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Some Metatheoretical Results



Some Metatheoretical Results

> The displacement hypersequent calculus hD has no structural rules.

» The absence of structural rules allows Morrill and Valentin (2010),
Morrill et al (2011) to prove the Cut elimination theorem for hD by
mimicking the Cut-elimination procedure provided by Lambek (1958) for
the sequent calculus of the Lambek calculus (with some minor
differences concerning the possibility of empty antecedents).

> D enjoys some nice properties such as the subformula property,
decidablity, the finite reading property.

> Morrill and Valentn (2015) prove the focalisation property for D with
additive connectives. As is known, focalisation (invented for linear logic
by Andreoli (1992)) is a crucial property which holds for many Gentzen
systems. Focalisation allows to reduce dramatically the spurious
ambiguity of the proof search in sequent calculi.

> D is known to be NP-complete (Moot (2014)). Although S. Kuznetsov
(p-c.) believes that a polynomial result can be proved in the style of the
Lambek calculus, using the the measure of the order of a type.

> The unit-free fragment of D can be encoded in first-order linear logic

(Morrill and Fadda (2008), Fadda(2010), and Moot (2014)). This allows
to give a Girard style proof-net machinery for D (but not for additives!).



Some Metatheoretical Results

» Since we consider full displacement logic DL, proof-nets for
multiplicative D are not satisfactory since DL heavily uses
polymorphism, exponentials, and continuous and discontinuous
units. NO satisfactory proof-net machinery is known for DL.



Displacement (Lambek) Grammars

» Given a finite vocabulary V = ¥ U {1}, where 1 ¢ %, the set of
prosodic strings is simply V*.

» Define AssignStrings as V* — {1”|n > 0}. AssignStrings is the
set of assignable V* strings to a type. Intuitively, every string
assigned to a type must have a contribution of at least one
element of *.

> A lexicon Lex is a finite relation of AssignStrings x ¥, where
each pair of Lex is called a lexical assigment, which is notated
a: A. In other words, a lexicon is a finite set of lexical assigments.

» Where w: A € Lex, we say that w is the prosodic component of
w: A, and A is the type component of w: A.



Displacement (Lambek) Grammars

> Let A be a (hyper)configuration. Observe that A is in fact a
mixed hedge where each internal node is either a type of sort
strictly greater than 0 or a concatenation node. Nodes which are
types have arity equal to the sort of their type, whereas
concatenation nodes have unbounded arity. A labelling map is a
function between the mixed hedge tree domain of A into
AssignStrings.

> A labelled hyperconfiguration A° is pair comprising a
hyperconfiguration A and a labelling ¢ of A. We define the yield
of a labelled hyperconfiguration A? as follows:

(1) yield(A°) = A
yield(1%) = 1
yield((A,T)°) = yield(A°) + yield(I?)
yield(A?) = a(A) for A of sort 0
yield((A{A; < -+ : Aga})’) =
ay + yield(A{) + ax + -+ + asa—1 + yield(AZ,) + asa

Where in the last line of the definition A is of sort greater than 0
ando(A)isai+1+ax+---+asa—1 + 1+ asa.



Displacement (Lambek) Grammars

» A labelling ¢ of a hyperconfiguation A is compatible with a
lexicon Lex if and only if 6(A): A € Lex for every A in A.

» A grammar is a pair G = (Lex; S) where Lex is a lexicon and S
a subtype of the type components of the lexicon. S is the target
(type) symbol.

» The language of G L(G) is defined as follows:

(2) L(Lex, A) = {yield(A")| such that A = A is a theorem of D
and ¢ is compatible with Lex}

» The problem of recognition in the class of D-grammars is
decidable.

Proof. Since for every labelling ¢ compatible with a lexicon for
every type A, ¢(A) contains at least one symbol of

(o(A) € AssignStrings!), the set of labelled hyperconfigurations
such that their yield equals a given « is finite. Now as
theoremhood in the D is decidable we have then that the
problem of recognition is decidable since it reduces to a finite
number of tests of theoremhood. O



On the Generative Capacity of the Core Logic D:
Lower Bounds

The generative capacity of D has as lower bounds two axes of
classes of languages:

» The class of well-nested multiple context-free languages
(Wijnholds (2011) and Sorokin (2013))

» The class of the permutation closure of context-free languages
(Morrill and Valentin 2010)



On the Generative Capacity of the Core Logic D:
Well-Nested Multiple Context-Free Languages

> Wijnholds (2011) shows that lexicalized well-nested range-concatenation
languages are generable by first-order displacement Lambek grammars. As a
matter of fact, the class of well-nested range-concatenation languages equals
the class of well-nested multiple context-free languages. In order to show this
theorem this author proves a result of lexicalization of well-nested
range-concatenation grammars.

> Sorokin (2013) generalises DMCFGs to an unbounded number of points of
discontinuity (an infinite set of function modes of intercalation). In this way, he
gives among other nomal forms a Greibach-like normal form for what he calls
displacement grammars (not to be confused with our displacement Lambek
grammars!). The Greibach normal for displacement grammars allows Sorokin to
define a first-order displacement (Lambek) grammar which generates the
language of displacement grammars. But, the class of (Sorokin) displacement
languages equals the class of well nested multiple context-free languages.



On the Generative Capacity of the Core Logic D: The
Class of the Permutation Closure of Context-Free
Languages

» This result is obtained using a restricted fragment of the
calculus. We define the set T =
{A| A is an atomic type} U {(AT/)|B] A and B are atomic types}.
A T-hypersequent is a hypersequent such that the types of the
antecedent belong to T and the succedent is an atomic type.
Note every type of T has sort 0.

> Interestingly, one can see that every provable T-hypersequent
satisfies that every permutation of the antecedent preserves the
provability of the hypersequent.

> To every right-linear grammar corresponds a lexicon constituted
by types belongingto T.

» Invoking properties of semi-linear sets (Van Benthem (1991)),
one proves that displacement (Lambek) grammars generate the
permutation closure of context-free languages.



Some Examples of Formal Languages: the Copy
Language

Let Lex contain the following lexical assignments:

a :  AJ\(A\S),J\(SL(A\S))
b : B,J\(B\S),J\(SL(B\S))

Where A and B are of sort 0, and S of sort 1. Let the D grammar G = (Lex; S© /). The
target symbolis S® I. L(G) = {w + w|w € {a, b}™}. We have the following
hypersequent derivationfora+b+a+b:Sol:

B=B S{1}=> S A=A S{1}= S
\L \L
B,1,JA(B\S)= S A A\S{1}= S
A\ w
1=J A,B,S|(A\S){1},J\(B\S)= S
— \L

a:Ab:B,1,a:J\(SI(A\S)),b:I\(B\S)=S (%)
From (x) we have:

A, B 1L,A(SLA\S)), N(B\S) =S A=
oR

a:Ab:B,Aa:J\(SL(A\S)),b:J\(B\S)= Sol



Some Examples of Formal Languages: MIX

Recall that MIX = {w|w € {a, b, ¢} and #,(w) = #p(W) = #.(w)}. Let
Lex ={a:"511S,b:"S:1 S, ¢: Sy, 7S] Sy} Let G = (Lex; S). We have L(G) =
MIX. A sample of a derivationofc+a+b+a+c+ b:

1,5, =S, S =5

L

AS2181,82 = S
—FF R

1,°52181, S =S4 S=S8

s
N8118,82181,82 = S
—FF R

1,°6115,75215¢,S2 =S So =S

L
§182,75118,°52181, 82, A= S,

"R
"S15,75115,752181, 82,1 =S, Sy = Sy

"8182,"6115,"52181, A, S2,"521S1 = Sy
"R
“8182,76115,°52151,1,52,"52181 =754 §=S5

i
¢:"S1Sp,a:"5118, b:"Sp1S1,a:"511S, ¢: Sp, b8, 1S = S



Towards Algebraic Semantics

» D is model-theoretically motivated, and the key to its conception
is the use of many-sorted universal algebra (Goguen and
Meseguer (1985)), namely w-sorted universal algebra.

> Here, we assume a version of many-sorted algebra such that the
sort domains of an w-sorted algebra A are non-empty. With this
condition we avoid some pathologies which arise in a naive
version of many-sorted universal algebra (Goguen and
Meseguer (1985), Lalement (1991)).

> In the naive version of many-sorted universal algebra the
completeness theorem of many-sorted equational logic does not
hold!



Towards Algebraic Semantics

» Consider the w-sorted signature ¥p = (+, {X}i»0,0, 1) with sort
functionalities ((i,j — i+ j)ijso0, (i,j = i+j—1)i>0j20,0,1).
Displacement algebras (DAs) for D have this signature.

» The w-sorted signature for residuated DAs is

zges - (+/ \\/ /// {Xi}i>0/ {TTi}i>0/ {»lnl'i}i>0/ 0/ 1 ) Wlth sort
functionalities:

((f =i+ Dijpo, (i+] =0, i+]=0), (0= i+j=isop0,((+fj = i+1),((+1,j—10+])),01)



Residuated DAs

A residuated DA A is a des algebra such that
» The Xp-reduct of A is a DA
» The (+,//,\\) forms a residuated triple

» Forevery i >0, (x;, T1;, 1l;) forms a residuated triple



Displacement Models

» Consider the des ¥ algebra of D types. Let PR be the set of
w-sorted primitive types.

» A model M = (A, v) comprises a residuated DA and a w-sorted
mapping v : PR — F called a valuation. The mapping Vv is the
unique des—morphism which extends v in such a way that:

(8) V(A=B) = V(A)=Vv(B) if=isabinary connective
V() = oA
V(J) = A

» Needless to say, the mappings v and v preserve the sorting
regime.



The (very) First Step towards Algebraic Semantics

» The Lindenbaum-Tarski construction in algebraic semantics
(Font et al (2003))

» This classical construction leads to the strong completeness of
D w.r.t. the class of residuated DAs



Some Special Residuated DAs

» Since the class of DAs form a variety, it is closed by
subalgebras, direct products and homomorphic images, which
give additional DAs, in which we can consider residuation.

» We have other interesting examples of DAs, for instance the
powerset DA over a DA A = (A, +,{Xi}i»0,0, 1), which we
denote P(A). We have:

(4) P(A) = (P(A), {oitiso, L])

The notation of the carrier set of P(A) presupposes that its
members are same-sort subsets; notice that ¢ vacuously
satisfies the same-sort condition.

It is readily seen that for every A, P(A) is in fact a DA. Notice
that every sort domain P(A); is a collection of same-sort
subsets.

» The continuous and discontinuous residuals are naturally
induced by the powerset operations



Some Special Completeness results

Consider the so-called implicative fragment, which we denote D[—].
This fragment comprises the continuous and discontinuous
implications, the non-deterministic discontinuous connectives, and
the (synthetic) unary connectives ; and projections (<~',>7").

» Projections can simplify the account of cross-serial
dependencies in Dutch.

» The nondeterministic discontinous implications (}, |l) can be
used to account for particle shift nondeterminism where the
object can be intercalated between the verb and the particle, or
after the particle. For a particle verb like call + 1 + up we can
give the lexical assigment <! (;(N\S) ' N).

» The split connective can be used for parentheticals like
fortunately with the type assignment 7S|;S.



Some Special Completeness results

» D[] is strongly complete w.r.t. the so-called free separated
monoids (Valentin (2016)).

» D[—] without the split connectives are strongly complete w.r.t.
the so-called language models (ibid).

> In fact, the last result is true of language models with exacly
three generators, one of them being of course the separator
(ibid).

» D is strongly complete over residuated powerset residuated DAs
over DAs, via a representation theorem a la Buszkowski (1997)
(to be submitted).



