Nearest Neighbors and Naive Bayes
Baseline algorithms

- Simple algorithms but effective
- Two different methods:
 - **Nearest Neighbor.** Non parametric method: In this case a lazy Instance Based Learning method that does not build any model.
 - **Naïve Bayes.** Parametric: It builds a probabilistic model of your data following some assumptions.
Nearest Neighbor classifier

Instance Based Learning / Lazy Methods
Lazy learning methods: they don’t build a model of the data

Assign the label to an observation depending on the labels of “closest” examples

Only requirements:
- A training set
- A similarity measure
Instance Based Learning Algorithms

- K-NN
- Distance Weighted kNN
- How to select K??
- How to solve some problems
K-Nearest neighbor algorithm

It interprets each example as a point in a space defined by the features describing the data.

In that space a similarity measure allows us to classify new examples.

Class is assigned depending on the K closest examples.
1-NN example

• Two real features \((x_1, x_2)\) define the space.
• Each red point is a positive example. Black points are negative examples.

Equivalent to drawing the Voronoi space of your data.
1-NN example

• Two real features \((x_1, x_2)\) define the space.
• Each red point is a positive example. Black points are negative examples.
Distance measures

- Distance is a parameter of the algorithm
- When dataset is numeric, usually Euclidean:

\[d(x_i, x_j) = \sqrt{\sum_{k=1}^{m} (x_i(k) - x_j(k))^2} \]

- In mixed data sets, Gower or any other appropriate distance measure
- **CAVEAT**: Data should be normalized or standardized in order to ensure same relevance to each feature in the computation of distance.
Some comments

Advantages:
- Fast training
- Ability to learn very complex functions

Problems:
- Very slow in testing. Needed some smart structure representation of data in trees
- Fooled by noise
- Fooled when irrelevant features
Some comments:

- Building more robust classifiers
 - Results do not depend on the closest example but on the k closest examples (so k-nearest neighbours (kNN) name)
3-Nearest Neighbors

query point q_f

3 nearest neighbors

$2x, 1o$
7-Nearest Neighbors

query point \(q_f \)

7 nearest neighbors

\(3x, 4o \)
K-NN algorithm

- **Parameters:**
 - Natural number k (*odd number*)
 - Training set
 - Distance measure

- **Algorithm:**
 1. Store all training set $<x_i, \text{label}(x_i)>$
 2. Given new observation, x_q, compute the nearest k neighbors
 3. Let vote the nearest k neighbors to assign the label to the new data.
High number of k show two advantages:
- Smother frontiers
- Reduces sensibility to noise

But too large values are bad because
- We lose locality in the decision because very distant points can interfere in assigning labels
- Computation time is increased

K-value usually is chosen by cross-validation.
A smart variation of KNN.

When voting, all k neighbors have the same influence, but some of them are more distant than the others (so they should influence less in decisions)

Solution: Given more weight to closest examples
Distance Weighted kNN

Lets define a weight for each of the k-closest examples:

\[w_i = K(d(x_i, x_q)) \]

where \(x_q \) is the query point, \(x_i \) is the i-closest example, \(d \) is the distance function and \(K \) is the kernel (a decreasing function with respect to distance function).

Predicted label for \(x_q \) is computed according to:

\[\text{sign} \left(\sum_{i=1}^{k} w_i l(x_i) \right) \]

where \(l(x_i) \) is \{-1,1\} the label of exemple \(x_i \), and \(w_i \) is the weight of example \(x_i \).

In previous example, it could be something like:

\[\text{sign}(0.9 \times 1 + 0.8 \times 1 + 0.4 \times (-1) + 0.35 \times (-1) + 0.3 \times (-1)) = \text{sign}(0.65) = +1 \]
Kernel functions

Examples of kernel functions

- $\frac{1}{d}$
- $\frac{1}{d^2}$
- $\frac{1}{d+1}$
- e^{-d^2}
- Uniform
- $1-d$
K-NN is fooled when irrelevant features are widely present in the data set
 - For instance, examples are described using 20 attributes, but only 2 of them are relevant to the classification...

Solution consists in feature selection. For instance:
 - Use weighted distance:
 \[
 d_z(x_i, x_j) = \sum_{k=1}^{n} z_l(x_i(k) - x_j(k))^2
 \]
 - Limit weights to 0 and 1. Notice that setting \(z_j = 0\) means removing the feature
 - Find weights \(z_1, \ldots, z_n\) (one for each feature), that minimize error in a validation data set using cross-validation
Naïve Bayes

Probabilistic model
From examples in the dataset, we can estimate the likelihood of our data:

\[p(x_1, x_2, \ldots, x_n | c_i) \]

read as probability to observe example with features \((x_1, x_2, \ldots, x_n)\) \([x_i, \ldots, x_n]\) represents feature \(i\) of observation \(x\) in class \(c_i\)

But, for classifying an observation \((x_1, x_2, \ldots, x_n)\), we should look for the class that maximizes the probability of the observation belonging to the class:

\[c_{MAP} = \arg\max_{c_j \in C} P(c_j | x_1, x_2, \ldots, x_n) \]
We will use the Bayes’ theorem:

\[c_{MAP} = \underset{c_j \in C}{\text{argmax}} \ P(c_j \mid x_1, x_2, \ldots, x_n) = \underset{c_j \in C}{\text{argmax}} \ \frac{P(x_1, x_2, \ldots, x_n \mid c_j) P(c_j)}{P(x_1, x_2, \ldots, x_n)} \]

Bayes’ theorem:

\[
\begin{align*}
P(A \mid B) &= P(A \land B) / P(B) \\
P(B \mid A) &= P(A \land B) / P(A)
\end{align*}
\]

=> \[P(A \land B) = P(A \mid B) P(B) = P(B \mid A) P(A) \]

=> \[P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)} \]
Computing probabilities

- $P(c_j)$ - Simply proportion of elements in class j
- $P(x_1, x_2, ..., x_n | c_j)$
 - Problem $|X|^n / |C|$ parameters!
 - It can only be estimated from a very huge dataset. Impractical

Solution: Independence assumption (very Naïve): attribute values are independent. So in this case, we can easily compute

$$P(x_1, x_2, ..., x_n | c_j) = \prod_i P(x_i | c_j)$$
Computing probabilities

- $P(x_k|c_j)$
 - Now we only need $n./C/$ probability estimations
 - Very easy. Number of values with property x_k in class c_j over the complet number of cases in class c_j

- Solving now, $P(x_1, x_2, \ldots, x_n | c_j) = \prod_i P(x_i | c_j)$

 the class assigned to a new observation is:

\[
c_{NB} = \arg\max_{c_j \in C} \frac{P(x_1, x_2, \ldots, x_n | c_j)P(c_j)}{P(x_1, x_2, \ldots, x_n)} = \arg\max_{c_j \in C} P(c_j) \prod_i P(x_i | c_j)
\]

Equation to be used
Practical issues

- Being probabilities in range 0..1, products quickly lead to floating-point underflow errors.
- Knowing that \(\log(xy) = \log(x) + \log(y) \), it is better to work with \(\log(p) \) than with probabilities.

Now:

\[
c_{NB} = \arg\max_{c_j \in C} \left(\log P(c_j) + \sum_{i \in \text{positions}} \log P(x_i \mid c_j) \right)
\]
Example: Learning to classify texts

- Training set: X document corpus
- Each document is labeled with $f(x) = \text{like/dislike}$
- Goal: Learn function that permits given new document if you like it or not.

Questions:
- How do we represent documents?
- How to compute probabilities?
How do we represent documents?

- Each document is represented as a *Bag of Words*
- Attributes: All words that appear in the document
- So each document is represented as a boolean vector with length N: 0 – word does not appear; 1 – word appear

Practical problem: A very huge table.

Solution: Use sparse representation of matrixes
Example: Learning to classify texts

- **Some numbers**
 - 10,000 documents
 - 500 words per document
 - Maximum theoretical number of words: 50,000 (much less because of word repetitions)

- **Reducing the number of attributes**
 - Removing the number (sing/plural) and verbal forms (*stemming*)
 - Remove conjunctions, propositions and articles (*stop words*)
 - Now we have about. 10,000 attributes
Example: Learning to classify texts

How to compute probabilities?
- First compute $P(v_i)$ for each class [“a priori” probability for like and dislike classes]

\[
\begin{align*}
P(v_{\text{like}}) &= \frac{\text{#documents like}}{\text{total number of documents}} \\
P(v_{\text{dislike}}) &= \frac{\text{#documents dislike}}{\text{total number of documents}}
\end{align*}
\]
Example: Learning to classify texts

\[v_{NB} = \arg\max_{v \in \{\text{like, dislike}\}} P(v) \prod_i P(x_i = \text{word}_i \mid v) \]

- How to compute probabilities?
 - Second, compute \(P(x_i = \text{word}_i \mid v) \) for each word:
 \[
P(\text{word}_k \mid v) = \frac{\#(\text{docs. } v \text{ in training where word}_k \text{ appears})}{\#(\text{documents } v)} = \frac{n_k}{n}
 \]
 - Number of parameters to estimate is not too large: 10,000 words and two classes (so about 20,000)
Example: Learning to classify texts

- Problem:

\[P(\text{word}_k \mid v) = \frac{\#(\text{docs. } v \text{ del training on word}_k \text{ apareix})}{\#(\text{documents } v)} = \frac{n_k}{n} \]

- When \(n_k \) is low, not an accurate probability
- When \(n_k \) is 0 for \(\text{word}_k \) for one class \(v \), then any document with that word will never be assigned to \(v \) (independent of other appearing words)
Example: Learning to classify texts

• Solution: More robust computation of probabilities (Laplace smoothing)

\[
P(\text{word}_k \mid v) = \frac{n_k + mp}{n + m}
\]

• Where:
 – \(n_k \) is # of documents of class \(v \) in which word \(k \) appear
 – \(n \) is # of documents with label \(v \)
 – \(p \) it’s a likelihood estimation of “a priori” \(P(x_k \mid v) \) (f.i., uniform distribution)
 – \(m \) is the number of labels
Example: Learning to classify texts

Smoothing: \[P(x_k | v) = \frac{n_k + mp}{n + m} \]

More common “a priori” uniform distribution:

1. When two classes: \(p=1/2, m=2 \) (Laplace Rule)

\[P(x_k | v) = \frac{n_k + 1}{n + 2} \]

2. Generic case (\(c \) classes): \(p = 1/c, m=c \)

\[P(x_k | v) = \frac{n_k + 1}{n + c} \]
Naïve Bayes return good accuracy results even when independence assumption is not fulfilled
- In fact, Spam/not Spam implementation of Thunderbird work in this way
- Applied to document filtering (fi. Newsgroups or incoming mails)

Learning and testing time are linear with the number of attributes!
Assume each class follows a normal distribution for each variable

\[f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

For instance 73 is average of feature temp. for class x, and std=26.2, we compute conditional prob in the following way:

\[p(temperature = 66 \mid x) = \frac{1}{\sqrt{2\pi}6.2} e^{-\frac{(66-73)^2}{26.2^2}} = 0.034 \]