Reinforcement learning in Multi-Agent Systems
Learning in Multi-Agent Systems: Important Issues

- Classification
- Social Awareness
- Communication
- Role Learning
- Distributed Learning
- Focus: Learning of Coordination
A Brief History

Machine Learning

Agents

Disembodied ML

Single-Agent Learning

Multiple Single-Agent Learners

Social Multi-Agent Learners

Social Multi-Agent System

Multiple Single-Agent System

Single-Agent System
Types of Multi-Agent Learning
[Weiss & Dillenbourg 99]

- **Multiplied Learning**: No interference in the learning process by other agents (except for exchange of training data or outputs).
- **Divided Learning**: Division of learning task on functional level.
- **Interacting Learning**: cooperation beyond the pure exchange of data.
Social Awareness

• Awareness of existence of other agents and (eventually) knowledge about their behavior.

• Not necessary to achieve near optimal MAS behavior: rock sample collection [Steels 89].

• Can it degrade performance?
Levels of Social Awareness [Vidal&Durfee 97]

- **0-level agent**: no knowledge about existence of other agents.
- **1-level agent**: recognizes that other agents exist, model other agents as 0-level.
- **2-level agent**: has some knowledge about behavior of other agents and their behavior; model other agents as 1-level agents.
- **k-level agent**: model other agents as (k-1)-level.
Social Awareness and Q Learning

• 0-level agents already learn implicitly about other agents.

• [Mundhe and Sen, 00]: study of two Q learning agents up to level 2.

• Two 1-level agents display slowest and least effective learning (worse than two 0-level agents).
Agent models and Q Learning

• $Q: S \times A^n \rightarrow R$, where n is the number of agents.
• If other agent’s actions are not observable, need assumption for actions of other agents.
• Pessimistic assumption: given an agent’s action choice other agents will minimize reward.
• Optimistic assumption: other agents will maximize reward.
Agent Models and Q Learning

• Pessimistic Assumption leads to overly cautious behavior.
• Optimistic Assumption guarantees convergence towards optimum [Lauer & Riedmiller ‘00].
• If knowledge of other agent’s behavior available, Q value update can be based on probabilistic computation [Claus and Boutilier ‘98]. But: no guarantee of optimality.
Q Learning & Communication
[Tan 93]

Types of communication:
• Sharing sensation
• Sharing or merging policies
• Sharing episodes

Results:
• Communication generally helps
• Extra sensory information may hurt
Role Learning

• Often useful for agents to specialize in specific roles for joint tasks.
• Pre-defined roles: reduce flexibility, often not easy to define optimal distribution, may be expensive.
• How to learn roles?
• [Prasad et al. 96]: learn optimal distribution of pre-defined roles.
Q Learning of roles

- [Crites&Barto 98]: elevator domain; regular Q learning; no specialization achieved (but highly efficient behavior).
- [Ono&Fukumoto 96]: Hunter-Prey domain, specialization achieved with greatest mass merging strategy.
Q Learning of Roles
[Balch 99]

- Two main types of reward function: local and global.
- Global reward supports specialization.
- Local reward supports emergence of homogeneous behaviors.
- Some domains benefit from learning team heterogeneity (e.g., robotic soccer), others do not (e.g., multi-robot foraging).
- Heterogeneity measure: social entropy.
Distributed Learning

• Motivation: Agents learning a global hypothesis from local observations.

• Application of MAS techniques to (inductive) learning.

• Applications: Distributed Data Mining [Provost & Kolluri ‘99], Robotic Soccer.
Distributed Data Mining

- [Provost & Hennessy 96]: Individual learners see only subset of all training examples and compute a set of local rules based on these.

- Local rules are evaluated by other learners based on their data.

- Only rules with good evaluation are carried over to the global hypothesis.
Learning to Coordinate

- Good coordination is crucial for good MAS performance.
- Example: soccer team.
- Pre-defined coordination protocols are often difficult to define in advance.
- Needed: learning of coordination.
- Focus: Q-learning of coordination.
Soccer Formation
Soccer Formation Control

• Formation control is a coordination problem.
• Good formations and set-plays seem to be a strong factor in winning teams.
• To date: pre-defined.
• Can (near-)optimal formations be (reinforcement) learned?
A Sub-Problem

- **Given**: n agents at random positions, and a formation having n positions.
- **Wanted**: set of n policies that transforms initial state into the desired formation.
- **Specifically**: Q learning of these policies.
A Further Simplification

• MAS Policy: decision procedure who takes which position.

• No two agents should choose the same formation position.

• Problem reduces to reinforcement learning of coordination in cooperative games.
Cooperative Games

- Players perform actions simultaneously.
- Afterwards, all players receive the same reward based on the joint action.

<table>
<thead>
<tr>
<th></th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>5</td>
</tr>
<tr>
<td>A2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>A2</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
Cooperative Games and Formations

• Consider 2-player formation with 2 positions: left, right.

• Corresponding cooperative game:

<table>
<thead>
<tr>
<th></th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>left</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>right</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>
Learning in Cooperative Games

• To date: focus on Q-learning.
• Is communication/observation amongst agents necessary?
• Does this requirement change with increasing difficulty of the cooperative game?
Convergence

• Single-agent Q-learning: guaranteed convergence (to optimum).
• Multi-agent Q-learning: more assumptions needed.
• Crucial in MAS: action selection strategy.
Q Learning Revisited

- Modified Q update function:
 \[Q(a) = Q(a) + \gamma (r - Q(a)) \]

- Boltzmann action selection strategy:
 \[P(a) = \frac{e^{EV(a)/T}}{\sum_{a'} e^{EV(a')/T}} \]
Boltzmann Exploration

• Usually: $EV(a) = Q(a)$.
• Trade-off between *exploration* and *exploitation*.
• Higher temperature T results in more emphasis on exploration.
• Temperature T should be high at first, and lowered with time ($T(t) = e^{-st}$).
Q Learning of Coordination

- [Singh et al., 2000]: convergence to *some* joint action can be ensured with specific temperature properties.
- Convergence to optimal joint action for simple cases:

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th>A2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>A2</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
“Difficult” Cooperative Games

- Climbing Game [Claus & Boutillier, 98]:

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Player 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>11</td>
<td>-30</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>-30</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
</tbody>
</table>
Climbing Game

- Multiplied Q learning with Boltzmann exploration converges to suboptimal \((c,c)\).
- \([C & B, 98]\): Joint action learners (JAL).
- Agents observe each others actions and build a probabilistic model, according to which the next action is chosen.
- Agents get to \((b,b)\) but are stuck there.
Climbing Game (cont.)

- Optimistic assumption [Lauer & Riedmiller, 00]: never reduce Q-values due to penalties.
- Converges quickly to optimal (a,a).
- However, does not converge on stochastic version of climbing game.
Stochastic Climbing Game

<table>
<thead>
<tr>
<th>Player 1</th>
<th>Player 2</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>12/10</td>
<td>0/-60</td>
<td>0/-60</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>0/-60</td>
<td>14/0</td>
<td>8/4</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>5/-5</td>
<td>5/-5</td>
<td>7/3</td>
</tr>
</tbody>
</table>
FMQ Heuristic

• [Kapetanakis & Kudenko, 02]:
 – \(EV(a) = Q(a) + c \ \text{freq}(\maxR(a)) \ \maxR(a) \)

• \(EV(a) \) carries information on how frequently an action produces its maximum corresponding reward.

• Converges to optimal \((a,a)\) for climbing game and partially stochastic climbing game.
Partially Stochastic Climbing Game

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>11</td>
<td>0/-60</td>
<td>0/-60</td>
</tr>
<tr>
<td>b</td>
<td>0/-60</td>
<td>14/0</td>
<td>8/4</td>
</tr>
<tr>
<td>c</td>
<td>5/-5</td>
<td>5/-5</td>
<td>7/3</td>
</tr>
</tbody>
</table>
“Difficult” Cooperative Games

- Penalty Game [Claus & Boutillier, 98]

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Player 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>10</td>
<td>0</td>
<td>k</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>k</td>
<td>0</td>
<td>10</td>
</tr>
</tbody>
</table>

Player 2
Penalty Game

- JAL: convergence to optimal \((a,a)\) or \((c,c)\) only for small penalties \(k > -20\).
- Both optimistic assumption and FMQ converge to either optimum also for large penalties (up to \(-100\)).
Learning of Coordination: More Questions

- Scaling-up of Q learning approaches?
- Agents with state: [Boutillier, 99].
- Large numbers of actions/agents?
- Learning of formations from non-explicit rewards?
Learning of Coordination: Conclusions

• Idealized and simple cases have been studied and solved.
• Mutual communication/observation may not be needed.
• Beyond Q learning: Evolutionary approaches [Quinn, 01].