Reinforcement Learning
Monte Carlo and TD(\(\lambda\)) learning

Mario Martin
Universitat politècnica de Catalunya
Dept. LSI
Monte Carlo

- Only for trial based learning

- Values for each state or pair state-action are updated only based on final reward, not on estimations of neighbor states
Temporal Difference backup

\[V(s_t) \leftarrow V(s_t) + \alpha \left[r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \right] \]
Monte Carlo

\[V(s_t) \leftarrow V(s_t) + \alpha [R_t - V(s_t)] \]

where \(R_t \) is the actual long-term return following state \(s_t \).
Comparison of TD and MC Learning

• Both TD and MC methods do not require a model of the environment, only experience (not with DP)
• TD, but not MC, methods can be fully incremental
 – You can learn before knowing the final outcome
 • Less memory
 • Less peak computation
 – You can learn without the final outcome
 • From incomplete sequences
• Both MC and TD converge (under certain assumptions to be detailed later), but which is faster? (we will see that later)
N-step TD Prediction

• Instead of calculating the error in terms of the estimation of the next state, use n-steps future state estimation:

\[
Q(s_t, a_t) = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \ldots + \gamma^{n-1} r_{n+1} + \ldots
\]

\[
Q^{1)}(s_t, a_t) = r_{t+1} + \gamma V(s_{t+1})
\]

One-step predictor
N-step TD Prediction

• Instead of calculating the error in terms of the estimation of the next state, use n-steps future state estimation:

\[Q(s_t, a_t) = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \ldots + \gamma^{n-1} r_{n+1} + \ldots \]

\[Q^{2)}(s_t, a_t) = r_{t+1} + \gamma r_{t+2} + \gamma^2 V(s_{t+2}) \]

Two-steps predictor
N-step TD Prediction

• Instead of calculating the error in terms of the estimation of the next state, use n-steps future state estimation:

$$Q(s_t, a_t) = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \ldots + \gamma^{n-1} r_{n+1} + \ldots$$

$$Q^3(s_t, a_t) = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \gamma^3 V(s_{t+3})$$

Three-steps predictor
N-step TD Prediction

- Instead of calculating the error in terms of the estimation of the next state, use n-steps future state estimation:

\[Q(s_t, a_t) = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \ldots + \gamma^{n-1} r_{n+1} + \ldots \]

\[Q^n(s_t, a_t) = \left(\sum_{i=1}^{n} \gamma^{i-1} r_{t+i} \right) + \gamma^n V(s_{t+n}) \]

n-steps predictor
N-step TD Prediction

• Idea: Look farther into the future when you do TD backup (1, 2, 3, …, n steps)
Lots of TD predictors for long term reward

• TD 1-step: \[R_t^{(1)} = r_{t+1} + \gamma V_t(s_{t+1}) \]

• n-step TD:
 – 2 step return: \[R_t^{(2)} = r_{t+1} + \gamma r_{t+2} + \gamma^2 V_t(s_{t+2}) \]
 – …
 – n-step return: \[R_t^{(n)} = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots + \gamma^{n-1} r_{t+n} + \gamma^n V_t(s_{t+n}) \]

• Monte Carlo: \[R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots + \gamma^{T-t-1} r_T \]
N-steps Estimations

- N-steps back-up

\[Q^{(n)}(s_t, a_t) = Q^{(n)}(s_t, a_t) + \alpha \left(\sum_{i=1}^{n} \gamma^{i-1} r_{t+i} \right) + \gamma^n V(s_{t+n}) - Q^{(n)}(s_t, a_t) \]

- A lot of predictors. Which one to use? Trust in only one can lead to bad results because it can be severely biased.

- But, it is so biased to use the 1-step back-up as to use the n-steps back-up
Averaging N-step Returns

- Idea: backup an average of several returns
 - e.g. backup half of 2-step and half of 4-step

\[R_{t}^{\text{avg}} = \frac{1}{2} R_{t}^{(2)} + \frac{1}{2} R_{t}^{(4)} \]

- Called a complex backup
 - Choose each component
 - Label with the weights for that component
TD(\(\lambda\))

- Better, use all the next estimations. Pass credit not only based in the next state but in the whole set of next states.

- Value estimation for the n-steps

\[
V^{(n)}(s_t) = \left(\sum_{i=1}^{n} \gamma^{i-1} r_{t+i} \right) + \gamma^n V(s_{t+n})
\]
• Define the new estimation $V^\lambda(s)$ as the geometrical average with parameter ($0 \leq \lambda \leq 1$)

$$V^\lambda(s_t) = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} V^n(s_t)$$
The λ-return Weighting Function is defined as

\[R_t^\lambda = (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} R_t^{(n)} + \lambda^{T-t-1} R_t \]

Until termination \quad After termination
TD(λ)

- **TD(λ)** is a method for averaging all n-step backups
 - weight by λ^{n-1} (time since visitation)

λ-return:

$$R_t^\lambda = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} R_t^{(n)}$$

- Backup using λ-return:

$$\Delta V_t(s_t) = \alpha \left[R_t^\lambda - V_t(s_t) \right]$$
• Back-up

\[V(s_t) = V(s_t) + \alpha \left(V^\lambda(s_t) - V(s_t) \right) \]

• Problem: In order to perform the back-up it is necessary to end the trial
Forward View of TD(λ) II

- Look forward from each state to determine update from future states and rewards:

$$V^\lambda(s_t) = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} V^n(s_t)$$
TD(\(\lambda\))

• Back-up

\[V(s_t) = V(s_t) + \alpha \left(V^\lambda(s_t) - V(s_t) \right) \]

• Problem: In order to perform the back-up it is necessary to end the trial

• Solution: Fortunately, this forward view of TD(\(\lambda\)) is equivalent to the following backward view
Backward View

\[\delta_t = r_{t+1} + \gamma V_t(s_{t+1}) - V_t(s_t) \]

- Shout \(\delta_t \) backwards over time
- The strength of your voice decreases with temporal distance by \(\gamma \lambda \)
Back-up not only when visiting the current state but also when visiting the following states:

\[V^\lambda(s_t) = (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} V^n(s_t) \]

- \(t \): \((1 - \lambda) \ V(s_t) \)
- \(t+1 \): \((1 - \lambda) \lambda \ V(s_{t+1}) \)
- \(t+2 \): \((1 - \lambda) \lambda^2 \ V(s_{t+2}) \)
- \(t+3 \): \((1 - \lambda) \lambda^3 \ V(s_{t+3}) \)
Backward View of TD(\(\lambda\))

- New variable called \textit{eligibility trace}
 - On each step, decay all traces by \(\gamma\lambda\) and increment the trace for the current state by 1
 - Accumulating trace

\[
e_t(s) = \begin{cases}
\gamma\lambda e_{t-1}(s) & \text{if } s \neq s_t \\
\gamma\lambda e_{t-1}(s) + 1 & \text{if } s = s_t
\end{cases}
\]
On-line Tabular TD(\(\lambda\))

Initialize \(V(s)\) arbitrarily
Repeat (for each episode):
\(e(s) = 0\), for all \(s \in S\)
Initialize \(s\)
Repeat (for each step of episode):
\(a \leftarrow \) action given by \(\pi\) for \(s\)
Take action \(a\), observe reward, \(r\), and next state \(s'\)
\(\delta \leftarrow r + \gamma V(s') - V(s)\)
\(e(s) \leftarrow e(s) + 1\)
For all \(s\) in the trace:
\(V(s) \leftarrow V(s) + \alpha \delta e(s)\)
\(e(s) \leftarrow \gamma \lambda e(s)\)
\(s \leftarrow s'\)
Until \(s\) is terminal
Extensible to Q-functions : Sarsa(λ)

- Save eligibility for state-action pairs instead of just states

$$e_t(s,a) = \begin{cases}
\gamma \lambda e_{t-1}(s,a) + 1 & \text{if } s = s_t \text{ and } a = a_t \\
\gamma \lambda e_{t-1}(s,a) & \text{otherwise}
\end{cases}$$

$$Q_{t+1}(s,a) = Q_t(s,a) + \alpha \delta_t e_t(s,a)$$

$$\delta_t = r_{t+1} + \gamma Q_t(s_{t+1},a_{t+1}) - Q_t(s_t,a_t)$$
Sarsa(\(\lambda\)) Algorithm

Initialize \(Q(s,a)\) arbitrarily

Repeat (for each episode):

\(e(s,a) = 0\), for all \(s,a\)

Initialize \(s,a\)

Repeat (for each step of episode):

Take action \(a\), observe \(r,s'\)

Choose \(a'\) from \(s'\) using policy derived from \(Q\) (e.g. \(\varepsilon\)-greedy)

\[\delta \leftarrow r + \gamma Q(s',a') - Q(s,a)\]

\(e(s,a) \leftarrow e(s,a) + 1\)

For all \(s,a\):

\[Q(s,a) \leftarrow Q(s,a) + \alpha \delta e(s,a)\]

\(e(s,a) \leftarrow \gamma \lambda e(s,a)\)

\(s \leftarrow s';a \leftarrow a'\)

Until \(s\) is terminal
Sarsa(λ) Gridworld Example

• With one trial, the agent has much more information about how to get to the goal
 – not necessarily the best way
• Can considerably accelerate learning
Q-learning(λ)?

- How can we extend this to Q-learning?
- If you mark every state action pair as eligible, you backup over non-greedy policy
 - *Watkins*: Zero out eligibility trace after a non-greedy action. Do max when backing up at first non-greedy choice.

\[
e_t(s, a) = \begin{cases}
1 + \gamma \lambda e_{t-1}(s, a) & \text{if } s = s_t, a = a_t, Q_{t-1}(s_t, a_t) = \max_a Q_{t-1}(s_t, a) \\
0 & \text{if } Q_{t-1}(s_t, a_t) \neq \max_a Q_{t-1}(s_t, a) \\
\gamma \lambda e_{t-1}(s, a) & \text{otherwise}
\end{cases}
\]

\[
Q_{t+1}(s, a) = Q_t(s, a) + \alpha \delta_t e_t(s, a)
\]
\[
\delta_t = r_{t+1} + \gamma \max_{a'} Q_t(s_{t+1}, a') - Q_t(s_t, a_t)
\]
Watkins’s $Q(\lambda)$

Initialize $Q(s,a)$ arbitrarily

Repeat (for each episode):

$e(s,a) = 0$, for all s,a

Initialize s,a

Repeat (for each step of episode):

Take action a, observe r,s'

Choose a' from s' using policy derived from Q (e.g. ε-greedy)

$a^* \leftarrow \arg \max_b Q(s',b)$ (if a ties for the max, then $a^* \leftarrow a'$)

$\delta \leftarrow r + \gamma Q(s',a') - Q(s,a^*)$

$e(s,a) \leftarrow e(s,a) + 1$

For all s,a:

$Q(s,a) \leftarrow Q(s,a) + \alpha \delta e(s,a)$

If $a' = a^*$, then $e(s,a) \leftarrow \gamma \lambda e(s,a)$

else $e(s,a) \leftarrow 0$

$s \leftarrow s'; a \leftarrow a'$

Until s is terminal
Peng’s $Q(\lambda)$

- Disadvantage to Watkins’s method:
 - Early in learning, the eligibility trace will be “cut” (zeroed out) frequently resulting in little advantage to traces

- Peng:
 - Backup max action except at end
 - Never cut traces

- Disadvantage:
 - Complicated to implement
Naïve Q(\(\lambda\))

- Idea: is it really a problem to backup exploratory actions?
 - Never zero traces
 - Always backup max at current action (unlike Peng or Watkins’s)
- Is this truly naïve?
- Works well in preliminary empirical studies
Convergence of the $Q(\lambda)$’s

• None of the methods are proven to converge.
 – Watkins’s is thought to converge to Q^*
 – Peng’s is thought to converge to a mixture of Q^π and Q^*
 – Naïve - Q^*?
Relationship between $\text{TD}(\lambda)$, Q-learning and Monte Carlo

$$R_t^\lambda = (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} R_t^{(n)} + \lambda^{T-t-1} R_t$$

Until termination After termination
Relationship between TD(λ), Q-learning and Monte Carlo

\[R_t^\lambda = (1 - \lambda) \sum_{n=1}^{T-t-1} \lambda^{n-1} R_t^{(n)} + \lambda^{T-t-1} R_t \]

- If \(\lambda = 0 \), you get TD(0)
 - Q-learning
 - Sarsa

- If \(\lambda = 1 \), you get MC
Best λ?

- Not know before-hand
- Empirical example: Prediction of return in a simple Random Walk experiment
Some remarks about TD(λ)

- Extensible to Q-values [$Q(\lambda)$ and Sarsa(λ)]
- Extensible to continuous learning: Eligibility traces are set to 0 when they are enough small
- Q-learning is a variant of TD(0)
- Monte-Carlo is a variant of TD(1)
- Usually TD(λ) with $\lambda \neq 0$ and 1 show better results than TD(0) or TD(1)
Reinforcement Learning

Summary

Mario Martin
Universitat politècnica de Catalunya
Dept. LSI
Three Common Ideas

- Estimation of **value functions**
- **Backing up values** along real or simulated trajectories
- **Generalized Policy Iteration**: maintain an approximate optimal value function and approximate optimal policy, use each to improve the other
Backup Dimensions
Other Dimensions

• On-policy/Off-policy
 – On-policy: learn the value function of the policy being followed
 – Off-policy: try learn the value function for the best policy, irrespective of what policy is being followed
Still More Dimensions

- Definition of return: episodic, continuing, discounted, averaged, etc.
- Action selection/exploration: ϵ-greed, softmax, more sophisticated methods
- Synchronous vs. asynchronous
- Replacing vs. accumulating traces
- Real vs. simulated experience
- Memory for backups: how long should backed up values be retained?
Some open problems

• Function approximation: methods and convergence
• Incomplete state information
 – Partially Observable MDPs (POMDPs)
 – Try to do the best you can with non-Markov states
• Modularity and/or hierarchies of actions and states
• Exploration procedures
• Using teachers
• Incorporating prior knowledge