Reinforcement Learning
Policy Search: Actor-Critic and Gradient Policy search

Mario Martin
CS-UPC
May 28, 2018
Goal of this lecture

- So far we approximated the value or action-value function using parameters θ (e.g. neural networks)

\[
V_\theta \approx V^\pi \\
Q_\theta(s, a) \approx V^\pi(s)
\]

- A policy was generated directly from the value function e.g. using ϵ-greedy

- In this lecture we will directly parameterize the policy in a stochastic setting

\[
\pi_\theta(a|s) = P_\theta(a|s)
\]

- and do a direct **Policy search**

- Again on model-free setting
Three approaches to RL

Value based learning: **Implicit policy**
- Learn value function $Q_\theta(s, a)$ and from there infer policy $\pi(s) = \arg \max_a Q(s, a)$

Policy based learning: **No value function**
- Explicitly learn policy $\pi_\theta(a|s)$ that implicitly maximize reward over all policies

Actor-Critic learning: **Learn both Value Function and Policy**
Advantages of Policy over Value approach

- **Advantages:**
 - In some cases, computing Q-values is harder than picking optimal actions
 - **Better convergence properties**
 - **Effective in high dimensional or continuous action spaces**
 - Can benefit from demonstrations
 - Policy subspace can be chosen according to the task
 - Exploration can be directly controlled
 - Can learn stochastic policies

- **Disadvantages:**
 - Typically converge to a **local optimum** rather than a global optimum
 - Evaluating a policy is typically **data inefficient and high variance**
Stochastic Policies

- In general, two kinds of policies:
 - Deterministic policy

 \[a = \pi_\theta(s) \]
 - Stochastic policy

 \[P(a|s) = \pi_\theta(a|s) \]

- Not new, \(\epsilon\)-greedy is stochastic, but different idea. Stochastic policy is good on its own, no because it is an approx. of a greedy policy

- Any example where stochastic could be better that deterministic?
Stochastic Policies: Rock-Paper-Scissors

Two–player game of rock–paper–scissors:
- Scissors beats paper
- Rock beats scissors
- Paper beats rock

Consider policies for iterated rock–paper–scissors:
- A deterministic policy is easily exploited
- A uniform random policy is optimal (i.e., Nash equilibrium)
The agent *cannot differentiate* the grey states

Consider features of the following form:

$$\phi_d(s) = 1(\text{wall to } d) \quad \forall d \in \{N, E, S, W\}$$

Compare value-based RL, using an approximate value function

$$Q_\theta(s, a) = f_\theta(\phi(s, a))$$

To policy-based RL, using a parametrized policy

$$\pi_\theta(a|s) = g_\theta(\phi(s, a))$$
Stochastic Policies: Aliased World (POMDSPs)

- Under aliasing, an optimal deterministic policy will either
 - move W in both gray states
 - move E in both gray states
- Either way, it can get stuck and never reach the money
- Value–based RL learns a near–deterministic policy
- So it will traverse the corridor for a long time
An optimal stochastic policy will randomly move E or W in gray states

- $\pi_\theta(\text{move E} \mid \text{wall to N and S}) = 0.5$
- $\pi_\theta(\text{move W} \mid \text{wall to N and S}) = 0.5$

- It will reach the goal state in a few steps with high probability
- Policy–based RL can learn the optimal stochastic policy
Goal: given policy $\pi_\theta(a|s)$ with parameters θ, find best θ

... but how do we measure the quality of a policy π_θ?

In episodic environments we can use the **start value**

$$J_1(\theta) = V^{\pi_\theta}(s_1)$$
Policy Objective Functions

- In continuing environments we can use the **average value**

\[
J_{avV}(\theta) = \sum_s d^{\pi_\theta}(s)V^{\pi_\theta}(s)
\]

where \(d^{\pi_\theta}(s)\) is stationary distribution of Markov chain for \(\pi_\theta\)

- Or the **average reward per time-step**

\[
J_{avR}(\theta) = \sum_s d^{\pi_\theta}(s)\sum_a \pi_\theta(a|s)r(s,a)
\]

where \(d^{\pi_\theta}(s)\) is the expected number of time steps on \(s\) in a randomly generated episode following \(\pi_\theta\) divided by time steps of trial

- For simplicity, we will mostly discuss the episodic case, but can easily extend to the continuing / infinite horizon case
Policy optimization
Policy optimization

- Goal: given policy $\pi_\theta(a|s)$ with parameters θ, find best θ
- Policy based reinforcement learning is an **optimization** problem
- Find policy parameters θ that maximize $J(\theta)$
- Two approaches for solving the optimization problem
 - Gradient-free
 - Policy-gradient
Subsection 1

Gradient Free Policy Optimization
Goal: given parametrized method (with parameters θ) to approximate policy $\pi_\theta(a|s)$, find best values for θ

Policy based reinforcement learning is an **optimization** problem

Find policy parameters θ that maximize $J(\theta)$

Some approaches do not use gradient

- Hill climbing
- Simplex / amoeba / Nelder Mead
- Genetic algorithms
- Cross-Entropy method (CEM)
- Covariance Matrix Adaptation (CMA)
Goal: given parametrized method (with parameters θ) to approximate policy $\pi_\theta(a|s)$, find best values for θ

Policy based reinforcement learning is an **optimization** problem

Find policy parameters θ that maximize $J(\theta)$

Some approaches do not use gradient

- Hill climbing
- Simplex / amoeba / Nelder Mead
- Genetic algorithms
- Cross-Entropy method (CEM)
- Covariance Matrix Adaptation (CMA)
Cross-Entropy Method (CEM)

- A simplified version of Evolutionary algorithm
- Works *embarrassingly* well in some problems, f.i.
 - Playing Tetris (Szita et al., 2006), (Gabillon et al., 2013)
 - A variant of CEM called Covariance Matrix Adaptation has become standard in graphics (Wampler et al., 2009)

- Very simple idea:
 1. From current policy, sample \(N \) trials (large)
 2. Take the \(M \) trials with larger Long.return (we call the **elite**)
 3. Fit new policy to behave as in M best sessions
 4. Repeat until satisfied

- Policy improves gradually
Tabular Cross-Entropy

Tabular Cross-Entropy Algorithm

Given M (f.i. 20), N (f.i. 200)
Initialize matrix policy $\pi(a|s) = A_{s,a}$ randomly

repeat
 Sample N roll-outs of the policy and collect for each R_t
 elite $= M$ best samples
 $\pi(a|s) = \frac{[\text{times in } M \text{ samples took } a \text{ in } s] + \lambda}{[\text{times in } M \text{ samples was at } s] + \lambda |A|}$
until convergence

return π

Notice! No value functions!
If you were in some state only *once*, you only take this action now.

Solution: Introduction of λ, a parameter to smooth probabilities.

Due to randomness, algorithm will prefer “lucky” sessions (training on lucky sessions is no good).

Solution: run several simulations with these state-action pairs and average the results.
Approximated Cross-Entropy Method (CEM)

Approximated Cross-Entropy Method

Given M (f.i., 20), N (f.i., 200) and function approximation (f.i. NN) depending on θ
Initialize θ randomly
repeat
 Sample N roll-outs of the policy and collect for each R_t
 elite = M best samples
 $\theta = \theta + \alpha \nabla \left[\sum_{s,a \in \text{elite}} \log \pi_\theta(a|s) \right]$
until convergence
return π_θ
Approximated Cross-Entropy Method (CEM)

- No Value function involved
- Notice that best policy is:

\[\arg \max_{\pi_\theta} \sum_{s,a \in \text{elite}} \log \pi_\theta(a|s) = \arg \max_{\pi_\theta} \prod_{s,a \in \text{elite}} \pi_\theta(a|s) \]

so gradient goes in that direction (some theory about Entropy behind)

- Intuitively, is the policy that maximizes similarity with behavior of successful samples
- Tabular case is a particular case of this algorithm
- I promised no gradient, but notice that gradient is for the approximation, not for the policy
- Can easily be extended to continuous action spaces (f.i. robotics)
Gradient Free methods

- Often a great simple baseline to try
- Benefits
 - Can work with any policy parameterizations, including non-differentiable
 - Frequently very easy to parallelize (faster training time)
- Limitations
 - Typically not very sample efficient because it ignores temporal structure
Subsection 2

Policy gradient
Policy gradient methods

- Policy based reinforcement learning is an **optimization** problem
- Find policy parameters θ that maximize V^{π_θ}
- We have seen gradient-free methods, but greater efficiency often possible using gradient in the optimization
- Pletora of methods:
 - Gradient descent
 - Conjugate gradient
 - Quasi-newton
- We focus on *gradient ascent*, many extensions possible
- And on methods that exploit sequential structure
With Value functions we use Greedy updates:

\[\theta_{\pi'} = \arg \max_{\theta} \mathbb{E}_{\pi \theta} [Q^\pi (s, a)] \]

\[\begin{array}{cccccc}
\pi_0 \xrightarrow{\text{small change}} & \pi_1 \xrightarrow{\text{large change}} & V^\pi_1 \xrightarrow{\text{small change}} & \pi_2 \xrightarrow{\text{large change}} & V^\pi_2
\end{array} \]

Potentially unstable learning process with large policy jumps because \(\arg \max \) is not differentiable.

On the other hand, Policy Gradient updates are:

\[\theta_{\pi'} = \theta_{\pi'} + \alpha \frac{\partial J(\theta)}{\partial \theta} \]

Stable learning process with smooth policy improvement.
Policy gradient method

- Define $J(\theta) = J^{\pi_\theta}$ to make explicit the dependence of the evaluation policy on the policy parameters.
- Assume episodic MDPs.
- Policy gradient algorithms search for a local **maximum** in $J(\theta)$ by **ascending** the gradient of the policy, w.r.t parameters θ

$$\nabla \theta = \alpha \nabla_{\theta} J(\theta)$$

- Where $\nabla_{\theta} J(\theta)$ is the **policy gradient** and α is a step-size parameter.
Computing the gradient analytically

- We now compute the policy gradient analytically
- **Assume policy is differentiable whenever it is non-zero**
Computing the gradient analytically

- We now compute the policy gradient analytically
- **Assume policy is differentiable whenever it is non-zero**
- and that we know the gradient $\nabla_{\theta} \pi_{\theta}(a|s)$
- Denote a state-action **trajectory** (or trial) τ as

$$\tau = (s_0, a_0, r_1, s_1, a_1, r_2, \ldots, s_{T-1}, a_{T-1}, r_T, s_T)$$

- Define long-term-reward to be the sum of rewards for the trajectory ($R(\tau)$)

$$R(\tau) = \sum_{t=1}^{T} r(s_t)$$

- It can be discounted or not. Now not important because we will not use Bellman equations.
Computing the gradient analytically

- The value of the policy $J(\theta)$ is:

$$J(\theta) = \mathbb{E}_{\pi_\theta} [R(\tau)] = \sum_{\tau} P(\tau|\theta) R(\tau)$$

where $P(\tau|\theta)$ denotes the probability of trajectory τ when following policy π_θ

- Notice that sum is for all possible trajectories

- In this new notation, our goal is to find the policy parameters θ that:

$$\arg \max_{\theta} J(\theta) = \arg \max_{\theta} \sum_{\tau} P(\tau|\theta) R(\tau)$$
In general, assume we want to compute $\nabla \log f(x)$:

$$\nabla \log f(x) = \frac{1}{f(x)} \nabla f(x)$$

$$f(x) \nabla \log f(x) = \nabla f(x)$$

It can be applied to any function and we can use the equality in any direction.

The term $\frac{\nabla f(x)}{f(x)}$ is called *likelihood ratio* and is used to analytically compute the gradients.

Btw. Notice the caveat... *Assume policy is differentiable whenever it is non-zero.***
Computing the gradient analytically

- In this new notation, our goal is to find the policy parameters θ that:

$$\arg\max_\theta J(\theta) = \arg\max_\theta \sum_\tau P(\tau|\theta)R(\tau)$$

- So, taken the gradient wrt θ

$$\nabla_\theta J(\theta) = \nabla_\theta \sum_\tau P(\tau|\theta)R(\tau)$$

$$= \sum_\tau \nabla_\theta P(\tau|\theta)R(\tau)$$

$$= \sum_\tau \frac{P(\tau|\theta)}{P(\tau|\theta)} \nabla_\theta P(\tau|\theta)R(\tau)$$

$$= \sum_\tau P(\tau|\theta)R(\tau) \frac{\nabla_\theta P(\tau|\theta)}{P(\tau|\theta)}$$

$$= \sum_\tau P(\tau|\theta)R(\tau) \nabla_\theta \log P(\tau|\theta)$$
Computing the gradient analytically

- Goal is to find the policy parameters θ that:

$$\arg \max_\theta J(\theta) = \arg \max_\theta \sum_\tau P(\tau|\theta)R(\tau)$$

- So, taken the gradient wrt θ

$$\nabla_\theta J(\theta) = \sum_\tau P(\tau|\theta)R(\tau)\nabla_\theta \log P(\tau|\theta)$$

- Of course we cannot compute all trajectories...
Computing the gradient analytically

- Goal is to find the policy parameters θ that:
 \[
 \arg \max_{\theta} J(\theta) = \arg \max_{\theta} \sum_{\tau} P(\tau|\theta)R(\tau)
 \]

- So, taken the gradient wrt θ
 \[
 \nabla_{\theta} J(\theta) = \sum_{\tau} P(\tau|\theta)R(\tau)\nabla_{\theta} \log P(\tau|\theta)
 \]

- Of course we cannot compute all trajectories...but we can sample m trajectories because of the form of the equation
 \[
 \nabla_{\theta} J(\theta) \approx (1/m) \sum_{i=1}^{m} R(\tau_i)\nabla_{\theta} \log P(\tau_i|\theta)
 \]
Computing the gradient analytically: at last!

- Sample m trajectories:

$$\nabla_\theta J(\theta) \approx (1/m) \sum_{i=1}^{m} R(\tau_i) \nabla_\theta \log P(\tau_i|\theta)$$

- However, we still have a problem, we don’t know the how to compute $\nabla_\theta \log P(\tau|\theta)$

- Fortunately, we can derive it from the stochastic policy

$$\nabla_\theta \log P(\tau|\theta) = \nabla_\theta \log \left[\mu(s_0) \prod_{i=0}^{T-1} \pi_\theta(a_i|s_i) P(s_{i+1}|s_i, a_i) \right]$$

$$= \nabla_\theta \left[\log \mu(s_0) \sum_{i=0}^{T-1} \log \pi_\theta(a_i|s_i) + \log P(s_{i+1}|s_i, a_i) \right]$$

$$= \sum_{i=0}^{T-1} \nabla_\theta \log \pi_\theta(a_i|s_i)$$

No dynamics model required!
Computing the gradient analytically

- We assumed at the beginning that policy is differentiable and that we now the derivative wrt parameters θ
- So, we have the desired solution:

$$\nabla_\theta J(\theta) \approx \left(\frac{1}{m} \right) \sum_{i=1}^{m} R(\tau_i) \sum_{i=0}^{T-1} \nabla_\theta \log \pi_\theta(a_i|s_i)$$
Differentiable policies? Soft-max

- One popular way to do action selection instead of using ϵ-greedy is to assign probabilities to actions according to values:

$$\pi(a|s) = \frac{e^{Q(s,a)/\tau}}{\sum_{a'} e^{Q(s,a')/\tau}} \propto e^{Q(s,a)/\tau}$$

where τ is parameter that controls exploration. Let's assume $\tau = 1$

- Let's consider the case where $Q(s, a) = \phi^T(s, a)\theta$ is approximated by a linear function

$$\nabla_{\theta} \log \pi_{\theta}(a_i|s_i) = \nabla_{\theta} \log \frac{e^{\phi^T(s,a)\theta}}{\sum_{a'} e^{\phi^T(s,a')\theta}}$$

$$= \nabla_{\theta} \phi^T(s, a)\theta - \nabla_{\theta} \sum_{a'} \phi^T(s, a)\theta$$

$$= \phi(s, a) - \mathbb{E}_{\pi_{\theta}} [\phi(s, \cdot)]$$
Differentiable policies? Gaussian Policy

- **In continuous spaces of actions**, action is generated by a random distribution with parameters. The most popular in Gaussian distribution.

- Parameter of the Gaussian is a linear combination of feature \(\mu = \phi^T(s, a) \theta \). Variance \(\sigma^2 \) can be fixed or also approximated.

- Policy select actions following Gaussian distribution:

\[
a \sim \mathcal{N}(\mu_\theta(s), \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma^2} e^{-\frac{(a-\phi^T(s,a)\theta)^2}{2\sigma^2}}
\]

- In this case,

\[
\nabla_\theta \log \pi_\theta(a|s) = \nabla_\theta - \frac{(a-\phi^T(s,a)\theta)^2}{2\sigma^2} \phi(s) - \nabla_\theta \log \sigma^2 = \phi(s) \frac{(a-\phi^T(s,a)\theta)}{\sigma^2}
\]
A very popular way to approximate the policy is to use a Deep NN with soft-max last layer with so many neurons as actions.

In this case, use *autodiff* of the neural network package you use! In tensorflow:

```python
loss = - tf.reduce_mean(tf.log(prob_outputs) * reward)
```

where `prob_outputs` is the output layer of the DNN

- Backpropagation implemented will do the work for you.
Vanilla Policy Gradient

Given architecture with parameters θ to implement π_θ
Initialize θ randomly
repeat
 Generate episode $\{s_1, a_1, r_2, \ldots s_{T-1}, a_{T-1}, r_T, s_T\} \sim \pi_\theta$
 Get $R \leftarrow$ long-term return for episode
 for all time steps $t = 1$ to $T - 1$ do
 $\theta \leftarrow \theta + \alpha \nabla \theta \log \pi_\theta(a_t | s_t) R$
 end for
until convergence

Substitute $\nabla \theta \log \pi_\theta(a_t | s_t)$ with appropriate equation
Vanilla Policy Gradient

- Remember:

\[\nabla_\theta J(\theta) \approx \left(\frac{1}{m} \right) \sum_{i=1}^{m} R(\tau_i) \sum_{i=0}^{T-1} \nabla_\theta \log \pi_\theta(a_i|s_i) \]

- Unbiased but very noisy
- Fixes that can make it practical
 - Temporal structure
 - Baseline
Subsection 3

Reduce variance using temporal structure: Reinforce and Actor-Critic architectures
Policy Gradient using Temporal structure

- Instead of focusing on reward of trajectories,

\[J(\theta) = \mathbb{E}_{\pi_\theta} [R(\tau)] = \sum_\tau P(\tau|\theta)R(\tau) \]

- We want to optimize the expected return

\[J_{avV}(\theta) = \sum_s d^{\pi_\theta}(s)V(s) = \sum_s d^{\pi_\theta} \sum_a \pi_\theta(a|s)Q(s, a) \]

where \(d^{\pi_\theta}(s) \) is the expected number of time steps on \(s \) in a randomly generated episode following \(\pi_\theta \) divided by time steps of trial

- Let’s start with an MDP with one single step.

\[J_{avR}(\theta) = \sum_s d^{\pi_\theta}(s)V(s) = \sum_s d^{\pi_\theta} \sum_a \pi_\theta(a|s)r(s, a) \]
Policy Gradient using Temporal structure

\[J_{avR}(\theta) = \sum_s d^{\pi_\theta} \sum_a \pi_\theta(a|s)r(s, a) \]

\[\nabla_\theta J_{avR}(\theta) = \nabla_\theta \sum_s d^{\pi_\theta} \sum_a \pi_\theta(a|s)r(s, a) \]

\[= \sum_s d^{\pi_\theta} \sum_a \nabla_\theta (\pi_\theta(a|s)r(s, a)) \]

\[= \sum_s d^{\pi_\theta} \sum_a \nabla_\theta \pi_\theta(a|s) \log \pi_\theta(a|s)r(s, a) \]

\[= \mathbb{E}_{\pi_\theta} [\nabla_\theta \log \pi_\theta(a|s)r(s, a)] \]

- And this expectation can be sampled
The policy gradient theorem generalize the likelihood ratio approach to multi-step MDPs.

- Replaces instantaneous reward r with long-term value $Q(s, a)$
- Policy gradient theorem applies to all objective functions we have seen

Policy gradient theorem

For any differentiable policy $\pi_\theta(s, a)$, for any of the policy objective functions $J = J_1, J_{avR}$ or J_{avV}, the policy gradient is:

$$\nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta} [\nabla_\theta \log \pi_\theta(a|s)Q^{\pi_\theta}(s, a)]$$

Simple proof in pag. 269 of *(Sutton 2016)*
The REINFORCE algorithm (also called Monte–Carlo Policy Gradient) uses the policy gradient theorem and long-term reward R as an unbiased sample of $Q^{\pi_\theta}(s, a)$.

REINFORCE Algorithm

Given architecture with parameters θ to implement π_θ

Initialize θ randomly

repeat
 Generate episode $\{s_1, a_1, r_2, \ldots s_{T-1}, a_{T-1}, r_T, s_T\} \sim \pi_\theta$
 for all time steps $t = 1$ to $T - 1$ do
 Get $R_t \leftarrow$ long-term return from step t to T
 $\theta \leftarrow \theta + \alpha \nabla_\theta \log \pi_\theta(a_t|s_t)R_t$
 end for
until convergence
REINFORCE algorithm

Let's analyze the update:

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(a_t|s_t)R_t$$

Let's us rewrite is as follows

$$\theta \leftarrow \theta + \alpha \frac{\nabla_{\theta} \pi_{\theta}(a_t|s_t)}{\pi_{\theta}(a_t|s_t)} R_t$$

Update is proportional to:

- the product of a return R_t and
- the gradient of the probability of taking the action actually taken,
- divided by the probability of taking that action.
REINFORCE algorithm

- Update:

\[\theta \leftarrow \theta + \alpha \frac{\nabla_{\theta} \pi_{\theta}(a_t|s_t)}{\pi_{\theta}(a_t|s_t)} R_t \]

- move most in the directions that favor actions that yield the highest return
- ...is inversely proportional to the action probability (actions that are selected frequently are at an advantage (the updates will be more often in their direction))

- Is it necessary to change something in the algorithm for continuous actions?
REINFORCE algorithm

- Update:
 \[\theta \leftarrow \theta + \alpha \frac{\nabla_{\theta} \pi_{\theta}(a_t | s_t)}{\pi_{\theta}(a_t | s_t)} R_t \]

 - ...move most in the directions that favor actions that yield the highest return
 - ...is inversely proportional to the action probability (actions that are selected frequently are at an advantage (the updates will be more often in their direction))

- Is it necessary to change something in the algorithm for continuous actions?
- No! Just uses a continuous action policy mechanism and everything is the same!
Monte-Carlo policy gradient still has high variance because R_t has a lot of variance.

We can **reduce variance subtracting** a **baseline** to the estimator:

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(a_t|s_t)(R_t - b(s_t))$$

without introducing any bias *when baseline does not depend on actions* taken.

A good baseline is $b(s_t) = V^{\pi_{\theta}}(s_t)$ so we will use that.
Monte-Carlo policy gradient still has high variance because \(R_t \) has a lot of variance.

We can **reduce variance subtracting** a **baseline** to the estimator

\[
\theta \leftarrow \theta + \alpha \nabla \theta \log \pi \theta(a_t | s_t)(R_t - b(s_t))
\]

without introducing any bias when baseline does not depend on actions taken.

A good baseline is \(b(s_t) = V^{\pi \theta}(s_t) \) so we will use that.

How to estimate \(V^{\pi \theta} \)?

We’ll use another set of parameters \(w \) to approximate.
REINFORCE algorithm with baseline

REINFORCE algorithm with baseline (aka MC Actor Critic)

Given architecture with parameters θ to implement π_θ and parameters w to approximate V

Initialize θ randomly

repeat
 Generate episode $\{s_1, a_1, r_2, \ldots s_{T-1}, a_{T-1}, r_T, s_T\} \sim \pi_\theta$
 for all time steps $t = 1$ to $T - 1$ do
 Get $R_t \leftarrow$ long-term return from step t to T
 $\delta \leftarrow R_t - V_w(s_t)$
 $w \leftarrow w + \beta \delta \nabla_w V_w(s_t)$
 $\theta \leftarrow \theta + \alpha \delta \nabla_\theta \log \pi_\theta(a_t|s_t)$
 end for
until convergence
Monte-Carlo policy gradient has high variance

So we used a baseline to reduce the variance $R_t - V(s_t)$

Can we do something to speed up learning like we did with MC using TD?
Monte-Carlo policy gradient has high variance
So we used a baseline to reduce the variance $R_t - V(s_t)$
Can we do something to speed up learning like we did with MC using TD?
Yes, use different estimators of R_t that do bootstrapping f.i. TD(0), n-steps, etc.
These algorithms are called **Actor Critic**
Actor-Critic Architectures

- The **Critic**, *evaluates the current policy* and the result is used in the policy training.
- The **Actor** *implements the policy* and is trained using Policy Gradient with estimations from the critic.

![Actor-Critic Diagram](attachment:image.png)
Actor-Critic Architectures

- Actor-critic algorithms maintain two sets of parameters (like in REINFORCE with baseline):
 - **Critic** parameters: approximation parameters w for action-value function under current policy
 - **Actor** parameters: policy parameters θ

- Actor-critic algorithms follow an approximate policy gradient:
 - **Critic**: Updates action-value function parameters w like in *policy evaluation* updates (you can apply everything we saw in FA for prediction)
 - **Actor**: Updates policy gradient θ, in direction suggested by critic
Actor-Critic Architectures

- Actor updates are always in the same way:

\[
\theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(a_t|s_t)G_t
\]

where \(G_t \) is the evaluation of long-term returned by the critic for \(s_t \)

- Critic updates are done to evaluate the current policy

\[
w \leftarrow w + \alpha \delta \nabla_{\theta} V_w(a_t|s_t)
\]

where \(\delta \) is the estimated error in evaluating the \(s \) state and that implements the kind of bootstrapping done.
One step Actor Critic (QAC)

One step actor-critic: \(\delta \leftarrow r + Q_w(s', a') - Q_w(s, a) \)

One step Actor Critic

Given architecture with parameters \(\theta \) to implement \(\pi_\theta \) and parameters \(w \) to approximate \(Q \)

Initiate \(\theta \) randomly

repeat

Set \(s \) to initial state

Get \(a \) from \(\pi_\theta \)

repeat

Take action \(a \) and observe reward \(r \) and new state \(s' \)

Get \(a' \) from \(\pi_\theta \)

\(\delta \leftarrow r + Q_w(s', a') - Q_w(s, a) \)

\(w \leftarrow w + \beta \delta \nabla_w Q_w(s, a) \)

\(\theta \leftarrow \theta + \alpha \nabla_\theta \log \pi_\theta(a|s) Q_w(s, a) \)

\(s \leftarrow s' \)

until \(s \) is terminal

until convergence
Advantage Actor Critic (AAC or A2C)

- In this critic Advantage value function is used:

\[A^\pi_\theta(s,a) = Q^\pi_\theta(s,a) - V^\pi_\theta(s) \]

- The advantage function can significantly reduce variance of policy gradient

- So the critic should really estimate the advantage function, for instance, estimating both \(V(s) \) and \(Q \) using two function approximators and two parameter vectors:

\[
V^\pi_\theta(s) \approx V_v(s) \quad (1) \\
Q^\pi_\theta(s,a) \approx Q_w(s,a) \quad (2) \\
A(s,a) = Q_w(s,a) - V_v(s) \quad (3)
\]

- And updating both value functions by e.g. TD learning
From A2C to REINFORCE with baseline

- One way to implement A2C method without two different networks to estimate $Q_w(s, a)$ and $V_v(s)$ is the following.
- For the true value function $V^{\pi_\theta}(s)$, the TD error $\delta^{\pi_\theta}(s)$
 \[\delta^{\pi_\theta}(s) = r + \gamma V^{\pi_\theta}(s') - V^{\pi_\theta}(s) \]
- is an unbiased estimate of the advantage function:
 \[
 \mathbb{E}_{\pi_\theta}[\delta^{\pi_\theta}|s, a] = \mathbb{E}_{\pi_\theta}[r + \gamma V^{\pi_\theta}(s')|s, a] - V^{\pi_\theta}(s) \\
 = Q^{\pi_\theta}(s, a) - V^{\pi_\theta}(s) = A^{\pi_\theta}(s, a)
 \]
- So we can use the TD error to compute the policy gradient
 \[
 \nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta} [\nabla_\theta \log \pi_\theta(a|s) \delta^{\pi_\theta}_\theta]
 \]
- In practice this approach only requires one set of critic parameters v to approximate TD error
 \[
 \delta_v = r + \gamma V_v(s') - V_v(s)
 \]
- Notice this algorithm is exactly REINFORCE with baseline
Asyncrhonous Advantage Actor Critic (A3C)

- A3C *(Mnih et al. 2016)* idea: Sample for data can be parallelized using several copies of the same agent
 - use N copies of the agents (workers) working in parallel collecting samples and computing gradients for policy and value function
 - After some time, pass gradients to a main network that updates actor and critic using the gradients of all
 - After some time the worker copy the weights of the global network
- This parallelism decorrelates the agents’ data, so no Experience Replay Buffer needed
- Even one can explicitly use different exploration policies in each actor-learner to maximize diversity
- Asynchronism can be extended to other update mechanisms (Sarsa, Q-learning...) but it works better in Advantage Actor critic setting
Generalized Advanced Estimator (GAE)

- Generalized Advanced Estimator (Schulman et al. 2016)
- Use a version of Advantage that consider weighted average of n-steps estimators of advantage like in TD(\(\lambda\)):

\[
A_{\text{GAE}}^{\pi} = \sum_{t'=t}^{\infty} (\lambda \gamma)^{t'-t} \left[r_{t'+1} + \gamma V_{\theta}^{\pi}(s_{t'+1}) - V_{\theta}^{\pi}(s_{t'}) \right]
\]

- Used in continuous setting for locomotion tasks
Subsection 4

Conclusions and other approaches
The policy gradient has many equivalent forms

\[\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) R_t] \]

\[= \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) Q_w(s, a)] \]

\[= \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) A_w(s, a)] \]

\[= \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) \delta] \]

\[= \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) \delta e] \]

Each leads a stochastic gradient ascent algorithm

Critic uses **policy evaluation** (e.g. MC or TD learning) to estimate \(Q^\pi(s, a), A^\pi(s, a) \) or \(V^\pi(s) \)
Approximating the policy gradient introduces bias
A biased policy gradient may not find the right solution
Luckily, if we choose value function approximation carefully, then we can avoid bias
If the following two conditions are satisfied:

1. Value function approximator is compatible to the policy

\[\nabla_w Q_w(s, a) = \nabla_\theta \log \pi_\theta(a|s) \]

2. Value function parameters w minimize the mean-squared error

\[\nabla_w \mathbb{E}_{\pi_\theta} \left[(Q^{\pi_\theta}(s, a) - Q_w(s, a))^2 \right] = 0 \]

Then the policy gradient is without bias
Goal: Each step of policy gradient yields an updated policy π' whose value is greater than or equal to the prior policy π: $V_{\pi'} \geq V_{\pi}$

Several inefficiencies:

- Gradient ascent approaches update the weights a small step in direction of gradient
- Gradient ascent algorithms can follow any ascent direction (a good ascent direction can significantly speed convergence)
- Gradient is First order / linear approximation of the value function's dependence on the policy parameterization instead of actual policy

1 A policy can often be re-parameterized without changing action probabilities (f.i., increasing score of all actions in a softmax policy). Vanilla gradient is sensitive to these re-parameterizations.
About step size

- Step size is important in any problem involving finding the optima of a function
- Supervised learning: Step too far \rightarrow next updates will fix it
- But in Reinforcement learning
 - Step too far \rightarrow bad policy
 - Next batch: collected under bad policy
 - **Policy is determining data collect!** Essentially controlling exploration and exploitation trade-off due to particular policy parameters and the stochasticity of the policy
 - May not be able to recover from a bad choice, collapse in performance!
Better Policy Gradient Directions: Natural Gradient

- A more efficient gradient in learning problems is the **natural gradient**
- It corresponds to **steepest ascent in policy space and not in the parameter space** with **right step size**
- Also, the natural policy gradient is **parametrization independent**
- Convergence to a local minimum is guaranteed
- It finds ascent direction that is closest to vanilla gradient, when changing policy by a small, fixed amount

\[
\nabla^{nat}_\theta \pi_\theta(a|s) = G_\theta^{-1} \nabla_\theta \pi_\theta(a|s)
\]

- Where \(G_\theta\) is the Fisher information matrix

\[
G_\theta = \mathbb{E}_{\pi_\theta} \left[\nabla_\theta \log \pi_\theta(a|s) \nabla_\theta \log \pi_\theta(a|s)^T \right]
\]
Natural Actor Critic (Peters et al 2005)

- Under linear model modelization of critic:
 \[A^{\pi_\theta}(s, a) = \phi(s, a)^T w \]

- Using compatible function approximation,
 \[\nabla_w A_w(s, a) = \nabla_\theta \log \pi_\theta(a|s) \]

- The natural policy gradient nicely simplifies,
 \[\nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta} \left[\nabla_\theta \log \pi_\theta(a|s) A^{\pi_\theta}(s, a) \right] \]
 \[= \mathbb{E}_{\pi_\theta} \left[\nabla_\theta \log \pi_\theta(a|s) \nabla_\theta \log \pi_\theta(a|s)^T w \right] \]
 \[= G_\theta w \]
 \[\nabla^{nat}_\theta J(\theta) = w \]

- i.e. update actor parameters in direction of critic parameters
TRPO (Schulman et al 2017)

- *Trust Region Policy Optimization* (TRPO) maximize parameters that change the policy increasing advantage in action over wrt. old policy in proximal spaces to avoid too large step size.

\[
\arg \max_\theta L_{\theta_{old}}(\theta) = \arg \max_\theta \mathbb{E}_{s_0:\infty} \left[\sum_{t=0}^{T-1} \mathbb{E}_{a \sim \theta} \left[\frac{\pi_\theta(a_t|s_t)}{\pi_{\theta_{old}}(a_t|s_t)} A_\theta(s_t, a_t) \right] \right]
\]

- Under penalizing constraint (using KL divergence of θ and θ_{old}) that ensures improvement of the policy in the proximity (small step size)
- Solves using Natural Gradient
TRPO (Schulman et al 2017)

- *Trust Region Policy Optimization* (TRPO) maximize parameters that change the policy increasing advantage in action over wrt. old policy in proximal spaces to avoid too large step size.

\[
\text{arg max}_{\theta} L_{\theta_{old}}(\theta) = \text{arg max}_{\theta} \mathbb{E}_{s_0:\infty} \left[\sum_{t=0}^{T-1} \mathbb{E}_{a \sim \theta} \left[\frac{\pi_\theta(a_t|s_t)}{\pi_{\theta_{old}}(a_t|s_t)} A_\theta(s_t, a_t) \right] \right]
\]

- Under penalizing constraint (using KL divergence of θ and θ_{old}) that ensures improvement of the policy in the proximity (small step size)
- Solves using Natural Gradient
- Some TRPO videos [here](#)
- Proximal Policy Optimization *PPO* inspired in TRPO simplifies computation
Deterministic Policy Gradient (DPGA)

- A different idea: Reparametrization
- Suppose problem has continuous action space, \(a \in \mathbb{R}^d \)
- Then \(\frac{\partial Q(s,a)}{\partial a} \) tells us how to improve our action
- We can use reparameterization trick, so \(a \) is now a deterministic function \(a = f(s,z) \), where \(z \) is noise. Then,

\[
\nabla_\theta \mathbb{E}_\tau[R] = \nabla_\theta Q^\pi(s_0, a_0) + \nabla_\theta Q^\pi(s_1, a_1) + \ldots
\]

- This method is called the deterministic policy gradient (Silver et al. 2014)
- A generalized version, which also uses a dynamics model, is described as the stochastic value gradient