to ``wanna' contrac-tion' phenomena showing that phonological processes are interrupted atextraction sites. Nevertheless later chapters pursue an alternative lineon relativisation, one o�ering greater sensitivity with respect to islandphenomena.We now give the Fitch-style proof theory. The operation for + has theonly associative constructor, and we represent it omitting parentheses.There are the following prosodic term label equations:((�; )W�) = �+�+�+� = �+� = �(56)The lexical assignment, subderivation hypotheses, and term rewritingrules are as usual:a: n: � { �:A for any lexical entry(57)b: n: a1 { x1:A1 H... ...n+m: am { xm:An Hc: n: � { �:A�0 { �0:A = n; if � = �0 & � = �0



ENR I CH I NG CATE GOR I A L GRAMMAR 111The logical rules are as follows.a: n: � { �:Am:  { �:AnB�+ { (� �):B En n;m(58)b: n: a { x:A Hm: a+ {  :B unique a as indicated { �x :AnB In n;ma: n: � { �:Am:  { �:B=A+� { (� �):B E/ n;m(59)b: n: a { x:A Hm: +a {  :B unique a as indicated { �x :B=A I/ n;ma: n:  { �:A�Bm: a { x:A Hm + 1: b { y:B Hp: �[a+b] { ![x; y]:D unique a and b as indicated�[] { ![�1�; �2�]:D E� n;m;m+ 1; p(60)b: n: � { �:Am: � {  :B�+� { (�;  ):A�B I� n;ma: n: � { �:Am:  { �:A>B(�; ) { (� �):B E> n;m(61)b: n: a { x:A Hm: (a; ) {  :B unique a as indicated { �x :A>B I> n;ma: n: � { �:Am:  { �:B<A(; �) { (� �):B E< n;m(62)b: n: a { x:A Hm: (; a) {  :B unique a as indicated { �x :B<A I< n;m



112 CHAPTER F OURa: n:  { �:A�Bm: a { x:A Hm + 1: b { y:B Hp: �[(a; b)] { ![x; y]:D unique a and b as indicated�[] { ![�1�; �2�]:D E� n;m;m+ 1; p(63)b: n: � { �:Am: � {  :B(�; �) { (�;  ):A�B I� n;ma: n: � { �:Am:  { �:A#B(�W) { (� �):B E# n;m(64)b: n: a { x:A Hm: (aW) {  :B unique a as indicated { �x :A#B I# n;ma: n: � { �:Am:  { �:B"A(W�) { (� �):B E" n;m(65)b: n: a { x:A Hm: (Wa) {  :B unique a as indicated { �x :B"A I" n;ma: n:  { �:A�Bm: a { x:A Hm+ 1: b { y:B Hp: �[(aWb)] { ![x; y]:D unique a and b as indicated�[] { ![�1�; �2�]:D E� n;m;m+ 1; p(66)b: n: � { �:Am: � {  :B(�W�) { (�;  ):A�B I� n;mThe examples in the next subsections are derived using this format.



ENR I CH I NG CATE GOR I A L GRAMMAR 1131. (rang ; up) { phone: (NnS)"N2. John { j:N3. Mary { m:N4. ((rang ; up)WJohn) { (phone j):NnS 1, 2 E"5. rang+John+up { (phone j):NnS = 46. Mary+rang+John+up { ((phone j) m): S 3, 5 EnFIGURE 4.4. Derivation of `Mary rang John up'1. (gave ; the+cold+shoulder ) { give-tcs: (NnS)"N2. John { j:N3. Mary { m:N4. ((gave ; the+cold+shoulder )WJohn) { (give-tcs j):NnS 1, 2 E"5. gave+John+the+cold+shoulder { (give-tcs j): NnS = 46. Mary+gave+John+the+cold+shoulder {((give-tcs j) m): S 3, 5 EnFIGURE 4.5. Derivation of `Mary gave John the cold shoulder'3.1. Discontinuous FunctorsConsider the following.a. Mary rang John up.b. Mary gave John the cold shoulder.c. Mary both/either/neither walks and/or/nor talks.(67)Each case involves a discontinuous functor shown in italics. The example`Mary rang John up' is derived as shown in Figure 4.4. The particle verbhas a complex lexical form constructed out of the splitting adjunction,and its lexical type is that of a wrapping functor. After combination bywrapping application with the object at line 3, prosodic evaluation givesthe discontinuous word order.A discontinuous idiom construction such as `Mary gave John the coldshoulder' is treated in exactly the same way; see Figure 4.5.



114 CHAPTER F OUR1. Mary { m: N2. (neither ; nor) { �x�y�z:[(x z) _ (y z)]: ((NnS)/(NnS))"(NnS)3. walks { walk: NnS4. talks { talk:NnS5. neither+walks+nor { 2, 3 E"�y�z:[(walk z) _ (y z)]: (NnS)/(NnS)6. neither+walks+nor+talks { 4, 5 E/�z:[(walk z) _ (talk z)]:NnS7. Mary+neither+walks+nor+talks { 1, 6 En:[(walk m) _ (talk m)]: SFIGURE 4.6. Derivation of `Mary neither walks nor talks'Discontinuous coordination particles can be treated as functors whichcombine with their left conjunct by wrap, and then their right by regulardivision, as shown in Figure 4.6. Here and henceforth we sometimesallow ourselves the liberty of performing label manipulations implicitlywithin derivation steps.3.2. Quanti�er RaisingIn Moortgat (1990a) a binary \binder" operator which we write here as *is de�ned for which the rule of use is essentially quantifying-in, so that aMontagovian treatment of quanti�er-scoping is achieved by assignmentof a quanti�er phrase like `something' to N*S, and assignment of de-terminers like `every' to (N*S)/CN. As we already noted, in Moortgat(1991) it is suggested that a category such as A*B might be de�nable(in our notation) as (B"A)#B, but Moortgat observed that this de�n-ability does not hold for the unimodal interpretation given, for whichfurthermore, the logic is problematic in ways we have already considered.Moortgat's intuitions, however, are fully realised in the present trimodalformulation. The category (S"N)#S is a suitable category for a quanti-�er phrase such as `everything' or `some man', characterising sententialquanti�er scope, and quanti�cational ambiguity. Consider �rst `Everyman walks' as in Figure 4.7. The generation up to line 5 of `every man'with the standard semantics, and type (S"N)#S is straightforward. In



ENR I CH I NG CATE GOR I A L GRAMMAR 1151. every { �x�y8z[(x z)! (y z)]: ((S"N)#S)/CN2. man { man:CN3. walks { walk: NnS4. every+man { (�x�y8z[(x z)! (y z)] man): (S"N)#S E/ 1, 25. every+man { �y8z[(man z)! (y z)]: (S"N)#S = 46. a { x:N H7. a+walks { (walk x): S En 3, 68. �+a+walks { (walk x): S = 79. ((�;walks)Wa) { (walk x): S = 810. (�;walks) { �x(walk x): S"N I" 6, 911. ((�;walks)W every+man) {(�y8z[(man z)! (y z)] �x(walk x)): S E# 5, 1012. �+every+man+walks { 8z[(man z)! (walk z)]: S = 1113. every+man+walks { 8z[(man z)! (walk z)]: S = 12FIGURE 4.7. Derivation of `Every man walks'lines 7 to 9 a sentence is constructed on the basis of the nominal a { xhypothesised at line 6. Prosodic equations are used to show that theprosodics can be expressed in a form in which W is the main construc-tor, and in which a is its right hand operand. The left hand operand isa split string term in which a is to be interpolated. Now because thewrap connective is the divisional residuation with respect to the righthand operand ofW , this split string term is derivable at line 10 as of thewrap type S"N, by I". Since `every man' is an in�x functor over S"N,it can apply by E# (line 11), and on prosodic evaluation interpolatesitself at the position in which the hypothesised nominal was used in thesubderivational sentence. Thus the quanti�er phrase binds semanticallya semantic variable for the position in which it occurs prosodically.There can be no deviance from this pattern, that is, a quanti�er phrasecannot bind the wrong position, for there can be no way that the lastline of the relevant subderivation can have the form required for I", i.e.(�Wa) { � where a { x is the hypothesis, without � being a split stringmarking the interpolation position for the prosodics that correspondsto semantics � in terms of x: the equations do not allow anything else.So when a quanti�er phrase in�xes itself, it will semantically bind theposition it occupies prosodically.



116 CHAPTER F OUR1. John { j:N2. likes { like: (NnS)/N3. everything { �x8y(x y): (S"N)#S4. a { x: N H5. likes+a { (like x):NnS 2, 4 E/6. John+likes+a { ((like x) j): S 1, 5 En7. John+likes+a+� { ((like x) j): S = 68. ((John+likes; �)Wa) { ((like x) j): S = 79. (John+likes; �) { �x((like x) j): S"N 4, 8 I"10. ((John+likes; �)W everything) { 3, 9 E#(�x8y(x y) �x((like x) j)): S11. John+likes+everything { 8y((like y) j): S = 10FIGURE 4.8. Derivation of `John likes everything'The derivation in Figure 4.8 shows the object position binding of`John likes everything'.The next two derivations we consider will deliver the subject widescope and object wide scope readings of `Everyone loves something'. The�rst is these is given in Figure 4.9. A nominal hypothesis for the subjectis made at line 4, and another subderivation hypothesis for the objectat line 5. Since subderivations are last in �rst out, the subject positionis bound last, that is the subject wide scope reading is obtained. Thesentence already with the object quanti�er phrase is obtained at line 11just like `John likes everything' in the previous example, but the subjectis a hypothetical variable not a lexical form, and we have worked nestedone level down.In Figure 4.10 the hypothesis of the wider scope subderivation is usedin object position, so that the object wide scope reading is obtained.In the examples so far the quanti�er is peripheral in the sentence and(in associative calculus) a category (S/N)nS could have been used fora quanti�er phrase to appear in object position and S/(NnS) for thequanti�er phrase to appear in subject position. But further assignmentsstill would be required for a quanti�er phrase to appear in sentence-medial positions. Some generality with respect to the latter can beachieved by assuming second-order polymorphic categories (see Emms1990), but two assignments, one forward-looking and another backward



ENR I CH I NG CATE GOR I A L GRAMMAR 1171. everyone { �x8z[(person z)! (x z)]: (S"N)#S2. loves { love: (NnS)/N3. something { �x9w[(thing w) ^ (x w)]: (S"N)#S4. b { y: N H5. a { x:N H6. loves+a { (love x):NnS E/ 2, 57. b+loves+a { ((love x) y): S En 4, 68. ((b+loves ; �)Wa) { ((love x) y): S = 79. (b+loves ; �) { �x((love x) y): S"N I" 5, 810. ((b+loves; �)W something) {(�x9w[(thing w) ^ (x w)] �x((love x) y)): S E# 3, 911. b+loves+something {9w[(thing w) ^ ((love w) y)]: S = 1012. ((�; loves+something)Wb) {9w[(thing w) ^ ((love w) y)]: S = 1113. (�; loves+something) { I" 4, 12�y9w[(thing w) ^ ((love w) y)]: S"N14. everyone+loves+something { E# 3, 138z[(person z)! 9w[(thing w) ^ ((love w) z)]]: SFIGURE 4.9. Subject wide scope derivation of `Everyone loves something'looking are nevertheless uniformly required by all quanti�ers. The singleassignment we have given allows appearance in all N positions withoutfurther ado, and allows all the relative quanti�er scopings at S nodes.Thus for the example `John believes someone walks', the derivation inFigure 4.11 gives the narrow scope, non-speci�c, quanti�er reading, butthat in Figure 4.12, the wide scope, speci�c reading, which involves thequanti�er raising to the superordinate sentence, in which it is medial.3.3. Pied-PipingPied-piping refers to relativisation in which a fronted relative pronoundraws along with it additionalmaterial from its extraction site. Compare(68a) and (68b), which are paraphrases.a. (a girl) John knows the brother ofb. (a girl) the brother of whom John knows(68)



118 CHAPTER F OUR1. everyone { �x8z[(person z)! (x z)]: (S"N)#S2. loves { love: (NnS)/N3. something { �x9w[(thing w) ^ (x w)]: (S"N)#S4. a { x:N H5. b { y: N H6. loves+a { (love x): NnS E/ 2, 47. b+loves+a { ((love x) y): S En 5, 68. ((�; loves+a)Wb) { ((love x) y): S = 79. (�; loves+a) { �y((love x) y): S"N I" 5, 810. ((�; loves+a)W everyone) {(�x8z[(person z)! (x z)] �y((love x) y)): S E# 1, 911. everyone+loves+a { 8z[(person z)! ((love x) z)]: S = 1012. ((everyone+loves; �)Wa) {8z[(person z)! ((love x) z)]: S = 1113. (everyone+loves ; �) { I" 4, 12�x8z[(person z)! ((love x) z)]: S"N14. everyone+loves+something { E# 3, 139w[(thing w) ^ 8z[(person z)! ((love w) z)]]:SFIGURE 4.10. Object wide scope derivation for `Everyone loves something'1. John { j:N2. believes { believe: (NnS)/S3. someone { �x9y(x y): (S"N)#S4. walks { walk: NnS5. a { x:N H6. a+walks { (walk x): S En 4, 57. ((�;walks)Wa) { (walk x): S = 68. (�;walks) { �x(walk x): S"N I" 5, 79. someone+walks { 9y(walk y): S E# 3, 810. believes+someone+walks { (believe 9y(walk y)): NnS E/ 2, 911. John+believes+someone+walks { En 1, 10((believe 9y(walk y)) j): SFIGURE 4.11. Derivation of non-speci�c `John believes someone walks'



ENR I CH I NG CATE GOR I A L GRAMMAR 1191. John { j: N2. believes { believe: (NnS)/S3. someone { �x9y(x y): (S"N)#S4. walks { walk: NnS5. a { x: N H6. a+walks { (walk x): S En 4, 57. believes+a+walks { (believe (walk x)): NnS E/ 2, 68. John+believes+a+walks {((believe (walk x)) j): S En 7, 19. ((John+believes;walks)Wa) {((believe (walk x)) j): S = 810. (John+believes ;walks) { I" 5, 9�x((believe (walk x)) j): S"N11. John+believes+someone+walks { E# 3, 109y((believe (walk y)) j): SFIGURE 4.12. Derivation for speci�c `John believes someone walks'Historically, pied-piping has played a crucial rôle in the promotion offeature percolation and phrase structural approaches (Gazdar, Klein,Pullumand Sag 1985; Pollard and Sag 1987, 1993). Pollard (1988, p.412)for example regards it as exposing a critical inadequacy of categorialgrammar:\Evidently, there is no principled analysis of pied piping in an ex-tended categorial framework like Steedman's without the additionof a feature-passing mechanism for unbounded dependencies."(69)On the phrase structural view, a relative pronoun introduces informationwhich may percolate up normal constituent structure to endow largerphrases with the relativisation property of occurring fronted and bindinga gap of the same category as the entire fronted constituent. Instances inwhich there is no pied-piping are, convincingly, obtained as the specialcase where the fronted constituent comprises only the relative pronoun.That is, a single categorisation covers both pied-piping cases such as(70a) and non-pied-piping cases such as (70b).a. (the contract) the loss of which after so much wrangling Johnwould �nally have to pay forb. (the contract) which John talked about(70)



120 CHAPTER F OUR1. about { about:PP/N2. which { �x�y�z�w[(z w) ^ (y (x w))]:(PP"N)#(R/(S/PP))3. John { j:N4. talked { talk: (NnS)/PP5. a { x:N H6. about+a { (about x):PP 1, 5 E/7. about+a+� { (about x):PP = 68. ((about ; �)Wa) { (about x): PP = 79. (about ; �) { �x(about x): PP"N 5, 8 I"10. ((about ; �)Wwhich) { 2, 9 E#(�x�y�z�w[(z w) ^ (y (x w))] �x(about x))]:R/(S/PP)11. about+which { = 10�y�z�w[(z w) ^ (y (about w)):R/(S/PP)12. a { x:PP H13. talked+a { (talk x):NnS 4, 12 E/14. John+talked+a { ((talk x) j): S 3, 13 En15. John+talked { �x((talk x) j): S/PP 12, 14 I/16. about+which+John+talked { 11, 15 E/(�y�z�w[(z w) ^ (y (about w)) �x((talk x) j)):R17. about+which+John+talked { = 16�z�w[(z w) ^ ((talk (about w)) j)]:RFIGURE 4.13. Derivation of `about which John talked'In Moortgat (1991) a three-place operator is considered which is likeA*B, except that quantifying-in changes the category of the context ex-pression. Morrill (1992b) shows that this enables capture of pied-piping.It follows from the nature of the present proposals that (B"C)#A repre-sents the context-changing complicity desired between the discontinuityoperators. As a result, the treatment of Morrill (1992b) can be presentedin these terms.As a �rst example, note how in Figure 4.13 the pied-piping assignmentgenerates `about which John talked' with the same semantics as `whichJohn talked about', considered earlier. We make use of an abbreviationR for CNnCN. This example is potentially manageable in any categorialgrammar with composition, by assignment of type (PP/N)n(R/(S/PP))



ENR I CH I NG CATE GOR I A L GRAMMAR 121to the relative pronoun. Such assignments are an obvious possibilityin the light of Szabolsci (1987) for example, who discusses pied-pipingof reexives, such as to render them direct functors over verbs. Suchan assignment must be additional to the regular one, a situation to beimproved upon if possible. Nevertheless, a na��ve account is reasonablyobtained by assuming types R/(S/N), and additional restricted second-order quanti�ed types such as 82X 2 fN, PPg((X/N)n(R/(S/X))) forrelative pronouns which pied-pipe (e.g. `which' but not `that'). In viewof these possibilities then it is unclear why Pollard's objection is voicedso strongly.In fact the respect in which a na��ve Szabolsci-style treatment is trulyunsatisfactory, while phrase structural percolation copes naturally, ap-pears not to have been identi�ed by Pollard. The crucial cases are thoselike (70a) where the relative pronoun is medial in the pied-piped mate-rial. Given only basic categorial tools it would need to be arranged by alexical assignment additional to those above that `after so much wran-gling' modi�es `loss'. For unclear reasons, it is not easy to �nd highly ac-ceptable examples of the crucially problematic medial pied-piping cases,but see e.g. (71).(a statue) for the transport of which by rail John would have topay $10,000(71)In other cases the pied-piped constituent occupies subject position:a. (a supermarket) the opening of which by the queen/in Junewas heralded a moving and historical occasionb. (a woman) the painting of whom by Matisse fetched a fortunec. (a boy) the yelling of whom outside could be heard throughoutthe sermon(72)If in reality there were no such cases, which would be to say thatpied-piping noun phrases always occur right-peripherally in the frontedconstituent, a rudimentary treatment like that deriving from Szabolcsiwould su�ce for categorial grammar. Furthermore all existing phrasestructure accounts would be erroneous in that none predict such right-peripherality. Thus for phrase structural approaches there would be \noprincipled analysis of pied piping" possible without the addition of di-rectional constraints on feature inheritance. However, since we judge theexamples in the text to be acceptable, we do not regard this implicationas going through.



122 CHAPTER F OUROur treatment of medial and peripheral pied-piping, in terms of in�x-ing and wrapping, reduces the latter to the former in just the same wayas phrase structure grammar feature percolation. There is the deriva-tion in Figure 4.14 for `the loss of which after so much wrangling Johnwould �nally have to pay for', given the relative pronoun assignmentat line 4. In addition, this same assignment generates non pied-pipingcases, such as `which John talked about'. Lines 5 to 9 in Figure 4.15show that the regular relative pronoun category is derivable from thenominal pied-piping one because (�; �) 2 D(N"N). Thus prepositionalpied-piping, nominal pied-piping, and no-pied-piping examples are allobtained by assignment to just the following two types:(N"N)#(R/(S/N))(PP"N)#(R/(S/PP))(73)If T (PP) can be assumed equal to T (N) the typed semantic terms arethe same in each case, so all the examples considered are obtained by asingle restricted second-order quanti�cation assignment as in (74).which { �x�y�z�w[(z w) ^ (y (x w))]: 82X 2 fN, PPg((X"N)#(R/(S/X)))(74)For pied-piping of constituents of di�erent semantic types, a more so-phisticated polymorphism and lambda calculus typing is required, anissue we shall not go into. Our �nal observation here is that since therelative pronoun `that' cannot pied-pipe it should be assigned the regulartype: that { �x�y�z[(y z) ^ (x z)] : (CNnCN)/(S/N)(75)The matter of characterising relativisation, in particular non-peripherality,is resumed and extended in chapters seven and eight.3.4. GappingWe have seen in chapter three how categorial grammar provides possi-bilities for `non-constituent' coordination. These constructions are lessamenable to the phrase structure and feature percolation approach be-cause of their inconsistency with constituent structure. We considernext a coordination construction which is highly problematic from allperspectives, gapping. It is entirely unclear how feature percolationcould engage such a construction; but as we shall see the discontinuityapparatus already presented succeeds in doing so.



ENR I CH I NG CATE GOR I A L GRAMMAR 1231. the { �x�y(x y): N/CN2. loss { loss: CN3. of { of : (CNnCN)/N4. which { �x�y�z�w[(z w) ^ (y (x w))]:(N"N)#(R/(S/N))5. asmw { asmw: CNnCN6. John { j:N7. wfhtpf { wfhtpf: (NnS)/N8. a { x:N H9. of+a { (of x):CNnCN E/ 3, 810. loss+of+a { ((of x) loss):CN En 2, 911. loss+of+a+asmw { (asmw ((of x) loss)):CN En 5, 1012. the+loss+of+a+asmw {�y((asmw ((of x) loss)) y): N E/ 1, 1113. (the+loss+of ; asmw)Wa {�y((asmw ((of x) loss)) y): N = 1214. (the+loss+of ; asmw) { I" 8, 13�x�y((asmw ((of x) loss)) y): N"N15. the+loss+of+which+asmw { E#4, 14�y�z�w[(z w) ^ (y �u((asmw ((of w) loss)) u))]:R/(S/N)16. a { x:N H17. wfhtpf+a { (wfhtpf x): NnS E/ 7, 1618. John+wfhtpf+a { ((wfhtpf x) j): S En 6, 1719. John+wfhtpf { �x((wfhtpf x) j): S/N I/ 16, 1820. the+loss+of+which+asmw+John+wfhtpf { E/ 15, 19�z�w[(z w) ^ ((wfhtpf �u((asmw ((of w) loss)) u)) j)]:RFIGURE 4.14. Derivation of `the loss of which after so much wrangling (asmw)John would �nally have to pay for (wfhtpf)'The proposal to be presented here is that of Morrill and Solias (1993).The kind of example considered is:John studies logic and Charles, phonetics.(76)Discussion is presented by reference to such a minimal example gappinga transitive verb TV. The construction is characterised by the absence



124 CHAPTER F OUR1. which {�x�y�z�w[(z w) ^ (y (x w))]: (N"N)#(R/(S/N))2. John { j:N3. talked { talk: (NnS)/PP4. about { about: PP/N5. a { x:N H6. (�; �)Wa { x:N = 57. (�; �) { �xx: N"N I" 5, 68. ((�; �)Wwhich) { E# 1, 7(�x�y�z�w[(z w) ^ (y (x w))] �xx):R/(S/N)9. which { �y�z�w[(z w) ^ (y w)]:R/(S/N)10. a { x:N H11. about+a { (about x):PP E/ 4, 1012. talked+about+a { (talk (about x)): NnS E/ 3, 1113. John+talked+about+a { ((talk (about x)) j): S En 2, 1214. John+talked+about { I/ 10, 13�x((talk (about x)) j): S/N15. which+John+talked+about { E/ 9, 14�z�w[(z w) ^ ((talk (about w)) j)]:RFIGURE 4.15. Derivation of `which John talked about' from pied-piping relativepronoun assignmentin the right hand conjunct of a verbal element, the understood seman-tics of which is provided by a corresponding verbal element in the lefthand conjunct. Clearly, instanciations of a coordinator category schema(XnX)=X will not generate gapping. However, the prosodic character ofgapping, with a verbal element missing medially after the coordinator,is marked with respect to that of left node raising coordination reduc-tion with an elided verbal element left-peripheral after the coordinator(`John saw Bill today and Mary yesterday'). Accordingly, gapping willbe triggered by a distinct coordinator assignment.The phenomenon receives categorial attention in Steedman (1990).The approach of Steedman aims to reduce gapping to constituent co-ordination; furthermore it aims to do this using just (a version of) thestandard division operators of categorial grammar. This involves specialtreatment of both the right and the left conjunct.With respect to the right hand conjunct, the initial problem is to give



ENR I CH I NG CATE GOR I A L GRAMMAR 125a categorisation at all. Steedman does this by reference to a constituentformed by the subject and object with the coordinator. This constituentis essentially TVnS but with a feature both blocking ordinary applica-tion, and licensing coordination with a left hand conjunct of the samecategory. The blocking is necessary because `and Charles, phonetics' isclearly not of category TVnS: `Studies and Charles, phonetics' is not asentence. Now, with respect to the left hand conjunct, Steedman in-vokes a special syntactic and semantic decomposition of `John studieslogic' analysed as S, into TV and TVnS. There is then constituent coor-dination between TVnS and TVnS. Finally the coordinate structure ofcategory TVnS combines with the TV to give S.Although this treatment addresses the two problems that any accountof gapping must solve, categorisation of the right hand conjunct and ac-cess to the verbal semantics in the left hand conjunct, it attempts to doso within a narrow conception of categorial grammar (only division op-erators) that necessitates invocation of distinctly contrived mechanisms.The radical reconstruals of grammar implicated by this analysis are notnecessary given the general framework including discontinuity operatorswe have set out.Within the context of categorial grammar we have established, theright hand conjunct is characterisable as S"TV.7 It remains to accessthe understood verbal semantics from the sentence that is the left handconjunct. In order to recover from the left hand side the information wemiss on the right hand side, we would like to say that this information,the category and semantics of the verb, is made available to the coordi-nator when it combines with the left conjunct. In accordance with thespirit of Steedman's proposal, we can observe that the left hand conjunctcontains a part with the category S"TV of the right hand constituent,but it is discontinuous, being interpolated by TV. But this is preciselywhat is expressed by the discontinuous product category (S"TV)�TV.Furthermore, an element of such a category has as its semantics a pairthe second projection of which is the semantics of the TV, making theverb semantics accessible. Consequently gapping is generated by assign-ment of `and' to the category (((S"TV)�TV)nS)/(S"TV) with semantics�x�y[(�1y �2y) ^ (x �2y)]; see Figure 4.16.A slightly di�erent treatment is proposed in Solias (1992, 1993), where7This is not the only possibility; a structural modality (see chapter seven) couldbe used: S/4TV.



126 CHAPTER F OUR1. John { j:N2. studies { study: TV3. logic { logic:N4. and { �x�y[(�1y �2y) ^ (x �2y)]:(((S"TV)�TV)nS)/(S"TV)5. Charles { c: N6. phonetics { phonetics:N7. a { x:TV H8. a+phonetics { (x phonetics): NnS 6, 7 E/9. Charles+a+phonetics { ((x phonetics) c): S 5, 8 En10. ((Charles; phonetics)Wa) { ((x phonetics) c): S = 911. (Charles; phonetics) { �x((x phonetics) c): S"TV 7, 10 I"12. a { x:TV H13. a+logic { (x logic):NnS 3, 12 E/14. John+a+logic { ((x logic) j): S 1, 13 En15. ((John ; logic)Wa) { ((x logic) j): S = 1416. (John ; logic) { �x((x logic) j): S"TV 12, 15 I"17. ((John ; logic)W studies) { 2, 16 I�(�x((x logic) j); study): (S"TV)�TV18. John+studies+logic { = 17(�x((x logic) j); study): (S"TV)�TV19. and+(Charles; phonetics) {�y[(�1y �2y) ^ ((�2y phonetics) c)]: ((S"TV)�TV)nS 4, 11 E/20. John+studies+logic+and+(Charles; phonetics) { 18, 19 En(�y[(�1y �2y) ^ ((�2y phonetics) c)](�x((x logic) j); study)): S21. John+studies+logic+and+(Charles; phonetics) { = 20[((study logic) j) ^ ((study phonetics) c)]: SFIGURE 4.16. Derivation of `John studies logic and Charles, phonetics'the coordinator is assigned gapping type (77) (but with a tupling i.e. freegroupoid, rather than groupoid, understanding of the splitting product).(((N�N)�TV)nS)/(N�N)(77)The Morrill and Solias type is `more reactive' than the Solias type in thatthe former entails the latter, but not vice-versa, because N�N ) S"TV



ENR I CH I NG CATE GOR I A L GRAMMAR 127but not the reverse (the reader is invited to check such results). In factthese are not the only possibilities; the following two types, also entailedby the Morrill and Solias type (but not by the Solias type) are alsosuitable; they do not stand in an entailment relation to each other.a. (((N�N)�TV)nS)/(S"TV)b. (((S"TV)�TV)nS)/(N�N)(78)Thus a range of options are made available.For generalisation of discontinuity to multiple cases, with a view tomultiple gapping data (`John put beer in the freezer and Fred, wine')see Solias (1993), and see Morrill (1993) for generalisation of the discon-tinuity proposal here.3.5. Object-Antecedent ReexivisationWe turn �nally to object-oriented reexives (the less problematic subject-oriented reexives are considered in the next chapter). Consider thefollowing paradigm:a. John shows Mary the book.b. John shows Mary herself.c. *John shows herself Mary.(79)Although perhaps a little strange (79b) is acceptable (we could thinkof John showing Mary pictures or photos of various people includingherself), whereas (79c) is not. In order for reexivisation to occur in thesemantics, it is necessary for a reexive to combine with, and reexivise,a predicate, before the predicate applies to the antecedent: the other wayround, the antecedent semantics is not accessible for duplication. Thefacts in (79) are thus precisely the opposite of those expected if surfaceform is generated by concatenation of the ditransitive verb �rst withits adjacent reexive-antecedent complement, and then with its remotereexive complement. This observation has been taken to motivate a`head-wrapping' analysis of such verbs (see e.g. Dowty 1979) in whichthey combine with the surface-form remote complement �rst, and then`head-wrap' around the other complement. Here however we are ableto avoid such a global reconsideration of ditransitive verbs in responseto the speci�c demands of object-antecedent reexivisation, and insteadinstigate the desired combinatorics through the reexive assignment. Letus assume assignment of a ditransitive such as `show' as shown in (80b).



128 CHAPTER F OUR1. John { j:N2. shows { �x((show �1x) �2x): (NnS)/(N�N)3. herself { �x�y(x (y; y)): ((NnS)/(N�N))>((NnS)"N)4. Mary { m: N5. (shows ; herself ) { (�x�y(x (y; y)) �x((show �1x) �2x)): 2, 3 E>(NnS)"N6. (shows ; herself ) { �y((show y) y): (NnS)"N = 57. ((shows ; herself )WMary) { (�y((show y) y) m):NnS 4, 6 E"8. shows+Mary+herself { ((show m) m): NnS = 79. John+shows+Mary+herself { (((show m) m) j): S 1, 8 EnFIGURE 4.17. Derivation of `John showed Mary herself'This may be considered the lexical assignment, or a consequence of alexical assignment (80a) with which it is mutually derivable.a. shows { show: ((NnS)/N/N)b. shows { �x((show �1x) �2x): (NnS)/(N�N)(80)Now an object-oriented reexive can be assigned a category as shown inline 3 of Figure 4.17: i.e. a splitting functor mapping ditransitives intowrapping transitives. This triggers the order of combination required fora compositional analysis, while the acceptable word order rather thanthe unacceptable *`John shows herself Mary' is generated because theresult of applying the reexive is a wrapping functor.This instance of object-antecedent reexivisation is a `non-pied-piping'example in that the reexive is an immediate complement of the verb.The examples (81) are more problematic, especially (81c) which involvesmedial `pied-piping', for exactly the same reasons as the relativisationpied-piping examples.a. Bill shows Mary to herself.b. Bill shows Mary a picture of herself.c. Bill shows Mary a picture of herself taken in Paris.(81)However just as for the relativisation, nominal and prepositional pied-piping, with no pied-piping obtained as a special case of the former, can



ENR I CH I NG CATE GOR I A L GRAMMAR 129all be obtained by just the assignment (82).herself { �x�y�z(y (z; (x z))): 82X 2 fN, PPg(X"N)#(((NnS)/(N�X))>((NnS)"N))(82)A further assignment for subject-antecedent reexivisation will be seenin the next chapter. Note that distinct treatments of the subject-antecedent and object-antecedent cases is motivated by the di�erentprosodic realisations in such languages as Dutch, Icelandic, and Norwe-gian. 4. D OMA I N MODA L I T I E SThe proposals of the previous sections address one particular limita-tion in the expressivity of basic categorial grammar: that with respectto discontinuity. This section turns to another such limitation: thatwith respect to domains. Various grammatical phenomena characterisedomains with certain properties. The most conspicuous hypothesis ofdomains is that implicated by constituent structure in traditional gram-matical treatments. Associative Lambek calculus induces no such struc-ture; non-associative does. However, constituent structure is not theonly notion of domain conducive to characterisation, and nor is it al-ways conducive: in relation to certain `bracketing paradoxes' the no-tion is quite counterproductive. In this respect the `constituent-free'associative Lambek calculus seems to o�er an interesting alternative to`constituent-based' grammar, but it remains to reintroduce domains asand when they are required. The move towards this is the concern ofthis section; there is further consideration in chapters �ve, seven andeight.In Morrill (1989a, 1990b) it is proposed to extend categorial grammarby adding modal category formulas. Such modality provides one way offormalising domains in grammar; in particular, these works have beenconcerned with semantic domains of intensionality, i.e. domains of ele-ments which share the point of reference (possible world) at which theyare semantically evaluated. This application is propounded in the nextchapter. Here we consider technicalities of modal categorial grammar ingeneral.The categorial language is modalised by including modal operators: ifA is a category formula,A and 3A are category formulas. Interpretationis relativised Kripke-style to points in a set I on which an accessibility



130 CHAPTER F OURrelation R is de�ned. Excluding the semantic dimension for the timebeing, a category formula A now has an interpretation as a set D(A)i ofprosodic objects relative to each point i in I. (Alternatively viewed, eachcategory formula has a single absolute interpretation as a set of pairingsof points and prosodic objects.) Where an interpretation function mapsatomic category formulas to sets of prosodic objects for each i, modalformulas are interpreted as follows, where iRj signi�es that i is accessiblefrom j.D(A)i = fsj8j; iRj ! s 2 D(A)jgD(3A)i = fsj9j; iRi ^ s 2 D(A)jg(83)The interpretation of formulas obtained by other connectives is �xedpoint-wise:D(A�B)i = fs1+s2js1 2 D(A)i ^ s2 2 D(B)igD(B=A)i = fsj8s0 2 D(A)i; s+s0 2 D(B)igD(AnB)i = fsj8s0 2 D(A)i; s0+s 2 D(B)ig(84)Various modal logics are obtained by setting conditions on the accessi-bility relation R, such as iRi (reexivity), iRj^jRk!iRk (transitivity),and iRj!jRi (symmetry). In the modal logicK there are no conditions;in T reexivity is added; in S4 reexivity and transitivity are imposed;and in S5 symmetry is also required. Sequent logic for the K universalmodality is given by the following rule where (as for ! in chapter two) �denotes sequences A1; : : : ; An of -ed formulas:(85) � ) AK� ) AA sequent in modal logic is read as stating that at every index, if theantecedent holds, then the succedent also holds. A sequent for whichthis is indeed the case is valid. A rule such as (85) is read as stating thatif the premise is valid, then the conclusion is valid, i.e. that if at everypoint the succedent of the premise follows from its antecedent, then atevery point the succedent of the conclusion follows from its antecedent.Gentzen-style sequent calculus rules for the universal and existentialmodalities of S4 are as follows.



ENR I CH I NG CATE GOR I A L GRAMMAR 131(86) a. �1; A;�2 ) BL�1; A;�2 ) B � ) AR� ) Ab. �1; A;�2 ) 3B 3L�1;3A;�2 ) 3B � ) A 3R� ) 3AGiving Gentzen-style sequent logic for S5 is problematic, but we will seeshortly how a certain kind of labelling provides for a formulation.To gain a feel for modal logic in sequent calculus, observe that in S4(and S5), 3A (`A is possible') is a consequence of A (`A is the case'),which is a consequence of A (`A is necessary'), but that in general A isnot a consequence of 3A, and A is not a consequence of A. The rule ofuse for simply involves removing the box, for example:(87) N ) N N ) NLN ) N S ) SnLN, NnS ) S/LN, (NnS)/N, N ) SLN, (NnS)/N, N ) S LN, ((NnS)/N), N ) SThe rule of proof is more restricted. In essence, inference to A requiresuniversally modalised (`necessitated') assumptions. Suppose that somefunctor takes as argument S. For elements to occur within such an ar-gumental domain their categories must yield universally modalised as-sumptions; this may be assured by adding an outermost box to eachoriginal lexical category.



132 CHAPTER F OUR(88) S ) S N ) NnLN, NnS ) SLN, NnS ) S N, ((NnS)/N), N ) SRN, ((NnS)/N), N ) S/LN, (NnS)/S, N, ((NnS)/N), N ) S LN, ((NnS)/S), N, ((NnS)/N), N ) SConsider now a relative pronoun category which is a functor over S/N.Analysis of a subject and transitive verb as this argument type is thus:(89) N ) N N, NnS ) S/LN, (NnS)/N, N ) S LN, ((NnS)/N), N ) S/RN, ((NnS)/N) ) S/NHowever, if the pronoun is meant to bind a position in an embeddedmodal domain, the derivation fails:(90) N, NnS ) S *RN, ((NnS)/N), N ) S/LN, (NnS)/S, N, ((NnS)/N), N ) S LN, ((NnS)/S), N, ((NnS)/N), N ) S/RN, ((NnS)/S), N, ((NnS)/N) ) S/NThe problem is that the conditionalised N fails to allow inference to S.For this to be allowed, we need N, i.e. the relative pronoun should be afunctor over S/N if it is to allow relativisation from the S domain. Inthis way, binding elements are sensitised to modal domains.By way of example with respect to existential modality, suppose thata relative pronoun is a functor over S/3N. Then it will not be able tobind the argument position of a functor over N:



ENR I CH I NG CATE GOR I A L GRAMMAR 133(91) *3N ) N N, NnS ) S/LN, (NnS)/N, 3N ) S/RN, (NnS)/N ) S/3NTo be eligible for binding, such argument positions must be governed byfunctors over 3N:(92) 3N ) 3N N ) N S ) SnLN, NnS ) S/LN, (NnS)/3N, 3N ) S/RN, (NnS)/3N ) S/3N(Note that ordinary lexical arguments can occupy diamond argumentpositions since A yields 3A.) Then with a binder a functor over adiamond type, in a language like English where prepositions can bestranded we may categorise them PP/3N, while in languages withoutpreposition stranding they would be PP/N.So far we have considered just the prosodic dimension of interpre-tation of modal category formulas. We shall give two kinds of over-all interpretation, these di�ering with respect to the semantic dimen-sion. The essential step in giving a semantic dimension is to de�ne atype map. In the �rst, semantically inactive, kind of modality, this isT (A) = T (3A) = T (A). Then:D(A)i = fhs;mij8j; iRj ! hs;mi 2 D(A)jgD(3A)i = fhs;mij9j; iRj ^ hs;mi 2 D(A)jg(93)In the semantically active version, T (A) = I!T (A) and T (3A) =I�T (A), i.e. the semantic value of an object in A is a function fromindices into semantic values for A, and the semantic value of an objectin 3A is a pairing of an index and a semantic value for A.



134 CHAPTER F OURD(A)i = fhs;mij8j; iRj ! hs;m(j)i 2 D(A)jgD(3A)i = fhs; hj;miijiRj ^ hs;mi 2 D(A)jg(94)For the modal logic S5, interpretation is particularly simple: becausethe accessibility relation is universal we can ignore it and just quantifyover the set of points. For the semantically active case:D(A)i = fhs;mij8j; hs;m(j)i 2 D(A)jgD(3A)i = fhs; hj;miijhs;mi 2 D(A)jg(95)And for the semantically inactive case:D(A)i = fhs;mij8j; hs;mi 2 D(A)jgD(3A)i = fhs;mij9j; hs;mi 2 D(A)jg(96)The S5 formulation is particularly attractive in its simplicity, yet asmentioned above presenting sequent logic for S5 is di�cult. We there-fore consider here how schematic possible world annotation can be usedin the presentation of modal logic (see e.g. Wallen 1990, Mints 1992);this can be seen as a kind of labelled deduction. Hollenberg (1992)shows this formulation of modal categorial grammar for S4, in a formatsimply adaptable to K and other model logics, as described by Wallen(1990). For S5 the annotation is very simple. Each formula in a sequentis labelled with an index variable (p; q; : : :): Ap refers to the categoryformula A at index p. Theorems are those derivable sequents with allformulas coindexed. Where we include now explicit prosodic labelling,the axiom scheme becomes:(97) ida:Ap ) a:ApThe S5 labelled Gentzen-style rules are:(98) �; a:Ap ) �:BqL�; a:Ar ) �:Bq � ) �:ApR, no p in �� ) �:AqBy way of example we have the following derivation of the modal axiomT corresponding to reexivity of accessibility:(99) a:Ap ) a:ApLa:Ap ) a:ApBut the condition on R blocks the converse:



ENR I CH I NG CATE GOR I A L GRAMMAR 135(100)a:Ap ) a:Ap*Ra:Ap ) a:ApThere is also the derivation (101) of the modal axiom 4 correspondingto transitivity of the accessibility relation.(101) a:Ap ) a:ApLa:Ar ) a:ApRa:Ar ) a:AqRa:Ar ) a:ArOther rules are labelled with indices as follows:(102)a. � ) �:Ap b:Bp;� ) [b]:CqnL�; d:AnBp;� ) [(�+d)]:Cqb. �; a:Ap ) (a+):BpnR� ) :AnBp(103)a. � ) �:Ap b:Bp;� ) [b]:Cq/L�; d:B=Ap;� ) [(d+�)]:Cqb. �; a:Ap ) (+a):Bp/R� ) :B=ApThus we have:(104)Bq ) Bq Aq ) Aq/LA=Bq; Bq ) AqLA=Bq; Br ) Aq L(A=B)r ; Br ) AqR(A=B)r ; Br ) ArBut, for instance, (105) is invalid in virtue of the condition on R.



136 CHAPTER F OUR(105)Br ) Br Ar ) Ar/LA=Br ; Br ) Ar L(A=B)r ; Br ) Ar*R(A=B)r ; Br ) ArModal calculus is applied to extraction constraints in chapter eight,and to intensionality in the next chapter, where its interaction withquanti�er and reexive binding is addressed. With this introduction toenriched categorial grammar we conclude our initial technical consider-ations, and move on to the re�nement of Montague grammar for whichthe way has been paved.


