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Tree-based hypersequent calculus

We shall motivate, present, illustrate and analyse a
conservative extension of the Lambek calculus called
displacement calculus (Morrill & Valentı́n 2010; Morrill, Valentı́n
& Fadda 2011).
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Syntactic types

The set F of types is defined in terms of a set P of primitive
types by:

F := P

F ::= F /F T(C/B) = T(B)→T(C) over
F ::= F \F T(A\C) = T(A)→T(C) under
F ::= F •F T(A•B) = T(A)&T(B) continuous product
F ::= I T(I) = > continuous unit
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Syntactical interpretation

[[C/B]] = {s1| ∀s2 ∈ [[B]], s1+s2 ∈ [[C]]}
[[A\C]] = {s2| ∀s1 ∈ [[A ]], s1+s2 ∈ [[C]]}
[[A•B]] = {s1+s2| s1 ∈ [[A ]] & s2 ∈ [[B]]}

[[I]] = {0}
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Sequent calculus

The logical rules are as follows, where ∆(Γ) signifies context
configuration ∆ with a distinguished subconfiguration Γ.

Γ⇒ B ∆(C)⇒ D
/L

∆(C/B ,Γ)⇒ D

Γ,B ⇒ C
/R

Γ⇒ C/B

Γ⇒ A ∆(C)⇒ D
\L

∆(Γ,A\C)⇒ D

A ,Γ⇒ C
\R

Γ⇒ A\C

∆(A ,B)⇒ D
•L

∆(A•B)⇒ D

Γ1 ⇒ A Γ2 ⇒ B
•R

Γ1,Γ2 ⇒ A•B

∆(Λ)⇒ A
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∆(I)⇒ A
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Descriptive inadequacy of Lambek calculus

Discontinuous idioms
I Mary gave the man the cold shoulder

Medial relativisation
I the man that Mary saw today

Cross serial dependencies . . .
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Syntactic types

The syntactic types are sorted F0,F1,F2, . . . according to the
number of holes 0,1,2, . . . their expressions contain.

The sets Fi of types of sort i are defined in terms of sets Pi of
primitive types of sort i by:

Fi ::= Pi

Fi ::= Fi+j/Fj T(C/B) = T(B)→T(C) over
Fj ::= Fi\Fi+j T(A\C) = T(A)→T(C) under
Fi+j ::= Fi•Fj T(A•B) = T(A)&T(B) continuous product
F0 ::= I T(I) = > continuous unit

Fi+1 ::= Fi+j↑kFj T(C↑k B) = T(B)→T(C) circumfix
Fj ::= Fi+1↓kFi+j T(A↓k C) = T(A)→T(C) infix
Fi+j ::= Fi+1�kFj T(A�k B) = T(A)&T(B) discontinuous product
F1 ::= J T(J) = > discontinuous unit
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Syntactical interpretation

[[C/B]] = {s1| ∀s2 ∈ [[B]], s1+s2 ∈ [[C]]}
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[[I]] = {0}

[[C↑k B]] = {s1| ∀s2 ∈ [[B]], s1×k s2 ∈ [[C]]}
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Sequents

Configurations O are defined by the following, where Λ is the
empty string, and the metalinguistic separator 1 marks holes:

O ::= Λ | T ,O
T ::= 1 | F0 | Fi>0{O : . . . : O︸     ︷︷     ︸

iO′s

}

Where A is a type, sA is its sort.

Where Γ is a configuration, its sort sΓ is the number of holes
(1’s) it contains.

Sequents Σ are defined by:

O ⇒ F such that sO = sF
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Where Γ is a configuration of sort i and ∆1, . . . ,∆i are
configurations, the fold Γ ⊗ 〈∆1, . . . ,∆i〉 is the result of replacing
the successive holes in Γ by ∆1, . . . ,∆i respectively.

Where Γ is of sort i, the notation ∆〈Γ〉 abbreviates
∆0(Γ ⊗ 〈∆1, . . . ,∆i〉), i.e. a context configuration ∆ (which is
externally ∆0 and internally ∆1, . . . ,∆i) with a potentially
discontinuous distinguished subconfiguration Γ.
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Continuous logical rules
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Where ∆ is a configuration of sort i > 0 and Γ is a configuration,
the k th metalinguistic wrap ∆ |k Γ, 1 ≤ k ≤ i, is given by:

∆ |k Γ =df ∆ ⊗ 〈1, . . . ,1︸  ︷︷  ︸
k−1 1’s

, Γ,1, . . . ,1︸  ︷︷  ︸
i−k 1’s

〉

i.e. ∆ |k Γ is the configuration resulting from replacing by Γ the
k th hole in ∆.
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Examples

Mary gave the man the cold shoulder
I gave+1+the+cold+shoulder: (N\S)↑N

the man Mary saw today
I that: (CN\CN)/((S↑N)�I)


