
Displacement Logic for Grammar

Glyn Morrill & Oriol Valentı́n

Department of Computer Science
Universitat Politècnica de Catalunya

morrill@cs.upc.edu & oriol.valentin@gmail.com

ESSLLI 2016 Bozen-Bolzano

Lecture 4post

Some Metatheoretical Results

Some Metatheoretical Results
I The displacement hypersequent calculus hD has no structural rules.
I The absence of structural rules allows Morrill and Valentı́n (2010),

Morrill et al (2011) to prove the Cut elimination theorem for hD by
mimicking the Cut-elimination procedure provided by Lambek (1958) for
the sequent calculus of the Lambek calculus (with some minor
differences concerning the possibility of empty antecedents).

I
D enjoys some nice properties such as the subformula property,
decidablity, the finite reading property.

I Morrill and Valentn (2015) prove the focalisation property for D with
additive connectives. As is known, focalisation (invented for linear logic
by Andreoli (1992)) is a crucial property which holds for many Gentzen
systems. Focalisation allows to reduce dramatically the spurious
ambiguity of the proof search in sequent calculi.

I
D is known to be NP-complete (Moot (2014)). Although S. Kuznetsov
(p.c.) believes that a polynomial result can be proved in the style of the
Lambek calculus, using the the measure of the order of a type.

I The unit-free fragment of D can be encoded in first-order linear logic
(Morrill and Fadda (2008), Fadda(2010), and Moot (2014)). This allows
to give a Girard style proof-net machinery for D (but not for additives!).

Some Metatheoretical Results

I Since we consider full displacement logic DL, proof-nets for
multiplicative D are not satisfactory since DL heavily uses
polymorphism, exponentials, and continuous and discontinuous
units. NO satisfactory proof-net machinery is known for DL.

Displacement (Lambek) Grammars

I Given a finite vocabulary V = ⌃ [{1}, where 1 < ⌃, the set of
prosodic strings is simply V

⇤.

I Define AssignStrings as V

⇤ � {1n |n � 0}. AssignStrings is the
set of assignable V

⇤ strings to a type. Intuitively, every string
assigned to a type must have a contribution of at least one
element of ⌃.

I A lexicon Lex is a finite relation of AssignStrings ⇥ F , where
each pair of Lex is called a lexical assigment , which is notated
↵:A . In other words, a lexicon is a finite set of lexical assigments.

I Where w:A 2 Lex, we say that w is the prosodic component of
w:A , and A is the type component of w:A .

Displacement (Lambek) Grammars
I Let � be a (hyper)configuration. Observe that � is in fact a

mixed hedge where each internal node is either a type of sort
strictly greater than 0 or a concatenation node. Nodes which are
types have arity equal to the sort of their type, whereas
concatenation nodes have unbounded arity. A labelling map is a
function between the mixed hedge tree domain of � into
AssignStrings.

I A labelled hyperconfiguration �� is pair comprising a
hyperconfiguration � and a labelling � of �. We define the yield

of a labelled hyperconfiguration �� as follows:

(1) yield(⇤�) = ⇤
yield(1�) = 1
yield((�,�)�) = yield(��) + yield(��)
yield(A�) = �(A) for A of sort 0
yield((A {�1 : · · · : �

sA

})�) =
a1 + yield(��1) + a2 + · · ·+ a

sA�1 + yield(��
sA

) + a

sA

Where in the last line of the definition A is of sort greater than 0
and �(A) is a1 + 1 + a2 + · · ·+ a

sA�1 + 1 + a

sA

.

Displacement (Lambek) Grammars
I A labelling � of a hyperconfiguation � is compatible with a

lexicon Lex if and only if �(A):A 2 Lex for every A in �.

I A grammar is a pair G = (Lex;S) where Lex is a lexicon and S

a subtype of the type components of the lexicon. S is the target
(type) symbol.

I The language of G L(G) is defined as follows:

(2) L(Lex,A) = {yield(��)| such that �) A is a theorem of D

and � is compatible with Lex}
I The problem of recognition in the class of D-grammars is

decidable.
Proof. Since for every labelling � compatible with a lexicon for
every type A , �(A) contains at least one symbol of ⌃
(�(A) 2 AssignStrings!), the set of labelled hyperconfigurations
such that their yield equals a given ↵ is finite. Now as
theoremhood in the D is decidable we have then that the
problem of recognition is decidable since it reduces to a finite
number of tests of theoremhood. ⇤

On the Generative Capacity of the Core Logic D:
Lower Bounds

The generative capacity of D has as lower bounds two axes of
classes of languages:

I The class of well-nested multiple context-free languages

(Wijnholds (2011) and Sorokin (2013))

I The class of the permutation closure of context-free languages
(Morrill and Valentı́n 2010)

On the Generative Capacity of the Core Logic D:
Well-Nested Multiple Context-Free Languages

I Wijnholds (2011) shows that lexicalized well-nested range-concatenation

languages are generable by first-order displacement Lambek grammars. As a
matter of fact, the class of well-nested range-concatenation languages equals
the class of well-nested multiple context-free languages. In order to show this
theorem this author proves a result of lexicalization of well-nested
range-concatenation grammars.

I Sorokin (2013) generalises DMCFGs to an unbounded number of points of
discontinuity (an infinite set of function modes of intercalation). In this way, he
gives among other nomal forms a Greibach-like normal form for what he calls
displacement grammars (not to be confused with our displacement Lambek
grammars!). The Greibach normal for displacement grammars allows Sorokin to
define a first-order displacement (Lambek) grammar which generates the
language of displacement grammars. But, the class of (Sorokin) displacement
languages equals the class of well nested multiple context-free languages.

On the Generative Capacity of the Core Logic D: The
Class of the Permutation Closure of Context-Free
Languages

I This result is obtained using a restricted fragment of the
calculus. We define the set T =
{A | A is an atomic type} [{(A"I)#B | A and B are atomic types}.
A T-hypersequent is a hypersequent such that the types of the
antecedent belong to T and the succedent is an atomic type.
Note every type of T has sort 0.

I Interestingly, one can see that every provable T -hypersequent
satisfies that every permutation of the antecedent preserves the
provability of the hypersequent.

I To every right-linear grammar corresponds a lexicon constituted
by types belonging to T .

I Invoking properties of semi-linear sets (Van Benthem (1991)),
one proves that displacement (Lambek) grammars generate the
permutation closure of context-free languages.

Some Examples of Formal Languages: the Copy
Language

Let Lex contain the following lexical assignments:

a : A , J\(A\S), J\(S#(A\S))
b : B , J\(B\S), J\(S#(B\S))

Where A and B are of sort 0, and S of sort 1. Let the D grammar G = (Lex;S � I). The
target symbol is S � I. L(G) = {w + w |w 2 {a,b}+}. We have the following
hypersequent derivation for a + b + a + b : S � I:

1) J

B) B S{1}) S

\L
B ,1, J\(B\S)) S

A) A S{1}) S

\L
A ,A\S{1}) S

#L
A ,B ,S#(A\S){1}, J\(B\S)) S

\L
a : A ,b : B ,1,a : J\(S#(A\S)),b : J\(B\S)) S (?)

From (?) we have:

A ,B ,1, J\(S#(A\S)), J\(B\S)) S ⇤) I

�R

a : A ,b : B ,⇤,a : J\(S#(A\S)),b : J\(B\S)) S � I

Some Examples of Formal Languages: MIX
Recall that MIX = {w |w 2 {a,b , c}+ and #

a

(w) = #
b

(w) = #
c

(w)}. Let
Lex = {a: Š1#S ,b: Š2#S1, c:S2, c: Š#S2}. Let G = (Lex;S). We have L(G) =
MIX . A sample of a derivation of c + a + b + a + c + b:

1,S2) Š2 S1) S1

#L
⇤, Š2#S1 ,S2) S1

Ř

1, Š2#S1 ,S2) Š1 S) S

#L
⇤, Š1#S , Š2#S1 ,S2) S

Ř

1, Š1#S , Š2#S1 ,S2) Š S2) S2

#L
Š#S2 , Š1#S , Š2#S1 ,S2 ,⇤) S2

Ř

Š#S2 , Š1#S , Š2#S1 ,S2 ,1) Š2 S1) S1

Š#S2 , Š1#S , Š2#S1 ,⇤,S2 , Š2#S1) S1

Ř

Š#S2 , Š1#S , Š2#S1 ,1,S2 , Š2#S1) Š1 S) S

#L
c: Š#S2 ,a: Š1#S ,b: Š2#S1 ,a: Š1#S , c:S2 ,b: Š2#S1) S

Towards Algebraic Semantics

I
D is model-theoretically motivated, and the key to its conception
is the use of many-sorted universal algebra (Goguen and
Meseguer (1985)), namely !-sorted universal algebra.

I Here, we assume a version of many-sorted algebra such that the
sort domains of an !-sorted algebra A are non-empty. With this
condition we avoid some pathologies which arise in a naı̈ve
version of many-sorted universal algebra (Goguen and
Meseguer (1985), Lalement (1991)).

I In the naı̈ve version of many-sorted universal algebra the
completeness theorem of many-sorted equational logic does not
hold!

Towards Algebraic Semantics

I Consider the !-sorted signature ⌃
D

= (+, {⇥
i

}
i>0,0,1) with sort

functionalities ((i, j ! i + j)
i,j�0, (i, j ! i + j � 1)

i>0,j�0,0,1).
Displacement algebras (DAs) for D have this signature.

I The !-sorted signature for residuated DAs is
⌃Res

D

= (+, \\, //, {⇥
i

}
i>0, {""

i

}
i>0, {##

i

}
i>0,0,1) with sort

functionalities:
((i, j ! i + j)

i,j�0 , (i, i + j ! j), (j, i + j ! i), (i, j ! i + j � 1)
i>0,j�0 , (i + j, j ! i + 1), (i + 1, j ! i + j),0,1)

.

Residuated DAs

A residuated DA A is a ⌃Res

D

algebra such that

I The ⌃
D

-reduct of A is a DA

I The (+, //, \\) forms a residuated triple

I For every i > 0, (⇥
i

, ""
i

, ##
i

) forms a residuated triple

Displacement Models

I Consider the ⌃Res

D

F algebra of D types. Let PR be the set of
!-sorted primitive types.

I A modelM = (A, v) comprises a residuated DA and a !-sorted
mapping v : PR! F called a valuation. The mappingbv is the
unique ⌃Res

D

-morphism which extends v in such a way that:

(3) bv(A ⇤ B) = b
v(A) ⇤bv(B) if ⇤ is a binary connective

b
v(I) = 0A
b
v(J) = 1A

I Needless to say, the mappings v andbv preserve the sorting
regime.

The (very) First Step towards Algebraic Semantics

I The Lindenbaum-Tarski construction in algebraic semantics
(Font et al (2003))

I This classical construction leads to the strong completeness of
D w.r.t. the class of residuated DAs

Some Special Residuated DAs
I Since the class of DAs form a variety, it is closed by

subalgebras, direct products and homomorphic images, which
give additional DAs, in which we can consider residuation.

I We have other interesting examples of DAs, for instance the
powerset DA over a DA A = (A ,+, {⇥

i

}
i>0,0,1), which we

denote P(A). We have:
(4) P(A) = (P(A), ·, {�

i

}
i>0, I, J)

The notation of the carrier set of P(A) presupposes that its
members are same-sort subsets; notice that ; vacuously
satisfies the same-sort condition.

It is readily seen that for every A, P(A) is in fact a DA. Notice
that every sort domain P(A)

i

is a collection of same-sort
subsets.

I The continuous and discontinuous residuals are naturally
induced by the powerset operations

Some Special Completeness results

Consider the so-called implicative fragment , which we denote D[!].
This fragment comprises the continuous and discontinuous
implications, the non-deterministic discontinuous connectives, and
the (synthetic) unary connectives

ǩ

and projections (/�1, .�1).

I Projections can simplify the account of cross-serial
dependencies in Dutch.

I The nondeterministic discontinous implications (*,+) can be
used to account for particle shift nondeterminism where the
object can be intercalated between the verb and the particle, or
after the particle. For a particle verb like call + 1 + up we can
give the lexical assigment /�1(̌1(N\S) * N).

I The split connective can be used for parentheticals like
fortunately with the type assignment 1̌S#1S.

Some Special Completeness results

I
D[!] is strongly complete w.r.t. the so-called free separated

monoids (Valentı́n (2016)).

I
D[!] without the split connectives are strongly complete w.r.t.
the so-called language models (ibid).

I In fact, the last result is true of language models with exacly
three generators, one of them being of course the separator
(ibid).

I
D is strongly complete over residuated powerset residuated DAs
over DAs, via a representation theorem à la Buszkowski (1997)
(to be submitted).

